KVM: X86: Don't report L2 emulation failures to user-space
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blob8b4d5fc080125071e53325f658efeaabd159f44d
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 #define KVM_NR_SHARED_MSRS 16
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
157 u64 __read_mostly host_xcr0;
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
166 static void kvm_on_user_return(struct user_return_notifier *urn)
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
184 static void shared_msr_update(unsigned slot, u32 msr)
186 struct kvm_shared_msrs *smsr;
187 u64 value;
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211 static void kvm_shared_msr_cpu_online(void)
213 unsigned i;
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235 static void drop_user_return_notifiers(void *ignore)
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
266 static int exception_class(int vector)
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
280 return EXCPT_BENIGN;
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
287 u32 prev_nr;
288 int class1, class2;
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
339 ++vcpu->stat.pf_guest;
340 vcpu->arch.cr2 = fault->address;
341 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
344 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
347 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
348 else
349 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
352 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
354 kvm_make_request(KVM_REQ_EVENT, vcpu);
355 vcpu->arch.nmi_pending = 1;
357 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
359 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
361 kvm_multiple_exception(vcpu, nr, true, error_code, false);
363 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
365 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
367 kvm_multiple_exception(vcpu, nr, true, error_code, true);
369 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
372 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
373 * a #GP and return false.
375 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
377 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
378 return true;
379 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
380 return false;
382 EXPORT_SYMBOL_GPL(kvm_require_cpl);
385 * This function will be used to read from the physical memory of the currently
386 * running guest. The difference to kvm_read_guest_page is that this function
387 * can read from guest physical or from the guest's guest physical memory.
389 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
390 gfn_t ngfn, void *data, int offset, int len,
391 u32 access)
393 gfn_t real_gfn;
394 gpa_t ngpa;
396 ngpa = gfn_to_gpa(ngfn);
397 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
398 if (real_gfn == UNMAPPED_GVA)
399 return -EFAULT;
401 real_gfn = gpa_to_gfn(real_gfn);
403 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
405 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
407 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
408 void *data, int offset, int len, u32 access)
410 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
411 data, offset, len, access);
415 * Load the pae pdptrs. Return true is they are all valid.
417 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
419 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
420 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
421 int i;
422 int ret;
423 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
425 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
426 offset * sizeof(u64), sizeof(pdpte),
427 PFERR_USER_MASK|PFERR_WRITE_MASK);
428 if (ret < 0) {
429 ret = 0;
430 goto out;
432 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
433 if (is_present_gpte(pdpte[i]) &&
434 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
435 ret = 0;
436 goto out;
439 ret = 1;
441 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
442 __set_bit(VCPU_EXREG_PDPTR,
443 (unsigned long *)&vcpu->arch.regs_avail);
444 __set_bit(VCPU_EXREG_PDPTR,
445 (unsigned long *)&vcpu->arch.regs_dirty);
446 out:
448 return ret;
450 EXPORT_SYMBOL_GPL(load_pdptrs);
452 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
454 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
455 bool changed = true;
456 int offset;
457 gfn_t gfn;
458 int r;
460 if (is_long_mode(vcpu) || !is_pae(vcpu))
461 return false;
463 if (!test_bit(VCPU_EXREG_PDPTR,
464 (unsigned long *)&vcpu->arch.regs_avail))
465 return true;
467 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
468 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
469 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
470 PFERR_USER_MASK | PFERR_WRITE_MASK);
471 if (r < 0)
472 goto out;
473 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
474 out:
476 return changed;
479 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
481 unsigned long old_cr0 = kvm_read_cr0(vcpu);
482 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
483 X86_CR0_CD | X86_CR0_NW;
485 cr0 |= X86_CR0_ET;
487 #ifdef CONFIG_X86_64
488 if (cr0 & 0xffffffff00000000UL)
489 return 1;
490 #endif
492 cr0 &= ~CR0_RESERVED_BITS;
494 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
495 return 1;
497 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
498 return 1;
500 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
501 #ifdef CONFIG_X86_64
502 if ((vcpu->arch.efer & EFER_LME)) {
503 int cs_db, cs_l;
505 if (!is_pae(vcpu))
506 return 1;
507 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
508 if (cs_l)
509 return 1;
510 } else
511 #endif
512 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
513 vcpu->arch.cr3))
514 return 1;
517 kvm_x86_ops->set_cr0(vcpu, cr0);
519 if ((cr0 ^ old_cr0) & X86_CR0_PG)
520 kvm_clear_async_pf_completion_queue(vcpu);
522 if ((cr0 ^ old_cr0) & update_bits)
523 kvm_mmu_reset_context(vcpu);
524 return 0;
526 EXPORT_SYMBOL_GPL(kvm_set_cr0);
528 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
530 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
532 EXPORT_SYMBOL_GPL(kvm_lmsw);
534 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
536 u64 xcr0;
538 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
539 if (index != XCR_XFEATURE_ENABLED_MASK)
540 return 1;
541 xcr0 = xcr;
542 if (kvm_x86_ops->get_cpl(vcpu) != 0)
543 return 1;
544 if (!(xcr0 & XSTATE_FP))
545 return 1;
546 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
547 return 1;
548 if (xcr0 & ~host_xcr0)
549 return 1;
550 vcpu->arch.xcr0 = xcr0;
551 vcpu->guest_xcr0_loaded = 0;
552 return 0;
555 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
557 if (__kvm_set_xcr(vcpu, index, xcr)) {
558 kvm_inject_gp(vcpu, 0);
559 return 1;
561 return 0;
563 EXPORT_SYMBOL_GPL(kvm_set_xcr);
565 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
567 struct kvm_cpuid_entry2 *best;
569 best = kvm_find_cpuid_entry(vcpu, 1, 0);
570 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
573 static void update_cpuid(struct kvm_vcpu *vcpu)
575 struct kvm_cpuid_entry2 *best;
577 best = kvm_find_cpuid_entry(vcpu, 1, 0);
578 if (!best)
579 return;
581 /* Update OSXSAVE bit */
582 if (cpu_has_xsave && best->function == 0x1) {
583 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
584 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
585 best->ecx |= bit(X86_FEATURE_OSXSAVE);
589 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
591 unsigned long old_cr4 = kvm_read_cr4(vcpu);
592 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
594 if (cr4 & CR4_RESERVED_BITS)
595 return 1;
597 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
598 return 1;
600 if (is_long_mode(vcpu)) {
601 if (!(cr4 & X86_CR4_PAE))
602 return 1;
603 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
604 && ((cr4 ^ old_cr4) & pdptr_bits)
605 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
606 return 1;
608 if (cr4 & X86_CR4_VMXE)
609 return 1;
611 kvm_x86_ops->set_cr4(vcpu, cr4);
613 if ((cr4 ^ old_cr4) & pdptr_bits)
614 kvm_mmu_reset_context(vcpu);
616 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
617 update_cpuid(vcpu);
619 return 0;
621 EXPORT_SYMBOL_GPL(kvm_set_cr4);
623 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
625 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
626 kvm_mmu_sync_roots(vcpu);
627 kvm_mmu_flush_tlb(vcpu);
628 return 0;
631 if (is_long_mode(vcpu)) {
632 if (cr3 & CR3_L_MODE_RESERVED_BITS)
633 return 1;
634 } else {
635 if (is_pae(vcpu)) {
636 if (cr3 & CR3_PAE_RESERVED_BITS)
637 return 1;
638 if (is_paging(vcpu) &&
639 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
640 return 1;
643 * We don't check reserved bits in nonpae mode, because
644 * this isn't enforced, and VMware depends on this.
649 * Does the new cr3 value map to physical memory? (Note, we
650 * catch an invalid cr3 even in real-mode, because it would
651 * cause trouble later on when we turn on paging anyway.)
653 * A real CPU would silently accept an invalid cr3 and would
654 * attempt to use it - with largely undefined (and often hard
655 * to debug) behavior on the guest side.
657 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
658 return 1;
659 vcpu->arch.cr3 = cr3;
660 vcpu->arch.mmu.new_cr3(vcpu);
661 return 0;
663 EXPORT_SYMBOL_GPL(kvm_set_cr3);
665 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
667 if (cr8 & CR8_RESERVED_BITS)
668 return 1;
669 if (irqchip_in_kernel(vcpu->kvm))
670 kvm_lapic_set_tpr(vcpu, cr8);
671 else
672 vcpu->arch.cr8 = cr8;
673 return 0;
676 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
678 if (__kvm_set_cr8(vcpu, cr8))
679 kvm_inject_gp(vcpu, 0);
681 EXPORT_SYMBOL_GPL(kvm_set_cr8);
683 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
685 if (irqchip_in_kernel(vcpu->kvm))
686 return kvm_lapic_get_cr8(vcpu);
687 else
688 return vcpu->arch.cr8;
690 EXPORT_SYMBOL_GPL(kvm_get_cr8);
692 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
694 switch (dr) {
695 case 0 ... 3:
696 vcpu->arch.db[dr] = val;
697 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
698 vcpu->arch.eff_db[dr] = val;
699 break;
700 case 4:
701 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702 return 1; /* #UD */
703 /* fall through */
704 case 6:
705 if (val & 0xffffffff00000000ULL)
706 return -1; /* #GP */
707 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
708 break;
709 case 5:
710 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711 return 1; /* #UD */
712 /* fall through */
713 default: /* 7 */
714 if (val & 0xffffffff00000000ULL)
715 return -1; /* #GP */
716 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
717 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
718 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
719 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
721 break;
724 return 0;
727 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
729 int res;
731 res = __kvm_set_dr(vcpu, dr, val);
732 if (res > 0)
733 kvm_queue_exception(vcpu, UD_VECTOR);
734 else if (res < 0)
735 kvm_inject_gp(vcpu, 0);
737 return res;
739 EXPORT_SYMBOL_GPL(kvm_set_dr);
741 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
743 switch (dr) {
744 case 0 ... 3:
745 *val = vcpu->arch.db[dr];
746 break;
747 case 4:
748 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
749 return 1;
750 /* fall through */
751 case 6:
752 *val = vcpu->arch.dr6;
753 break;
754 case 5:
755 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
756 return 1;
757 /* fall through */
758 default: /* 7 */
759 *val = vcpu->arch.dr7;
760 break;
763 return 0;
766 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
768 if (_kvm_get_dr(vcpu, dr, val)) {
769 kvm_queue_exception(vcpu, UD_VECTOR);
770 return 1;
772 return 0;
774 EXPORT_SYMBOL_GPL(kvm_get_dr);
777 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
778 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
780 * This list is modified at module load time to reflect the
781 * capabilities of the host cpu. This capabilities test skips MSRs that are
782 * kvm-specific. Those are put in the beginning of the list.
785 #define KVM_SAVE_MSRS_BEGIN 8
786 static u32 msrs_to_save[] = {
787 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
788 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
789 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
790 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
791 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
792 MSR_STAR,
793 #ifdef CONFIG_X86_64
794 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
795 #endif
796 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
799 static unsigned num_msrs_to_save;
801 static u32 emulated_msrs[] = {
802 MSR_IA32_MISC_ENABLE,
803 MSR_IA32_MCG_STATUS,
804 MSR_IA32_MCG_CTL,
807 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
809 u64 old_efer = vcpu->arch.efer;
811 if (efer & efer_reserved_bits)
812 return 1;
814 if (is_paging(vcpu)
815 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
816 return 1;
818 if (efer & EFER_FFXSR) {
819 struct kvm_cpuid_entry2 *feat;
821 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
822 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
823 return 1;
826 if (efer & EFER_SVME) {
827 struct kvm_cpuid_entry2 *feat;
829 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
830 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
831 return 1;
834 efer &= ~EFER_LMA;
835 efer |= vcpu->arch.efer & EFER_LMA;
837 kvm_x86_ops->set_efer(vcpu, efer);
839 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
841 /* Update reserved bits */
842 if ((efer ^ old_efer) & EFER_NX)
843 kvm_mmu_reset_context(vcpu);
845 return 0;
848 void kvm_enable_efer_bits(u64 mask)
850 efer_reserved_bits &= ~mask;
852 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
856 * Writes msr value into into the appropriate "register".
