2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
63 #include <linux/slab.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly
;
86 int sysctl_tcp_low_latency __read_mostly
;
87 EXPORT_SYMBOL(sysctl_tcp_low_latency
);
90 #ifdef CONFIG_TCP_MD5SIG
91 static struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
,
93 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
94 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
);
97 struct tcp_md5sig_key
*tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
103 struct inet_hashinfo tcp_hashinfo
;
104 EXPORT_SYMBOL(tcp_hashinfo
);
106 static inline __u32
tcp_v4_init_sequence(struct sk_buff
*skb
)
108 return secure_tcp_sequence_number(ip_hdr(skb
)->daddr
,
111 tcp_hdr(skb
)->source
);
114 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
116 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
117 struct tcp_sock
*tp
= tcp_sk(sk
);
119 /* With PAWS, it is safe from the viewpoint
120 of data integrity. Even without PAWS it is safe provided sequence
121 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
123 Actually, the idea is close to VJ's one, only timestamp cache is
124 held not per host, but per port pair and TW bucket is used as state
127 If TW bucket has been already destroyed we fall back to VJ's scheme
128 and use initial timestamp retrieved from peer table.
130 if (tcptw
->tw_ts_recent_stamp
&&
131 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
132 get_seconds() - tcptw
->tw_ts_recent_stamp
> 1))) {
133 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
134 if (tp
->write_seq
== 0)
136 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
137 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
144 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
146 /* This will initiate an outgoing connection. */
147 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
149 struct inet_sock
*inet
= inet_sk(sk
);
150 struct tcp_sock
*tp
= tcp_sk(sk
);
151 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
152 __be16 orig_sport
, orig_dport
;
154 __be32 daddr
, nexthop
;
157 if (addr_len
< sizeof(struct sockaddr_in
))
160 if (usin
->sin_family
!= AF_INET
)
161 return -EAFNOSUPPORT
;
163 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
164 if (inet
->opt
&& inet
->opt
->srr
) {
167 nexthop
= inet
->opt
->faddr
;
170 orig_sport
= inet
->inet_sport
;
171 orig_dport
= usin
->sin_port
;
172 rt
= ip_route_connect(nexthop
, inet
->inet_saddr
,
173 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
175 orig_sport
, orig_dport
, sk
, true);
178 if (err
== -ENETUNREACH
)
179 IP_INC_STATS_BH(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
183 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
188 if (!inet
->opt
|| !inet
->opt
->srr
)
191 if (!inet
->inet_saddr
)
192 inet
->inet_saddr
= rt
->rt_src
;
193 inet
->inet_rcv_saddr
= inet
->inet_saddr
;
195 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->inet_daddr
!= daddr
) {
196 /* Reset inherited state */
197 tp
->rx_opt
.ts_recent
= 0;
198 tp
->rx_opt
.ts_recent_stamp
= 0;
202 if (tcp_death_row
.sysctl_tw_recycle
&&
203 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
204 struct inet_peer
*peer
= rt_get_peer(rt
);
206 * VJ's idea. We save last timestamp seen from
207 * the destination in peer table, when entering state
208 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
209 * when trying new connection.
212 inet_peer_refcheck(peer
);
213 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
<= TCP_PAWS_MSL
) {
214 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
215 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
220 inet
->inet_dport
= usin
->sin_port
;
221 inet
->inet_daddr
= daddr
;
223 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
225 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
227 tp
->rx_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
234 tcp_set_state(sk
, TCP_SYN_SENT
);
235 err
= inet_hash_connect(&tcp_death_row
, sk
);
239 rt
= ip_route_newports(rt
, IPPROTO_TCP
,
240 orig_sport
, orig_dport
,
241 inet
->inet_sport
, inet
->inet_dport
, sk
);
247 /* OK, now commit destination to socket. */
248 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
249 sk_setup_caps(sk
, &rt
->dst
);
252 tp
->write_seq
= secure_tcp_sequence_number(inet
->inet_saddr
,
257 inet
->inet_id
= tp
->write_seq
^ jiffies
;
259 err
= tcp_connect(sk
);
268 * This unhashes the socket and releases the local port,
271 tcp_set_state(sk
, TCP_CLOSE
);
273 sk
->sk_route_caps
= 0;
274 inet
->inet_dport
= 0;
277 EXPORT_SYMBOL(tcp_v4_connect
);
280 * This routine does path mtu discovery as defined in RFC1191.
282 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
284 struct dst_entry
*dst
;
285 struct inet_sock
*inet
= inet_sk(sk
);
287 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
288 * send out by Linux are always <576bytes so they should go through
291 if (sk
->sk_state
== TCP_LISTEN
)
294 /* We don't check in the destentry if pmtu discovery is forbidden
295 * on this route. We just assume that no packet_to_big packets
296 * are send back when pmtu discovery is not active.
297 * There is a small race when the user changes this flag in the
298 * route, but I think that's acceptable.
300 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
303 dst
->ops
->update_pmtu(dst
, mtu
);
305 /* Something is about to be wrong... Remember soft error
306 * for the case, if this connection will not able to recover.
308 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
309 sk
->sk_err_soft
= EMSGSIZE
;
313 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
314 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
315 tcp_sync_mss(sk
, mtu
);
317 /* Resend the TCP packet because it's
318 * clear that the old packet has been
319 * dropped. This is the new "fast" path mtu
322 tcp_simple_retransmit(sk
);
323 } /* else let the usual retransmit timer handle it */
327 * This routine is called by the ICMP module when it gets some
328 * sort of error condition. If err < 0 then the socket should
329 * be closed and the error returned to the user. If err > 0
330 * it's just the icmp type << 8 | icmp code. After adjustment
331 * header points to the first 8 bytes of the tcp header. We need
332 * to find the appropriate port.
334 * The locking strategy used here is very "optimistic". When
335 * someone else accesses the socket the ICMP is just dropped
336 * and for some paths there is no check at all.
337 * A more general error queue to queue errors for later handling
338 * is probably better.
342 void tcp_v4_err(struct sk_buff
*icmp_skb
, u32 info
)
344 struct iphdr
*iph
= (struct iphdr
*)icmp_skb
->data
;
345 struct tcphdr
*th
= (struct tcphdr
*)(icmp_skb
->data
+ (iph
->ihl
<< 2));
346 struct inet_connection_sock
*icsk
;
348 struct inet_sock
*inet
;
349 const int type
= icmp_hdr(icmp_skb
)->type
;
350 const int code
= icmp_hdr(icmp_skb
)->code
;
356 struct net
*net
= dev_net(icmp_skb
->dev
);
358 if (icmp_skb
->len
< (iph
->ihl
<< 2) + 8) {
359 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
363 sk
= inet_lookup(net
, &tcp_hashinfo
, iph
->daddr
, th
->dest
,
364 iph
->saddr
, th
->source
, inet_iif(icmp_skb
));
366 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
369 if (sk
->sk_state
== TCP_TIME_WAIT
) {
370 inet_twsk_put(inet_twsk(sk
));
375 /* If too many ICMPs get dropped on busy
376 * servers this needs to be solved differently.
378 if (sock_owned_by_user(sk
))
379 NET_INC_STATS_BH(net
, LINUX_MIB_LOCKDROPPEDICMPS
);
381 if (sk
->sk_state
== TCP_CLOSE
)
384 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
385 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
391 seq
= ntohl(th
->seq
);
392 if (sk
->sk_state
!= TCP_LISTEN
&&
393 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
394 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
399 case ICMP_SOURCE_QUENCH
:
400 /* Just silently ignore these. */
402 case ICMP_PARAMETERPROB
:
405 case ICMP_DEST_UNREACH
:
406 if (code
> NR_ICMP_UNREACH
)
409 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
410 if (!sock_owned_by_user(sk
))
411 do_pmtu_discovery(sk
, iph
, info
);
415 err
= icmp_err_convert
[code
].errno
;
416 /* check if icmp_skb allows revert of backoff
417 * (see draft-zimmermann-tcp-lcd) */
418 if (code
!= ICMP_NET_UNREACH
&& code
!= ICMP_HOST_UNREACH
)
420 if (seq
!= tp
->snd_una
|| !icsk
->icsk_retransmits
||
424 if (sock_owned_by_user(sk
))
427 icsk
->icsk_backoff
--;
428 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
) <<
432 skb
= tcp_write_queue_head(sk
);
435 remaining
= icsk
->icsk_rto
- min(icsk
->icsk_rto
,
436 tcp_time_stamp
- TCP_SKB_CB(skb
)->when
);
439 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
440 remaining
, TCP_RTO_MAX
);
442 /* RTO revert clocked out retransmission.
