cifs: fix NULL pointer dereference in cifs_find_smb_ses
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blobce669174f355c7dd1e1893903bb4d18a25f17c34
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
49 #include <asm/uaccess.h>
51 #include <trace/events/timer.h>
54 * The timer bases:
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 .clock_base =
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = __current_kernel_time();
93 tom = __get_wall_to_monotonic();
94 } while (read_seqretry(&xtime_lock, seq));
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
107 #ifdef CONFIG_SMP
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
125 struct hrtimer_clock_base *base;
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
136 cpu_relax();
142 * Get the preferred target CPU for NOHZ
144 static int hrtimer_get_target(int this_cpu, int pinned)
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
149 #endif
150 return this_cpu;
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
158 * Called with cpu_base->lock of target cpu held.
160 static int
161 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
163 #ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
166 if (!new_base->cpu_base->hres_active)
167 return 0;
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171 #else
172 return 0;
173 #endif
177 * Switch the timer base to the current CPU when possible.
179 static inline struct hrtimer_clock_base *
180 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
188 again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190 new_base = &new_cpu_base->clock_base[base->index];
192 if (base != new_base) {
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(hrtimer_callback_running(timer)))
203 return base;
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
214 timer->base = base;
215 goto again;
217 timer->base = new_base;
219 return new_base;
222 #else /* CONFIG_SMP */
224 static inline struct hrtimer_clock_base *
225 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
227 struct hrtimer_clock_base *base = timer->base;
229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
231 return base;
234 # define switch_hrtimer_base(t, b, p) (b)
236 #endif /* !CONFIG_SMP */
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
249 * Returns the sum of kt and nsec in ktime_t format
251 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
253 ktime_t tmp;
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
260 tmp = ktime_set((long)nsec, rem);
263 return ktime_add(kt, tmp);
266 EXPORT_SYMBOL_GPL(ktime_add_ns);
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
273 * Returns the subtraction of @nsec from @kt in ktime_t format
275 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
277 ktime_t tmp;
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
284 tmp = ktime_set((long)nsec, rem);
287 return ktime_sub(kt, tmp);
290 EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 # endif /* !CONFIG_KTIME_SCALAR */
294 * Divide a ktime value by a nanosecond value
296 u64 ktime_divns(const ktime_t kt, s64 div)
298 u64 dclc;
299 int sft = 0;
301 dclc = ktime_to_ns(kt);
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
310 return dclc;
312 #endif /* BITS_PER_LONG >= 64 */
315 * Add two ktime values and do a safety check for overflow:
317 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
319 ktime_t res = ktime_add(lhs, rhs);
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
328 return res;
331 EXPORT_SYMBOL_GPL(ktime_add_safe);
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
335 static struct debug_obj_descr hrtimer_debug_descr;
338 * fixup_init is called when:
339 * - an active object is initialized
341 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 struct hrtimer *timer = addr;
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
360 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 switch (state) {
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
371 default:
372 return 0;
377 * fixup_free is called when:
378 * - an active object is freed
380 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
382 struct hrtimer *timer = addr;
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
394 static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
401 static inline void debug_hrtimer_init(struct hrtimer *timer)
403 debug_object_init(timer, &hrtimer_debug_descr);
406 static inline void debug_hrtimer_activate(struct hrtimer *timer)
408 debug_object_activate(timer, &hrtimer_debug_descr);
411 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 static inline void debug_hrtimer_free(struct hrtimer *timer)
418 debug_object_free(timer, &hrtimer_debug_descr);
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
432 void destroy_hrtimer_on_stack(struct hrtimer *timer)
434 debug_object_free(timer, &hrtimer_debug_descr);
437 #else
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441 #endif
443 static inline void
444 debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
451 static inline void debug_activate(struct hrtimer *timer)
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
457 static inline void debug_deactivate(struct hrtimer *timer)
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
467 * High resolution timer enabled ?
469 static int hrtimer_hres_enabled __read_mostly = 1;
472 * Enable / Disable high resolution mode
474 static int __init setup_hrtimer_hres(char *str)
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
485 __setup("highres=", setup_hrtimer_hres);
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
490 static inline int hrtimer_is_hres_enabled(void)
492 return hrtimer_hres_enabled;
496 * Is the high resolution mode active ?