857 * Returns 0 on success, non-0 otherwise.
858 * Assumes vcpu_load() was already called.
860 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
862 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
866 * Adapt set_msr() to msr_io()'s calling convention
868 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
870 return kvm_set_msr(vcpu, index, *data);
873 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
875 int version;
876 int r;
877 struct pvclock_wall_clock wc;
878 struct timespec boot;
880 if (!wall_clock)
881 return;
883 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
884 if (r)
885 return;
887 if (version & 1)
888 ++version; /* first time write, random junk */
890 ++version;
892 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
895 * The guest calculates current wall clock time by adding
896 * system time (updated by kvm_guest_time_update below) to the
897 * wall clock specified here. guest system time equals host
898 * system time for us, thus we must fill in host boot time here.
900 getboottime(&boot);
902 wc.sec = boot.tv_sec;
903 wc.nsec = boot.tv_nsec;
904 wc.version = version;
906 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
908 version++;
909 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
912 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
914 uint32_t quotient, remainder;
916 /* Don't try to replace with do_div(), this one calculates
917 * "(dividend << 32) / divisor" */
918 __asm__ ( "divl %4"
919 : "=a" (quotient), "=d" (remainder)
920 : "0" (0), "1" (dividend), "r" (divisor) );
921 return quotient;
924 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
925 s8 *pshift, u32 *pmultiplier)
927 uint64_t scaled64;
928 int32_t shift = 0;
929 uint64_t tps64;
930 uint32_t tps32;
932 tps64 = base_khz * 1000LL;
933 scaled64 = scaled_khz * 1000LL;
934 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
935 tps64 >>= 1;
936 shift--;
939 tps32 = (uint32_t)tps64;
940 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
941 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
942 scaled64 >>= 1;
943 else
944 tps32 <<= 1;
945 shift++;
948 *pshift = shift;
949 *pmultiplier = div_frac(scaled64, tps32);
951 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
952 __func__, base_khz, scaled_khz, shift, *pmultiplier);
955 static inline u64 get_kernel_ns(void)
957 struct timespec ts;
959 WARN_ON(preemptible());
960 ktime_get_ts(&ts);
961 monotonic_to_bootbased(&ts);
962 return timespec_to_ns(&ts);
965 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
966 unsigned long max_tsc_khz;
968 static inline int kvm_tsc_changes_freq(void)
970 int cpu = get_cpu();
971 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
972 cpufreq_quick_get(cpu) != 0;
973 put_cpu();
974 return ret;
977 static inline u64 nsec_to_cycles(u64 nsec)
979 u64 ret;
981 WARN_ON(preemptible());
982 if (kvm_tsc_changes_freq())
983 printk_once(KERN_WARNING
984 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
985 ret = nsec * __get_cpu_var(cpu_tsc_khz);
986 do_div(ret, USEC_PER_SEC);
987 return ret;
990 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
992 /* Compute a scale to convert nanoseconds in TSC cycles */
993 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
994 &kvm->arch.virtual_tsc_shift,
995 &kvm->arch.virtual_tsc_mult);
996 kvm->arch.virtual_tsc_khz = this_tsc_khz;
999 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1001 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1002 vcpu->kvm->arch.virtual_tsc_mult,
1003 vcpu->kvm->arch.virtual_tsc_shift);
1004 tsc += vcpu->arch.last_tsc_write;
1005 return tsc;
1008 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1010 struct kvm *kvm = vcpu->kvm;
1011 u64 offset, ns, elapsed;
1012 unsigned long flags;
1013 s64 sdiff;
1015 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1016 offset = data - native_read_tsc();
1017 ns = get_kernel_ns();
1018 elapsed = ns - kvm->arch.last_tsc_nsec;
1019 sdiff = data - kvm->arch.last_tsc_write;
1020 if (sdiff < 0)
1021 sdiff = -sdiff;
1024 * Special case: close write to TSC within 5 seconds of
1025 * another CPU is interpreted as an attempt to synchronize
1026 * The 5 seconds is to accomodate host load / swapping as
1027 * well as any reset of TSC during the boot process.
1029 * In that case, for a reliable TSC, we can match TSC offsets,
1030 * or make a best guest using elapsed value.
1032 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1033 elapsed < 5ULL * NSEC_PER_SEC) {
1034 if (!check_tsc_unstable()) {
1035 offset = kvm->arch.last_tsc_offset;
1036 pr_debug("kvm: matched tsc offset for %llu\n", data);
1037 } else {
1038 u64 delta = nsec_to_cycles(elapsed);
1039 offset += delta;
1040 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1042 ns = kvm->arch.last_tsc_nsec;
1044 kvm->arch.last_tsc_nsec = ns;
1045 kvm->arch.last_tsc_write = data;
1046 kvm->arch.last_tsc_offset = offset;
1047 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1048 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1050 /* Reset of TSC must disable overshoot protection below */
1051 vcpu->arch.hv_clock.tsc_timestamp = 0;
1052 vcpu->arch.last_tsc_write = data;
1053 vcpu->arch.last_tsc_nsec = ns;
1055 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1057 static int kvm_guest_time_update(struct kvm_vcpu *v)
1059 unsigned long flags;
1060 struct kvm_vcpu_arch *vcpu = &v->arch;
1061 void *shared_kaddr;
1062 unsigned long this_tsc_khz;
1063 s64 kernel_ns, max_kernel_ns;
1064 u64 tsc_timestamp;
1066 /* Keep irq disabled to prevent changes to the clock */
1067 local_irq_save(flags);
1068 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1069 kernel_ns = get_kernel_ns();
1070 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1072 if (unlikely(this_tsc_khz == 0)) {
1073 local_irq_restore(flags);
1074 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1075 return 1;
1079 * We may have to catch up the TSC to match elapsed wall clock
1080 * time for two reasons, even if kvmclock is used.
1081 * 1) CPU could have been running below the maximum TSC rate
1082 * 2) Broken TSC compensation resets the base at each VCPU
1083 * entry to avoid unknown leaps of TSC even when running
1084 * again on the same CPU. This may cause apparent elapsed
1085 * time to disappear, and the guest to stand still or run
1086 * very slowly.
1088 if (vcpu->tsc_catchup) {
1089 u64 tsc = compute_guest_tsc(v, kernel_ns);
1090 if (tsc > tsc_timestamp) {
1091 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1092 tsc_timestamp = tsc;
1096 local_irq_restore(flags);
1098 if (!vcpu->time_page)
1099 return 0;
1102 * Time as measured by the TSC may go backwards when resetting the base
1103 * tsc_timestamp. The reason for this is that the TSC resolution is
1104 * higher than the resolution of the other clock scales. Thus, many
1105 * possible measurments of the TSC correspond to one measurement of any
1106 * other clock, and so a spread of values is possible. This is not a
1107 * problem for the computation of the nanosecond clock; with TSC rates
1108 * around 1GHZ, there can only be a few cycles which correspond to one
1109 * nanosecond value, and any path through this code will inevitably
1110 * take longer than that. However, with the kernel_ns value itself,
1111 * the precision may be much lower, down to HZ granularity. If the
1112 * first sampling of TSC against kernel_ns ends in the low part of the
1113 * range, and the second in the high end of the range, we can get:
1115 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1117 * As the sampling errors potentially range in the thousands of cycles,
1118 * it is possible such a time value has already been observed by the
1119 * guest. To protect against this, we must compute the system time as
1120 * observed by the guest and ensure the new system time is greater.
1122 max_kernel_ns = 0;
1123 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1124 max_kernel_ns = vcpu->last_guest_tsc -
1125 vcpu->hv_clock.tsc_timestamp;
1126 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1127 vcpu->hv_clock.tsc_to_system_mul,
1128 vcpu->hv_clock.tsc_shift);
1129 max_kernel_ns += vcpu->last_kernel_ns;
1132 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1133 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1134 &vcpu->hv_clock.tsc_shift,
1135 &vcpu->hv_clock.tsc_to_system_mul);
1136 vcpu->hw_tsc_khz = this_tsc_khz;
1139 if (max_kernel_ns > kernel_ns)
1140 kernel_ns = max_kernel_ns;
1142 /* With all the info we got, fill in the values */
1143 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1144 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1145 vcpu->last_kernel_ns = kernel_ns;
1146 vcpu->last_guest_tsc = tsc_timestamp;
1147 vcpu->hv_clock.flags = 0;
1150 * The interface expects us to write an even number signaling that the
1151 * update is finished. Since the guest won't see the intermediate
1152 * state, we just increase by 2 at the end.