443 * Will retransmit now */
444 tcp_retransmit_timer(sk
);
448 case ICMP_TIME_EXCEEDED
:
455 switch (sk
->sk_state
) {
456 struct request_sock
*req
, **prev
;
458 if (sock_owned_by_user(sk
))
461 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
462 iph
->daddr
, iph
->saddr
);
466 /* ICMPs are not backlogged, hence we cannot get
467 an established socket here.
471 if (seq
!= tcp_rsk(req
)->snt_isn
) {
472 NET_INC_STATS_BH(net
, LINUX_MIB_OUTOFWINDOWICMPS
);
477 * Still in SYN_RECV, just remove it silently.
478 * There is no good way to pass the error to the newly
479 * created socket, and POSIX does not want network
480 * errors returned from accept().
482 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
486 case TCP_SYN_RECV
: /* Cannot happen.
487 It can f.e. if SYNs crossed.
489 if (!sock_owned_by_user(sk
)) {
492 sk
->sk_error_report(sk
);
496 sk
->sk_err_soft
= err
;
501 /* If we've already connected we will keep trying
502 * until we time out, or the user gives up.
504 * rfc1122 4.2.3.9 allows to consider as hard errors
505 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
506 * but it is obsoleted by pmtu discovery).
508 * Note, that in modern internet, where routing is unreliable
509 * and in each dark corner broken firewalls sit, sending random
510 * errors ordered by their masters even this two messages finally lose
511 * their original sense (even Linux sends invalid PORT_UNREACHs)
513 * Now we are in compliance with RFCs.
518 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
520 sk
->sk_error_report(sk
);
521 } else { /* Only an error on timeout */
522 sk
->sk_err_soft
= err
;
530 static void __tcp_v4_send_check(struct sk_buff
*skb
,
531 __be32 saddr
, __be32 daddr
)
533 struct tcphdr
*th
= tcp_hdr(skb
);
535 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
536 th
->check
= ~tcp_v4_check(skb
->len
, saddr
, daddr
, 0);
537 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
538 skb
->csum_offset
= offsetof(struct tcphdr
, check
);
540 th
->check
= tcp_v4_check(skb
->len
, saddr
, daddr
,
547 /* This routine computes an IPv4 TCP checksum. */
548 void tcp_v4_send_check(struct sock
*sk
, struct sk_buff
*skb
)
550 struct inet_sock
*inet
= inet_sk(sk
);
552 __tcp_v4_send_check(skb
, inet
->inet_saddr
, inet
->inet_daddr
);
554 EXPORT_SYMBOL(tcp_v4_send_check
);
556 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
558 const struct iphdr
*iph
;
561 if (!pskb_may_pull(skb
, sizeof(*th
)))
568 skb
->ip_summed
= CHECKSUM_PARTIAL
;
569 __tcp_v4_send_check(skb
, iph
->saddr
, iph
->daddr
);
574 * This routine will send an RST to the other tcp.
576 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
578 * Answer: if a packet caused RST, it is not for a socket
579 * existing in our system, if it is matched to a socket,
580 * it is just duplicate segment or bug in other side's TCP.
581 * So that we build reply only basing on parameters
582 * arrived with segment.
583 * Exception: precedence violation. We do not implement it in any case.
586 static void tcp_v4_send_reset(struct sock
*sk
, struct sk_buff
*skb
)
588 struct tcphdr
*th
= tcp_hdr(skb
);
591 #ifdef CONFIG_TCP_MD5SIG
592 __be32 opt
[(TCPOLEN_MD5SIG_ALIGNED
>> 2)];
595 struct ip_reply_arg arg
;
596 #ifdef CONFIG_TCP_MD5SIG
597 struct tcp_md5sig_key
*key
;
601 /* Never send a reset in response to a reset. */
605 if (skb_rtable(skb
)->rt_type
!= RTN_LOCAL
)
608 /* Swap the send and the receive. */
609 memset(&rep
, 0, sizeof(rep
));
610 rep
.th
.dest
= th
->source
;
611 rep
.th
.source
= th
->dest
;
612 rep
.th
.doff
= sizeof(struct tcphdr
) / 4;
616 rep
.th
.seq
= th
->ack_seq
;
619 rep
.th
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
620 skb
->len
- (th
->doff
<< 2));
623 memset(&arg
, 0, sizeof(arg
));
624 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
625 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
627 #ifdef CONFIG_TCP_MD5SIG
628 key
= sk
? tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
) : NULL
;
630 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) |
632 (TCPOPT_MD5SIG
<< 8) |
634 /* Update length and the length the header thinks exists */
635 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
636 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
638 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[1],
639 key
, ip_hdr(skb
)->saddr
,
640 ip_hdr(skb
)->daddr
, &rep
.th
);
643 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
644 ip_hdr(skb
)->saddr
, /* XXX */
645 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
646 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
647 arg
.flags
= (sk
&& inet_sk(sk
)->transparent
) ? IP_REPLY_ARG_NOSRCCHECK
: 0;
649 net
= dev_net(skb_dst(skb
)->dev
);
650 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
651 &arg
, arg
.iov
[0].iov_len
);
653 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
654 TCP_INC_STATS_BH(net
, TCP_MIB_OUTRSTS
);
657 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
658 outside socket context is ugly, certainly. What can I do?
661 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
662 u32 win
, u32 ts
, int oif
,
663 struct tcp_md5sig_key
*key
,
666 struct tcphdr
*th
= tcp_hdr(skb
);
669 __be32 opt
[(TCPOLEN_TSTAMP_ALIGNED
>> 2)
670 #ifdef CONFIG_TCP_MD5SIG
671 + (TCPOLEN_MD5SIG_ALIGNED
>> 2)
675 struct ip_reply_arg arg
;
676 struct net
*net
= dev_net(skb_dst(skb
)->dev
);
678 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
679 memset(&arg
, 0, sizeof(arg
));
681 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
682 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
684 rep
.opt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
685 (TCPOPT_TIMESTAMP
<< 8) |
687 rep
.opt
[1] = htonl(tcp_time_stamp
);
688 rep
.opt
[2] = htonl(ts
);
689 arg
.iov
[0].iov_len
+= TCPOLEN_TSTAMP_ALIGNED
;
692 /* Swap the send and the receive. */
693 rep
.th
.dest
= th
->source
;
694 rep
.th
.source
= th
->dest
;
695 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
696 rep
.th
.seq
= htonl(seq
);
697 rep
.th
.ack_seq
= htonl(ack
);
699 rep
.th
.window
= htons(win
);
701 #ifdef CONFIG_TCP_MD5SIG
703 int offset
= (ts
) ? 3 : 0;
705 rep
.opt
[offset
++] = htonl((TCPOPT_NOP
<< 24) |
707 (TCPOPT_MD5SIG
<< 8) |
709 arg
.iov
[0].iov_len
+= TCPOLEN_MD5SIG_ALIGNED
;
710 rep
.th
.doff
= arg
.iov
[0].iov_len
/4;
712 tcp_v4_md5_hash_hdr((__u8
*) &rep
.opt
[offset
],
713 key
, ip_hdr(skb
)->saddr
,
714 ip_hdr(skb
)->daddr
, &rep
.th
);
717 arg
.flags
= reply_flags
;
718 arg
.csum
= csum_tcpudp_nofold(ip_hdr(skb
)->daddr
,
719 ip_hdr(skb
)->saddr
, /* XXX */
720 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
721 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
723 arg
.bound_dev_if
= oif
;
725 ip_send_reply(net
->ipv4
.tcp_sock
, skb
,
726 &arg
, arg
.iov
[0].iov_len
);
728 TCP_INC_STATS_BH(net
, TCP_MIB_OUTSEGS
);
731 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
733 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
734 struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
736 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
737 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
,
740 tcp_twsk_md5_key(tcptw
),
741 tw
->tw_transparent
? IP_REPLY_ARG_NOSRCCHECK
: 0
747 static void tcp_v4_reqsk_send_ack(struct sock
*sk
, struct sk_buff
*skb
,
748 struct request_sock
*req
)
750 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1,
751 tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
754 tcp_v4_md5_do_lookup(sk
, ip_hdr(skb
)->daddr
),
755 inet_rsk(req
)->no_srccheck
? IP_REPLY_ARG_NOSRCCHECK
: 0);
759 * Send a SYN-ACK after having received a SYN.
760 * This still operates on a request_sock only, not on a big
763 static int tcp_v4_send_synack(struct sock
*sk
, struct dst_entry
*dst
,
764 struct request_sock
*req
,
765 struct request_values
*rvp
)
767 const struct inet_request_sock
*ireq
= inet_rsk(req
);
769 struct sk_buff
* skb
;
771 /* First, grab a route. */
772 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
775 skb
= tcp_make_synack(sk
, dst
, req
, rvp
);
778 __tcp_v4_send_check(skb
, ireq
->loc_addr
, ireq
->rmt_addr
);
780 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
783 err
= net_xmit_eval(err
);
790 static int tcp_v4_rtx_synack(struct sock
*sk
, struct request_sock
*req
,
791 struct request_values
*rvp
)
793 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
794 return tcp_v4_send_synack(sk
, NULL
, req
, rvp
);
798 * IPv4 request_sock destructor.
