[PATCH] fbdev: framebuffer driver for Geode GX
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
bloba8c7efc7a681a99220711517b200de81e02eba41
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/capability.h>
14 #include <linux/completion.h>
15 #include <linux/personality.h>
16 #include <linux/tty.h>
17 #include <linux/namespace.h>
18 #include <linux/key.h>
19 #include <linux/security.h>
20 #include <linux/cpu.h>
21 #include <linux/acct.h>
22 #include <linux/file.h>
23 #include <linux/binfmts.h>
24 #include <linux/ptrace.h>
25 #include <linux/profile.h>
26 #include <linux/mount.h>
27 #include <linux/proc_fs.h>
28 #include <linux/mempolicy.h>
29 #include <linux/cpuset.h>
30 #include <linux/syscalls.h>
31 #include <linux/signal.h>
32 #include <linux/cn_proc.h>
33 #include <linux/mutex.h>
34 #include <linux/futex.h>
35 #include <linux/compat.h>
37 #include <asm/uaccess.h>
38 #include <asm/unistd.h>
39 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
42 extern void sem_exit (void);
43 extern struct task_struct *child_reaper;
45 int getrusage(struct task_struct *, int, struct rusage __user *);
47 static void exit_mm(struct task_struct * tsk);
49 static void __unhash_process(struct task_struct *p)
51 nr_threads--;
52 detach_pid(p, PIDTYPE_PID);
53 detach_pid(p, PIDTYPE_TGID);
54 if (thread_group_leader(p)) {
55 detach_pid(p, PIDTYPE_PGID);
56 detach_pid(p, PIDTYPE_SID);
57 if (p->pid)
58 __get_cpu_var(process_counts)--;
61 REMOVE_LINKS(p);
64 void release_task(struct task_struct * p)
66 int zap_leader;
67 task_t *leader;
68 struct dentry *proc_dentry;
70 repeat:
71 atomic_dec(&p->user->processes);
72 spin_lock(&p->proc_lock);
73 proc_dentry = proc_pid_unhash(p);
74 write_lock_irq(&tasklist_lock);
75 if (unlikely(p->ptrace))
76 __ptrace_unlink(p);
77 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
78 __exit_signal(p);
80 * Note that the fastpath in sys_times depends on __exit_signal having
81 * updated the counters before a task is removed from the tasklist of
82 * the process by __unhash_process.
84 __unhash_process(p);
87 * If we are the last non-leader member of the thread
88 * group, and the leader is zombie, then notify the
89 * group leader's parent process. (if it wants notification.)
91 zap_leader = 0;
92 leader = p->group_leader;
93 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
94 BUG_ON(leader->exit_signal == -1);
95 do_notify_parent(leader, leader->exit_signal);
97 * If we were the last child thread and the leader has
98 * exited already, and the leader's parent ignores SIGCHLD,
99 * then we are the one who should release the leader.
101 * do_notify_parent() will have marked it self-reaping in
102 * that case.
104 zap_leader = (leader->exit_signal == -1);
107 sched_exit(p);
108 write_unlock_irq(&tasklist_lock);
109 spin_unlock(&p->proc_lock);
110 proc_pid_flush(proc_dentry);
111 release_thread(p);
112 put_task_struct(p);
114 p = leader;
115 if (unlikely(zap_leader))
116 goto repeat;
119 /* we are using it only for SMP init */
121 void unhash_process(struct task_struct *p)
123 struct dentry *proc_dentry;
125 spin_lock(&p->proc_lock);
126 proc_dentry = proc_pid_unhash(p);
127 write_lock_irq(&tasklist_lock);
128 __unhash_process(p);
129 write_unlock_irq(&tasklist_lock);
130 spin_unlock(&p->proc_lock);
131 proc_pid_flush(proc_dentry);
135 * This checks not only the pgrp, but falls back on the pid if no
136 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
137 * without this...
139 int session_of_pgrp(int pgrp)
141 struct task_struct *p;
142 int sid = -1;
144 read_lock(&tasklist_lock);
145 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
146 if (p->signal->session > 0) {
147 sid = p->signal->session;
148 goto out;
150 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
151 p = find_task_by_pid(pgrp);
152 if (p)
153 sid = p->signal->session;
154 out:
155 read_unlock(&tasklist_lock);
157 return sid;
161 * Determine if a process group is "orphaned", according to the POSIX
162 * definition in 2.2.2.52. Orphaned process groups are not to be affected
163 * by terminal-generated stop signals. Newly orphaned process groups are
164 * to receive a SIGHUP and a SIGCONT.
166 * "I ask you, have you ever known what it is to be an orphan?"
168 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
170 struct task_struct *p;
171 int ret = 1;
173 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
174 if (p == ignored_task
175 || p->exit_state
176 || p->real_parent->pid == 1)
177 continue;
178 if (process_group(p->real_parent) != pgrp
179 && p->real_parent->signal->session == p->signal->session) {
180 ret = 0;
181 break;
183 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
184 return ret; /* (sighing) "Often!" */
187 int is_orphaned_pgrp(int pgrp)
189 int retval;
191 read_lock(&tasklist_lock);
192 retval = will_become_orphaned_pgrp(pgrp, NULL);
193 read_unlock(&tasklist_lock);
195 return retval;
198 static int has_stopped_jobs(int pgrp)
200 int retval = 0;
201 struct task_struct *p;
203 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
204 if (p->state != TASK_STOPPED)
205 continue;
207 /* If p is stopped by a debugger on a signal that won't
208 stop it, then don't count p as stopped. This isn't
209 perfect but it's a good approximation. */
210 if (unlikely (p->ptrace)
211 && p->exit_code != SIGSTOP
212 && p->exit_code != SIGTSTP
213 && p->exit_code != SIGTTOU
214 && p->exit_code != SIGTTIN)
215 continue;
217 retval = 1;
218 break;
219 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
220 return retval;
224 * reparent_to_init - Reparent the calling kernel thread to the init task.