1154 vcpu->hv_clock.version += 2;
1156 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1158 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1159 sizeof(vcpu->hv_clock));
1161 kunmap_atomic(shared_kaddr, KM_USER0);
1163 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1164 return 0;
1167 static bool msr_mtrr_valid(unsigned msr)
1169 switch (msr) {
1170 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1171 case MSR_MTRRfix64K_00000:
1172 case MSR_MTRRfix16K_80000:
1173 case MSR_MTRRfix16K_A0000:
1174 case MSR_MTRRfix4K_C0000:
1175 case MSR_MTRRfix4K_C8000:
1176 case MSR_MTRRfix4K_D0000:
1177 case MSR_MTRRfix4K_D8000:
1178 case MSR_MTRRfix4K_E0000:
1179 case MSR_MTRRfix4K_E8000:
1180 case MSR_MTRRfix4K_F0000:
1181 case MSR_MTRRfix4K_F8000:
1182 case MSR_MTRRdefType:
1183 case MSR_IA32_CR_PAT:
1184 return true;
1185 case 0x2f8:
1186 return true;
1188 return false;
1191 static bool valid_pat_type(unsigned t)
1193 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1196 static bool valid_mtrr_type(unsigned t)
1198 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1201 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1203 int i;
1205 if (!msr_mtrr_valid(msr))
1206 return false;
1208 if (msr == MSR_IA32_CR_PAT) {
1209 for (i = 0; i < 8; i++)
1210 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1211 return false;
1212 return true;
1213 } else if (msr == MSR_MTRRdefType) {
1214 if (data & ~0xcff)
1215 return false;
1216 return valid_mtrr_type(data & 0xff);
1217 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1218 for (i = 0; i < 8 ; i++)
1219 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1220 return false;
1221 return true;
1224 /* variable MTRRs */
1225 return valid_mtrr_type(data & 0xff);
1228 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1230 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1232 if (!mtrr_valid(vcpu, msr, data))
1233 return 1;
1235 if (msr == MSR_MTRRdefType) {
1236 vcpu->arch.mtrr_state.def_type = data;
1237 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1238 } else if (msr == MSR_MTRRfix64K_00000)
1239 p[0] = data;
1240 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1241 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1242 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1243 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1244 else if (msr == MSR_IA32_CR_PAT)
1245 vcpu->arch.pat = data;
1246 else { /* Variable MTRRs */
1247 int idx, is_mtrr_mask;
1248 u64 *pt;
1250 idx = (msr - 0x200) / 2;
1251 is_mtrr_mask = msr - 0x200 - 2 * idx;
1252 if (!is_mtrr_mask)
1253 pt =
1254 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1255 else
1256 pt =
1257 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1258 *pt = data;
1261 kvm_mmu_reset_context(vcpu);
1262 return 0;
1265 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1267 u64 mcg_cap = vcpu->arch.mcg_cap;
1268 unsigned bank_num = mcg_cap & 0xff;
1270 switch (msr) {
1271 case MSR_IA32_MCG_STATUS:
1272 vcpu->arch.mcg_status = data;
1273 break;
1274 case MSR_IA32_MCG_CTL:
1275 if (!(mcg_cap & MCG_CTL_P))
1276 return 1;
1277 if (data != 0 && data != ~(u64)0)
1278 return -1;
1279 vcpu->arch.mcg_ctl = data;
1280 break;
1281 default:
1282 if (msr >= MSR_IA32_MC0_CTL &&
1283 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1284 u32 offset = msr - MSR_IA32_MC0_CTL;
1285 /* only 0 or all 1s can be written to IA32_MCi_CTL
1286 * some Linux kernels though clear bit 10 in bank 4 to
1287 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1288 * this to avoid an uncatched #GP in the guest
1290 if ((offset & 0x3) == 0 &&
1291 data != 0 && (data | (1 << 10)) != ~(u64)0)
1292 return -1;
1293 vcpu->arch.mce_banks[offset] = data;
1294 break;
1296 return 1;
1298 return 0;
1301 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1303 struct kvm *kvm = vcpu->kvm;
1304 int lm = is_long_mode(vcpu);
1305 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1306 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1307 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1308 : kvm->arch.xen_hvm_config.blob_size_32;
1309 u32 page_num = data & ~PAGE_MASK;
1310 u64 page_addr = data & PAGE_MASK;
1311 u8 *page;
1312 int r;
1314 r = -E2BIG;
1315 if (page_num >= blob_size)
1316 goto out;
1317 r = -ENOMEM;
1318 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1319 if (!page)
1320 goto out;
1321 r = -EFAULT;
1322 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1323 goto out_free;
1324 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1325 goto out_free;
1326 r = 0;
1327 out_free:
1328 kfree(page);
1329 out:
1330 return r;
1333 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1335 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1338 static bool kvm_hv_msr_partition_wide(u32 msr)
1340 bool r = false;
1341 switch (msr) {
1342 case HV_X64_MSR_GUEST_OS_ID:
1343 case HV_X64_MSR_HYPERCALL:
1344 r = true;
1345 break;
1348 return r;
1351 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1353 struct kvm *kvm = vcpu->kvm;
1355 switch (msr) {
1356 case HV_X64_MSR_GUEST_OS_ID:
1357 kvm->arch.hv_guest_os_id = data;
1358 /* setting guest os id to zero disables hypercall page */
1359 if (!kvm->arch.hv_guest_os_id)
1360 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1361 break;
1362 case HV_X64_MSR_HYPERCALL: {
1363 u64 gfn;
1364 unsigned long addr;
1365 u8 instructions[4];
1367 /* if guest os id is not set hypercall should remain disabled */
1368 if (!kvm->arch.hv_guest_os_id)
1369 break;
1370 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1371 kvm->arch.hv_hypercall = data;
1372 break;
1374 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1375 addr = gfn_to_hva(kvm, gfn);
1376 if (kvm_is_error_hva(addr))
1377 return 1;
1378 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1379 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1380 if (copy_to_user((void __user *)addr, instructions, 4))
1381 return 1;
1382 kvm->arch.hv_hypercall = data;
1383 break;
1385 default:
1386 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1387 "data 0x%llx\n", msr, data);
1388 return 1;
1390 return 0;
1393 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1395 switch (msr) {
1396 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1397 unsigned long addr;
1399 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1400 vcpu->arch.hv_vapic = data;
1401 break;
1403 addr = gfn_to_hva(vcpu->kvm, data >>
1404 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1405 if (kvm_is_error_hva(addr))
1406 return 1;
1407 if (clear_user((void __user *)addr, PAGE_SIZE))
1408 return 1;
1409 vcpu->arch.hv_vapic = data;
1410 break;
1412 case HV_X64_MSR_EOI:
1413 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1414 case HV_X64_MSR_ICR:
1415 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1416 case HV_X64_MSR_TPR:
1417 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1418 default:
1419 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1420 "data 0x%llx\n", msr, data);
1421 return 1;
1424 return 0;
1427 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1429 gpa_t gpa = data & ~0x3f;
1431 /* Bits 2:5 are resrved, Should be zero */
1432 if (data & 0x3c)
1433 return 1;
1435 vcpu->arch.apf.msr_val = data;
1437 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1438 kvm_clear_async_pf_completion_queue(vcpu);
1439 kvm_async_pf_hash_reset(vcpu);
1440 return 0;
1443 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1444 return 1;
1446 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1447 kvm_async_pf_wakeup_all(vcpu);
1448 return 0;
1451 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1453 switch (msr) {
1454 case MSR_EFER:
1455 return set_efer(vcpu, data);
1456 case MSR_K7_HWCR:
1457 data &= ~(u64)0x40; /* ignore flush filter disable */
1458 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1459 if (data != 0) {
1460 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1461 data);
1462 return 1;
1464 break;
1465 case MSR_FAM10H_MMIO_CONF_BASE:
1466 if (data != 0) {
1467 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1468 "0x%llx\n", data);
1469 return 1;
1471 break;
1472 case MSR_AMD64_NB_CFG:
1473 break;
1474 case MSR_IA32_DEBUGCTLMSR:
1475 if (!data) {
1476 /* We support the non-activated case already */
1477 break;
1478 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1479 /* Values other than LBR and BTF are vendor-specific,
1480 thus reserved and should throw a #GP */
1481 return 1;
1483 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1484 __func__, data);
1485 break;
1486 case MSR_IA32_UCODE_REV:
1487 case MSR_IA32_UCODE_WRITE:
1488 case MSR_VM_HSAVE_PA:
1489 case MSR_AMD64_PATCH_LOADER:
1490 break;
1491 case 0x200 ... 0x2ff:
1492 return set_msr_mtrr(vcpu, msr, data);
1493 case MSR_IA32_APICBASE:
1494 kvm_set_apic_base(vcpu, data);
1495 break;
1496 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1497 return kvm_x2apic_msr_write(vcpu, msr, data);
1498 case MSR_IA32_MISC_ENABLE:
1499 vcpu->arch.ia32_misc_enable_msr = data;
1500 break;
1501 case MSR_KVM_WALL_CLOCK_NEW:
1502 case MSR_KVM_WALL_CLOCK:
1503 vcpu->kvm->arch.wall_clock = data;
1504 kvm_write_wall_clock(vcpu->kvm, data);
1505 break;
1506 case MSR_KVM_SYSTEM_TIME_NEW:
1507 case MSR_KVM_SYSTEM_TIME: {
1508 if (vcpu->arch.time_page) {
1509 kvm_release_page_dirty(vcpu->arch.time_page);
1510 vcpu->arch.time_page = NULL;
1513 vcpu->arch.time = data;
1514 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1516 /* we verify if the enable bit is set... */
1517 if (!(data & 1))
1518 break;
1520 /* ...but clean it before doing the actual write */
1521 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1523 vcpu->arch.time_page =
1524 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1526 if (is_error_page(vcpu->arch.time_page)) {
1527 kvm_release_page_clean(vcpu->arch.time_page);
1528 vcpu->arch.time_page = NULL;
1530 break;
1532 case MSR_KVM_ASYNC_PF_EN:
1533 if (kvm_pv_enable_async_pf(vcpu, data))
1534 return 1;
1535 break;
1536 case MSR_IA32_MCG_CTL:
1537 case MSR_IA32_MCG_STATUS:
1538 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1539 return set_msr_mce(vcpu, msr, data);
1541 /* Performance counters are not protected by a CPUID bit,
1542 * so we should check all of them in the generic path for the sake of
1543 * cross vendor migration.
1544 * Writing a zero into the event select MSRs disables them,
1545 * which we perfectly emulate ;-). Any other value should be at least
1546 * reported, some guests depend on them.
1548 case MSR_P6_EVNTSEL0:
1549 case MSR_P6_EVNTSEL1:
1550 case MSR_K7_EVNTSEL0:
1551 case MSR_K7_EVNTSEL1:
1552 case MSR_K7_EVNTSEL2:
1553 case MSR_K7_EVNTSEL3:
1554 if (data != 0)
1555 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1556 "0x%x data 0x%llx\n", msr, data);
1557 break;
1558 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1559 * so we ignore writes to make it happy.
1561 case MSR_P6_PERFCTR0:
1562 case MSR_P6_PERFCTR1:
1563 case MSR_K7_PERFCTR0:
1564 case MSR_K7_PERFCTR1:
1565 case MSR_K7_PERFCTR2:
1566 case MSR_K7_PERFCTR3:
1567 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1568 "0x%x data 0x%llx\n", msr, data);
1569 break;
1570 case MSR_K7_CLK_CTL:
1572 * Ignore all writes to this no longer documented MSR.
1573 * Writes are only relevant for old K7 processors,
1574 * all pre-dating SVM, but a recommended workaround from
1575 * AMD for these chips. It is possible to speicify the
1576 * affected processor models on the command line, hence
1577 * the need to ignore the workaround.
1579 break;
1580 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1581 if (kvm_hv_msr_partition_wide(msr)) {
1582 int r;
1583 mutex_lock(&vcpu->kvm->lock);
1584 r = set_msr_hyperv_pw(vcpu, msr, data);
1585 mutex_unlock(&vcpu->kvm->lock);
1586 return r;
1587 } else
1588 return set_msr_hyperv(vcpu, msr, data);
1589 break;
1590 default:
1591 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1592 return xen_hvm_config(vcpu, data);
1593 if (!ignore_msrs) {
1594 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1595 msr, data);
1596 return 1;
1597 } else {
1598 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1599 msr, data);
1600 break;
1603 return 0;
1605 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1609 * Reads an msr value (of 'msr_index') into 'pdata'.
1610 * Returns 0 on success, non-0 otherwise.
1611 * Assumes vcpu_load() was already called.
1613 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1615 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1618 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1620 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1622 if (!msr_mtrr_valid(msr))
1623 return 1;
1625 if (msr == MSR_MTRRdefType)
1626 *pdata = vcpu->arch.mtrr_state.def_type +
1627 (vcpu->arch.mtrr_state.enabled << 10);
1628 else if (msr == MSR_MTRRfix64K_00000)
1629 *pdata = p[0];
1630 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1631 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1632 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1633 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1634 else if (msr == MSR_IA32_CR_PAT)
1635 *pdata = vcpu->arch.pat;
1636 else { /* Variable MTRRs */
1637 int idx, is_mtrr_mask;
1638 u64 *pt;
1640 idx = (msr - 0x200) / 2;
1641 is_mtrr_mask = msr - 0x200 - 2 * idx;
1642 if (!is_mtrr_mask)
1643 pt =
1644 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1645 else
1646 pt =
1647 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1648 *pdata = *pt;
1651 return 0;
1654 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1656 u64 data;
1657 u64 mcg_cap = vcpu->arch.mcg_cap;
1658 unsigned bank_num = mcg_cap & 0xff;
1660 switch (msr) {
1661 case MSR_IA32_P5_MC_ADDR:
1662 case MSR_IA32_P5_MC_TYPE:
1663 data = 0;
1664 break;
1665 case MSR_IA32_MCG_CAP:
1666 data = vcpu->arch.mcg_cap;
1667 break;
1668 case MSR_IA32_MCG_CTL:
1669 if (!(mcg_cap & MCG_CTL_P))
1670 return 1;
1671 data = vcpu->arch.mcg_ctl;
1672 break;
1673 case MSR_IA32_MCG_STATUS:
1674 data = vcpu->arch.mcg_status;
1675 break;
1676 default:
1677 if (msr >= MSR_IA32_MC0_CTL &&
1678 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1679 u32 offset = msr - MSR_IA32_MC0_CTL;
1680 data = vcpu->arch.mce_banks[offset];
1681 break;
1683 return 1;
1685 *pdata = data;
1686 return 0;
1689 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1691 u64 data = 0;
1692 struct kvm *kvm = vcpu->kvm;
1694 switch (msr) {
1695 case HV_X64_MSR_GUEST_OS_ID:
1696 data = kvm->arch.hv_guest_os_id;
1697 break;
1698 case HV_X64_MSR_HYPERCALL:
1699 data = kvm->arch.hv_hypercall;
1700 break;
1701 default:
1702 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1703 return 1;
1706 *pdata = data;
1707 return 0;
1710 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1712 u64 data = 0;
1714 switch (msr) {
1715 case HV_X64_MSR_VP_INDEX: {
1716 int r;
1717 struct kvm_vcpu *v;
1718 kvm_for_each_vcpu(r, v, vcpu->kvm)
1719 if (v == vcpu)
1720 data = r;
1721 break;
1723 case HV_X64_MSR_EOI:
1724 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1725 case HV_X64_MSR_ICR:
1726 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1727 case HV_X64_MSR_TPR:
1728 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1729 default:
1730 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1731 return 1;
1733 *pdata = data;
1734 return 0;
1737 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1739 u64 data;
1741 switch (msr) {
1742 case MSR_IA32_PLATFORM_ID:
1743 case MSR_IA32_UCODE_REV:
1744 case MSR_IA32_EBL_CR_POWERON:
1745 case MSR_IA32_DEBUGCTLMSR:
1746 case MSR_IA32_LASTBRANCHFROMIP:
1747 case MSR_IA32_LASTBRANCHTOIP:
1748 case MSR_IA32_LASTINTFROMIP:
1749 case MSR_IA32_LASTINTTOIP:
1750 case MSR_K8_SYSCFG:
1751 case MSR_K7_HWCR:
1752 case MSR_VM_HSAVE_PA:
1753 case MSR_P6_PERFCTR0:
1754 case MSR_P6_PERFCTR1:
1755 case MSR_P6_EVNTSEL0:
1756 case MSR_P6_EVNTSEL1:
1757 case MSR_K7_EVNTSEL0:
1758 case MSR_K7_PERFCTR0:
1759 case MSR_K8_INT_PENDING_MSG:
1760 case MSR_AMD64_NB_CFG:
1761 case MSR_FAM10H_MMIO_CONF_BASE:
1762 data = 0;
1763 break;
1764 case MSR_MTRRcap:
1765 data = 0x500 | KVM_NR_VAR_MTRR;
1766 break;
1767 case 0x200 ... 0x2ff:
1768 return get_msr_mtrr(vcpu, msr, pdata);
1769 case 0xcd: /* fsb frequency */
1770 data = 3;
1771 break;
1773 * MSR_EBC_FREQUENCY_ID
1774 * Conservative value valid for even the basic CPU models.