800 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
802 kfree(inet_rsk(req
)->opt
);
805 static void syn_flood_warning(const struct sk_buff
*skb
)
809 #ifdef CONFIG_SYN_COOKIES
810 if (sysctl_tcp_syncookies
)
811 msg
= "Sending cookies";
814 msg
= "Dropping request";
816 pr_info("TCP: Possible SYN flooding on port %d. %s.\n",
817 ntohs(tcp_hdr(skb
)->dest
), msg
);
821 * Save and compile IPv4 options into the request_sock if needed.
823 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
826 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
827 struct ip_options
*dopt
= NULL
;
829 if (opt
&& opt
->optlen
) {
830 int opt_size
= optlength(opt
);
831 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
833 if (ip_options_echo(dopt
, skb
)) {
842 #ifdef CONFIG_TCP_MD5SIG
844 * RFC2385 MD5 checksumming requires a mapping of
845 * IP address->MD5 Key.
846 * We need to maintain these in the sk structure.
849 /* Find the Key structure for an address. */
850 static struct tcp_md5sig_key
*
851 tcp_v4_md5_do_lookup(struct sock
*sk
, __be32 addr
)
853 struct tcp_sock
*tp
= tcp_sk(sk
);
856 if (!tp
->md5sig_info
|| !tp
->md5sig_info
->entries4
)
858 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
859 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
)
860 return &tp
->md5sig_info
->keys4
[i
].base
;
865 struct tcp_md5sig_key
*tcp_v4_md5_lookup(struct sock
*sk
,
866 struct sock
*addr_sk
)
868 return tcp_v4_md5_do_lookup(sk
, inet_sk(addr_sk
)->inet_daddr
);
870 EXPORT_SYMBOL(tcp_v4_md5_lookup
);
872 static struct tcp_md5sig_key
*tcp_v4_reqsk_md5_lookup(struct sock
*sk
,
873 struct request_sock
*req
)
875 return tcp_v4_md5_do_lookup(sk
, inet_rsk(req
)->rmt_addr
);
878 /* This can be called on a newly created socket, from other files */
879 int tcp_v4_md5_do_add(struct sock
*sk
, __be32 addr
,
880 u8
*newkey
, u8 newkeylen
)
882 /* Add Key to the list */
883 struct tcp_md5sig_key
*key
;
884 struct tcp_sock
*tp
= tcp_sk(sk
);
885 struct tcp4_md5sig_key
*keys
;
887 key
= tcp_v4_md5_do_lookup(sk
, addr
);
889 /* Pre-existing entry - just update that one. */
892 key
->keylen
= newkeylen
;
894 struct tcp_md5sig_info
*md5sig
;
896 if (!tp
->md5sig_info
) {
897 tp
->md5sig_info
= kzalloc(sizeof(*tp
->md5sig_info
),
899 if (!tp
->md5sig_info
) {
903 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
905 if (tcp_alloc_md5sig_pool(sk
) == NULL
) {
909 md5sig
= tp
->md5sig_info
;
911 if (md5sig
->alloced4
== md5sig
->entries4
) {
912 keys
= kmalloc((sizeof(*keys
) *
913 (md5sig
->entries4
+ 1)), GFP_ATOMIC
);
916 tcp_free_md5sig_pool();
920 if (md5sig
->entries4
)
921 memcpy(keys
, md5sig
->keys4
,
922 sizeof(*keys
) * md5sig
->entries4
);
924 /* Free old key list, and reference new one */
925 kfree(md5sig
->keys4
);
926 md5sig
->keys4
= keys
;
930 md5sig
->keys4
[md5sig
->entries4
- 1].addr
= addr
;
931 md5sig
->keys4
[md5sig
->entries4
- 1].base
.key
= newkey
;
932 md5sig
->keys4
[md5sig
->entries4
- 1].base
.keylen
= newkeylen
;
936 EXPORT_SYMBOL(tcp_v4_md5_do_add
);
938 static int tcp_v4_md5_add_func(struct sock
*sk
, struct sock
*addr_sk
,
939 u8
*newkey
, u8 newkeylen
)
941 return tcp_v4_md5_do_add(sk
, inet_sk(addr_sk
)->inet_daddr
,
945 int tcp_v4_md5_do_del(struct sock
*sk
, __be32 addr
)
947 struct tcp_sock
*tp
= tcp_sk(sk
);
950 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++) {
951 if (tp
->md5sig_info
->keys4
[i
].addr
== addr
) {
953 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
954 tp
->md5sig_info
->entries4
--;
956 if (tp
->md5sig_info
->entries4
== 0) {
957 kfree(tp
->md5sig_info
->keys4
);
958 tp
->md5sig_info
->keys4
= NULL
;
959 tp
->md5sig_info
->alloced4
= 0;
960 } else if (tp
->md5sig_info
->entries4
!= i
) {
961 /* Need to do some manipulation */
962 memmove(&tp
->md5sig_info
->keys4
[i
],
963 &tp
->md5sig_info
->keys4
[i
+1],
964 (tp
->md5sig_info
->entries4
- i
) *
965 sizeof(struct tcp4_md5sig_key
));
967 tcp_free_md5sig_pool();
973 EXPORT_SYMBOL(tcp_v4_md5_do_del
);
975 static void tcp_v4_clear_md5_list(struct sock
*sk
)
977 struct tcp_sock
*tp
= tcp_sk(sk
);
979 /* Free each key, then the set of key keys,
980 * the crypto element, and then decrement our
981 * hold on the last resort crypto.
983 if (tp
->md5sig_info
->entries4
) {
985 for (i
= 0; i
< tp
->md5sig_info
->entries4
; i
++)
986 kfree(tp
->md5sig_info
->keys4
[i
].base
.key
);
987 tp
->md5sig_info
->entries4
= 0;
988 tcp_free_md5sig_pool();
990 if (tp
->md5sig_info
->keys4
) {
991 kfree(tp
->md5sig_info
->keys4
);
992 tp
->md5sig_info
->keys4
= NULL
;
993 tp
->md5sig_info
->alloced4
= 0;
997 static int tcp_v4_parse_md5_keys(struct sock
*sk
, char __user
*optval
,
1000 struct tcp_md5sig cmd
;
1001 struct sockaddr_in
*sin
= (struct sockaddr_in
*)&cmd
.tcpm_addr
;
1004 if (optlen
< sizeof(cmd
))
1007 if (copy_from_user(&cmd
, optval
, sizeof(cmd
)))
1010 if (sin
->sin_family
!= AF_INET
)
1013 if (!cmd
.tcpm_key
|| !cmd
.tcpm_keylen
) {
1014 if (!tcp_sk(sk
)->md5sig_info
)
1016 return tcp_v4_md5_do_del(sk
, sin
->sin_addr
.s_addr
);
1019 if (cmd
.tcpm_keylen
> TCP_MD5SIG_MAXKEYLEN
)
1022 if (!tcp_sk(sk
)->md5sig_info
) {
1023 struct tcp_sock
*tp
= tcp_sk(sk
);
1024 struct tcp_md5sig_info
*p
;
1026 p
= kzalloc(sizeof(*p
), sk
->sk_allocation
);
1030 tp
->md5sig_info
= p
;
1031 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
1034 newkey
= kmemdup(cmd
.tcpm_key
, cmd
.tcpm_keylen
, sk
->sk_allocation
);
1037 return tcp_v4_md5_do_add(sk
, sin
->sin_addr
.s_addr
,
1038 newkey
, cmd
.tcpm_keylen
);
1041 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool
*hp
,
1042 __be32 daddr
, __be32 saddr
, int nbytes
)
1044 struct tcp4_pseudohdr
*bp
;
1045 struct scatterlist sg
;
1047 bp
= &hp
->md5_blk
.ip4
;
1050 * 1. the TCP pseudo-header (in the order: source IP address,
1051 * destination IP address, zero-padded protocol number, and
1057 bp
->protocol
= IPPROTO_TCP
;
1058 bp
->len
= cpu_to_be16(nbytes
);
1060 sg_init_one(&sg
, bp
, sizeof(*bp
));
1061 return crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(*bp
));
1064 static int tcp_v4_md5_hash_hdr(char *md5_hash
, struct tcp_md5sig_key
*key
,
1065 __be32 daddr
, __be32 saddr
, struct tcphdr
*th
)
1067 struct tcp_md5sig_pool
*hp
;
1068 struct hash_desc
*desc
;
1070 hp
= tcp_get_md5sig_pool();
1072 goto clear_hash_noput
;
1073 desc
= &hp
->md5_desc
;
1075 if (crypto_hash_init(desc
))
1077 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, th
->doff
<< 2))
1079 if (tcp_md5_hash_header(hp
, th
))
1081 if (tcp_md5_hash_key(hp
, key
))
1083 if (crypto_hash_final(desc
, md5_hash
))
1086 tcp_put_md5sig_pool();
1090 tcp_put_md5sig_pool();
1092 memset(md5_hash
, 0, 16);
1096 int tcp_v4_md5_hash_skb(char *md5_hash
, struct tcp_md5sig_key
*key
,
1097 struct sock
*sk
, struct request_sock
*req
,
1098 struct sk_buff
*skb
)
1100 struct tcp_md5sig_pool
*hp
;
1101 struct hash_desc
*desc
;
1102 struct tcphdr
*th
= tcp_hdr(skb
);
1103 __be32 saddr
, daddr
;
1106 saddr
= inet_sk(sk
)->inet_saddr
;
1107 daddr
= inet_sk(sk
)->inet_daddr
;
1109 saddr
= inet_rsk(req
)->loc_addr
;
1110 daddr
= inet_rsk(req
)->rmt_addr
;
1112 const struct iphdr
*iph
= ip_hdr(skb
);
1117 hp
= tcp_get_md5sig_pool();
1119 goto clear_hash_noput
;
1120 desc
= &hp
->md5_desc
;
1122 if (crypto_hash_init(desc
))
1125 if (tcp_v4_md5_hash_pseudoheader(hp
, daddr
, saddr
, skb
->len
))
1127 if (tcp_md5_hash_header(hp
, th
))
1129 if (tcp_md5_hash_skb_data(hp
, skb
, th
->doff
<< 2))
1131 if (tcp_md5_hash_key(hp
, key
))
1133 if (crypto_hash_final(desc
, md5_hash
))
1136 tcp_put_md5sig_pool();
1140 tcp_put_md5sig_pool();
1142 memset(md5_hash
, 0, 16);
1145 EXPORT_SYMBOL(tcp_v4_md5_hash_skb
);
1147 static int tcp_v4_inbound_md5_hash(struct sock
*sk
, struct sk_buff
*skb
)
1150 * This gets called for each TCP segment that arrives
1151 * so we want to be efficient.