498 static inline int hrtimer_hres_active(void)
500 return __get_cpu_var(hrtimer_bases).hres_active;
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
508 static void
509 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
513 ktime_t expires, expires_next;
515 expires_next.tv64 = KTIME_MAX;
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
538 cpu_base->expires_next.tv64 = expires_next.tv64;
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
545 * Shared reprogramming for clock_realtime and clock_monotonic
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
551 * Called with interrupts disabled and base->cpu_base.lock held
553 static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 int res;
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
569 if (hrtimer_callback_running(timer))
570 return 0;
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
578 if (expires.tv64 < 0)
579 return -ETIME;
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
590 if (cpu_base->hang_detected)
591 return 0;
594 * Clockevents returns -ETIME, when the event was in the past.
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
598 cpu_base->expires_next = expires;
599 return res;
604 * Retrigger next event is called after clock was set
606 * Called with interrupts disabled via on_each_cpu()
608 static void retrigger_next_event(void *arg)
610 struct hrtimer_cpu_base *base;
611 struct timespec realtime_offset, wtm;
612 unsigned long seq;
614 if (!hrtimer_hres_active())
615 return;
617 do {
618 seq = read_seqbegin(&xtime_lock);
619 wtm = __get_wall_to_monotonic();
620 } while (read_seqretry(&xtime_lock, seq));
621 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
623 base = &__get_cpu_var(hrtimer_bases);
625 /* Adjust CLOCK_REALTIME offset */
626 raw_spin_lock(&base->lock);
627 base->clock_base[CLOCK_REALTIME].offset =
628 timespec_to_ktime(realtime_offset);
630 hrtimer_force_reprogram(base, 0);
631 raw_spin_unlock(&base->lock);
635 * Clock realtime was set
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
645 void clock_was_set(void)
647 /* Retrigger the CPU local events everywhere */
648 on_each_cpu(retrigger_next_event, NULL, 1);
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
655 void hres_timers_resume(void)
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
660 retrigger_next_event(NULL);
664 * Initialize the high resolution related parts of cpu_base
666 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
668 base->expires_next.tv64 = KTIME_MAX;
669 base->hres_active = 0;
673 * Initialize the high resolution related parts of a hrtimer
675 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
686 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 struct hrtimer_clock_base *base,
688 int wakeup)
690 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691 if (wakeup) {
692 raw_spin_unlock(&base->cpu_base->lock);
693 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694 raw_spin_lock(&base->cpu_base->lock);
695 } else
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
698 return 1;
701 return 0;
705 * Switch to high resolution mode
707 static int hrtimer_switch_to_hres(void)
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
713 if (base->hres_active)
714 return 1;
716 local_irq_save(flags);
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
728 tick_setup_sched_timer();
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
732 local_irq_restore(flags);
733 return 1;
736 #else
738 static inline int hrtimer_hres_active(void) { return 0; }
739 static inline int hrtimer_is_hres_enabled(void) { return 0; }
740 static inline int hrtimer_switch_to_hres(void) { return 0; }
741 static inline void
742 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744 struct hrtimer_clock_base *base,
745 int wakeup)
747 return 0;
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
752 #endif /* CONFIG_HIGH_RES_TIMERS */
754 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
756 #ifdef CONFIG_TIMER_STATS
757 if (timer->start_site)
758 return;
759 timer->start_site = __builtin_return_address(0);
760 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
761 timer->start_pid = current->pid;
762 #endif
765 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
767 #ifdef CONFIG_TIMER_STATS
768 timer->start_site = NULL;
769 #endif
772 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
774 #ifdef CONFIG_TIMER_STATS
775 if (likely(!timer_stats_active))
776 return;
777 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
778 timer->function, timer->start_comm, 0);
779 #endif
783 * Counterpart to lock_hrtimer_base above:
785 static inline
786 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
788 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
800 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
802 u64 orun = 1;
803 ktime_t delta;
805 delta = ktime_sub(now, hrtimer_get_expires(timer));
807 if (delta.tv64 < 0)
808 return 0;
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
813 if (unlikely(delta.tv64 >= interval.tv64)) {
814 s64 incr = ktime_to_ns(interval);
816 orun = ktime_divns(delta, incr);
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 return orun;
821 * This (and the ktime_add() below) is the
822 * correction for exact:
824 orun++;
826 hrtimer_add_expires(timer, interval);
828 return orun;
830 EXPORT_SYMBOL_GPL(hrtimer_forward);
833 * enqueue_hrtimer - internal function to (re)start a timer
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
838 * Returns 1 when the new timer is the leftmost timer in the tree.