226 * If a kernel thread is launched as a result of a system call, or if
227 * it ever exits, it should generally reparent itself to init so that
228 * it is correctly cleaned up on exit.
230 * The various task state such as scheduling policy and priority may have
231 * been inherited from a user process, so we reset them to sane values here.
233 * NOTE that reparent_to_init() gives the caller full capabilities.
235 static void reparent_to_init(void)
237 write_lock_irq(&tasklist_lock);
239 ptrace_unlink(current);
240 /* Reparent to init */
241 REMOVE_LINKS(current);
242 current->parent = child_reaper;
243 current->real_parent = child_reaper;
244 SET_LINKS(current);
246 /* Set the exit signal to SIGCHLD so we signal init on exit */
247 current->exit_signal = SIGCHLD;
249 if ((current->policy == SCHED_NORMAL ||
250 current->policy == SCHED_BATCH)
251 && (task_nice(current) < 0))
252 set_user_nice(current, 0);
253 /* cpus_allowed? */
254 /* rt_priority? */
255 /* signals? */
256 security_task_reparent_to_init(current);
257 memcpy(current->signal->rlim, init_task.signal->rlim,
258 sizeof(current->signal->rlim));
259 atomic_inc(&(INIT_USER->__count));
260 write_unlock_irq(&tasklist_lock);
261 switch_uid(INIT_USER);
264 void __set_special_pids(pid_t session, pid_t pgrp)
266 struct task_struct *curr = current->group_leader;
268 if (curr->signal->session != session) {
269 detach_pid(curr, PIDTYPE_SID);
270 curr->signal->session = session;
271 attach_pid(curr, PIDTYPE_SID, session);
273 if (process_group(curr) != pgrp) {
274 detach_pid(curr, PIDTYPE_PGID);
275 curr->signal->pgrp = pgrp;
276 attach_pid(curr, PIDTYPE_PGID, pgrp);
280 void set_special_pids(pid_t session, pid_t pgrp)
282 write_lock_irq(&tasklist_lock);
283 __set_special_pids(session, pgrp);
284 write_unlock_irq(&tasklist_lock);
288 * Let kernel threads use this to say that they
289 * allow a certain signal (since daemonize() will
290 * have disabled all of them by default).
292 int allow_signal(int sig)
294 if (!valid_signal(sig) || sig < 1)
295 return -EINVAL;
297 spin_lock_irq(&current->sighand->siglock);
298 sigdelset(&current->blocked, sig);
299 if (!current->mm) {
300 /* Kernel threads handle their own signals.
301 Let the signal code know it'll be handled, so
302 that they don't get converted to SIGKILL or
303 just silently dropped */
304 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
306 recalc_sigpending();
307 spin_unlock_irq(&current->sighand->siglock);
308 return 0;
311 EXPORT_SYMBOL(allow_signal);
313 int disallow_signal(int sig)
315 if (!valid_signal(sig) || sig < 1)
316 return -EINVAL;
318 spin_lock_irq(&current->sighand->siglock);
319 sigaddset(&current->blocked, sig);
320 recalc_sigpending();
321 spin_unlock_irq(&current->sighand->siglock);
322 return 0;
325 EXPORT_SYMBOL(disallow_signal);
328 * Put all the gunge required to become a kernel thread without
329 * attached user resources in one place where it belongs.
332 void daemonize(const char *name, ...)
334 va_list args;
335 struct fs_struct *fs;
336 sigset_t blocked;
338 va_start(args, name);
339 vsnprintf(current->comm, sizeof(current->comm), name, args);
340 va_end(args);
343 * If we were started as result of loading a module, close all of the
344 * user space pages. We don't need them, and if we didn't close them
345 * they would be locked into memory.
347 exit_mm(current);
349 set_special_pids(1, 1);
350 mutex_lock(&tty_mutex);
351 current->signal->tty = NULL;
352 mutex_unlock(&tty_mutex);
354 /* Block and flush all signals */
355 sigfillset(&blocked);
356 sigprocmask(SIG_BLOCK, &blocked, NULL);
357 flush_signals(current);
359 /* Become as one with the init task */
361 exit_fs(current); /* current->fs->count--; */
362 fs = init_task.fs;
363 current->fs = fs;
364 atomic_inc(&fs->count);
365 exit_namespace(current);
366 current->namespace = init_task.namespace;
367 get_namespace(current->namespace);
368 exit_files(current);
369 current->files = init_task.files;
370 atomic_inc(&current->files->count);
372 reparent_to_init();
375 EXPORT_SYMBOL(daemonize);
377 static void close_files(struct files_struct * files)
379 int i, j;
380 struct fdtable *fdt;
382 j = 0;
385 * It is safe to dereference the fd table without RCU or
386 * ->file_lock because this is the last reference to the
387 * files structure.
389 fdt = files_fdtable(files);
390 for (;;) {
391 unsigned long set;
392 i = j * __NFDBITS;
393 if (i >= fdt->max_fdset || i >= fdt->max_fds)
394 break;
395 set = fdt->open_fds->fds_bits[j++];
396 while (set) {
397 if (set & 1) {
398 struct file * file = xchg(&fdt->fd[i], NULL);
399 if (file)
400 filp_close(file, files);
402 i++;
403 set >>= 1;
408 struct files_struct *get_files_struct(struct task_struct *task)
410 struct files_struct *files;
412 task_lock(task);
413 files = task->files;
414 if (files)
415 atomic_inc(&files->count);
416 task_unlock(task);
418 return files;
421 void fastcall put_files_struct(struct files_struct *files)
423 struct fdtable *fdt;
425 if (atomic_dec_and_test(&files->count)) {
426 close_files(files);
428 * Free the fd and fdset arrays if we expanded them.