1152 * We have 3 drop cases:
1153 * o No MD5 hash and one expected.
1154 * o MD5 hash and we're not expecting one.
1155 * o MD5 hash and its wrong.
1157 __u8
*hash_location
= NULL
;
1158 struct tcp_md5sig_key
*hash_expected
;
1159 const struct iphdr
*iph
= ip_hdr(skb
);
1160 struct tcphdr
*th
= tcp_hdr(skb
);
1162 unsigned char newhash
[16];
1164 hash_expected
= tcp_v4_md5_do_lookup(sk
, iph
->saddr
);
1165 hash_location
= tcp_parse_md5sig_option(th
);
1167 /* We've parsed the options - do we have a hash? */
1168 if (!hash_expected
&& !hash_location
)
1171 if (hash_expected
&& !hash_location
) {
1172 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5NOTFOUND
);
1176 if (!hash_expected
&& hash_location
) {
1177 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPMD5UNEXPECTED
);
1181 /* Okay, so this is hash_expected and hash_location -
1182 * so we need to calculate the checksum.
1184 genhash
= tcp_v4_md5_hash_skb(newhash
,
1188 if (genhash
|| memcmp(hash_location
, newhash
, 16) != 0) {
1189 if (net_ratelimit()) {
1190 printk(KERN_INFO
"MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1191 &iph
->saddr
, ntohs(th
->source
),
1192 &iph
->daddr
, ntohs(th
->dest
),
1193 genhash
? " tcp_v4_calc_md5_hash failed" : "");
1202 struct request_sock_ops tcp_request_sock_ops __read_mostly
= {
1204 .obj_size
= sizeof(struct tcp_request_sock
),
1205 .rtx_syn_ack
= tcp_v4_rtx_synack
,
1206 .send_ack
= tcp_v4_reqsk_send_ack
,
1207 .destructor
= tcp_v4_reqsk_destructor
,
1208 .send_reset
= tcp_v4_send_reset
,
1209 .syn_ack_timeout
= tcp_syn_ack_timeout
,
1212 #ifdef CONFIG_TCP_MD5SIG
1213 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops
= {
1214 .md5_lookup
= tcp_v4_reqsk_md5_lookup
,
1215 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1219 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
1221 struct tcp_extend_values tmp_ext
;
1222 struct tcp_options_received tmp_opt
;
1224 struct request_sock
*req
;
1225 struct inet_request_sock
*ireq
;
1226 struct tcp_sock
*tp
= tcp_sk(sk
);
1227 struct dst_entry
*dst
= NULL
;
1228 __be32 saddr
= ip_hdr(skb
)->saddr
;
1229 __be32 daddr
= ip_hdr(skb
)->daddr
;
1230 __u32 isn
= TCP_SKB_CB(skb
)->when
;
1231 #ifdef CONFIG_SYN_COOKIES
1232 int want_cookie
= 0;
1234 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1237 /* Never answer to SYNs send to broadcast or multicast */
1238 if (skb_rtable(skb
)->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
))
1241 /* TW buckets are converted to open requests without
1242 * limitations, they conserve resources and peer is
1243 * evidently real one.
1245 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
1246 if (net_ratelimit())
1247 syn_flood_warning(skb
);
1248 #ifdef CONFIG_SYN_COOKIES
1249 if (sysctl_tcp_syncookies
) {
1256 /* Accept backlog is full. If we have already queued enough
1257 * of warm entries in syn queue, drop request. It is better than
1258 * clogging syn queue with openreqs with exponentially increasing
1261 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
1264 req
= inet_reqsk_alloc(&tcp_request_sock_ops
);
1268 #ifdef CONFIG_TCP_MD5SIG
1269 tcp_rsk(req
)->af_specific
= &tcp_request_sock_ipv4_ops
;
1272 tcp_clear_options(&tmp_opt
);
1273 tmp_opt
.mss_clamp
= TCP_MSS_DEFAULT
;
1274 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
1275 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0);
1277 if (tmp_opt
.cookie_plus
> 0 &&
1278 tmp_opt
.saw_tstamp
&&
1279 !tp
->rx_opt
.cookie_out_never
&&
1280 (sysctl_tcp_cookie_size
> 0 ||
1281 (tp
->cookie_values
!= NULL
&&
1282 tp
->cookie_values
->cookie_desired
> 0))) {
1284 u32
*mess
= &tmp_ext
.cookie_bakery
[COOKIE_DIGEST_WORDS
];
1285 int l
= tmp_opt
.cookie_plus
- TCPOLEN_COOKIE_BASE
;
1287 if (tcp_cookie_generator(&tmp_ext
.cookie_bakery
[0]) != 0)
1288 goto drop_and_release
;
1290 /* Secret recipe starts with IP addresses */
1291 *mess
++ ^= (__force u32
)daddr
;
1292 *mess
++ ^= (__force u32
)saddr
;
1294 /* plus variable length Initiator Cookie */
1297 *c
++ ^= *hash_location
++;
1299 #ifdef CONFIG_SYN_COOKIES
1300 want_cookie
= 0; /* not our kind of cookie */
1302 tmp_ext
.cookie_out_never
= 0; /* false */
1303 tmp_ext
.cookie_plus
= tmp_opt
.cookie_plus
;
1304 } else if (!tp
->rx_opt
.cookie_in_always
) {
1305 /* redundant indications, but ensure initialization. */
1306 tmp_ext
.cookie_out_never
= 1; /* true */
1307 tmp_ext
.cookie_plus
= 0;
1309 goto drop_and_release
;
1311 tmp_ext
.cookie_in_always
= tp
->rx_opt
.cookie_in_always
;
1313 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
1314 tcp_clear_options(&tmp_opt
);
1316 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
1317 tcp_openreq_init(req
, &tmp_opt
, skb
);
1319 ireq
= inet_rsk(req
);
1320 ireq
->loc_addr
= daddr
;
1321 ireq
->rmt_addr
= saddr
;
1322 ireq
->no_srccheck
= inet_sk(sk
)->transparent
;
1323 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
1325 if (security_inet_conn_request(sk
, skb
, req
))
1328 if (!want_cookie
|| tmp_opt
.tstamp_ok
)
1329 TCP_ECN_create_request(req
, tcp_hdr(skb
));
1332 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
1333 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
1335 struct inet_peer
*peer
= NULL
;
1337 /* VJ's idea. We save last timestamp seen
1338 * from the destination in peer table, when entering
1339 * state TIME-WAIT, and check against it before
1340 * accepting new connection request.