840 static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
843 struct rb_node **link = &base->active.rb_node;
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
846 int leftmost = 1;
848 debug_activate(timer);
851 * Find the right place in the rbtree:
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
862 link = &(*link)->rb_left;
863 } else {
864 link = &(*link)->rb_right;
865 leftmost = 0;
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
873 if (leftmost)
874 base->first = &timer->node;
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
882 timer->state |= HRTIMER_STATE_ENQUEUED;
884 return leftmost;
888 * __remove_hrtimer - internal function to remove a timer
890 * Caller must hold the base lock.
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
905 * Remove the timer from the rbtree and replace the first
906 * entry pointer if necessary.
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910 #ifdef CONFIG_HIGH_RES_TIMERS
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram && hrtimer_hres_active()) {
913 ktime_t expires;
915 expires = ktime_sub(hrtimer_get_expires(timer),
916 base->offset);
917 if (base->cpu_base->expires_next.tv64 == expires.tv64)
918 hrtimer_force_reprogram(base->cpu_base, 1);
920 #endif
922 rb_erase(&timer->node, &base->active);
923 out:
924 timer->state = newstate;
928 * remove hrtimer, called with base lock held
930 static inline int
931 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
933 if (hrtimer_is_queued(timer)) {
934 int reprogram;
937 * Remove the timer and force reprogramming when high
938 * resolution mode is active and the timer is on the current
939 * CPU. If we remove a timer on another CPU, reprogramming is
940 * skipped. The interrupt event on this CPU is fired and
941 * reprogramming happens in the interrupt handler. This is a
942 * rare case and less expensive than a smp call.
944 debug_deactivate(timer);
945 timer_stats_hrtimer_clear_start_info(timer);
946 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
947 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
948 reprogram);
949 return 1;
951 return 0;
954 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
955 unsigned long delta_ns, const enum hrtimer_mode mode,
956 int wakeup)
958 struct hrtimer_clock_base *base, *new_base;
959 unsigned long flags;
960 int ret, leftmost;
962 base = lock_hrtimer_base(timer, &flags);
964 /* Remove an active timer from the queue: */
965 ret = remove_hrtimer(timer, base);
967 /* Switch the timer base, if necessary: */
968 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
970 if (mode & HRTIMER_MODE_REL) {
971 tim = ktime_add_safe(tim, new_base->get_time());
973 * CONFIG_TIME_LOW_RES is a temporary way for architectures
974 * to signal that they simply return xtime in
975 * do_gettimeoffset(). In this case we want to round up by
976 * resolution when starting a relative timer, to avoid short
977 * timeouts. This will go away with the GTOD framework.
979 #ifdef CONFIG_TIME_LOW_RES
980 tim = ktime_add_safe(tim, base->resolution);
981 #endif
984 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
986 timer_stats_hrtimer_set_start_info(timer);
988 leftmost = enqueue_hrtimer(timer, new_base);
991 * Only allow reprogramming if the new base is on this CPU.
992 * (it might still be on another CPU if the timer was pending)
994 * XXX send_remote_softirq() ?