1775 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1776 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1777 * and 266MHz for model 3, or 4. Set Core Clock
1778 * Frequency to System Bus Frequency Ratio to 1 (bits
1779 * 31:24) even though these are only valid for CPU
1780 * models > 2, however guests may end up dividing or
1781 * multiplying by zero otherwise.
1783 case MSR_EBC_FREQUENCY_ID:
1784 data = 1 << 24;
1785 break;
1786 case MSR_IA32_APICBASE:
1787 data = kvm_get_apic_base(vcpu);
1788 break;
1789 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1790 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1791 break;
1792 case MSR_IA32_MISC_ENABLE:
1793 data = vcpu->arch.ia32_misc_enable_msr;
1794 break;
1795 case MSR_IA32_PERF_STATUS:
1796 /* TSC increment by tick */
1797 data = 1000ULL;
1798 /* CPU multiplier */
1799 data |= (((uint64_t)4ULL) << 40);
1800 break;
1801 case MSR_EFER:
1802 data = vcpu->arch.efer;
1803 break;
1804 case MSR_KVM_WALL_CLOCK:
1805 case MSR_KVM_WALL_CLOCK_NEW:
1806 data = vcpu->kvm->arch.wall_clock;
1807 break;
1808 case MSR_KVM_SYSTEM_TIME:
1809 case MSR_KVM_SYSTEM_TIME_NEW:
1810 data = vcpu->arch.time;
1811 break;
1812 case MSR_KVM_ASYNC_PF_EN:
1813 data = vcpu->arch.apf.msr_val;
1814 break;
1815 case MSR_IA32_P5_MC_ADDR:
1816 case MSR_IA32_P5_MC_TYPE:
1817 case MSR_IA32_MCG_CAP:
1818 case MSR_IA32_MCG_CTL:
1819 case MSR_IA32_MCG_STATUS:
1820 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1821 return get_msr_mce(vcpu, msr, pdata);
1822 case MSR_K7_CLK_CTL:
1824 * Provide expected ramp-up count for K7. All other
1825 * are set to zero, indicating minimum divisors for
1826 * every field.
1828 * This prevents guest kernels on AMD host with CPU
1829 * type 6, model 8 and higher from exploding due to
1830 * the rdmsr failing.
1832 data = 0x20000000;
1833 break;
1834 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1835 if (kvm_hv_msr_partition_wide(msr)) {
1836 int r;
1837 mutex_lock(&vcpu->kvm->lock);
1838 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1839 mutex_unlock(&vcpu->kvm->lock);
1840 return r;
1841 } else
1842 return get_msr_hyperv(vcpu, msr, pdata);
1843 break;
1844 default:
1845 if (!ignore_msrs) {
1846 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1847 return 1;
1848 } else {
1849 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1850 data = 0;
1852 break;
1854 *pdata = data;
1855 return 0;
1857 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1860 * Read or write a bunch of msrs. All parameters are kernel addresses.
1862 * @return number of msrs set successfully.
1864 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1865 struct kvm_msr_entry *entries,
1866 int (*do_msr)(struct kvm_vcpu *vcpu,
1867 unsigned index, u64 *data))
1869 int i, idx;
1871 idx = srcu_read_lock(&vcpu->kvm->srcu);
1872 for (i = 0; i < msrs->nmsrs; ++i)
1873 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1874 break;
1875 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1877 return i;
1881 * Read or write a bunch of msrs. Parameters are user addresses.
1883 * @return number of msrs set successfully.
1885 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1886 int (*do_msr)(struct kvm_vcpu *vcpu,
1887 unsigned index, u64 *data),
1888 int writeback)
1890 struct kvm_msrs msrs;
1891 struct kvm_msr_entry *entries;
1892 int r, n;
1893 unsigned size;
1895 r = -EFAULT;
1896 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1897 goto out;
1899 r = -E2BIG;
1900 if (msrs.nmsrs >= MAX_IO_MSRS)
1901 goto out;
1903 r = -ENOMEM;
1904 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1905 entries = kmalloc(size, GFP_KERNEL);
1906 if (!entries)
1907 goto out;
1909 r = -EFAULT;
1910 if (copy_from_user(entries, user_msrs->entries, size))
1911 goto out_free;
1913 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1914 if (r < 0)
1915 goto out_free;
1917 r = -EFAULT;
1918 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1919 goto out_free;
1921 r = n;
1923 out_free:
1924 kfree(entries);
1925 out:
1926 return r;
1929 int kvm_dev_ioctl_check_extension(long ext)
1931 int r;
1933 switch (ext) {
1934 case KVM_CAP_IRQCHIP:
1935 case KVM_CAP_HLT:
1936 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1937 case KVM_CAP_SET_TSS_ADDR:
1938 case KVM_CAP_EXT_CPUID:
1939 case KVM_CAP_CLOCKSOURCE:
1940 case KVM_CAP_PIT:
1941 case KVM_CAP_NOP_IO_DELAY:
1942 case KVM_CAP_MP_STATE:
1943 case KVM_CAP_SYNC_MMU:
1944 case KVM_CAP_REINJECT_CONTROL:
1945 case KVM_CAP_IRQ_INJECT_STATUS:
1946 case KVM_CAP_ASSIGN_DEV_IRQ:
1947 case KVM_CAP_IRQFD:
1948 case KVM_CAP_IOEVENTFD:
1949 case KVM_CAP_PIT2:
1950 case KVM_CAP_PIT_STATE2:
1951 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1952 case KVM_CAP_XEN_HVM:
1953 case KVM_CAP_ADJUST_CLOCK:
1954 case KVM_CAP_VCPU_EVENTS:
1955 case KVM_CAP_HYPERV:
1956 case KVM_CAP_HYPERV_VAPIC:
1957 case KVM_CAP_HYPERV_SPIN:
1958 case KVM_CAP_PCI_SEGMENT:
1959 case KVM_CAP_DEBUGREGS:
1960 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1961 case KVM_CAP_XSAVE:
1962 case KVM_CAP_ASYNC_PF:
1963 r = 1;
1964 break;
1965 case KVM_CAP_COALESCED_MMIO:
1966 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1967 break;
1968 case KVM_CAP_VAPIC:
1969 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1970 break;
1971 case KVM_CAP_NR_VCPUS:
1972 r = KVM_MAX_VCPUS;
1973 break;
1974 case KVM_CAP_NR_MEMSLOTS:
1975 r = KVM_MEMORY_SLOTS;
1976 break;
1977 case KVM_CAP_PV_MMU: /* obsolete */
1978 r = 0;
1979 break;
1980 case KVM_CAP_IOMMU:
1981 r = iommu_found();
1982 break;
1983 case KVM_CAP_MCE:
1984 r = KVM_MAX_MCE_BANKS;
1985 break;
1986 case KVM_CAP_XCRS:
1987 r = cpu_has_xsave;
1988 break;
1989 default:
1990 r = 0;
1991 break;
1993 return r;
1997 long kvm_arch_dev_ioctl(struct file *filp,
1998 unsigned int ioctl, unsigned long arg)
2000 void __user *argp = (void __user *)arg;
2001 long r;
2003 switch (ioctl) {
2004 case KVM_GET_MSR_INDEX_LIST: {
2005 struct kvm_msr_list __user *user_msr_list = argp;
2006 struct kvm_msr_list msr_list;
2007 unsigned n;
2009 r = -EFAULT;
2010 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2011 goto out;
2012 n = msr_list.nmsrs;
2013 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2014 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2015 goto out;
2016 r = -E2BIG;
2017 if (n < msr_list.nmsrs)
2018 goto out;
2019 r = -EFAULT;
2020 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2021 num_msrs_to_save * sizeof(u32)))
2022 goto out;
2023 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2024 &emulated_msrs,
2025 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2026 goto out;
2027 r = 0;
2028 break;
2030 case KVM_GET_SUPPORTED_CPUID: {
2031 struct kvm_cpuid2 __user *cpuid_arg = argp;
2032 struct kvm_cpuid2 cpuid;
2034 r = -EFAULT;
2035 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2036 goto out;
2037 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2038 cpuid_arg->entries);
2039 if (r)
2040 goto out;
2042 r = -EFAULT;
2043 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2044 goto out;
2045 r = 0;
2046 break;
2048 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2049 u64 mce_cap;
2051 mce_cap = KVM_MCE_CAP_SUPPORTED;
2052 r = -EFAULT;
2053 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2054 goto out;
2055 r = 0;
2056 break;
2058 default:
2059 r = -EINVAL;
2061 out:
2062 return r;
2065 static void wbinvd_ipi(void *garbage)
2067 wbinvd();
2070 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2072 return vcpu->kvm->arch.iommu_domain &&
2073 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2076 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2078 /* Address WBINVD may be executed by guest */
2079 if (need_emulate_wbinvd(vcpu)) {
2080 if (kvm_x86_ops->has_wbinvd_exit())
2081 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2082 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2083 smp_call_function_single(vcpu->cpu,
2084 wbinvd_ipi, NULL, 1);
2087 kvm_x86_ops->vcpu_load(vcpu, cpu);
2088 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2089 /* Make sure TSC doesn't go backwards */
2090 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2091 native_read_tsc() - vcpu->arch.last_host_tsc;
2092 if (tsc_delta < 0)
2093 mark_tsc_unstable("KVM discovered backwards TSC");
2094 if (check_tsc_unstable()) {
2095 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2096 vcpu->arch.tsc_catchup = 1;
2097 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2099 if (vcpu->cpu != cpu)
2100 kvm_migrate_timers(vcpu);
2101 vcpu->cpu = cpu;
2105 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2107 kvm_x86_ops->vcpu_put(vcpu);
2108 kvm_put_guest_fpu(vcpu);
2109 vcpu->arch.last_host_tsc = native_read_tsc();
2112 static int is_efer_nx(void)
2114 unsigned long long efer = 0;
2116 rdmsrl_safe(MSR_EFER, &efer);
2117 return efer & EFER_NX;
2120 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2122 int i;
2123 struct kvm_cpuid_entry2 *e, *entry;
2125 entry = NULL;
2126 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2127 e = &vcpu->arch.cpuid_entries[i];
2128 if (e->function == 0x80000001) {
2129 entry = e;
2130 break;
2133 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2134 entry->edx &= ~(1 << 20);
2135 printk(KERN_INFO "kvm: guest NX capability removed\n");
2139 /* when an old userspace process fills a new kernel module */
2140 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2141 struct kvm_cpuid *cpuid,
2142 struct kvm_cpuid_entry __user *entries)
2144 int r, i;
2145 struct kvm_cpuid_entry *cpuid_entries;
2147 r = -E2BIG;
2148 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2149 goto out;
2150 r = -ENOMEM;
2151 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2152 if (!cpuid_entries)
2153 goto out;
2154 r = -EFAULT;
2155 if (copy_from_user(cpuid_entries, entries,
2156 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2157 goto out_free;
2158 for (i = 0; i < cpuid->nent; i++) {
2159 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2160 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2161 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2162 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2163 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2164 vcpu->arch.cpuid_entries[i].index = 0;
2165 vcpu->arch.cpuid_entries[i].flags = 0;
2166 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2167 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2168 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2170 vcpu->arch.cpuid_nent = cpuid->nent;
2171 cpuid_fix_nx_cap(vcpu);
2172 r = 0;
2173 kvm_apic_set_version(vcpu);
2174 kvm_x86_ops->cpuid_update(vcpu);
2175 update_cpuid(vcpu);
2177 out_free:
2178 vfree(cpuid_entries);
2179 out:
2180 return r;
2183 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2184 struct kvm_cpuid2 *cpuid,
2185 struct kvm_cpuid_entry2 __user *entries)
2187 int r;
2189 r = -E2BIG;
2190 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2191 goto out;
2192 r = -EFAULT;
2193 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2194 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2195 goto out;
2196 vcpu->arch.cpuid_nent = cpuid->nent;
2197 kvm_apic_set_version(vcpu);
2198 kvm_x86_ops->cpuid_update(vcpu);
2199 update_cpuid(vcpu);
2200 return 0;
2202 out:
2203 return r;
2206 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2207 struct kvm_cpuid2 *cpuid,
2208 struct kvm_cpuid_entry2 __user *entries)
2210 int r;
2212 r = -E2BIG;
2213 if (cpuid->nent < vcpu->arch.cpuid_nent)
2214 goto out;
2215 r = -EFAULT;
2216 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2217 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2218 goto out;
2219 return 0;
2221 out:
2222 cpuid->nent = vcpu->arch.cpuid_nent;
2223 return r;
2226 static void cpuid_mask(u32 *word, int wordnum)
2228 *word &= boot_cpu_data.x86_capability[wordnum];
2231 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2232 u32 index)
2234 entry->function = function;
2235 entry->index = index;
2236 cpuid_count(entry->function, entry->index,
2237 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2238 entry->flags = 0;
2241 #define F(x) bit(X86_FEATURE_##x)
2243 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2244 u32 index, int *nent, int maxnent)
2246 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2247 #ifdef CONFIG_X86_64
2248 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2249 ? F(GBPAGES) : 0;
2250 unsigned f_lm = F(LM);
2251 #else
2252 unsigned f_gbpages = 0;
2253 unsigned f_lm = 0;
2254 #endif