1342 * If "isn" is not zero, this request hit alive
1343 * timewait bucket, so that all the necessary checks
1344 * are made in the function processing timewait state.
1346 if (tmp_opt
.saw_tstamp
&&
1347 tcp_death_row
.sysctl_tw_recycle
&&
1348 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
1349 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
1350 peer
->daddr
.addr
.a4
== saddr
) {
1351 inet_peer_refcheck(peer
);
1352 if ((u32
)get_seconds() - peer
->tcp_ts_stamp
< TCP_PAWS_MSL
&&
1353 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
1355 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSPASSIVEREJECTED
);
1356 goto drop_and_release
;
1359 /* Kill the following clause, if you dislike this way. */
1360 else if (!sysctl_tcp_syncookies
&&
1361 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
1362 (sysctl_max_syn_backlog
>> 2)) &&
1363 (!peer
|| !peer
->tcp_ts_stamp
) &&
1364 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
1365 /* Without syncookies last quarter of
1366 * backlog is filled with destinations,
1367 * proven to be alive.
1368 * It means that we continue to communicate
1369 * to destinations, already remembered
1370 * to the moment of synflood.
1372 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open request from %pI4/%u\n",
1373 &saddr
, ntohs(tcp_hdr(skb
)->source
));
1374 goto drop_and_release
;
1377 isn
= tcp_v4_init_sequence(skb
);
1379 tcp_rsk(req
)->snt_isn
= isn
;
1381 if (tcp_v4_send_synack(sk
, dst
, req
,
1382 (struct request_values
*)&tmp_ext
) ||
1386 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
1396 EXPORT_SYMBOL(tcp_v4_conn_request
);
1400 * The three way handshake has completed - we got a valid synack -
1401 * now create the new socket.
1403 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
1404 struct request_sock
*req
,
1405 struct dst_entry
*dst
)
1407 struct inet_request_sock
*ireq
;
1408 struct inet_sock
*newinet
;
1409 struct tcp_sock
*newtp
;
1411 #ifdef CONFIG_TCP_MD5SIG
1412 struct tcp_md5sig_key
*key
;
1415 if (sk_acceptq_is_full(sk
))
1418 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
1421 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
1425 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
1426 sk_setup_caps(newsk
, dst
);
1428 newtp
= tcp_sk(newsk
);
1429 newinet
= inet_sk(newsk
);
1430 ireq
= inet_rsk(req
);
1431 newinet
->inet_daddr
= ireq
->rmt_addr
;
1432 newinet
->inet_rcv_saddr
= ireq
->loc_addr
;
1433 newinet
->inet_saddr
= ireq
->loc_addr
;
1434 newinet
->opt
= ireq
->opt
;
1436 newinet
->mc_index
= inet_iif(skb
);
1437 newinet
->mc_ttl
= ip_hdr(skb
)->ttl
;
1438 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
1440 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
1441 newinet
->inet_id
= newtp
->write_seq
^ jiffies
;
1443 tcp_mtup_init(newsk
);
1444 tcp_sync_mss(newsk
, dst_mtu(dst
));
1445 newtp
->advmss
= dst_metric_advmss(dst
);
1446 if (tcp_sk(sk
)->rx_opt
.user_mss
&&
1447 tcp_sk(sk
)->rx_opt
.user_mss
< newtp
->advmss
)
1448 newtp
->advmss
= tcp_sk(sk
)->rx_opt
.user_mss
;
1450 tcp_initialize_rcv_mss(newsk
);
1452 #ifdef CONFIG_TCP_MD5SIG
1453 /* Copy over the MD5 key from the original socket */
1454 key
= tcp_v4_md5_do_lookup(sk
, newinet
->inet_daddr
);
1457 * We're using one, so create a matching key
1458 * on the newsk structure. If we fail to get
1459 * memory, then we end up not copying the key
1462 char *newkey
= kmemdup(key
->key
, key
->keylen
, GFP_ATOMIC
);
1464 tcp_v4_md5_do_add(newsk
, newinet
->inet_daddr
,
1465 newkey
, key
->keylen
);
1466 sk_nocaps_add(newsk
, NETIF_F_GSO_MASK
);
1470 if (__inet_inherit_port(sk
, newsk
) < 0) {
1474 __inet_hash_nolisten(newsk
, NULL
);
1479 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
1483 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_LISTENDROPS
);
1486 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1488 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
1490 struct tcphdr
*th
= tcp_hdr(skb
);
1491 const struct iphdr
*iph
= ip_hdr(skb
);
1493 struct request_sock
**prev
;
1494 /* Find possible connection requests. */
1495 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
1496 iph
->saddr
, iph
->daddr
);
1498 return tcp_check_req(sk
, skb
, req
, prev
);
1500 nsk
= inet_lookup_established(sock_net(sk
), &tcp_hashinfo
, iph
->saddr
,
1501 th
->source
, iph
->daddr
, th
->dest
, inet_iif(skb
));
1504 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
1508 inet_twsk_put(inet_twsk(nsk
));
1512 #ifdef CONFIG_SYN_COOKIES
1514 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
1519 static __sum16
tcp_v4_checksum_init(struct sk_buff
*skb
)
1521 const struct iphdr
*iph
= ip_hdr(skb
);
1523 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1524 if (!tcp_v4_check(skb
->len
, iph
->saddr
,
1525 iph
->daddr
, skb
->csum
)) {
1526 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1531 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1532 skb
->len
, IPPROTO_TCP
, 0);
1534 if (skb
->len
<= 76) {
1535 return __skb_checksum_complete(skb
);
1541 /* The socket must have it's spinlock held when we get
1544 * We have a potential double-lock case here, so even when
1545 * doing backlog processing we use the BH locking scheme.
1546 * This is because we cannot sleep with the original spinlock
1549 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1552 #ifdef CONFIG_TCP_MD5SIG
1554 * We really want to reject the packet as early as possible
1556 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1557 * o There is an MD5 option and we're not expecting one
1559 if (tcp_v4_inbound_md5_hash(sk
, skb
))
1563 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1564 sock_rps_save_rxhash(sk
, skb
->rxhash
);
1565 if (tcp_rcv_established(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1572 if (skb
->len
< tcp_hdrlen(skb
) || tcp_checksum_complete(skb
))
1575 if (sk
->sk_state
== TCP_LISTEN
) {
1576 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1581 if (tcp_child_process(sk
, nsk
, skb
)) {
1588 sock_rps_save_rxhash(sk
, skb
->rxhash
);
1590 if (tcp_rcv_state_process(sk
, skb
, tcp_hdr(skb
), skb
->len
)) {
1597 tcp_v4_send_reset(rsk
, skb
);
1600 /* Be careful here. If this function gets more complicated and
1601 * gcc suffers from register pressure on the x86, sk (in %ebx)
1602 * might be destroyed here. This current version compiles correctly,
1603 * but you have been warned.
1608 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_INERRS
);
1611 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1617 int tcp_v4_rcv(struct sk_buff
*skb
)
1619 const struct iphdr
*iph
;
1623 struct net
*net
= dev_net(skb
->dev
);
1625 if (skb
->pkt_type
!= PACKET_HOST
)
1628 /* Count it even if it's bad */
1629 TCP_INC_STATS_BH(net
, TCP_MIB_INSEGS
);
1631 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1636 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1638 if (!pskb_may_pull(skb
, th
->doff
* 4))
1641 /* An explanation is required here, I think.
1642 * Packet length and doff are validated by header prediction,
1643 * provided case of th->doff==0 is eliminated.
