x86: fix incorrect __read_mostly on _boot_cpu_pda
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / firmware / dmi_scan.c
blob455575be3560d2336c75d2cc8aaf42c64a728f9c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/dmi.h>
6 #include <linux/efi.h>
7 #include <linux/bootmem.h>
8 #include <linux/slab.h>
9 #include <asm/dmi.h>
12 * DMI stands for "Desktop Management Interface". It is part
13 * of and an antecedent to, SMBIOS, which stands for System
14 * Management BIOS. See further: http://www.dmtf.org/standards
16 static char dmi_empty_string[] = " ";
18 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
20 const u8 *bp = ((u8 *) dm) + dm->length;
22 if (s) {
23 s--;
24 while (s > 0 && *bp) {
25 bp += strlen(bp) + 1;
26 s--;
29 if (*bp != 0) {
30 size_t len = strlen(bp)+1;
31 size_t cmp_len = len > 8 ? 8 : len;
33 if (!memcmp(bp, dmi_empty_string, cmp_len))
34 return dmi_empty_string;
35 return bp;
39 return "";
42 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
44 const char *bp = dmi_string_nosave(dm, s);
45 char *str;
46 size_t len;
48 if (bp == dmi_empty_string)
49 return dmi_empty_string;
51 len = strlen(bp) + 1;
52 str = dmi_alloc(len);
53 if (str != NULL)
54 strcpy(str, bp);
55 else
56 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
58 return str;
62 * We have to be cautious here. We have seen BIOSes with DMI pointers
63 * pointing to completely the wrong place for example
65 static void dmi_table(u8 *buf, int len, int num,
66 void (*decode)(const struct dmi_header *))
68 u8 *data = buf;
69 int i = 0;
72 * Stop when we see all the items the table claimed to have
73 * OR we run off the end of the table (also happens)
75 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
76 const struct dmi_header *dm = (const struct dmi_header *)data;
79 * We want to know the total length (formated area and strings)
80 * before decoding to make sure we won't run off the table in
81 * dmi_decode or dmi_string
83 data += dm->length;
84 while ((data - buf < len - 1) && (data[0] || data[1]))
85 data++;
86 if (data - buf < len - 1)
87 decode(dm);
88 data += 2;
89 i++;
93 static u32 dmi_base;
94 static u16 dmi_len;
95 static u16 dmi_num;
97 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *))
99 u8 *buf;
101 buf = dmi_ioremap(dmi_base, dmi_len);
102 if (buf == NULL)
103 return -1;
105 dmi_table(buf, dmi_len, dmi_num, decode);
107 dmi_iounmap(buf, dmi_len);
108 return 0;
111 static int __init dmi_checksum(const u8 *buf)
113 u8 sum = 0;
114 int a;
116 for (a = 0; a < 15; a++)
117 sum += buf[a];
119 return sum == 0;
122 static char *dmi_ident[DMI_STRING_MAX];
123 static LIST_HEAD(dmi_devices);
124 int dmi_available;
127 * Save a DMI string
129 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
131 const char *d = (const char*) dm;
132 char *p;
134 if (dmi_ident[slot])
135 return;
137 p = dmi_string(dm, d[string]);
138 if (p == NULL)
139 return;
141 dmi_ident[slot] = p;
144 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
146 const u8 *d = (u8*) dm + index;
147 char *s;
148 int is_ff = 1, is_00 = 1, i;
150 if (dmi_ident[slot])
151 return;
153 for (i = 0; i < 16 && (is_ff || is_00); i++) {
154 if(d[i] != 0x00) is_ff = 0;
155 if(d[i] != 0xFF) is_00 = 0;
158 if (is_ff || is_00)
159 return;
161 s = dmi_alloc(16*2+4+1);
162 if (!s)
163 return;
165 sprintf(s,
166 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
167 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7],
168 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]);
170 dmi_ident[slot] = s;
173 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
175 const u8 *d = (u8*) dm + index;
176 char *s;
178 if (dmi_ident[slot])
179 return;
181 s = dmi_alloc(4);
182 if (!s)
183 return;
185 sprintf(s, "%u", *d & 0x7F);
186 dmi_ident[slot] = s;
189 static void __init dmi_save_one_device(int type, const char *name)
191 struct dmi_device *dev;
193 /* No duplicate device */
194 if (dmi_find_device(type, name, NULL))
195 return;
197 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
198 if (!dev) {
199 printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
200 return;
203 dev->type = type;
204 strcpy((char *)(dev + 1), name);
205 dev->name = (char *)(dev + 1);
206 dev->device_data = NULL;
207 list_add(&dev->list, &dmi_devices);
210 static void __init dmi_save_devices(const struct dmi_header *dm)
212 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
214 for (i = 0; i < count; i++) {
215 const char *d = (char *)(dm + 1) + (i * 2);
217 /* Skip disabled device */
218 if ((*d & 0x80) == 0)
219 continue;