2255 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2257 /* cpuid 1.edx */
2258 const u32 kvm_supported_word0_x86_features =
2259 F(FPU) | F(VME) | F(DE) | F(PSE) |
2260 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2261 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2262 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2263 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2264 0 /* Reserved, DS, ACPI */ | F(MMX) |
2265 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2266 0 /* HTT, TM, Reserved, PBE */;
2267 /* cpuid 0x80000001.edx */
2268 const u32 kvm_supported_word1_x86_features =
2269 F(FPU) | F(VME) | F(DE) | F(PSE) |
2270 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2271 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2272 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2273 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2274 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2275 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2276 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2277 /* cpuid 1.ecx */
2278 const u32 kvm_supported_word4_x86_features =
2279 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2280 0 /* DS-CPL, VMX, SMX, EST */ |
2281 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2282 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2283 0 /* Reserved, DCA */ | F(XMM4_1) |
2284 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2285 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2286 F(F16C);
2287 /* cpuid 0x80000001.ecx */
2288 const u32 kvm_supported_word6_x86_features =
2289 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2290 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2291 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2292 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2294 /* all calls to cpuid_count() should be made on the same cpu */
2295 get_cpu();
2296 do_cpuid_1_ent(entry, function, index);
2297 ++*nent;
2299 switch (function) {
2300 case 0:
2301 entry->eax = min(entry->eax, (u32)0xd);
2302 break;
2303 case 1:
2304 entry->edx &= kvm_supported_word0_x86_features;
2305 cpuid_mask(&entry->edx, 0);
2306 entry->ecx &= kvm_supported_word4_x86_features;
2307 cpuid_mask(&entry->ecx, 4);
2308 /* we support x2apic emulation even if host does not support
2309 * it since we emulate x2apic in software */
2310 entry->ecx |= F(X2APIC);
2311 break;
2312 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2313 * may return different values. This forces us to get_cpu() before
2314 * issuing the first command, and also to emulate this annoying behavior
2315 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2316 case 2: {
2317 int t, times = entry->eax & 0xff;
2319 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2320 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2321 for (t = 1; t < times && *nent < maxnent; ++t) {
2322 do_cpuid_1_ent(&entry[t], function, 0);
2323 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2324 ++*nent;
2326 break;
2328 /* function 4 and 0xb have additional index. */
2329 case 4: {
2330 int i, cache_type;
2332 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2333 /* read more entries until cache_type is zero */
2334 for (i = 1; *nent < maxnent; ++i) {
2335 cache_type = entry[i - 1].eax & 0x1f;
2336 if (!cache_type)
2337 break;
2338 do_cpuid_1_ent(&entry[i], function, i);
2339 entry[i].flags |=
2340 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2341 ++*nent;
2343 break;
2345 case 0xb: {
2346 int i, level_type;
2348 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2349 /* read more entries until level_type is zero */
2350 for (i = 1; *nent < maxnent; ++i) {
2351 level_type = entry[i - 1].ecx & 0xff00;
2352 if (!level_type)
2353 break;
2354 do_cpuid_1_ent(&entry[i], function, i);
2355 entry[i].flags |=
2356 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2357 ++*nent;
2359 break;
2361 case 0xd: {
2362 int i;
2364 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2365 for (i = 1; *nent < maxnent; ++i) {
2366 if (entry[i - 1].eax == 0 && i != 2)
2367 break;
2368 do_cpuid_1_ent(&entry[i], function, i);
2369 entry[i].flags |=
2370 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2371 ++*nent;
2373 break;
2375 case KVM_CPUID_SIGNATURE: {
2376 char signature[12] = "KVMKVMKVM\0\0";
2377 u32 *sigptr = (u32 *)signature;
2378 entry->eax = 0;
2379 entry->ebx = sigptr[0];
2380 entry->ecx = sigptr[1];
2381 entry->edx = sigptr[2];
2382 break;
2384 case KVM_CPUID_FEATURES:
2385 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2386 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2387 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2388 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2389 entry->ebx = 0;
2390 entry->ecx = 0;
2391 entry->edx = 0;
2392 break;
2393 case 0x80000000:
2394 entry->eax = min(entry->eax, 0x8000001a);
2395 break;
2396 case 0x80000001:
2397 entry->edx &= kvm_supported_word1_x86_features;
2398 cpuid_mask(&entry->edx, 1);
2399 entry->ecx &= kvm_supported_word6_x86_features;
2400 cpuid_mask(&entry->ecx, 6);
2401 break;
2404 kvm_x86_ops->set_supported_cpuid(function, entry);
2406 put_cpu();
2409 #undef F
2411 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2412 struct kvm_cpuid_entry2 __user *entries)
2414 struct kvm_cpuid_entry2 *cpuid_entries;
2415 int limit, nent = 0, r = -E2BIG;
2416 u32 func;
2418 if (cpuid->nent < 1)
2419 goto out;
2420 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2421 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2422 r = -ENOMEM;
2423 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2424 if (!cpuid_entries)
2425 goto out;
2427 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2428 limit = cpuid_entries[0].eax;
2429 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2430 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2431 &nent, cpuid->nent);
2432 r = -E2BIG;
2433 if (nent >= cpuid->nent)
2434 goto out_free;
2436 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2437 limit = cpuid_entries[nent - 1].eax;
2438 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2439 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2440 &nent, cpuid->nent);
2444 r = -E2BIG;
2445 if (nent >= cpuid->nent)
2446 goto out_free;
2448 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2449 cpuid->nent);
2451 r = -E2BIG;
2452 if (nent >= cpuid->nent)
2453 goto out_free;
2455 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2456 cpuid->nent);
2458 r = -E2BIG;
2459 if (nent >= cpuid->nent)
2460 goto out_free;
2462 r = -EFAULT;
2463 if (copy_to_user(entries, cpuid_entries,
2464 nent * sizeof(struct kvm_cpuid_entry2)))
2465 goto out_free;
2466 cpuid->nent = nent;
2467 r = 0;
2469 out_free:
2470 vfree(cpuid_entries);
2471 out:
2472 return r;
2475 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2476 struct kvm_lapic_state *s)
2478 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2480 return 0;
2483 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2484 struct kvm_lapic_state *s)
2486 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2487 kvm_apic_post_state_restore(vcpu);
2488 update_cr8_intercept(vcpu);
2490 return 0;
2493 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2494 struct kvm_interrupt *irq)
2496 if (irq->irq < 0 || irq->irq >= 256)
2497 return -EINVAL;
2498 if (irqchip_in_kernel(vcpu->kvm))
2499 return -ENXIO;
2501 kvm_queue_interrupt(vcpu, irq->irq, false);
2502 kvm_make_request(KVM_REQ_EVENT, vcpu);
2504 return 0;
2507 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2509 kvm_inject_nmi(vcpu);
2511 return 0;
2514 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2515 struct kvm_tpr_access_ctl *tac)
2517 if (tac->flags)
2518 return -EINVAL;
2519 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2520 return 0;
2523 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2524 u64 mcg_cap)
2526 int r;
2527 unsigned bank_num = mcg_cap & 0xff, bank;
2529 r = -EINVAL;
2530 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2531 goto out;
2532 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2533 goto out;
2534 r = 0;
2535 vcpu->arch.mcg_cap = mcg_cap;
2536 /* Init IA32_MCG_CTL to all 1s */
2537 if (mcg_cap & MCG_CTL_P)
2538 vcpu->arch.mcg_ctl = ~(u64)0;
2539 /* Init IA32_MCi_CTL to all 1s */
2540 for (bank = 0; bank < bank_num; bank++)
2541 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2542 out:
2543 return r;
2546 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2547 struct kvm_x86_mce *mce)
2549 u64 mcg_cap = vcpu->arch.mcg_cap;
2550 unsigned bank_num = mcg_cap & 0xff;
2551 u64 *banks = vcpu->arch.mce_banks;
2553 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2554 return -EINVAL;
2556 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2557 * reporting is disabled
2559 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2560 vcpu->arch.mcg_ctl != ~(u64)0)
2561 return 0;
2562 banks += 4 * mce->bank;
2564 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2565 * reporting is disabled for the bank
2567 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2568 return 0;
2569 if (mce->status & MCI_STATUS_UC) {
2570 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2571 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2572 printk(KERN_DEBUG "kvm: set_mce: "
2573 "injects mce exception while "
2574 "previous one is in progress!\n");
2575 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2576 return 0;
2578 if (banks[1] & MCI_STATUS_VAL)
2579 mce->status |= MCI_STATUS_OVER;
2580 banks[2] = mce->addr;
2581 banks[3] = mce->misc;
2582 vcpu->arch.mcg_status = mce->mcg_status;
2583 banks[1] = mce->status;
2584 kvm_queue_exception(vcpu, MC_VECTOR);
2585 } else if (!(banks[1] & MCI_STATUS_VAL)
2586 || !(banks[1] & MCI_STATUS_UC)) {
2587 if (banks[1] & MCI_STATUS_VAL)
2588 mce->status |= MCI_STATUS_OVER;
2589 banks[2] = mce->addr;
2590 banks[3] = mce->misc;
2591 banks[1] = mce->status;
2592 } else
2593 banks[1] |= MCI_STATUS_OVER;
2594 return 0;
2597 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2598 struct kvm_vcpu_events *events)
2600 events->exception.injected =
2601 vcpu->arch.exception.pending &&
2602 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2603 events->exception.nr = vcpu->arch.exception.nr;
2604 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2605 events->exception.pad = 0;
2606 events->exception.error_code = vcpu->arch.exception.error_code;
2608 events->interrupt.injected =
2609 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2610 events->interrupt.nr = vcpu->arch.interrupt.nr;
2611 events->interrupt.soft = 0;
2612 events->interrupt.shadow =
2613 kvm_x86_ops->get_interrupt_shadow(vcpu,
2614 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2616 events->nmi.injected = vcpu->arch.nmi_injected;
2617 events->nmi.pending = vcpu->arch.nmi_pending;
2618 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2619 events->nmi.pad = 0;
2621 events->sipi_vector = vcpu->arch.sipi_vector;
2623 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2624 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2625 | KVM_VCPUEVENT_VALID_SHADOW);
2626 memset(&events->reserved, 0, sizeof(events->reserved));
2629 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2630 struct kvm_vcpu_events *events)
2632 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2633 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2634 | KVM_VCPUEVENT_VALID_SHADOW))
2635 return -EINVAL;
2637 vcpu->arch.exception.pending = events->exception.injected;
2638 vcpu->arch.exception.nr = events->exception.nr;
2639 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2640 vcpu->arch.exception.error_code = events->exception.error_code;
2642 vcpu->arch.interrupt.pending = events->interrupt.injected;
2643 vcpu->arch.interrupt.nr = events->interrupt.nr;
2644 vcpu->arch.interrupt.soft = events->interrupt.soft;
2645 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2646 kvm_pic_clear_isr_ack(vcpu->kvm);
2647 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2648 kvm_x86_ops->set_interrupt_shadow(vcpu,
2649 events->interrupt.shadow);
2651 vcpu->arch.nmi_injected = events->nmi.injected;
2652 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2653 vcpu->arch.nmi_pending = events->nmi.pending;
2654 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2656 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2657 vcpu->arch.sipi_vector = events->sipi_vector;
2659 kvm_make_request(KVM_REQ_EVENT, vcpu);
2661 return 0;
2664 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2665 struct kvm_debugregs *dbgregs)