996 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
997 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
999 unlock_hrtimer_base(timer, &flags);
1001 return ret;
1005 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1006 * @timer: the timer to be added
1007 * @tim: expiry time
1008 * @delta_ns: "slack" range for the timer
1009 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1011 * Returns:
1012 * 0 on success
1013 * 1 when the timer was active
1015 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1016 unsigned long delta_ns, const enum hrtimer_mode mode)
1018 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1020 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1023 * hrtimer_start - (re)start an hrtimer on the current CPU
1024 * @timer: the timer to be added
1025 * @tim: expiry time
1026 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1028 * Returns:
1029 * 0 on success
1030 * 1 when the timer was active
1033 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1035 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1037 EXPORT_SYMBOL_GPL(hrtimer_start);
1041 * hrtimer_try_to_cancel - try to deactivate a timer
1042 * @timer: hrtimer to stop
1044 * Returns:
1045 * 0 when the timer was not active
1046 * 1 when the timer was active
1047 * -1 when the timer is currently excuting the callback function and
1048 * cannot be stopped
1050 int hrtimer_try_to_cancel(struct hrtimer *timer)
1052 struct hrtimer_clock_base *base;
1053 unsigned long flags;
1054 int ret = -1;
1056 base = lock_hrtimer_base(timer, &flags);
1058 if (!hrtimer_callback_running(timer))
1059 ret = remove_hrtimer(timer, base);
1061 unlock_hrtimer_base(timer, &flags);
1063 return ret;
1066 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1069 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1070 * @timer: the timer to be cancelled
1072 * Returns:
1073 * 0 when the timer was not active
1074 * 1 when the timer was active
1076 int hrtimer_cancel(struct hrtimer *timer)
1078 for (;;) {
1079 int ret = hrtimer_try_to_cancel(timer);
1081 if (ret >= 0)
1082 return ret;
1083 cpu_relax();
1086 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1089 * hrtimer_get_remaining - get remaining time for the timer
1090 * @timer: the timer to read
1092 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1094 struct hrtimer_clock_base *base;
1095 unsigned long flags;
1096 ktime_t rem;
1098 base = lock_hrtimer_base(timer, &flags);
1099 rem = hrtimer_expires_remaining(timer);
1100 unlock_hrtimer_base(timer, &flags);
1102 return rem;
1104 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1106 #ifdef CONFIG_NO_HZ
1108 * hrtimer_get_next_event - get the time until next expiry event
1110 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1111 * is pending.
1113 ktime_t hrtimer_get_next_event(void)
1115 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1116 struct hrtimer_clock_base *base = cpu_base->clock_base;
1117 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1118 unsigned long flags;
1119 int i;
1121 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1123 if (!hrtimer_hres_active()) {
1124 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1125 struct hrtimer *timer;
1127 if (!base->first)
1128 continue;
1130 timer = rb_entry(base->first, struct hrtimer, node);
1131 delta.tv64 = hrtimer_get_expires_tv64(timer);
1132 delta = ktime_sub(delta, base->get_time());
1133 if (delta.tv64 < mindelta.tv64)
1134 mindelta.tv64 = delta.tv64;
1138 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1140 if (mindelta.tv64 < 0)
1141 mindelta.tv64 = 0;
1142 return mindelta;
1144 #endif
1146 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1147 enum hrtimer_mode mode)
1149 struct hrtimer_cpu_base *cpu_base;
1151 memset(timer, 0, sizeof(struct hrtimer));
1153 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1155 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1156 clock_id = CLOCK_MONOTONIC;
1158 timer->base = &cpu_base->clock_base[clock_id];
1159 hrtimer_init_timer_hres(timer);
1161 #ifdef CONFIG_TIMER_STATS
1162 timer->start_site = NULL;
1163 timer->start_pid = -1;
1164 memset(timer->start_comm, 0, TASK_COMM_LEN);
1165 #endif
1169 * hrtimer_init - initialize a timer to the given clock
1170 * @timer: the timer to be initialized
1171 * @clock_id: the clock to be used
1172 * @mode: timer mode abs/rel
1174 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1175 enum hrtimer_mode mode)
1177 debug_init(timer, clock_id, mode);
1178 __hrtimer_init(timer, clock_id, mode);
1180 EXPORT_SYMBOL_GPL(hrtimer_init);
1183 * hrtimer_get_res - get the timer resolution for a clock
1184 * @which_clock: which clock to query
1185 * @tp: pointer to timespec variable to store the resolution
1187 * Store the resolution of the clock selected by @which_clock in the
1188 * variable pointed to by @tp.
1190 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1192 struct hrtimer_cpu_base *cpu_base;
1194 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1195 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1197 return 0;
1199 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1201 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1203 struct hrtimer_clock_base *base = timer->base;
1204 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1205 enum hrtimer_restart (*fn)(struct hrtimer *);
1206 int restart;
1208 WARN_ON(!irqs_disabled());
1210 debug_deactivate(timer);
1211 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1212 timer_stats_account_hrtimer(timer);
1213 fn = timer->function;
1216 * Because we run timers from hardirq context, there is no chance
1217 * they get migrated to another cpu, therefore its safe to unlock
1218 * the timer base.