221 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
225 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
227 int i, count = *(u8 *)(dm + 1);
228 struct dmi_device *dev;
230 for (i = 1; i <= count; i++) {
231 char *devname = dmi_string(dm, i);
233 if (devname == dmi_empty_string)
234 continue;
236 dev = dmi_alloc(sizeof(*dev));
237 if (!dev) {
238 printk(KERN_ERR
239 "dmi_save_oem_strings_devices: out of memory.\n");
240 break;
243 dev->type = DMI_DEV_TYPE_OEM_STRING;
244 dev->name = devname;
245 dev->device_data = NULL;
247 list_add(&dev->list, &dmi_devices);
251 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
253 struct dmi_device *dev;
254 void * data;
256 data = dmi_alloc(dm->length);
257 if (data == NULL) {
258 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
259 return;
262 memcpy(data, dm, dm->length);
264 dev = dmi_alloc(sizeof(*dev));
265 if (!dev) {
266 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
267 return;
270 dev->type = DMI_DEV_TYPE_IPMI;
271 dev->name = "IPMI controller";
272 dev->device_data = data;
274 list_add_tail(&dev->list, &dmi_devices);
277 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
279 const u8 *d = (u8*) dm + 5;
281 /* Skip disabled device */
282 if ((*d & 0x80) == 0)
283 return;
285 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
289 * Process a DMI table entry. Right now all we care about are the BIOS
290 * and machine entries. For 2.5 we should pull the smbus controller info
291 * out of here.
293 static void __init dmi_decode(const struct dmi_header *dm)
295 switch(dm->type) {
296 case 0: /* BIOS Information */
297 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
298 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
299 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
300 break;
301 case 1: /* System Information */
302 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
303 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
304 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
305 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
306 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
307 break;
308 case 2: /* Base Board Information */
309 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
310 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
311 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
312 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
313 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
314 break;
315 case 3: /* Chassis Information */
316 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
317 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
318 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
319 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
320 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
321 break;
322 case 10: /* Onboard Devices Information */
323 dmi_save_devices(dm);
324 break;
325 case 11: /* OEM Strings */
326 dmi_save_oem_strings_devices(dm);
327 break;
328 case 38: /* IPMI Device Information */
329 dmi_save_ipmi_device(dm);
330 break;
331 case 41: /* Onboard Devices Extended Information */
332 dmi_save_extended_devices(dm);
336 static int __init dmi_present(const char __iomem *p)
338 u8 buf[15];
340 memcpy_fromio(buf, p, 15);
341 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) {
342 dmi_num = (buf[13] << 8) | buf[12];
343 dmi_len = (buf[7] << 8) | buf[6];
344 dmi_base = (buf[11] << 24) | (buf[10] << 16) |
345 (buf[9] << 8) | buf[8];
348 * DMI version 0.0 means that the real version is taken from
349 * the SMBIOS version, which we don't know at this point.
351 if (buf[14] != 0)
352 printk(KERN_INFO "DMI %d.%d present.\n",
353 buf[14] >> 4, buf[14] & 0xF);
354 else
355 printk(KERN_INFO "DMI present.\n");
356 if (dmi_walk_early(dmi_decode) == 0)
357 return 0;
359 return 1;
362 void __init dmi_scan_machine(void)
364 char __iomem *p, *q;
365 int rc;
367 if (efi_enabled) {
368 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
369 goto out;
371 /* This is called as a core_initcall() because it isn't
372 * needed during early boot. This also means we can
373 * iounmap the space when we're done with it.
375 p = dmi_ioremap(efi.smbios, 32);
376 if (p == NULL)
377 goto out;
379 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */
380 dmi_iounmap(p, 32);
381 if (!rc) {
382 dmi_available = 1;
383 return;
386 else {
388 * no iounmap() for that ioremap(); it would be a no-op, but
389 * it's so early in setup that sucker gets confused into doing
390 * what it shouldn't if we actually call it.