429 * If the fdtable was embedded, pass files for freeing
430 * at the end of the RCU grace period. Otherwise,
431 * you can free files immediately.
433 fdt = files_fdtable(files);
434 if (fdt == &files->fdtab)
435 fdt->free_files = files;
436 else
437 kmem_cache_free(files_cachep, files);
438 free_fdtable(fdt);
442 EXPORT_SYMBOL(put_files_struct);
444 static inline void __exit_files(struct task_struct *tsk)
446 struct files_struct * files = tsk->files;
448 if (files) {
449 task_lock(tsk);
450 tsk->files = NULL;
451 task_unlock(tsk);
452 put_files_struct(files);
456 void exit_files(struct task_struct *tsk)
458 __exit_files(tsk);
461 static inline void __put_fs_struct(struct fs_struct *fs)
463 /* No need to hold fs->lock if we are killing it */
464 if (atomic_dec_and_test(&fs->count)) {
465 dput(fs->root);
466 mntput(fs->rootmnt);
467 dput(fs->pwd);
468 mntput(fs->pwdmnt);
469 if (fs->altroot) {
470 dput(fs->altroot);
471 mntput(fs->altrootmnt);
473 kmem_cache_free(fs_cachep, fs);
477 void put_fs_struct(struct fs_struct *fs)
479 __put_fs_struct(fs);
482 static inline void __exit_fs(struct task_struct *tsk)
484 struct fs_struct * fs = tsk->fs;
486 if (fs) {
487 task_lock(tsk);
488 tsk->fs = NULL;
489 task_unlock(tsk);
490 __put_fs_struct(fs);
494 void exit_fs(struct task_struct *tsk)
496 __exit_fs(tsk);
499 EXPORT_SYMBOL_GPL(exit_fs);
502 * Turn us into a lazy TLB process if we
503 * aren't already..
505 static void exit_mm(struct task_struct * tsk)
507 struct mm_struct *mm = tsk->mm;
509 mm_release(tsk, mm);
510 if (!mm)
511 return;
513 * Serialize with any possible pending coredump.
514 * We must hold mmap_sem around checking core_waiters
515 * and clearing tsk->mm. The core-inducing thread
516 * will increment core_waiters for each thread in the
517 * group with ->mm != NULL.
519 down_read(&mm->mmap_sem);
520 if (mm->core_waiters) {
521 up_read(&mm->mmap_sem);
522 down_write(&mm->mmap_sem);
523 if (!--mm->core_waiters)
524 complete(mm->core_startup_done);
525 up_write(&mm->mmap_sem);
527 wait_for_completion(&mm->core_done);
528 down_read(&mm->mmap_sem);
530 atomic_inc(&mm->mm_count);
531 if (mm != tsk->active_mm) BUG();
532 /* more a memory barrier than a real lock */
533 task_lock(tsk);
534 tsk->mm = NULL;
535 up_read(&mm->mmap_sem);
536 enter_lazy_tlb(mm, current);
537 task_unlock(tsk);
538 mmput(mm);
541 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
544 * Make sure we're not reparenting to ourselves and that
545 * the parent is not a zombie.
547 BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
548 p->real_parent = reaper;
551 static void reparent_thread(task_t *p, task_t *father, int traced)
553 /* We don't want people slaying init. */
554 if (p->exit_signal != -1)
555 p->exit_signal = SIGCHLD;
557 if (p->pdeath_signal)
558 /* We already hold the tasklist_lock here. */
559 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
561 /* Move the child from its dying parent to the new one. */
562 if (unlikely(traced)) {
563 /* Preserve ptrace links if someone else is tracing this child. */
564 list_del_init(&p->ptrace_list);
565 if (p->parent != p->real_parent)
566 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
567 } else {
568 /* If this child is being traced, then we're the one tracing it
569 * anyway, so let go of it.
571 p->ptrace = 0;
572 list_del_init(&p->sibling);
573 p->parent = p->real_parent;
574 list_add_tail(&p->sibling, &p->parent->children);
576 /* If we'd notified the old parent about this child's death,
577 * also notify the new parent.
579 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
580 thread_group_empty(p))
581 do_notify_parent(p, p->exit_signal);
582 else if (p->state == TASK_TRACED) {
584 * If it was at a trace stop, turn it into
585 * a normal stop since it's no longer being
586 * traced.
588 ptrace_untrace(p);
593 * process group orphan check
594 * Case ii: Our child is in a different pgrp
595 * than we are, and it was the only connection
596 * outside, so the child pgrp is now orphaned.
598 if ((process_group(p) != process_group(father)) &&
599 (p->signal->session == father->signal->session)) {
600 int pgrp = process_group(p);
602 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
603 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp);
604 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp);
610 * When we die, we re-parent all our children.
611 * Try to give them to another thread in our thread
612 * group, and if no such member exists, give it to
613 * the global child reaper process (ie "init")
615 static void forget_original_parent(struct task_struct * father,
616 struct list_head *to_release)
618 struct task_struct *p, *reaper = father;
619 struct list_head *_p, *_n;
621 do {
622 reaper = next_thread(reaper);
623 if (reaper == father) {
624 reaper = child_reaper;
625 break;
627 } while (reaper->exit_state);
630 * There are only two places where our children can be:
632 * - in our child list
633 * - in our ptraced child list
635 * Search them and reparent children.