2667 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2668 dbgregs->dr6 = vcpu->arch.dr6;
2669 dbgregs->dr7 = vcpu->arch.dr7;
2670 dbgregs->flags = 0;
2671 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2674 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2675 struct kvm_debugregs *dbgregs)
2677 if (dbgregs->flags)
2678 return -EINVAL;
2680 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2681 vcpu->arch.dr6 = dbgregs->dr6;
2682 vcpu->arch.dr7 = dbgregs->dr7;
2684 return 0;
2687 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2688 struct kvm_xsave *guest_xsave)
2690 if (cpu_has_xsave)
2691 memcpy(guest_xsave->region,
2692 &vcpu->arch.guest_fpu.state->xsave,
2693 xstate_size);
2694 else {
2695 memcpy(guest_xsave->region,
2696 &vcpu->arch.guest_fpu.state->fxsave,
2697 sizeof(struct i387_fxsave_struct));
2698 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2699 XSTATE_FPSSE;
2703 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2704 struct kvm_xsave *guest_xsave)
2706 u64 xstate_bv =
2707 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2709 if (cpu_has_xsave)
2710 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2711 guest_xsave->region, xstate_size);
2712 else {
2713 if (xstate_bv & ~XSTATE_FPSSE)
2714 return -EINVAL;
2715 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2716 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2718 return 0;
2721 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2722 struct kvm_xcrs *guest_xcrs)
2724 if (!cpu_has_xsave) {
2725 guest_xcrs->nr_xcrs = 0;
2726 return;
2729 guest_xcrs->nr_xcrs = 1;
2730 guest_xcrs->flags = 0;
2731 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2732 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2735 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2736 struct kvm_xcrs *guest_xcrs)
2738 int i, r = 0;
2740 if (!cpu_has_xsave)
2741 return -EINVAL;
2743 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2744 return -EINVAL;
2746 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2747 /* Only support XCR0 currently */
2748 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2749 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2750 guest_xcrs->xcrs[0].value);
2751 break;
2753 if (r)
2754 r = -EINVAL;
2755 return r;
2758 long kvm_arch_vcpu_ioctl(struct file *filp,
2759 unsigned int ioctl, unsigned long arg)
2761 struct kvm_vcpu *vcpu = filp->private_data;
2762 void __user *argp = (void __user *)arg;
2763 int r;
2764 union {
2765 struct kvm_lapic_state *lapic;
2766 struct kvm_xsave *xsave;
2767 struct kvm_xcrs *xcrs;
2768 void *buffer;
2769 } u;
2771 u.buffer = NULL;
2772 switch (ioctl) {
2773 case KVM_GET_LAPIC: {
2774 r = -EINVAL;
2775 if (!vcpu->arch.apic)
2776 goto out;
2777 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2779 r = -ENOMEM;
2780 if (!u.lapic)
2781 goto out;
2782 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2783 if (r)
2784 goto out;
2785 r = -EFAULT;
2786 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2787 goto out;
2788 r = 0;
2789 break;
2791 case KVM_SET_LAPIC: {
2792 r = -EINVAL;
2793 if (!vcpu->arch.apic)
2794 goto out;
2795 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2796 r = -ENOMEM;
2797 if (!u.lapic)
2798 goto out;
2799 r = -EFAULT;
2800 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2801 goto out;
2802 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2803 if (r)
2804 goto out;
2805 r = 0;
2806 break;
2808 case KVM_INTERRUPT: {
2809 struct kvm_interrupt irq;
2811 r = -EFAULT;
2812 if (copy_from_user(&irq, argp, sizeof irq))
2813 goto out;
2814 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2815 if (r)
2816 goto out;
2817 r = 0;
2818 break;
2820 case KVM_NMI: {
2821 r = kvm_vcpu_ioctl_nmi(vcpu);
2822 if (r)
2823 goto out;
2824 r = 0;
2825 break;
2827 case KVM_SET_CPUID: {
2828 struct kvm_cpuid __user *cpuid_arg = argp;
2829 struct kvm_cpuid cpuid;
2831 r = -EFAULT;
2832 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2833 goto out;
2834 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2835 if (r)
2836 goto out;
2837 break;
2839 case KVM_SET_CPUID2: {
2840 struct kvm_cpuid2 __user *cpuid_arg = argp;
2841 struct kvm_cpuid2 cpuid;
2843 r = -EFAULT;
2844 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2845 goto out;
2846 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2847 cpuid_arg->entries);
2848 if (r)
2849 goto out;
2850 break;
2852 case KVM_GET_CPUID2: {
2853 struct kvm_cpuid2 __user *cpuid_arg = argp;
2854 struct kvm_cpuid2 cpuid;
2856 r = -EFAULT;
2857 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2858 goto out;
2859 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2860 cpuid_arg->entries);
2861 if (r)
2862 goto out;
2863 r = -EFAULT;
2864 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2865 goto out;
2866 r = 0;
2867 break;
2869 case KVM_GET_MSRS:
2870 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2871 break;
2872 case KVM_SET_MSRS:
2873 r = msr_io(vcpu, argp, do_set_msr, 0);
2874 break;
2875 case KVM_TPR_ACCESS_REPORTING: {
2876 struct kvm_tpr_access_ctl tac;
2878 r = -EFAULT;
2879 if (copy_from_user(&tac, argp, sizeof tac))
2880 goto out;
2881 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2882 if (r)
2883 goto out;
2884 r = -EFAULT;
2885 if (copy_to_user(argp, &tac, sizeof tac))
2886 goto out;
2887 r = 0;
2888 break;
2890 case KVM_SET_VAPIC_ADDR: {
2891 struct kvm_vapic_addr va;
2893 r = -EINVAL;
2894 if (!irqchip_in_kernel(vcpu->kvm))
2895 goto out;
2896 r = -EFAULT;
2897 if (copy_from_user(&va, argp, sizeof va))
2898 goto out;
2899 r = 0;
2900 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2901 break;
2903 case KVM_X86_SETUP_MCE: {
2904 u64 mcg_cap;
2906 r = -EFAULT;
2907 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2908 goto out;
2909 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2910 break;
2912 case KVM_X86_SET_MCE: {
2913 struct kvm_x86_mce mce;
2915 r = -EFAULT;
2916 if (copy_from_user(&mce, argp, sizeof mce))
2917 goto out;
2918 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2919 break;
2921 case KVM_GET_VCPU_EVENTS: {
2922 struct kvm_vcpu_events events;
2924 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2926 r = -EFAULT;
2927 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2928 break;
2929 r = 0;
2930 break;
2932 case KVM_SET_VCPU_EVENTS: {
2933 struct kvm_vcpu_events events;
2935 r = -EFAULT;
2936 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2937 break;
2939 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2940 break;
2942 case KVM_GET_DEBUGREGS: {
2943 struct kvm_debugregs dbgregs;
2945 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2947 r = -EFAULT;
2948 if (copy_to_user(argp, &dbgregs,
2949 sizeof(struct kvm_debugregs)))
2950 break;
2951 r = 0;
2952 break;
2954 case KVM_SET_DEBUGREGS: {
2955 struct kvm_debugregs dbgregs;
2957 r = -EFAULT;
2958 if (copy_from_user(&dbgregs, argp,
2959 sizeof(struct kvm_debugregs)))
2960 break;
2962 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2963 break;
2965 case KVM_GET_XSAVE: {
2966 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2967 r = -ENOMEM;
2968 if (!u.xsave)
2969 break;
2971 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2973 r = -EFAULT;
2974 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2975 break;
2976 r = 0;
2977 break;
2979 case KVM_SET_XSAVE: {
2980 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2981 r = -ENOMEM;
2982 if (!u.xsave)
2983 break;
2985 r = -EFAULT;
2986 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2987 break;
2989 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2990 break;
2992 case KVM_GET_XCRS: {
2993 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2994 r = -ENOMEM;
2995 if (!u.xcrs)
2996 break;
2998 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3000 r = -EFAULT;
3001 if (copy_to_user(argp, u.xcrs,
3002 sizeof(struct kvm_xcrs)))
3003 break;
3004 r = 0;
3005 break;
3007 case KVM_SET_XCRS: {
3008 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3009 r = -ENOMEM;
3010 if (!u.xcrs)
3011 break;
3013 r = -EFAULT;
3014 if (copy_from_user(u.xcrs, argp,
3015 sizeof(struct kvm_xcrs)))
3016 break;
3018 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3019 break;
3021 default:
3022 r = -EINVAL;
3024 out:
3025 kfree(u.buffer);
3026 return r;
3029 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3031 int ret;
3033 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3034 return -1;
3035 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3036 return ret;
3039 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3040 u64 ident_addr)
3042 kvm->arch.ept_identity_map_addr = ident_addr;
3043 return 0;
3046 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3047 u32 kvm_nr_mmu_pages)
3049 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3050 return -EINVAL;
3052 mutex_lock(&kvm->slots_lock);
3053 spin_lock(&kvm->mmu_lock);
3055 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3056 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3058 spin_unlock(&kvm->mmu_lock);
3059 mutex_unlock(&kvm->slots_lock);
3060 return 0;
3063 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3065 return kvm->arch.n_max_mmu_pages;
3068 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3070 int r;
3072 r = 0;
3073 switch (chip->chip_id) {
3074 case KVM_IRQCHIP_PIC_MASTER:
3075 memcpy(&chip->chip.pic,
3076 &pic_irqchip(kvm)->pics[0],
3077 sizeof(struct kvm_pic_state));
3078 break;
3079 case KVM_IRQCHIP_PIC_SLAVE:
3080 memcpy(&chip->chip.pic,
3081 &pic_irqchip(kvm)->pics[1],
3082 sizeof(struct kvm_pic_state));
3083 break;
3084 case KVM_IRQCHIP_IOAPIC:
3085 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3086 break;
3087 default:
3088 r = -EINVAL;
3089 break;
3091 return r;
3094 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3096 int r;
3098 r = 0;
3099 switch (chip->chip_id) {
3100 case KVM_IRQCHIP_PIC_MASTER:
3101 spin_lock(&pic_irqchip(kvm)->lock);
3102 memcpy(&pic_irqchip(kvm)->pics[0],
3103 &chip->chip.pic,
3104 sizeof(struct kvm_pic_state));
3105 spin_unlock(&pic_irqchip(kvm)->lock);
3106 break;
3107 case KVM_IRQCHIP_PIC_SLAVE:
3108 spin_lock(&pic_irqchip(kvm)->lock);
3109 memcpy(&pic_irqchip(kvm)->pics[1],
3110 &chip->chip.pic,
3111 sizeof(struct kvm_pic_state));
3112 spin_unlock(&pic_irqchip(kvm)->lock);
3113 break;
3114 case KVM_IRQCHIP_IOAPIC:
3115 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3116 break;
3117 default:
3118 r = -EINVAL;
3119 break;
3121 kvm_pic_update_irq(pic_irqchip(kvm));
3122 return r;
3125 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3127 int r = 0;
3129 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3130 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3131 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3132 return r;
3135 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3137 int r = 0;
3139 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3140 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3141 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3142 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3143 return r;
3146 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3148 int r = 0;
3150 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3151 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3152 sizeof(ps->channels));
3153 ps->flags = kvm->arch.vpit->pit_state.flags;
3154 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3155 memset(&ps->reserved, 0, sizeof(ps->reserved));
3156 return r;
3159 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3161 int r = 0, start = 0;
3162 u32 prev_legacy, cur_legacy;
3163 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3164 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3165 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3166 if (!prev_legacy && cur_legacy)
3167 start = 1;
3168 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3169 sizeof(kvm->arch.vpit->pit_state.channels));
3170 kvm->arch.vpit->pit_state.flags = ps->flags;
3171 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3172 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3173 return r;
3176 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3177 struct kvm_reinject_control *control)
3179 if (!kvm->arch.vpit)
3180 return -ENXIO;
3181 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3182 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3183 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3184 return 0;
3188 * Get (and clear) the dirty memory log for a memory slot.