1644 * So, we defer the checks. */
1645 if (!skb_csum_unnecessary(skb
) && tcp_v4_checksum_init(skb
))
1650 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1651 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1652 skb
->len
- th
->doff
* 4);
1653 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1654 TCP_SKB_CB(skb
)->when
= 0;
1655 TCP_SKB_CB(skb
)->flags
= iph
->tos
;
1656 TCP_SKB_CB(skb
)->sacked
= 0;
1658 sk
= __inet_lookup_skb(&tcp_hashinfo
, skb
, th
->source
, th
->dest
);
1663 if (sk
->sk_state
== TCP_TIME_WAIT
)
1666 if (unlikely(iph
->ttl
< inet_sk(sk
)->min_ttl
)) {
1667 NET_INC_STATS_BH(net
, LINUX_MIB_TCPMINTTLDROP
);
1668 goto discard_and_relse
;
1671 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1672 goto discard_and_relse
;
1675 if (sk_filter(sk
, skb
))
1676 goto discard_and_relse
;
1680 bh_lock_sock_nested(sk
);
1682 if (!sock_owned_by_user(sk
)) {
1683 #ifdef CONFIG_NET_DMA
1684 struct tcp_sock
*tp
= tcp_sk(sk
);
1685 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1686 tp
->ucopy
.dma_chan
= dma_find_channel(DMA_MEMCPY
);
1687 if (tp
->ucopy
.dma_chan
)
1688 ret
= tcp_v4_do_rcv(sk
, skb
);
1692 if (!tcp_prequeue(sk
, skb
))
1693 ret
= tcp_v4_do_rcv(sk
, skb
);
1695 } else if (unlikely(sk_add_backlog(sk
, skb
))) {
1697 NET_INC_STATS_BH(net
, LINUX_MIB_TCPBACKLOGDROP
);
1698 goto discard_and_relse
;
1707 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1710 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1712 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1714 tcp_v4_send_reset(NULL
, skb
);
1718 /* Discard frame. */
1727 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1728 inet_twsk_put(inet_twsk(sk
));
1732 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1733 TCP_INC_STATS_BH(net
, TCP_MIB_INERRS
);
1734 inet_twsk_put(inet_twsk(sk
));
1737 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1739 struct sock
*sk2
= inet_lookup_listener(dev_net(skb
->dev
),
1741 iph
->daddr
, th
->dest
,
1744 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1745 inet_twsk_put(inet_twsk(sk
));
1749 /* Fall through to ACK */
1752 tcp_v4_timewait_ack(sk
, skb
);
1756 case TCP_TW_SUCCESS
:;
1761 struct inet_peer
*tcp_v4_get_peer(struct sock
*sk
, bool *release_it
)
1763 struct rtable
*rt
= (struct rtable
*) __sk_dst_get(sk
);
1764 struct inet_sock
*inet
= inet_sk(sk
);
1765 struct inet_peer
*peer
;
1767 if (!rt
|| rt
->rt_dst
!= inet
->inet_daddr
) {
1768 peer
= inet_getpeer_v4(inet
->inet_daddr
, 1);
1772 rt_bind_peer(rt
, 1);
1774 *release_it
= false;
1779 EXPORT_SYMBOL(tcp_v4_get_peer
);
1781 void *tcp_v4_tw_get_peer(struct sock
*sk
)
1783 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
1785 return inet_getpeer_v4(tw
->tw_daddr
, 1);
1787 EXPORT_SYMBOL(tcp_v4_tw_get_peer
);
1789 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
1790 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
1791 .twsk_unique
= tcp_twsk_unique
,
1792 .twsk_destructor
= tcp_twsk_destructor
,
1793 .twsk_getpeer
= tcp_v4_tw_get_peer
,
1796 const struct inet_connection_sock_af_ops ipv4_specific
= {
1797 .queue_xmit
= ip_queue_xmit
,
1798 .send_check
= tcp_v4_send_check
,
1799 .rebuild_header
= inet_sk_rebuild_header
,
1800 .conn_request
= tcp_v4_conn_request
,
1801 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1802 .get_peer
= tcp_v4_get_peer
,
1803 .net_header_len
= sizeof(struct iphdr
),
1804 .setsockopt
= ip_setsockopt
,
1805 .getsockopt
= ip_getsockopt
,
1806 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1807 .sockaddr_len
= sizeof(struct sockaddr_in
),
1808 .bind_conflict
= inet_csk_bind_conflict
,
1809 #ifdef CONFIG_COMPAT
1810 .compat_setsockopt
= compat_ip_setsockopt
,
1811 .compat_getsockopt
= compat_ip_getsockopt
,
1814 EXPORT_SYMBOL(ipv4_specific
);
1816 #ifdef CONFIG_TCP_MD5SIG
1817 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific
= {
1818 .md5_lookup
= tcp_v4_md5_lookup
,
1819 .calc_md5_hash
= tcp_v4_md5_hash_skb
,
1820 .md5_add
= tcp_v4_md5_add_func
,
1821 .md5_parse
= tcp_v4_parse_md5_keys
,
1825 /* NOTE: A lot of things set to zero explicitly by call to
1826 * sk_alloc() so need not be done here.
1828 static int tcp_v4_init_sock(struct sock
*sk
)
1830 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1831 struct tcp_sock
*tp
= tcp_sk(sk
);
1833 skb_queue_head_init(&tp
->out_of_order_queue
);
1834 tcp_init_xmit_timers(sk
);
1835 tcp_prequeue_init(tp
);
1837 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1838 tp
->mdev
= TCP_TIMEOUT_INIT
;
1840 /* So many TCP implementations out there (incorrectly) count the
1841 * initial SYN frame in their delayed-ACK and congestion control
1842 * algorithms that we must have the following bandaid to talk
1843 * efficiently to them. -DaveM
1847 /* See draft-stevens-tcpca-spec-01 for discussion of the
1848 * initialization of these values.
1850 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
1851 tp
->snd_cwnd_clamp
= ~0;
1852 tp
->mss_cache
= TCP_MSS_DEFAULT
;
1854 tp
->reordering
= sysctl_tcp_reordering
;
1855 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1857 sk
->sk_state
= TCP_CLOSE
;
1859 sk
->sk_write_space
= sk_stream_write_space
;
1860 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1862 icsk
->icsk_af_ops
= &ipv4_specific
;
1863 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1864 #ifdef CONFIG_TCP_MD5SIG
1865 tp
->af_specific
= &tcp_sock_ipv4_specific
;
1868 /* TCP Cookie Transactions */
1869 if (sysctl_tcp_cookie_size
> 0) {
1870 /* Default, cookies without s_data_payload. */
1872 kzalloc(sizeof(*tp
->cookie_values
),
1874 if (tp
->cookie_values
!= NULL
)
1875 kref_init(&tp
->cookie_values
->kref
);
1877 /* Presumed zeroed, in order of appearance:
1878 * cookie_in_always, cookie_out_never,
1879 * s_data_constant, s_data_in, s_data_out
1881 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1882 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1885 percpu_counter_inc(&tcp_sockets_allocated
);
1891 void tcp_v4_destroy_sock(struct sock
*sk
)
1893 struct tcp_sock
*tp
= tcp_sk(sk
);
1895 tcp_clear_xmit_timers(sk
);
1897 tcp_cleanup_congestion_control(sk
);
1899 /* Cleanup up the write buffer. */
1900 tcp_write_queue_purge(sk
);
1902 /* Cleans up our, hopefully empty, out_of_order_queue. */
1903 __skb_queue_purge(&tp
->out_of_order_queue
);
1905 #ifdef CONFIG_TCP_MD5SIG
1906 /* Clean up the MD5 key list, if any */
1907 if (tp
->md5sig_info
) {
1908 tcp_v4_clear_md5_list(sk
);
1909 kfree(tp
->md5sig_info
);
1910 tp
->md5sig_info
= NULL
;
1914 #ifdef CONFIG_NET_DMA
1915 /* Cleans up our sk_async_wait_queue */
1916 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1919 /* Clean prequeue, it must be empty really */
1920 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1922 /* Clean up a referenced TCP bind bucket. */
1923 if (inet_csk(sk
)->icsk_bind_hash
)
1927 * If sendmsg cached page exists, toss it.
1929 if (sk
->sk_sndmsg_page
) {
1930 __free_page(sk
->sk_sndmsg_page
);
1931 sk
->sk_sndmsg_page
= NULL
;
1934 /* TCP Cookie Transactions */
1935 if (tp
->cookie_values
!= NULL
) {
1936 kref_put(&tp
->cookie_values
->kref
,
1937 tcp_cookie_values_release
);
1938 tp
->cookie_values
= NULL
;
1941 percpu_counter_dec(&tcp_sockets_allocated
);
1943 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1945 #ifdef CONFIG_PROC_FS
1946 /* Proc filesystem TCP sock list dumping. */
1948 static inline struct inet_timewait_sock
*tw_head(struct hlist_nulls_head
*head
)
1950 return hlist_nulls_empty(head
) ? NULL
:
1951 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1954 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1956 return !is_a_nulls(tw
->tw_node
.next
) ?
1957 hlist_nulls_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1961 * Get next listener socket follow cur. If cur is NULL, get first socket
1962 * starting from bucket given in st->bucket; when st->bucket is zero the
1963 * very first socket in the hash table is returned.