637 list_for_each_safe(_p, _n, &father->children) {
638 int ptrace;
639 p = list_entry(_p,struct task_struct,sibling);
641 ptrace = p->ptrace;
643 /* if father isn't the real parent, then ptrace must be enabled */
644 BUG_ON(father != p->real_parent && !ptrace);
646 if (father == p->real_parent) {
647 /* reparent with a reaper, real father it's us */
648 choose_new_parent(p, reaper, child_reaper);
649 reparent_thread(p, father, 0);
650 } else {
651 /* reparent ptraced task to its real parent */
652 __ptrace_unlink (p);
653 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
654 thread_group_empty(p))
655 do_notify_parent(p, p->exit_signal);
659 * if the ptraced child is a zombie with exit_signal == -1
660 * we must collect it before we exit, or it will remain
661 * zombie forever since we prevented it from self-reap itself
662 * while it was being traced by us, to be able to see it in wait4.
664 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
665 list_add(&p->ptrace_list, to_release);
667 list_for_each_safe(_p, _n, &father->ptrace_children) {
668 p = list_entry(_p,struct task_struct,ptrace_list);
669 choose_new_parent(p, reaper, child_reaper);
670 reparent_thread(p, father, 1);
675 * Send signals to all our closest relatives so that they know
676 * to properly mourn us..
678 static void exit_notify(struct task_struct *tsk)
680 int state;
681 struct task_struct *t;
682 struct list_head ptrace_dead, *_p, *_n;
684 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
685 && !thread_group_empty(tsk)) {
687 * This occurs when there was a race between our exit
688 * syscall and a group signal choosing us as the one to
689 * wake up. It could be that we are the only thread
690 * alerted to check for pending signals, but another thread
691 * should be woken now to take the signal since we will not.
692 * Now we'll wake all the threads in the group just to make
693 * sure someone gets all the pending signals.
695 read_lock(&tasklist_lock);
696 spin_lock_irq(&tsk->sighand->siglock);
697 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
698 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
699 recalc_sigpending_tsk(t);
700 if (signal_pending(t))
701 signal_wake_up(t, 0);
703 spin_unlock_irq(&tsk->sighand->siglock);
704 read_unlock(&tasklist_lock);
707 write_lock_irq(&tasklist_lock);
710 * This does two things:
712 * A. Make init inherit all the child processes
713 * B. Check to see if any process groups have become orphaned
714 * as a result of our exiting, and if they have any stopped
715 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
718 INIT_LIST_HEAD(&ptrace_dead);
719 forget_original_parent(tsk, &ptrace_dead);
720 BUG_ON(!list_empty(&tsk->children));
721 BUG_ON(!list_empty(&tsk->ptrace_children));
724 * Check to see if any process groups have become orphaned
725 * as a result of our exiting, and if they have any stopped
726 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
728 * Case i: Our father is in a different pgrp than we are
729 * and we were the only connection outside, so our pgrp
730 * is about to become orphaned.
733 t = tsk->real_parent;
735 if ((process_group(t) != process_group(tsk)) &&
736 (t->signal->session == tsk->signal->session) &&
737 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
738 has_stopped_jobs(process_group(tsk))) {
739 __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk));
740 __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk));
743 /* Let father know we died
745 * Thread signals are configurable, but you aren't going to use
746 * that to send signals to arbitary processes.
747 * That stops right now.
749 * If the parent exec id doesn't match the exec id we saved
750 * when we started then we know the parent has changed security
751 * domain.
753 * If our self_exec id doesn't match our parent_exec_id then
754 * we have changed execution domain as these two values started
755 * the same after a fork.
759 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
760 ( tsk->parent_exec_id != t->self_exec_id ||
761 tsk->self_exec_id != tsk->parent_exec_id)
762 && !capable(CAP_KILL))
763 tsk->exit_signal = SIGCHLD;
766 /* If something other than our normal parent is ptracing us, then
767 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
768 * only has special meaning to our real parent.
770 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
771 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
772 do_notify_parent(tsk, signal);
773 } else if (tsk->ptrace) {
774 do_notify_parent(tsk, SIGCHLD);
777 state = EXIT_ZOMBIE;
778 if (tsk->exit_signal == -1 &&
779 (likely(tsk->ptrace == 0) ||
780 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
781 state = EXIT_DEAD;
782 tsk->exit_state = state;
784 write_unlock_irq(&tasklist_lock);
786 list_for_each_safe(_p, _n, &ptrace_dead) {
787 list_del_init(_p);
788 t = list_entry(_p,struct task_struct,ptrace_list);
789 release_task(t);
792 /* If the process is dead, release it - nobody will wait for it */
793 if (state == EXIT_DEAD)
794 release_task(tsk);
797 fastcall NORET_TYPE void do_exit(long code)
799 struct task_struct *tsk = current;
800 int group_dead;
802 profile_task_exit(tsk);
804 WARN_ON(atomic_read(&tsk->fs_excl));
806 if (unlikely(in_interrupt()))
807 panic("Aiee, killing interrupt handler!");
808 if (unlikely(!tsk->pid))
809 panic("Attempted to kill the idle task!");
810 if (unlikely(tsk->pid == 1))
811 panic("Attempted to kill init!");
813 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
814 current->ptrace_message = code;
815 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
819 * We're taking recursive faults here in do_exit. Safest is to just
820 * leave this task alone and wait for reboot.