1220 raw_spin_unlock(&cpu_base->lock);
1221 trace_hrtimer_expire_entry(timer, now);
1222 restart = fn(timer);
1223 trace_hrtimer_expire_exit(timer);
1224 raw_spin_lock(&cpu_base->lock);
1227 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1228 * we do not reprogramm the event hardware. Happens either in
1229 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1231 if (restart != HRTIMER_NORESTART) {
1232 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1233 enqueue_hrtimer(timer, base);
1235 timer->state &= ~HRTIMER_STATE_CALLBACK;
1238 #ifdef CONFIG_HIGH_RES_TIMERS
1241 * High resolution timer interrupt
1242 * Called with interrupts disabled
1244 void hrtimer_interrupt(struct clock_event_device *dev)
1246 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1247 struct hrtimer_clock_base *base;
1248 ktime_t expires_next, now, entry_time, delta;
1249 int i, retries = 0;
1251 BUG_ON(!cpu_base->hres_active);
1252 cpu_base->nr_events++;
1253 dev->next_event.tv64 = KTIME_MAX;
1255 entry_time = now = ktime_get();
1256 retry:
1257 expires_next.tv64 = KTIME_MAX;
1259 raw_spin_lock(&cpu_base->lock);
1261 * We set expires_next to KTIME_MAX here with cpu_base->lock
1262 * held to prevent that a timer is enqueued in our queue via
1263 * the migration code. This does not affect enqueueing of
1264 * timers which run their callback and need to be requeued on
1265 * this CPU.
1267 cpu_base->expires_next.tv64 = KTIME_MAX;
1269 base = cpu_base->clock_base;
1271 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1272 ktime_t basenow;
1273 struct rb_node *node;
1275 basenow = ktime_add(now, base->offset);
1277 while ((node = base->first)) {
1278 struct hrtimer *timer;
1280 timer = rb_entry(node, struct hrtimer, node);
1283 * The immediate goal for using the softexpires is
1284 * minimizing wakeups, not running timers at the
1285 * earliest interrupt after their soft expiration.
1286 * This allows us to avoid using a Priority Search
1287 * Tree, which can answer a stabbing querry for
1288 * overlapping intervals and instead use the simple
1289 * BST we already have.
1290 * We don't add extra wakeups by delaying timers that
1291 * are right-of a not yet expired timer, because that
1292 * timer will have to trigger a wakeup anyway.
1295 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296 ktime_t expires;
1298 expires = ktime_sub(hrtimer_get_expires(timer),
1299 base->offset);
1300 if (expires.tv64 < expires_next.tv64)
1301 expires_next = expires;
1302 break;
1305 __run_hrtimer(timer, &basenow);
1307 base++;
1311 * Store the new expiry value so the migration code can verify
1312 * against it.
1314 cpu_base->expires_next = expires_next;
1315 raw_spin_unlock(&cpu_base->lock);
1317 /* Reprogramming necessary ? */
1318 if (expires_next.tv64 == KTIME_MAX ||
1319 !tick_program_event(expires_next, 0)) {
1320 cpu_base->hang_detected = 0;
1321 return;
1325 * The next timer was already expired due to:
1326 * - tracing
1327 * - long lasting callbacks
1328 * - being scheduled away when running in a VM
1330 * We need to prevent that we loop forever in the hrtimer
1331 * interrupt routine. We give it 3 attempts to avoid
1332 * overreacting on some spurious event.
1334 now = ktime_get();
1335 cpu_base->nr_retries++;
1336 if (++retries < 3)
1337 goto retry;
1339 * Give the system a chance to do something else than looping
1340 * here. We stored the entry time, so we know exactly how long
1341 * we spent here. We schedule the next event this amount of
1342 * time away.
1344 cpu_base->nr_hangs++;
1345 cpu_base->hang_detected = 1;
1346 delta = ktime_sub(now, entry_time);
1347 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1348 cpu_base->max_hang_time = delta;
1350 * Limit it to a sensible value as we enforce a longer
1351 * delay. Give the CPU at least 100ms to catch up.
1353 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1354 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1355 else
1356 expires_next = ktime_add(now, delta);
1357 tick_program_event(expires_next, 1);
1358 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1359 ktime_to_ns(delta));
1363 * local version of hrtimer_peek_ahead_timers() called with interrupts
1364 * disabled.