1965 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1967 struct inet_connection_sock
*icsk
;
1968 struct hlist_nulls_node
*node
;
1969 struct sock
*sk
= cur
;
1970 struct inet_listen_hashbucket
*ilb
;
1971 struct tcp_iter_state
*st
= seq
->private;
1972 struct net
*net
= seq_file_net(seq
);
1975 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
1976 spin_lock_bh(&ilb
->lock
);
1977 sk
= sk_nulls_head(&ilb
->head
);
1981 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
1985 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1986 struct request_sock
*req
= cur
;
1988 icsk
= inet_csk(st
->syn_wait_sk
);
1992 if (req
->rsk_ops
->family
== st
->family
) {
1998 if (++st
->sbucket
>= icsk
->icsk_accept_queue
.listen_opt
->nr_table_entries
)
2001 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
2003 sk
= sk_nulls_next(st
->syn_wait_sk
);
2004 st
->state
= TCP_SEQ_STATE_LISTENING
;
2005 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2007 icsk
= inet_csk(sk
);
2008 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2009 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
2011 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2012 sk
= sk_nulls_next(sk
);
2015 sk_nulls_for_each_from(sk
, node
) {
2016 if (!net_eq(sock_net(sk
), net
))
2018 if (sk
->sk_family
== st
->family
) {
2022 icsk
= inet_csk(sk
);
2023 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2024 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
2026 st
->uid
= sock_i_uid(sk
);
2027 st
->syn_wait_sk
= sk
;
2028 st
->state
= TCP_SEQ_STATE_OPENREQ
;
2032 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2034 spin_unlock_bh(&ilb
->lock
);
2036 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
2037 ilb
= &tcp_hashinfo
.listening_hash
[st
->bucket
];
2038 spin_lock_bh(&ilb
->lock
);
2039 sk
= sk_nulls_head(&ilb
->head
);
2047 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
2049 struct tcp_iter_state
*st
= seq
->private;
2054 rc
= listening_get_next(seq
, NULL
);
2056 while (rc
&& *pos
) {
2057 rc
= listening_get_next(seq
, rc
);
2063 static inline int empty_bucket(struct tcp_iter_state
*st
)
2065 return hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].chain
) &&
2066 hlist_nulls_empty(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2070 * Get first established socket starting from bucket given in st->bucket.
2071 * If st->bucket is zero, the very first socket in the hash is returned.
2073 static void *established_get_first(struct seq_file
*seq
)
2075 struct tcp_iter_state
*st
= seq
->private;
2076 struct net
*net
= seq_file_net(seq
);
2080 for (; st
->bucket
<= tcp_hashinfo
.ehash_mask
; ++st
->bucket
) {
2082 struct hlist_nulls_node
*node
;
2083 struct inet_timewait_sock
*tw
;
2084 spinlock_t
*lock
= inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
);
2086 /* Lockless fast path for the common case of empty buckets */
2087 if (empty_bucket(st
))
2091 sk_nulls_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
2092 if (sk
->sk_family
!= st
->family
||
2093 !net_eq(sock_net(sk
), net
)) {
2099 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2100 inet_twsk_for_each(tw
, node
,
2101 &tcp_hashinfo
.ehash
[st
->bucket
].twchain
) {
2102 if (tw
->tw_family
!= st
->family
||
2103 !net_eq(twsk_net(tw
), net
)) {
2109 spin_unlock_bh(lock
);
2110 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2116 static void *established_get_next(struct seq_file
*seq
, void *cur
)
2118 struct sock
*sk
= cur
;
2119 struct inet_timewait_sock
*tw
;
2120 struct hlist_nulls_node
*node
;
2121 struct tcp_iter_state
*st
= seq
->private;
2122 struct net
*net
= seq_file_net(seq
);
2127 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
2131 while (tw
&& (tw
->tw_family
!= st
->family
|| !net_eq(twsk_net(tw
), net
))) {
2138 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2139 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2141 /* Look for next non empty bucket */
2143 while (++st
->bucket
<= tcp_hashinfo
.ehash_mask
&&
2146 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2149 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2150 sk
= sk_nulls_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
2152 sk
= sk_nulls_next(sk
);
2154 sk_nulls_for_each_from(sk
, node
) {
2155 if (sk
->sk_family
== st
->family
&& net_eq(sock_net(sk
), net
))
2159 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
2160 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
].twchain
);
2168 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
2170 struct tcp_iter_state
*st
= seq
->private;
2174 rc
= established_get_first(seq
);
2177 rc
= established_get_next(seq
, rc
);
2183 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
2186 struct tcp_iter_state
*st
= seq
->private;
2188 st
->state
= TCP_SEQ_STATE_LISTENING
;
2189 rc
= listening_get_idx(seq
, &pos
);
2192 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2193 rc
= established_get_idx(seq
, pos
);
2199 static void *tcp_seek_last_pos(struct seq_file
*seq
)
2201 struct tcp_iter_state
*st
= seq
->private;
2202 int offset
= st
->offset
;
2203 int orig_num
= st
->num
;
2206 switch (st
->state
) {
2207 case TCP_SEQ_STATE_OPENREQ
:
2208 case TCP_SEQ_STATE_LISTENING
:
2209 if (st
->bucket
>= INET_LHTABLE_SIZE
)
2211 st
->state
= TCP_SEQ_STATE_LISTENING
;
2212 rc
= listening_get_next(seq
, NULL
);
2213 while (offset
-- && rc
)
2214 rc
= listening_get_next(seq
, rc
);
2219 case TCP_SEQ_STATE_ESTABLISHED
:
2220 case TCP_SEQ_STATE_TIME_WAIT
:
2221 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2222 if (st
->bucket
> tcp_hashinfo
.ehash_mask
)
2224 rc
= established_get_first(seq
);
2225 while (offset
-- && rc
)
2226 rc
= established_get_next(seq
, rc
);
2234 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2236 struct tcp_iter_state
*st
= seq
->private;
2239 if (*pos
&& *pos
== st
->last_pos
) {
2240 rc
= tcp_seek_last_pos(seq
);
2245 st
->state
= TCP_SEQ_STATE_LISTENING
;
2249 rc
= *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
2252 st
->last_pos
= *pos
;
2256 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2258 struct tcp_iter_state
*st
= seq
->private;
2261 if (v
== SEQ_START_TOKEN
) {
2262 rc
= tcp_get_idx(seq
, 0);
2266 switch (st
->state
) {
2267 case TCP_SEQ_STATE_OPENREQ
:
2268 case TCP_SEQ_STATE_LISTENING
:
2269 rc
= listening_get_next(seq
, v
);
2271 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
2274 rc
= established_get_first(seq
);
2277 case TCP_SEQ_STATE_ESTABLISHED
:
2278 case TCP_SEQ_STATE_TIME_WAIT
:
2279 rc
= established_get_next(seq
, v
);
2284 st
->last_pos
= *pos
;
2288 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
2290 struct tcp_iter_state
*st
= seq
->private;
2292 switch (st
->state
) {
2293 case TCP_SEQ_STATE_OPENREQ
:
2295 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
2296 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
2298 case TCP_SEQ_STATE_LISTENING
:
2299 if (v
!= SEQ_START_TOKEN
)
2300 spin_unlock_bh(&tcp_hashinfo
.listening_hash
[st
->bucket
].lock
);
2302 case TCP_SEQ_STATE_TIME_WAIT
:
2303 case TCP_SEQ_STATE_ESTABLISHED
:
2305 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo
, st
->bucket
));
2310 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
2312 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
2313 struct tcp_iter_state
*s
;
2316 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
2317 sizeof(struct tcp_iter_state
));
2321 s
= ((struct seq_file
*)file
->private_data
)->private;
2322 s
->family
= afinfo
->family
;
2327 int tcp_proc_register(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2330 struct proc_dir_entry