822 if (unlikely(tsk->flags & PF_EXITING)) {
823 printk(KERN_ALERT
824 "Fixing recursive fault but reboot is needed!\n");
825 if (tsk->io_context)
826 exit_io_context();
827 set_current_state(TASK_UNINTERRUPTIBLE);
828 schedule();
831 tsk->flags |= PF_EXITING;
834 * Make sure we don't try to process any timer firings
835 * while we are already exiting.
837 tsk->it_virt_expires = cputime_zero;
838 tsk->it_prof_expires = cputime_zero;
839 tsk->it_sched_expires = 0;
841 if (unlikely(in_atomic()))
842 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
843 current->comm, current->pid,
844 preempt_count());
846 acct_update_integrals(tsk);
847 if (tsk->mm) {
848 update_hiwater_rss(tsk->mm);
849 update_hiwater_vm(tsk->mm);
851 group_dead = atomic_dec_and_test(&tsk->signal->live);
852 if (group_dead) {
853 hrtimer_cancel(&tsk->signal->real_timer);
854 exit_itimers(tsk->signal);
855 acct_process(code);
857 if (unlikely(tsk->robust_list))
858 exit_robust_list(tsk);
859 #ifdef CONFIG_COMPAT
860 if (unlikely(tsk->compat_robust_list))
861 compat_exit_robust_list(tsk);
862 #endif
863 exit_mm(tsk);
865 exit_sem(tsk);
866 __exit_files(tsk);
867 __exit_fs(tsk);
868 exit_namespace(tsk);
869 exit_thread();
870 cpuset_exit(tsk);
871 exit_keys(tsk);
873 if (group_dead && tsk->signal->leader)
874 disassociate_ctty(1);
876 module_put(task_thread_info(tsk)->exec_domain->module);
877 if (tsk->binfmt)
878 module_put(tsk->binfmt->module);
880 tsk->exit_code = code;
881 proc_exit_connector(tsk);
882 exit_notify(tsk);
883 #ifdef CONFIG_NUMA
884 mpol_free(tsk->mempolicy);
885 tsk->mempolicy = NULL;
886 #endif
888 * If DEBUG_MUTEXES is on, make sure we are holding no locks:
890 mutex_debug_check_no_locks_held(tsk);
892 if (tsk->io_context)
893 exit_io_context();
895 /* PF_DEAD causes final put_task_struct after we schedule. */
896 preempt_disable();
897 BUG_ON(tsk->flags & PF_DEAD);
898 tsk->flags |= PF_DEAD;
900 schedule();
901 BUG();
902 /* Avoid "noreturn function does return". */
903 for (;;) ;
906 EXPORT_SYMBOL_GPL(do_exit);
908 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
910 if (comp)
911 complete(comp);
913 do_exit(code);
916 EXPORT_SYMBOL(complete_and_exit);
918 asmlinkage long sys_exit(int error_code)
920 do_exit((error_code&0xff)<<8);
923 task_t fastcall *next_thread(const task_t *p)
925 return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
928 EXPORT_SYMBOL(next_thread);
931 * Take down every thread in the group. This is called by fatal signals
932 * as well as by sys_exit_group (below).
934 NORET_TYPE void
935 do_group_exit(int exit_code)
937 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
939 if (current->signal->flags & SIGNAL_GROUP_EXIT)
940 exit_code = current->signal->group_exit_code;
941 else if (!thread_group_empty(current)) {
942 struct signal_struct *const sig = current->signal;
943 struct sighand_struct *const sighand = current->sighand;
944 read_lock(&tasklist_lock);
945 spin_lock_irq(&sighand->siglock);
946 if (sig->flags & SIGNAL_GROUP_EXIT)
947 /* Another thread got here before we took the lock. */
948 exit_code = sig->group_exit_code;
949 else {
950 sig->group_exit_code = exit_code;
951 zap_other_threads(current);
953 spin_unlock_irq(&sighand->siglock);
954 read_unlock(&tasklist_lock);
957 do_exit(exit_code);
958 /* NOTREACHED */
962 * this kills every thread in the thread group. Note that any externally
963 * wait4()-ing process will get the correct exit code - even if this
964 * thread is not the thread group leader.
966 asmlinkage void sys_exit_group(int error_code)
968 do_group_exit((error_code & 0xff) << 8);
971 static int eligible_child(pid_t pid, int options, task_t *p)
973 if (pid > 0) {
974 if (p->pid != pid)
975 return 0;
976 } else if (!pid) {
977 if (process_group(p) != process_group(current))
978 return 0;
979 } else if (pid != -1) {
980 if (process_group(p) != -pid)
981 return 0;
985 * Do not consider detached threads that are
986 * not ptraced:
988 if (p->exit_signal == -1 && !p->ptrace)
989 return 0;
991 /* Wait for all children (clone and not) if __WALL is set;
992 * otherwise, wait for clone children *only* if __WCLONE is
993 * set; otherwise, wait for non-clone children *only*. (Note:
994 * A "clone" child here is one that reports to its parent
995 * using a signal other than SIGCHLD.) */
996 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
997 && !(options & __WALL))
998 return 0;
1000 * Do not consider thread group leaders that are
1001 * in a non-empty thread group:
1003 if (current->tgid != p->tgid && delay_group_leader(p))
1004 return 2;
1006 if (security_task_wait(p))
1007 return 0;
1009 return 1;
1012 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
1013 int why, int status,
1014 struct siginfo __user *infop,
1015 struct rusage __user *rusagep)
1017 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1018 put_task_struct(p);
1019 if (!retval)
1020 retval = put_user(SIGCHLD, &infop->si_signo);
1021 if (!retval)
1022 retval = put_user(0, &infop->si_errno);
1023 if (!retval)
1024 retval = put_user((short)why, &infop->si_code);
1025 if (!retval)
1026 retval = put_user(pid, &infop->si_pid);
1027 if (!retval)
1028 retval = put_user(uid, &infop->si_uid);
1029 if (!retval)
1030 retval = put_user(status, &infop->si_status);
1031 if (!retval)
1032 retval = pid;
1033 return retval;
1037 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1038 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1039 * the lock and this task is uninteresting. If we return nonzero, we have
1040 * released the lock and the system call should return.