1366 static void __hrtimer_peek_ahead_timers(void)
1368 struct tick_device *td;
1370 if (!hrtimer_hres_active())
1371 return;
1373 td = &__get_cpu_var(tick_cpu_device);
1374 if (td && td->evtdev)
1375 hrtimer_interrupt(td->evtdev);
1379 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1381 * hrtimer_peek_ahead_timers will peek at the timer queue of
1382 * the current cpu and check if there are any timers for which
1383 * the soft expires time has passed. If any such timers exist,
1384 * they are run immediately and then removed from the timer queue.
1387 void hrtimer_peek_ahead_timers(void)
1389 unsigned long flags;
1391 local_irq_save(flags);
1392 __hrtimer_peek_ahead_timers();
1393 local_irq_restore(flags);
1396 static void run_hrtimer_softirq(struct softirq_action *h)
1398 hrtimer_peek_ahead_timers();
1401 #else /* CONFIG_HIGH_RES_TIMERS */
1403 static inline void __hrtimer_peek_ahead_timers(void) { }
1405 #endif /* !CONFIG_HIGH_RES_TIMERS */
1408 * Called from timer softirq every jiffy, expire hrtimers:
1410 * For HRT its the fall back code to run the softirq in the timer
1411 * softirq context in case the hrtimer initialization failed or has
1412 * not been done yet.
1414 void hrtimer_run_pending(void)
1416 if (hrtimer_hres_active())
1417 return;
1420 * This _is_ ugly: We have to check in the softirq context,
1421 * whether we can switch to highres and / or nohz mode. The
1422 * clocksource switch happens in the timer interrupt with
1423 * xtime_lock held. Notification from there only sets the
1424 * check bit in the tick_oneshot code, otherwise we might
1425 * deadlock vs. xtime_lock.
1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1428 hrtimer_switch_to_hres();
1432 * Called from hardirq context every jiffy
1434 void hrtimer_run_queues(void)
1436 struct rb_node *node;
1437 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1438 struct hrtimer_clock_base *base;
1439 int index, gettime = 1;
1441 if (hrtimer_hres_active())
1442 return;
1444 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1445 base = &cpu_base->clock_base[index];
1447 if (!base->first)
1448 continue;
1450 if (gettime) {
1451 hrtimer_get_softirq_time(cpu_base);
1452 gettime = 0;
1455 raw_spin_lock(&cpu_base->lock);
1457 while ((node = base->first)) {
1458 struct hrtimer *timer;
1460 timer = rb_entry(node, struct hrtimer, node);
1461 if (base->softirq_time.tv64 <=
1462 hrtimer_get_expires_tv64(timer))
1463 break;
1465 __run_hrtimer(timer, &base->softirq_time);
1467 raw_spin_unlock(&cpu_base->lock);
1472 * Sleep related functions:
1474 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1476 struct hrtimer_sleeper *t =
1477 container_of(timer, struct hrtimer_sleeper, timer);
1478 struct task_struct *task = t->task;
1480 t->task = NULL;
1481 if (task)
1482 wake_up_process(task);
1484 return HRTIMER_NORESTART;
1487 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1489 sl->timer.function = hrtimer_wakeup;
1490 sl->task = task;
1492 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1494 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1496 hrtimer_init_sleeper(t, current);
1498 do {
1499 set_current_state(TASK_INTERRUPTIBLE);
1500 hrtimer_start_expires(&t->timer, mode);
1501 if (!hrtimer_active(&t->timer))
1502 t->task = NULL;
1504 if (likely(t->task))
1505 schedule();
1507 hrtimer_cancel(&t->timer);
1508 mode = HRTIMER_MODE_ABS;
1510 } while (t->task && !signal_pending(current));
1512 __set_current_state(TASK_RUNNING);
1514 return t->task == NULL;
1517 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1519 struct timespec rmt;
1520 ktime_t rem;
1522 rem = hrtimer_expires_remaining(timer);
1523 if (rem.tv64 <= 0)
1524 return 0;
1525 rmt = ktime_to_timespec(rem);
1527 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1528 return -EFAULT;
1530 return 1;