3190 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3191 struct kvm_dirty_log *log)
3193 int r, i;
3194 struct kvm_memory_slot *memslot;
3195 unsigned long n;
3196 unsigned long is_dirty = 0;
3198 mutex_lock(&kvm->slots_lock);
3200 r = -EINVAL;
3201 if (log->slot >= KVM_MEMORY_SLOTS)
3202 goto out;
3204 memslot = &kvm->memslots->memslots[log->slot];
3205 r = -ENOENT;
3206 if (!memslot->dirty_bitmap)
3207 goto out;
3209 n = kvm_dirty_bitmap_bytes(memslot);
3211 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3212 is_dirty = memslot->dirty_bitmap[i];
3214 /* If nothing is dirty, don't bother messing with page tables. */
3215 if (is_dirty) {
3216 struct kvm_memslots *slots, *old_slots;
3217 unsigned long *dirty_bitmap;
3219 dirty_bitmap = memslot->dirty_bitmap_head;
3220 if (memslot->dirty_bitmap == dirty_bitmap)
3221 dirty_bitmap += n / sizeof(long);
3222 memset(dirty_bitmap, 0, n);
3224 r = -ENOMEM;
3225 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3226 if (!slots)
3227 goto out;
3228 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3229 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3230 slots->generation++;
3232 old_slots = kvm->memslots;
3233 rcu_assign_pointer(kvm->memslots, slots);
3234 synchronize_srcu_expedited(&kvm->srcu);
3235 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3236 kfree(old_slots);
3238 spin_lock(&kvm->mmu_lock);
3239 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3240 spin_unlock(&kvm->mmu_lock);
3242 r = -EFAULT;
3243 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3244 goto out;
3245 } else {
3246 r = -EFAULT;
3247 if (clear_user(log->dirty_bitmap, n))
3248 goto out;
3251 r = 0;
3252 out:
3253 mutex_unlock(&kvm->slots_lock);
3254 return r;
3257 long kvm_arch_vm_ioctl(struct file *filp,
3258 unsigned int ioctl, unsigned long arg)
3260 struct kvm *kvm = filp->private_data;
3261 void __user *argp = (void __user *)arg;
3262 int r = -ENOTTY;
3264 * This union makes it completely explicit to gcc-3.x
3265 * that these two variables' stack usage should be
3266 * combined, not added together.
3268 union {
3269 struct kvm_pit_state ps;
3270 struct kvm_pit_state2 ps2;
3271 struct kvm_pit_config pit_config;
3272 } u;
3274 switch (ioctl) {
3275 case KVM_SET_TSS_ADDR:
3276 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3277 if (r < 0)
3278 goto out;
3279 break;
3280 case KVM_SET_IDENTITY_MAP_ADDR: {
3281 u64 ident_addr;
3283 r = -EFAULT;
3284 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3285 goto out;
3286 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3287 if (r < 0)
3288 goto out;
3289 break;
3291 case KVM_SET_NR_MMU_PAGES:
3292 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3293 if (r)
3294 goto out;
3295 break;
3296 case KVM_GET_NR_MMU_PAGES:
3297 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3298 break;
3299 case KVM_CREATE_IRQCHIP: {
3300 struct kvm_pic *vpic;
3302 mutex_lock(&kvm->lock);
3303 r = -EEXIST;
3304 if (kvm->arch.vpic)
3305 goto create_irqchip_unlock;
3306 r = -ENOMEM;
3307 vpic = kvm_create_pic(kvm);
3308 if (vpic) {
3309 r = kvm_ioapic_init(kvm);
3310 if (r) {
3311 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3312 &vpic->dev);
3313 kfree(vpic);
3314 goto create_irqchip_unlock;
3316 } else
3317 goto create_irqchip_unlock;
3318 smp_wmb();
3319 kvm->arch.vpic = vpic;
3320 smp_wmb();
3321 r = kvm_setup_default_irq_routing(kvm);
3322 if (r) {
3323 mutex_lock(&kvm->irq_lock);
3324 kvm_ioapic_destroy(kvm);
3325 kvm_destroy_pic(kvm);
3326 mutex_unlock(&kvm->irq_lock);
3328 create_irqchip_unlock:
3329 mutex_unlock(&kvm->lock);
3330 break;
3332 case KVM_CREATE_PIT:
3333 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3334 goto create_pit;
3335 case KVM_CREATE_PIT2:
3336 r = -EFAULT;
3337 if (copy_from_user(&u.pit_config, argp,
3338 sizeof(struct kvm_pit_config)))
3339 goto out;
3340 create_pit:
3341 mutex_lock(&kvm->slots_lock);
3342 r = -EEXIST;
3343 if (kvm->arch.vpit)
3344 goto create_pit_unlock;
3345 r = -ENOMEM;
3346 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3347 if (kvm->arch.vpit)
3348 r = 0;
3349 create_pit_unlock:
3350 mutex_unlock(&kvm->slots_lock);
3351 break;
3352 case KVM_IRQ_LINE_STATUS:
3353 case KVM_IRQ_LINE: {
3354 struct kvm_irq_level irq_event;
3356 r = -EFAULT;
3357 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3358 goto out;
3359 r = -ENXIO;
3360 if (irqchip_in_kernel(kvm)) {
3361 __s32 status;
3362 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3363 irq_event.irq, irq_event.level);
3364 if (ioctl == KVM_IRQ_LINE_STATUS) {
3365 r = -EFAULT;
3366 irq_event.status = status;
3367 if (copy_to_user(argp, &irq_event,
3368 sizeof irq_event))
3369 goto out;
3371 r = 0;
3373 break;
3375 case KVM_GET_IRQCHIP: {
3376 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3377 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3379 r = -ENOMEM;
3380 if (!chip)
3381 goto out;
3382 r = -EFAULT;
3383 if (copy_from_user(chip, argp, sizeof *chip))
3384 goto get_irqchip_out;
3385 r = -ENXIO;
3386 if (!irqchip_in_kernel(kvm))
3387 goto get_irqchip_out;
3388 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3389 if (r)
3390 goto get_irqchip_out;
3391 r = -EFAULT;
3392 if (copy_to_user(argp, chip, sizeof *chip))
3393 goto get_irqchip_out;
3394 r = 0;
3395 get_irqchip_out:
3396 kfree(chip);
3397 if (r)
3398 goto out;
3399 break;
3401 case KVM_SET_IRQCHIP: {
3402 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3403 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3405 r = -ENOMEM;
3406 if (!chip)
3407 goto out;
3408 r = -EFAULT;
3409 if (copy_from_user(chip, argp, sizeof *chip))
3410 goto set_irqchip_out;
3411 r = -ENXIO;
3412 if (!irqchip_in_kernel(kvm))
3413 goto set_irqchip_out;
3414 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3415 if (r)
3416 goto set_irqchip_out;
3417 r = 0;
3418 set_irqchip_out:
3419 kfree(chip);
3420 if (r)
3421 goto out;
3422 break;
3424 case KVM_GET_PIT: {
3425 r = -EFAULT;
3426 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3427 goto out;
3428 r = -ENXIO;
3429 if (!kvm->arch.vpit)
3430 goto out;
3431 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3432 if (r)
3433 goto out;
3434 r = -EFAULT;
3435 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3436 goto out;
3437 r = 0;
3438 break;
3440 case KVM_SET_PIT: {
3441 r = -EFAULT;
3442 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3443 goto out;
3444 r = -ENXIO;
3445 if (!kvm->arch.vpit)
3446 goto out;
3447 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3448 if (r)
3449 goto out;
3450 r = 0;
3451 break;
3453 case KVM_GET_PIT2: {
3454 r = -ENXIO;
3455 if (!kvm->arch.vpit)
3456 goto out;
3457 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3458 if (r)
3459 goto out;
3460 r = -EFAULT;
3461 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3462 goto out;
3463 r = 0;
3464 break;
3466 case KVM_SET_PIT2: {
3467 r = -EFAULT;
3468 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3469 goto out;
3470 r = -ENXIO;
3471 if (!kvm->arch.vpit)
3472 goto out;
3473 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3474 if (r)
3475 goto out;
3476 r = 0;
3477 break;
3479 case KVM_REINJECT_CONTROL: {
3480 struct kvm_reinject_control control;
3481 r = -EFAULT;
3482 if (copy_from_user(&control, argp, sizeof(control)))
3483 goto out;
3484 r = kvm_vm_ioctl_reinject(kvm, &control);
3485 if (r)
3486 goto out;
3487 r = 0;
3488 break;
3490 case KVM_XEN_HVM_CONFIG: {
3491 r = -EFAULT;
3492 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3493 sizeof(struct kvm_xen_hvm_config)))
3494 goto out;
3495 r = -EINVAL;
3496 if (kvm->arch.xen_hvm_config.flags)
3497 goto out;
3498 r = 0;
3499 break;
3501 case KVM_SET_CLOCK: {
3502 struct kvm_clock_data user_ns;
3503 u64 now_ns;
3504 s64 delta;
3506 r = -EFAULT;
3507 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3508 goto out;
3510 r = -EINVAL;
3511 if (user_ns.flags)
3512 goto out;
3514 r = 0;
3515 local_irq_disable();
3516 now_ns = get_kernel_ns();
3517 delta = user_ns.clock - now_ns;
3518 local_irq_enable();
3519 kvm->arch.kvmclock_offset = delta;
3520 break;
3522 case KVM_GET_CLOCK: {
3523 struct kvm_clock_data user_ns;
3524 u64 now_ns;
3526 local_irq_disable();
3527 now_ns = get_kernel_ns();
3528 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3529 local_irq_enable();
3530 user_ns.flags = 0;
3531 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3533 r = -EFAULT;
3534 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3535 goto out;
3536 r = 0;
3537 break;
3540 default:
3543 out:
3544 return r;
3547 static void kvm_init_msr_list(void)
3549 u32 dummy[2];
3550 unsigned i, j;
3552 /* skip the first msrs in the list. KVM-specific */
3553 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3554 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3555 continue;
3556 if (j < i)
3557 msrs_to_save[j] = msrs_to_save[i];
3558 j++;
3560 num_msrs_to_save = j;
3563 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3564 const void *v)
3566 if (vcpu->arch.apic &&
3567 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3568 return 0;
3570 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3573 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3575 if (vcpu->arch.apic &&
3576 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3577 return 0;
3579 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3582 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3583 struct kvm_segment *var, int seg)
3585 kvm_x86_ops->set_segment(vcpu, var, seg);
3588 void kvm_get_segment(struct kvm_vcpu *vcpu,
3589 struct kvm_segment *var, int seg)
3591 kvm_x86_ops->get_segment(vcpu, var, seg);
3594 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3596 return gpa;
3599 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3601 gpa_t t_gpa;
3602 struct x86_exception exception;
3604 BUG_ON(!mmu_is_nested(vcpu));
3606 /* NPT walks are always user-walks */
3607 access |= PFERR_USER_MASK;
3608 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3610 return t_gpa;
3613 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3614 struct x86_exception *exception)
3616 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3617 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3620 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3621 struct x86_exception *exception)
3623 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3624 access |= PFERR_FETCH_MASK;
3625 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3628 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3629 struct x86_exception *exception)
3631 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3632 access |= PFERR_WRITE_MASK;
3633 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3636 /* uses this to access any guest's mapped memory without checking CPL */
3637 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3638 struct x86_exception *exception)
3640 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3643 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3644 struct kvm_vcpu *vcpu, u32 access,
3645 struct x86_exception *exception)
3647 void *data = val;
3648 int r = X86EMUL_CONTINUE;
3650 while (bytes) {
3651 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3652 exception);
3653 unsigned offset = addr & (PAGE_SIZE-1);
3654 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3655 int ret;
3657 if (gpa == UNMAPPED_GVA)