1042 static int wait_task_zombie(task_t *p, int noreap,
1043 struct siginfo __user *infop,
1044 int __user *stat_addr, struct rusage __user *ru)
1046 unsigned long state;
1047 int retval;
1048 int status;
1050 if (unlikely(noreap)) {
1051 pid_t pid = p->pid;
1052 uid_t uid = p->uid;
1053 int exit_code = p->exit_code;
1054 int why, status;
1056 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1057 return 0;
1058 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1059 return 0;
1060 get_task_struct(p);
1061 read_unlock(&tasklist_lock);
1062 if ((exit_code & 0x7f) == 0) {
1063 why = CLD_EXITED;
1064 status = exit_code >> 8;
1065 } else {
1066 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1067 status = exit_code & 0x7f;
1069 return wait_noreap_copyout(p, pid, uid, why,
1070 status, infop, ru);
1074 * Try to move the task's state to DEAD
1075 * only one thread is allowed to do this:
1077 state = xchg(&p->exit_state, EXIT_DEAD);
1078 if (state != EXIT_ZOMBIE) {
1079 BUG_ON(state != EXIT_DEAD);
1080 return 0;
1082 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1084 * This can only happen in a race with a ptraced thread
1085 * dying on another processor.
1087 return 0;
1090 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1091 struct signal_struct *psig;
1092 struct signal_struct *sig;
1095 * The resource counters for the group leader are in its
1096 * own task_struct. Those for dead threads in the group
1097 * are in its signal_struct, as are those for the child
1098 * processes it has previously reaped. All these
1099 * accumulate in the parent's signal_struct c* fields.
1101 * We don't bother to take a lock here to protect these
1102 * p->signal fields, because they are only touched by
1103 * __exit_signal, which runs with tasklist_lock
1104 * write-locked anyway, and so is excluded here. We do
1105 * need to protect the access to p->parent->signal fields,
1106 * as other threads in the parent group can be right
1107 * here reaping other children at the same time.
1109 spin_lock_irq(&p->parent->sighand->siglock);
1110 psig = p->parent->signal;
1111 sig = p->signal;
1112 psig->cutime =
1113 cputime_add(psig->cutime,
1114 cputime_add(p->utime,
1115 cputime_add(sig->utime,
1116 sig->cutime)));
1117 psig->cstime =
1118 cputime_add(psig->cstime,
1119 cputime_add(p->stime,
1120 cputime_add(sig->stime,
1121 sig->cstime)));
1122 psig->cmin_flt +=
1123 p->min_flt + sig->min_flt + sig->cmin_flt;
1124 psig->cmaj_flt +=
1125 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 psig->cnvcsw +=
1127 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 psig->cnivcsw +=
1129 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 spin_unlock_irq(&p->parent->sighand->siglock);
1134 * Now we are sure this task is interesting, and no other
1135 * thread can reap it because we set its state to EXIT_DEAD.
1137 read_unlock(&tasklist_lock);
1139 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1140 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1141 ? p->signal->group_exit_code : p->exit_code;
1142 if (!retval && stat_addr)
1143 retval = put_user(status, stat_addr);
1144 if (!retval && infop)
1145 retval = put_user(SIGCHLD, &infop->si_signo);
1146 if (!retval && infop)
1147 retval = put_user(0, &infop->si_errno);
1148 if (!retval && infop) {
1149 int why;
1151 if ((status & 0x7f) == 0) {
1152 why = CLD_EXITED;
1153 status >>= 8;
1154 } else {
1155 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1156 status &= 0x7f;
1158 retval = put_user((short)why, &infop->si_code);
1159 if (!retval)
1160 retval = put_user(status, &infop->si_status);
1162 if (!retval && infop)
1163 retval = put_user(p->pid, &infop->si_pid);
1164 if (!retval && infop)
1165 retval = put_user(p->uid, &infop->si_uid);
1166 if (retval) {
1167 // TODO: is this safe?
1168 p->exit_state = EXIT_ZOMBIE;
1169 return retval;
1171 retval = p->pid;
1172 if (p->real_parent != p->parent) {
1173 write_lock_irq(&tasklist_lock);
1174 /* Double-check with lock held. */
1175 if (p->real_parent != p->parent) {
1176 __ptrace_unlink(p);
1177 // TODO: is this safe?
1178 p->exit_state = EXIT_ZOMBIE;
1180 * If this is not a detached task, notify the parent.
1181 * If it's still not detached after that, don't release
1182 * it now.
1184 if (p->exit_signal != -1) {
1185 do_notify_parent(p, p->exit_signal);
1186 if (p->exit_signal != -1)
1187 p = NULL;
1190 write_unlock_irq(&tasklist_lock);
1192 if (p != NULL)
1193 release_task(p);
1194 BUG_ON(!retval);
1195 return retval;
1199 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1200 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1201 * the lock and this task is uninteresting. If we return nonzero, we have
1202 * released the lock and the system call should return.
1204 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1205 struct siginfo __user *infop,
1206 int __user *stat_addr, struct rusage __user *ru)
1208 int retval, exit_code;
1210 if (!p->exit_code)
1211 return 0;
1212 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1213 p->signal && p->signal->group_stop_count > 0)
1215 * A group stop is in progress and this is the group leader.