1533 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1535 struct hrtimer_sleeper t;
1536 struct timespec __user *rmtp;
1537 int ret = 0;
1539 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1540 HRTIMER_MODE_ABS);
1541 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1543 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1544 goto out;
1546 rmtp = restart->nanosleep.rmtp;
1547 if (rmtp) {
1548 ret = update_rmtp(&t.timer, rmtp);
1549 if (ret <= 0)
1550 goto out;
1553 /* The other values in restart are already filled in */
1554 ret = -ERESTART_RESTARTBLOCK;
1555 out:
1556 destroy_hrtimer_on_stack(&t.timer);
1557 return ret;
1560 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1561 const enum hrtimer_mode mode, const clockid_t clockid)
1563 struct restart_block *restart;
1564 struct hrtimer_sleeper t;
1565 int ret = 0;
1566 unsigned long slack;
1568 slack = current->timer_slack_ns;
1569 if (rt_task(current))
1570 slack = 0;
1572 hrtimer_init_on_stack(&t.timer, clockid, mode);
1573 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1574 if (do_nanosleep(&t, mode))
1575 goto out;
1577 /* Absolute timers do not update the rmtp value and restart: */
1578 if (mode == HRTIMER_MODE_ABS) {
1579 ret = -ERESTARTNOHAND;
1580 goto out;
1583 if (rmtp) {
1584 ret = update_rmtp(&t.timer, rmtp);
1585 if (ret <= 0)
1586 goto out;
1589 restart = &current_thread_info()->restart_block;
1590 restart->fn = hrtimer_nanosleep_restart;
1591 restart->nanosleep.index = t.timer.base->index;
1592 restart->nanosleep.rmtp = rmtp;
1593 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1595 ret = -ERESTART_RESTARTBLOCK;
1596 out:
1597 destroy_hrtimer_on_stack(&t.timer);
1598 return ret;
1601 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1602 struct timespec __user *, rmtp)
1604 struct timespec tu;
1606 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1607 return -EFAULT;
1609 if (!timespec_valid(&tu))
1610 return -EINVAL;
1612 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1616 * Functions related to boot-time initialization:
1618 static void __cpuinit init_hrtimers_cpu(int cpu)
1620 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1621 int i;
1623 raw_spin_lock_init(&cpu_base->lock);
1625 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1626 cpu_base->clock_base[i].cpu_base = cpu_base;
1628 hrtimer_init_hres(cpu_base);
1631 #ifdef CONFIG_HOTPLUG_CPU
1633 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1634 struct hrtimer_clock_base *new_base)
1636 struct hrtimer *timer;
1637 struct rb_node *node;
1639 while ((node = rb_first(&old_base->active))) {
1640 timer = rb_entry(node, struct hrtimer, node);
1641 BUG_ON(hrtimer_callback_running(timer));
1642 debug_deactivate(timer);
1645 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1646 * timer could be seen as !active and just vanish away
1647 * under us on another CPU
1649 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1650 timer->base = new_base;
1652 * Enqueue the timers on the new cpu. This does not
1653 * reprogram the event device in case the timer
1654 * expires before the earliest on this CPU, but we run
1655 * hrtimer_interrupt after we migrated everything to
1656 * sort out already expired timers and reprogram the
1657 * event device.
1659 enqueue_hrtimer(timer, new_base);
1661 /* Clear the migration state bit */
1662 timer->state &= ~HRTIMER_STATE_MIGRATE;
1666 static void migrate_hrtimers(int scpu)
1668 struct hrtimer_cpu_base *old_base, *new_base;
1669 int i;
1671 BUG_ON(cpu_online(scpu));
1672 tick_cancel_sched_timer(scpu);
1674 local_irq_disable();
1675 old_base = &per_cpu(hrtimer_bases, scpu);
1676 new_base = &__get_cpu_var(hrtimer_bases);
1678 * The caller is globally serialized and nobody else
1679 * takes two locks at once, deadlock is not possible.