392 p = dmi_ioremap(0xF0000, 0x10000);
393 if (p == NULL)
394 goto out;
396 for (q = p; q < p + 0x10000; q += 16) {
397 rc = dmi_present(q);
398 if (!rc) {
399 dmi_available = 1;
400 dmi_iounmap(p, 0x10000);
401 return;
404 dmi_iounmap(p, 0x10000);
406 out: printk(KERN_INFO "DMI not present or invalid.\n");
410 * dmi_check_system - check system DMI data
411 * @list: array of dmi_system_id structures to match against
412 * All non-null elements of the list must match
413 * their slot's (field index's) data (i.e., each
414 * list string must be a substring of the specified
415 * DMI slot's string data) to be considered a
416 * successful match.
418 * Walk the blacklist table running matching functions until someone
419 * returns non zero or we hit the end. Callback function is called for
420 * each successful match. Returns the number of matches.
422 int dmi_check_system(const struct dmi_system_id *list)
424 int i, count = 0;
425 const struct dmi_system_id *d = list;
427 while (d->ident) {
428 for (i = 0; i < ARRAY_SIZE(d->matches); i++) {
429 int s = d->matches[i].slot;
430 if (s == DMI_NONE)
431 continue;
432 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr))
433 continue;
434 /* No match */
435 goto fail;
437 count++;
438 if (d->callback && d->callback(d))
439 break;
440 fail: d++;
443 return count;
445 EXPORT_SYMBOL(dmi_check_system);
448 * dmi_get_system_info - return DMI data value
449 * @field: data index (see enum dmi_field)
451 * Returns one DMI data value, can be used to perform
452 * complex DMI data checks.
454 const char *dmi_get_system_info(int field)
456 return dmi_ident[field];
458 EXPORT_SYMBOL(dmi_get_system_info);
462 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information.
463 * @str: Case sensitive Name
465 int dmi_name_in_vendors(const char *str)
467 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR,
468 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR,
469 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE };
470 int i;
471 for (i = 0; fields[i] != DMI_NONE; i++) {
472 int f = fields[i];
473 if (dmi_ident[f] && strstr(dmi_ident[f], str))
474 return 1;
476 return 0;
478 EXPORT_SYMBOL(dmi_name_in_vendors);
481 * dmi_find_device - find onboard device by type/name
482 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
483 * @name: device name string or %NULL to match all
484 * @from: previous device found in search, or %NULL for new search.
486 * Iterates through the list of known onboard devices. If a device is
487 * found with a matching @vendor and @device, a pointer to its device
488 * structure is returned. Otherwise, %NULL is returned.
489 * A new search is initiated by passing %NULL as the @from argument.
490 * If @from is not %NULL, searches continue from next device.
492 const struct dmi_device * dmi_find_device(int type, const char *name,
493 const struct dmi_device *from)
495 const struct list_head *head = from ? &from->list : &dmi_devices;
496 struct list_head *d;
498 for(d = head->next; d != &dmi_devices; d = d->next) {
499 const struct dmi_device *dev =
500 list_entry(d, struct dmi_device, list);
502 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
503 ((name == NULL) || (strcmp(dev->name, name) == 0)))
504 return dev;
507 return NULL;
509 EXPORT_SYMBOL(dmi_find_device);
512 * dmi_get_year - Return year of a DMI date
513 * @field: data index (like dmi_get_system_info)
515 * Returns -1 when the field doesn't exist. 0 when it is broken.
517 int dmi_get_year(int field)
519 int year;
520 const char *s = dmi_get_system_info(field);
522 if (!s)
523 return -1;
524 if (*s == '\0')
525 return 0;
526 s = strrchr(s, '/');
527 if (!s)
528 return 0;
530 s += 1;
531 year = simple_strtoul(s, NULL, 0);
532 if (year && year < 100) { /* 2-digit year */
533 year += 1900;
534 if (year < 1996) /* no dates < spec 1.0 */
535 year += 100;
538 return year;
542 * dmi_walk - Walk the DMI table and get called back for every record
543 * @decode: Callback function
545 * Returns -1 when the DMI table can't be reached, 0 on success.
547 int dmi_walk(void (*decode)(const struct dmi_header *))
549 u8 *buf;
551 if (!dmi_available)
552 return -1;
554 buf = ioremap(dmi_base, dmi_len);
555 if (buf == NULL)
556 return -1;
558 dmi_table(buf, dmi_len, dmi_num, decode);
560 iounmap(buf);
561 return 0;
563 EXPORT_SYMBOL_GPL(dmi_walk);