1216 * We won't report until all threads have stopped.
1218 return 0;
1221 * Now we are pretty sure this task is interesting.
1222 * Make sure it doesn't get reaped out from under us while we
1223 * give up the lock and then examine it below. We don't want to
1224 * keep holding onto the tasklist_lock while we call getrusage and
1225 * possibly take page faults for user memory.
1227 get_task_struct(p);
1228 read_unlock(&tasklist_lock);
1230 if (unlikely(noreap)) {
1231 pid_t pid = p->pid;
1232 uid_t uid = p->uid;
1233 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1235 exit_code = p->exit_code;
1236 if (unlikely(!exit_code) ||
1237 unlikely(p->state & TASK_TRACED))
1238 goto bail_ref;
1239 return wait_noreap_copyout(p, pid, uid,
1240 why, (exit_code << 8) | 0x7f,
1241 infop, ru);
1244 write_lock_irq(&tasklist_lock);
1247 * This uses xchg to be atomic with the thread resuming and setting
1248 * it. It must also be done with the write lock held to prevent a
1249 * race with the EXIT_ZOMBIE case.
1251 exit_code = xchg(&p->exit_code, 0);
1252 if (unlikely(p->exit_state)) {
1254 * The task resumed and then died. Let the next iteration
1255 * catch it in EXIT_ZOMBIE. Note that exit_code might
1256 * already be zero here if it resumed and did _exit(0).
1257 * The task itself is dead and won't touch exit_code again;
1258 * other processors in this function are locked out.
1260 p->exit_code = exit_code;
1261 exit_code = 0;
1263 if (unlikely(exit_code == 0)) {
1265 * Another thread in this function got to it first, or it
1266 * resumed, or it resumed and then died.
1268 write_unlock_irq(&tasklist_lock);
1269 bail_ref:
1270 put_task_struct(p);
1272 * We are returning to the wait loop without having successfully
1273 * removed the process and having released the lock. We cannot
1274 * continue, since the "p" task pointer is potentially stale.
1276 * Return -EAGAIN, and do_wait() will restart the loop from the
1277 * beginning. Do _not_ re-acquire the lock.
1279 return -EAGAIN;
1282 /* move to end of parent's list to avoid starvation */
1283 remove_parent(p);
1284 add_parent(p, p->parent);
1286 write_unlock_irq(&tasklist_lock);
1288 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1289 if (!retval && stat_addr)
1290 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1291 if (!retval && infop)
1292 retval = put_user(SIGCHLD, &infop->si_signo);
1293 if (!retval && infop)
1294 retval = put_user(0, &infop->si_errno);
1295 if (!retval && infop)
1296 retval = put_user((short)((p->ptrace & PT_PTRACED)
1297 ? CLD_TRAPPED : CLD_STOPPED),
1298 &infop->si_code);
1299 if (!retval && infop)
1300 retval = put_user(exit_code, &infop->si_status);
1301 if (!retval && infop)
1302 retval = put_user(p->pid, &infop->si_pid);
1303 if (!retval && infop)
1304 retval = put_user(p->uid, &infop->si_uid);
1305 if (!retval)
1306 retval = p->pid;
1307 put_task_struct(p);
1309 BUG_ON(!retval);
1310 return retval;
1314 * Handle do_wait work for one task in a live, non-stopped state.
1315 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1316 * the lock and this task is uninteresting. If we return nonzero, we have
1317 * released the lock and the system call should return.
1319 static int wait_task_continued(task_t *p, int noreap,
1320 struct siginfo __user *infop,
1321 int __user *stat_addr, struct rusage __user *ru)
1323 int retval;
1324 pid_t pid;
1325 uid_t uid;
1327 if (unlikely(!p->signal))
1328 return 0;
1330 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1331 return 0;
1333 spin_lock_irq(&p->sighand->siglock);
1334 /* Re-check with the lock held. */
1335 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1336 spin_unlock_irq(&p->sighand->siglock);
1337 return 0;
1339 if (!noreap)
1340 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1341 spin_unlock_irq(&p->sighand->siglock);
1343 pid = p->pid;
1344 uid = p->uid;
1345 get_task_struct(p);
1346 read_unlock(&tasklist_lock);
1348 if (!infop) {
1349 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1350 put_task_struct(p);
1351 if (!retval && stat_addr)
1352 retval = put_user(0xffff, stat_addr);
1353 if (!retval)
1354 retval = p->pid;
1355 } else {
1356 retval = wait_noreap_copyout(p, pid, uid,
1357 CLD_CONTINUED, SIGCONT,
1358 infop, ru);
1359 BUG_ON(retval == 0);
1362 return retval;
1366 static inline int my_ptrace_child(struct task_struct *p)
1368 if (!(p->ptrace & PT_PTRACED))
1369 return 0;
1370 if (!(p->ptrace & PT_ATTACHED))
1371 return 1;
1373 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1374 * we are the attacher. If we are the real parent, this is a race
1375 * inside ptrace_attach. It is waiting for the tasklist_lock,
1376 * which we have to switch the parent links, but has already set
1377 * the flags in p->ptrace.
1379 return (p->parent != p->real_parent);
1382 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1383 int __user *stat_addr, struct rusage __user *ru)
1385 DECLARE_WAITQUEUE(wait, current);
1386 struct task_struct *tsk;
1387 int flag, retval;
1389 add_wait_queue(&current->signal->wait_chldexit,&wait);
1390 repeat:
1392 * We will set this flag if we see any child that might later
1393 * match our criteria, even if we are not able to reap it yet.