*p
;
2332 afinfo
->seq_fops
.open
= tcp_seq_open
;
2333 afinfo
->seq_fops
.read
= seq_read
;
2334 afinfo
->seq_fops
.llseek
= seq_lseek
;
2335 afinfo
->seq_fops
.release
= seq_release_net
;
2337 afinfo
->seq_ops
.start
= tcp_seq_start
;
2338 afinfo
->seq_ops
.next
= tcp_seq_next
;
2339 afinfo
->seq_ops
.stop
= tcp_seq_stop
;
2341 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
2342 &afinfo
->seq_fops
, afinfo
);
2347 EXPORT_SYMBOL(tcp_proc_register
);
2349 void tcp_proc_unregister(struct net
*net
, struct tcp_seq_afinfo
*afinfo
)
2351 proc_net_remove(net
, afinfo
->name
);
2353 EXPORT_SYMBOL(tcp_proc_unregister
);
2355 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
2356 struct seq_file
*f
, int i
, int uid
, int *len
)
2358 const struct inet_request_sock
*ireq
= inet_rsk(req
);
2359 int ttd
= req
->expires
- jiffies
;
2361 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2362 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2365 ntohs(inet_sk(sk
)->inet_sport
),
2367 ntohs(ireq
->rmt_port
),
2369 0, 0, /* could print option size, but that is af dependent. */
2370 1, /* timers active (only the expire timer) */
2371 jiffies_to_clock_t(ttd
),
2374 0, /* non standard timer */
2375 0, /* open_requests have no inode */
2376 atomic_read(&sk
->sk_refcnt
),
2381 static void get_tcp4_sock(struct sock
*sk
, struct seq_file
*f
, int i
, int *len
)
2384 unsigned long timer_expires
;
2385 struct tcp_sock
*tp
= tcp_sk(sk
);
2386 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2387 struct inet_sock
*inet
= inet_sk(sk
);
2388 __be32 dest
= inet
->inet_daddr
;
2389 __be32 src
= inet
->inet_rcv_saddr
;
2390 __u16 destp
= ntohs(inet
->inet_dport
);
2391 __u16 srcp
= ntohs(inet
->inet_sport
);
2394 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
2396 timer_expires
= icsk
->icsk_timeout
;
2397 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
2399 timer_expires
= icsk
->icsk_timeout
;
2400 } else if (timer_pending(&sk
->sk_timer
)) {
2402 timer_expires
= sk
->sk_timer
.expires
;
2405 timer_expires
= jiffies
;
2408 if (sk
->sk_state
== TCP_LISTEN
)
2409 rx_queue
= sk
->sk_ack_backlog
;
2412 * because we dont lock socket, we might find a transient negative value
2414 rx_queue
= max_t(int, tp
->rcv_nxt
- tp
->copied_seq
, 0);
2416 seq_printf(f
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2417 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2418 i
, src
, srcp
, dest
, destp
, sk
->sk_state
,
2419 tp
->write_seq
- tp
->snd_una
,
2422 jiffies_to_clock_t(timer_expires
- jiffies
),
2423 icsk
->icsk_retransmits
,
2425 icsk
->icsk_probes_out
,
2427 atomic_read(&sk
->sk_refcnt
), sk
,
2428 jiffies_to_clock_t(icsk
->icsk_rto
),
2429 jiffies_to_clock_t(icsk
->icsk_ack
.ato
),
2430 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
2432 tcp_in_initial_slowstart(tp
) ? -1 : tp
->snd_ssthresh
,
2436 static void get_timewait4_sock(struct inet_timewait_sock
*tw
,
2437 struct seq_file
*f
, int i
, int *len
)
2441 int ttd
= tw
->tw_ttd
- jiffies
;
2446 dest
= tw
->tw_daddr
;
2447 src
= tw
->tw_rcv_saddr
;
2448 destp
= ntohs(tw
->tw_dport
);
2449 srcp
= ntohs(tw
->tw_sport
);
2451 seq_printf(f
, "%4d: %08X:%04X %08X:%04X"
2452 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2453 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
2454 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
2455 atomic_read(&tw
->tw_refcnt
), tw
, len
);
2460 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
2462 struct tcp_iter_state
*st
;
2465 if (v
== SEQ_START_TOKEN
) {
2466 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
2467 " sl local_address rem_address st tx_queue "
2468 "rx_queue tr tm->when retrnsmt uid timeout "
2474 switch (st
->state
) {
2475 case TCP_SEQ_STATE_LISTENING
:
2476 case TCP_SEQ_STATE_ESTABLISHED
:
2477 get_tcp4_sock(v
, seq
, st
->num
, &len
);
2479 case TCP_SEQ_STATE_OPENREQ
:
2480 get_openreq4(st
->syn_wait_sk
, v
, seq
, st
->num
, st
->uid
, &len
);
2482 case TCP_SEQ_STATE_TIME_WAIT
:
2483 get_timewait4_sock(v
, seq
, st
->num
, &len
);
2486 seq_printf(seq
, "%*s\n", TMPSZ
- 1 - len
, "");
2491 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
2495 .owner
= THIS_MODULE
,
2498 .show
= tcp4_seq_show
,
2502 static int __net_init
tcp4_proc_init_net(struct net
*net
)
2504 return tcp_proc_register(net
, &tcp4_seq_afinfo
);
2507 static void __net_exit
tcp4_proc_exit_net(struct net
*net
)
2509 tcp_proc_unregister(net
, &tcp4_seq_afinfo
);
2512 static struct pernet_operations tcp4_net_ops
= {
2513 .init
= tcp4_proc_init_net
,
2514 .exit
= tcp4_proc_exit_net
,
2517 int __init
tcp4_proc_init(void)
2519 return register_pernet_subsys(&tcp4_net_ops
);
2522 void tcp4_proc_exit(void)
2524 unregister_pernet_subsys(&tcp4_net_ops
);
2526 #endif /* CONFIG_PROC_FS */
2528 struct sk_buff
**tcp4_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2530 struct iphdr
*iph
= skb_gro_network_header(skb
);
2532 switch (skb
->ip_summed
) {
2533 case CHECKSUM_COMPLETE
:
2534 if (!tcp_v4_check(skb_gro_len(skb
), iph
->saddr
, iph
->daddr
,
2536 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2542 NAPI_GRO_CB(skb
)->flush
= 1;
2546 return tcp_gro_receive(head
, skb
);
2549 int tcp4_gro_complete(struct sk_buff
*skb
)
2551 struct iphdr
*iph
= ip_hdr(skb
);
2552 struct tcphdr
*th
= tcp_hdr(skb
);
2554 th
->check
= ~tcp_v4_check(skb
->len
- skb_transport_offset(skb
),
2555 iph
->saddr
, iph
->daddr
, 0);
2556 skb_shinfo(skb
)->gso_type
= SKB_GSO_TCPV4
;
2558 return tcp_gro_complete(skb
);
2561 struct proto tcp_prot
= {
2563 .owner
= THIS_MODULE
,
2565 .connect
= tcp_v4_connect
,
2566 .disconnect
= tcp_disconnect
,
2567 .accept
= inet_csk_accept
,
2569 .init
= tcp_v4_init_sock
,
2570 .destroy
= tcp_v4_destroy_sock
,
2571 .shutdown
= tcp_shutdown
,
2572 .setsockopt
= tcp_setsockopt
,
2573 .getsockopt
= tcp_getsockopt
,
2574 .recvmsg
= tcp_recvmsg
,
2575 .sendmsg
= tcp_sendmsg
,
2576 .sendpage
= tcp_sendpage
,
2577 .backlog_rcv
= tcp_v4_do_rcv
,
2579 .unhash
= inet_unhash
,
2580 .get_port
= inet_csk_get_port
,
2581 .enter_memory_pressure
= tcp_enter_memory_pressure
,
2582 .sockets_allocated
= &tcp_sockets_allocated
,
2583 .orphan_count
= &tcp_orphan_count
,
2584 .memory_allocated
= &tcp_memory_allocated
,
2585 .memory_pressure
= &tcp_memory_pressure
,
2586 .sysctl_mem
= sysctl_tcp_mem
,
2587 .sysctl_wmem
= sysctl_tcp_wmem
,
2588 .sysctl_rmem
= sysctl_tcp_rmem
,
2589 .max_header
= MAX_TCP_HEADER
,
2590 .obj_size
= sizeof(struct tcp_sock
),
2591 .slab_flags
= SLAB_DESTROY_BY_RCU
,
2592 .twsk_prot
= &tcp_timewait_sock_ops
,
2593 .rsk_prot
= &tcp_request_sock_ops
,
2594 .h
.hashinfo
= &tcp_hashinfo
,
2595 .no_autobind
= true,
2596 #ifdef CONFIG_COMPAT
2597 .compat_setsockopt
= compat_tcp_setsockopt
,
2598 .compat_getsockopt
= compat_tcp_getsockopt
,
2601 EXPORT_SYMBOL(tcp_prot
);
2604 static int __net_init
tcp_sk_init(struct net
*net
)
2606 return inet_ctl_sock_create(&net
->ipv4
.tcp_sock
,
2607 PF_INET
, SOCK_RAW
, IPPROTO_TCP
, net
);
2610 static void __net_exit
tcp_sk_exit(struct net
*net
)
2612 inet_ctl_sock_destroy(net
->ipv4
.tcp_sock
);
2615 static void __net_exit
tcp_sk_exit_batch(struct list_head
*net_exit_list
)
2617 inet_twsk_purge(&tcp_hashinfo
, &tcp_death_row
, AF_INET
);
2620 static struct pernet_operations __net_initdata tcp_sk_ops
= {
2621 .init
= tcp_sk_init
,
2622 .exit
= tcp_sk_exit
,
2623 .exit_batch
= tcp_sk_exit_batch
,
2626 void __init
tcp_v4_init(void)
2628 inet_hashinfo_init(&tcp_hashinfo
);
2629 if (register_pernet_subsys(&tcp_sk_ops
))
2630 panic("Failed to create the TCP control socket.\n");