1681 raw_spin_lock(&new_base->lock);
1682 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1684 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1685 migrate_hrtimer_list(&old_base->clock_base[i],
1686 &new_base->clock_base[i]);
1689 raw_spin_unlock(&old_base->lock);
1690 raw_spin_unlock(&new_base->lock);
1692 /* Check, if we got expired work to do */
1693 __hrtimer_peek_ahead_timers();
1694 local_irq_enable();
1697 #endif /* CONFIG_HOTPLUG_CPU */
1699 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1700 unsigned long action, void *hcpu)
1702 int scpu = (long)hcpu;
1704 switch (action) {
1706 case CPU_UP_PREPARE:
1707 case CPU_UP_PREPARE_FROZEN:
1708 init_hrtimers_cpu(scpu);
1709 break;
1711 #ifdef CONFIG_HOTPLUG_CPU
1712 case CPU_DYING:
1713 case CPU_DYING_FROZEN:
1714 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1715 break;
1716 case CPU_DEAD:
1717 case CPU_DEAD_FROZEN:
1719 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1720 migrate_hrtimers(scpu);
1721 break;
1723 #endif
1725 default:
1726 break;
1729 return NOTIFY_OK;
1732 static struct notifier_block __cpuinitdata hrtimers_nb = {
1733 .notifier_call = hrtimer_cpu_notify,
1736 void __init hrtimers_init(void)
1738 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1739 (void *)(long)smp_processor_id());
1740 register_cpu_notifier(&hrtimers_nb);
1741 #ifdef CONFIG_HIGH_RES_TIMERS
1742 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1743 #endif
1747 * schedule_hrtimeout_range_clock - sleep until timeout
1748 * @expires: timeout value (ktime_t)
1749 * @delta: slack in expires timeout (ktime_t)
1750 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1751 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1753 int __sched
1754 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1755 const enum hrtimer_mode mode, int clock)
1757 struct hrtimer_sleeper t;
1760 * Optimize when a zero timeout value is given. It does not
1761 * matter whether this is an absolute or a relative time.
1763 if (expires && !expires->tv64) {
1764 __set_current_state(TASK_RUNNING);
1765 return 0;
1769 * A NULL parameter means "inifinte"
1771 if (!expires) {
1772 schedule();
1773 __set_current_state(TASK_RUNNING);
1774 return -EINTR;
1777 hrtimer_init_on_stack(&t.timer, clock, mode);
1778 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1780 hrtimer_init_sleeper(&t, current);
1782 hrtimer_start_expires(&t.timer, mode);
1783 if (!hrtimer_active(&t.timer))
1784 t.task = NULL;
1786 if (likely(t.task))
1787 schedule();
1789 hrtimer_cancel(&t.timer);
1790 destroy_hrtimer_on_stack(&t.timer);
1792 __set_current_state(TASK_RUNNING);
1794 return !t.task ? 0 : -EINTR;
1798 * schedule_hrtimeout_range - sleep until timeout
1799 * @expires: timeout value (ktime_t)
1800 * @delta: slack in expires timeout (ktime_t)
1801 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1803 * Make the current task sleep until the given expiry time has
1804 * elapsed. The routine will return immediately unless
1805 * the current task state has been set (see set_current_state()).
1807 * The @delta argument gives the kernel the freedom to schedule the
1808 * actual wakeup to a time that is both power and performance friendly.
1809 * The kernel give the normal best effort behavior for "@expires+@delta",
1810 * but may decide to fire the timer earlier, but no earlier than @expires.
1812 * You can set the task state as follows -
1814 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1815 * pass before the routine returns.
1817 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1818 * delivered to the current task.
1820 * The current task state is guaranteed to be TASK_RUNNING when this
1821 * routine returns.
1823 * Returns 0 when the timer has expired otherwise -EINTR
1825 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1826 const enum hrtimer_mode mode)
1828 return schedule_hrtimeout_range_clock(expires, delta, mode,
1829 CLOCK_MONOTONIC);
1831 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1834 * schedule_hrtimeout - sleep until timeout
1835 * @expires: timeout value (ktime_t)
1836 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1838 * Make the current task sleep until the given expiry time has
1839 * elapsed. The routine will return immediately unless
1840 * the current task state has been set (see set_current_state()).
1842 * You can set the task state as follows -
1844 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1845 * pass before the routine returns.
1847 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1848 * delivered to the current task.
1850 * The current task state is guaranteed to be TASK_RUNNING when this
1851 * routine returns.
1853 * Returns 0 when the timer has expired otherwise -EINTR
1855 int __sched schedule_hrtimeout(ktime_t *expires,
1856 const enum hrtimer_mode mode)
1858 return schedule_hrtimeout_range(expires, 0, mode);
1860 EXPORT_SYMBOL_GPL(schedule_hrtimeout);