1395 flag = 0;
1396 current->state = TASK_INTERRUPTIBLE;
1397 read_lock(&tasklist_lock);
1398 tsk = current;
1399 do {
1400 struct task_struct *p;
1401 struct list_head *_p;
1402 int ret;
1404 list_for_each(_p,&tsk->children) {
1405 p = list_entry(_p,struct task_struct,sibling);
1407 ret = eligible_child(pid, options, p);
1408 if (!ret)
1409 continue;
1411 switch (p->state) {
1412 case TASK_TRACED:
1414 * When we hit the race with PTRACE_ATTACH,
1415 * we will not report this child. But the
1416 * race means it has not yet been moved to
1417 * our ptrace_children list, so we need to
1418 * set the flag here to avoid a spurious ECHILD
1419 * when the race happens with the only child.
1421 flag = 1;
1422 if (!my_ptrace_child(p))
1423 continue;
1424 /*FALLTHROUGH*/
1425 case TASK_STOPPED:
1427 * It's stopped now, so it might later
1428 * continue, exit, or stop again.
1430 flag = 1;
1431 if (!(options & WUNTRACED) &&
1432 !my_ptrace_child(p))
1433 continue;
1434 retval = wait_task_stopped(p, ret == 2,
1435 (options & WNOWAIT),
1436 infop,
1437 stat_addr, ru);
1438 if (retval == -EAGAIN)
1439 goto repeat;
1440 if (retval != 0) /* He released the lock. */
1441 goto end;
1442 break;
1443 default:
1444 // case EXIT_DEAD:
1445 if (p->exit_state == EXIT_DEAD)
1446 continue;
1447 // case EXIT_ZOMBIE:
1448 if (p->exit_state == EXIT_ZOMBIE) {
1450 * Eligible but we cannot release
1451 * it yet:
1453 if (ret == 2)
1454 goto check_continued;
1455 if (!likely(options & WEXITED))
1456 continue;
1457 retval = wait_task_zombie(
1458 p, (options & WNOWAIT),
1459 infop, stat_addr, ru);
1460 /* He released the lock. */
1461 if (retval != 0)
1462 goto end;
1463 break;
1465 check_continued:
1467 * It's running now, so it might later
1468 * exit, stop, or stop and then continue.
1470 flag = 1;
1471 if (!unlikely(options & WCONTINUED))
1472 continue;
1473 retval = wait_task_continued(
1474 p, (options & WNOWAIT),
1475 infop, stat_addr, ru);
1476 if (retval != 0) /* He released the lock. */
1477 goto end;
1478 break;
1481 if (!flag) {
1482 list_for_each(_p, &tsk->ptrace_children) {
1483 p = list_entry(_p, struct task_struct,
1484 ptrace_list);
1485 if (!eligible_child(pid, options, p))
1486 continue;
1487 flag = 1;
1488 break;
1491 if (options & __WNOTHREAD)
1492 break;
1493 tsk = next_thread(tsk);
1494 if (tsk->signal != current->signal)
1495 BUG();
1496 } while (tsk != current);
1498 read_unlock(&tasklist_lock);
1499 if (flag) {
1500 retval = 0;
1501 if (options & WNOHANG)
1502 goto end;
1503 retval = -ERESTARTSYS;
1504 if (signal_pending(current))
1505 goto end;
1506 schedule();
1507 goto repeat;
1509 retval = -ECHILD;
1510 end:
1511 current->state = TASK_RUNNING;
1512 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1513 if (infop) {
1514 if (retval > 0)
1515 retval = 0;
1516 else {
1518 * For a WNOHANG return, clear out all the fields
1519 * we would set so the user can easily tell the
1520 * difference.
1522 if (!retval)
1523 retval = put_user(0, &infop->si_signo);
1524 if (!retval)
1525 retval = put_user(0, &infop->si_errno);
1526 if (!retval)
1527 retval = put_user(0, &infop->si_code);
1528 if (!retval)
1529 retval = put_user(0, &infop->si_pid);
1530 if (!retval)
1531 retval = put_user(0, &infop->si_uid);
1532 if (!retval)
1533 retval = put_user(0, &infop->si_status);
1536 return retval;
1539 asmlinkage long sys_waitid(int which, pid_t pid,
1540 struct siginfo __user *infop, int options,
1541 struct rusage __user *ru)
1543 long ret;
1545 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1546 return -EINVAL;
1547 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1548 return -EINVAL;
1550 switch (which) {
1551 case P_ALL:
1552 pid = -1;
1553 break;
1554 case P_PID:
1555 if (pid <= 0)
1556 return -EINVAL;
1557 break;
1558 case P_PGID:
1559 if (pid <= 0)
1560 return -EINVAL;
1561 pid = -pid;
1562 break;
1563 default:
1564 return -EINVAL;
1567 ret = do_wait(pid, options, infop, NULL, ru);
1569 /* avoid REGPARM breakage on x86: */
1570 prevent_tail_call(ret);
1571 return ret;
1574 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1575 int options, struct rusage __user *ru)
1577 long ret;
1579 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1580 __WNOTHREAD|__WCLONE|__WALL))
1581 return -EINVAL;
1582 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1584 /* avoid REGPARM breakage on x86: */
1585 prevent_tail_call(ret);
1586 return ret;
1589 #ifdef __ARCH_WANT_SYS_WAITPID
1592 * sys_waitpid() remains for compatibility. waitpid() should be
1593 * implemented by calling sys_wait4() from libc.a.
1595 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1597 return sys_wait4(pid, stat_addr, options, NULL);
1600 #endif