3658 return X86EMUL_PROPAGATE_FAULT;
3659 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3660 if (ret < 0) {
3661 r = X86EMUL_IO_NEEDED;
3662 goto out;
3665 bytes -= toread;
3666 data += toread;
3667 addr += toread;
3669 out:
3670 return r;
3673 /* used for instruction fetching */
3674 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3675 struct kvm_vcpu *vcpu,
3676 struct x86_exception *exception)
3678 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3679 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3680 access | PFERR_FETCH_MASK,
3681 exception);
3684 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3685 struct kvm_vcpu *vcpu,
3686 struct x86_exception *exception)
3688 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3689 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3690 exception);
3693 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3694 struct kvm_vcpu *vcpu,
3695 struct x86_exception *exception)
3697 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3700 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3701 unsigned int bytes,
3702 struct kvm_vcpu *vcpu,
3703 struct x86_exception *exception)
3705 void *data = val;
3706 int r = X86EMUL_CONTINUE;
3708 while (bytes) {
3709 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3710 PFERR_WRITE_MASK,
3711 exception);
3712 unsigned offset = addr & (PAGE_SIZE-1);
3713 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3714 int ret;
3716 if (gpa == UNMAPPED_GVA)
3717 return X86EMUL_PROPAGATE_FAULT;
3718 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3719 if (ret < 0) {
3720 r = X86EMUL_IO_NEEDED;
3721 goto out;
3724 bytes -= towrite;
3725 data += towrite;
3726 addr += towrite;
3728 out:
3729 return r;
3732 static int emulator_read_emulated(unsigned long addr,
3733 void *val,
3734 unsigned int bytes,
3735 struct x86_exception *exception,
3736 struct kvm_vcpu *vcpu)
3738 gpa_t gpa;
3740 if (vcpu->mmio_read_completed) {
3741 memcpy(val, vcpu->mmio_data, bytes);
3742 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3743 vcpu->mmio_phys_addr, *(u64 *)val);
3744 vcpu->mmio_read_completed = 0;
3745 return X86EMUL_CONTINUE;
3748 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
3750 if (gpa == UNMAPPED_GVA)
3751 return X86EMUL_PROPAGATE_FAULT;
3753 /* For APIC access vmexit */
3754 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3755 goto mmio;
3757 if (kvm_read_guest_virt(addr, val, bytes, vcpu, exception)
3758 == X86EMUL_CONTINUE)
3759 return X86EMUL_CONTINUE;
3761 mmio:
3763 * Is this MMIO handled locally?
3765 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3766 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3767 return X86EMUL_CONTINUE;
3770 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3772 vcpu->mmio_needed = 1;
3773 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3774 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3775 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3776 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3778 return X86EMUL_IO_NEEDED;
3781 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3782 const void *val, int bytes)
3784 int ret;
3786 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3787 if (ret < 0)
3788 return 0;
3789 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3790 return 1;
3793 static int emulator_write_emulated_onepage(unsigned long addr,
3794 const void *val,
3795 unsigned int bytes,
3796 struct x86_exception *exception,
3797 struct kvm_vcpu *vcpu)
3799 gpa_t gpa;
3801 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
3803 if (gpa == UNMAPPED_GVA)
3804 return X86EMUL_PROPAGATE_FAULT;
3806 /* For APIC access vmexit */
3807 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3808 goto mmio;
3810 if (emulator_write_phys(vcpu, gpa, val, bytes))
3811 return X86EMUL_CONTINUE;
3813 mmio:
3814 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3816 * Is this MMIO handled locally?
3818 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3819 return X86EMUL_CONTINUE;
3821 vcpu->mmio_needed = 1;
3822 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3823 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3824 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3825 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3826 memcpy(vcpu->run->mmio.data, val, bytes);
3828 return X86EMUL_CONTINUE;
3831 int emulator_write_emulated(unsigned long addr,
3832 const void *val,
3833 unsigned int bytes,
3834 struct x86_exception *exception,
3835 struct kvm_vcpu *vcpu)
3837 /* Crossing a page boundary? */
3838 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3839 int rc, now;
3841 now = -addr & ~PAGE_MASK;
3842 rc = emulator_write_emulated_onepage(addr, val, now, exception,
3843 vcpu);
3844 if (rc != X86EMUL_CONTINUE)
3845 return rc;
3846 addr += now;
3847 val += now;
3848 bytes -= now;
3850 return emulator_write_emulated_onepage(addr, val, bytes, exception,
3851 vcpu);
3854 #define CMPXCHG_TYPE(t, ptr, old, new) \
3855 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3857 #ifdef CONFIG_X86_64
3858 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3859 #else
3860 # define CMPXCHG64(ptr, old, new) \
3861 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3862 #endif
3864 static int emulator_cmpxchg_emulated(unsigned long addr,
3865 const void *old,
3866 const void *new,
3867 unsigned int bytes,
3868 struct x86_exception *exception,
3869 struct kvm_vcpu *vcpu)
3871 gpa_t gpa;
3872 struct page *page;
3873 char *kaddr;
3874 bool exchanged;
3876 /* guests cmpxchg8b have to be emulated atomically */
3877 if (bytes > 8 || (bytes & (bytes - 1)))
3878 goto emul_write;
3880 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3882 if (gpa == UNMAPPED_GVA ||
3883 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3884 goto emul_write;
3886 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3887 goto emul_write;
3889 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3890 if (is_error_page(page)) {
3891 kvm_release_page_clean(page);
3892 goto emul_write;
3895 kaddr = kmap_atomic(page, KM_USER0);
3896 kaddr += offset_in_page(gpa);
3897 switch (bytes) {
3898 case 1:
3899 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3900 break;
3901 case 2:
3902 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3903 break;
3904 case 4:
3905 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3906 break;
3907 case 8:
3908 exchanged = CMPXCHG64(kaddr, old, new);
3909 break;
3910 default:
3911 BUG();
3913 kunmap_atomic(kaddr, KM_USER0);
3914 kvm_release_page_dirty(page);
3916 if (!exchanged)
3917 return X86EMUL_CMPXCHG_FAILED;
3919 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3921 return X86EMUL_CONTINUE;
3923 emul_write:
3924 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3926 return emulator_write_emulated(addr, new, bytes, exception, vcpu);
3929 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3931 /* TODO: String I/O for in kernel device */
3932 int r;
3934 if (vcpu->arch.pio.in)
3935 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3936 vcpu->arch.pio.size, pd);
3937 else
3938 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3939 vcpu->arch.pio.port, vcpu->arch.pio.size,
3940 pd);
3941 return r;
3945 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3946 unsigned int count, struct kvm_vcpu *vcpu)
3948 if (vcpu->arch.pio.count)
3949 goto data_avail;
3951 trace_kvm_pio(0, port, size, 1);
3953 vcpu->arch.pio.port = port;
3954 vcpu->arch.pio.in = 1;
3955 vcpu->arch.pio.count = count;
3956 vcpu->arch.pio.size = size;
3958 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3959 data_avail:
3960 memcpy(val, vcpu->arch.pio_data, size * count);
3961 vcpu->arch.pio.count = 0;
3962 return 1;
3965 vcpu->run->exit_reason = KVM_EXIT_IO;
3966 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3967 vcpu->run->io.size = size;
3968 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3969 vcpu->run->io.count = count;
3970 vcpu->run->io.port = port;
3972 return 0;
3975 static int emulator_pio_out_emulated(int size, unsigned short port,
3976 const void *val, unsigned int count,
3977 struct kvm_vcpu *vcpu)
3979 trace_kvm_pio(1, port, size, 1);
3981 vcpu->arch.pio.port = port;
3982 vcpu->arch.pio.in = 0;
3983 vcpu->arch.pio.count = count;
3984 vcpu->arch.pio.size = size;
3986 memcpy(vcpu->arch.pio_data, val, size * count);
3988 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3989 vcpu->arch.pio.count = 0;
3990 return 1;
3993 vcpu->run->exit_reason = KVM_EXIT_IO;
3994 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3995 vcpu->run->io.size = size;
3996 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3997 vcpu->run->io.count = count;
3998 vcpu->run->io.port = port;
4000 return 0;
4003 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4005 return kvm_x86_ops->get_segment_base(vcpu, seg);
4008 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4010 kvm_mmu_invlpg(vcpu, address);
4011 return X86EMUL_CONTINUE;
4014 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4016 if (!need_emulate_wbinvd(vcpu))
4017 return X86EMUL_CONTINUE;
4019 if (kvm_x86_ops->has_wbinvd_exit()) {
4020 int cpu = get_cpu();
4022 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4023 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4024 wbinvd_ipi, NULL, 1);
4025 put_cpu();
4026 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4027 } else
4028 wbinvd();
4029 return X86EMUL_CONTINUE;
4031 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4033 int emulate_clts(struct kvm_vcpu *vcpu)
4035 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4036 kvm_x86_ops->fpu_activate(vcpu);
4037 return X86EMUL_CONTINUE;
4040 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4042 return _kvm_get_dr(vcpu, dr, dest);
4045 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4048 return __kvm_set_dr(vcpu, dr, value);
4051 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4053 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4056 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4058 unsigned long value;
4060 switch (cr) {
4061 case 0:
4062 value = kvm_read_cr0(vcpu);
4063 break;
4064 case 2:
4065 value = vcpu->arch.cr2;
4066 break;
4067 case 3:
4068 value = vcpu->arch.cr3;
4069 break;
4070 case 4:
4071 value = kvm_read_cr4(vcpu);
4072 break;
4073 case 8:
4074 value = kvm_get_cr8(vcpu);
4075 break;
4076 default:
4077 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4078 return 0;
4081 return value;
4084 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4086 int res = 0;
4088 switch (cr) {
4089 case 0:
4090 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4091 break;
4092 case 2:
4093 vcpu->arch.cr2 = val;
4094 break;
4095 case 3:
4096 res = kvm_set_cr3(vcpu, val);
4097 break;
4098 case 4:
4099 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4100 break;
4101 case 8:
4102 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4103 break;
4104 default:
4105 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4106 res = -1;
4109 return res;
4112 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4114 return kvm_x86_ops->get_cpl(vcpu);
4117 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4119 kvm_x86_ops->get_gdt(vcpu, dt);
4122 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4124 kvm_x86_ops->get_idt(vcpu, dt);
4127 static unsigned long emulator_get_cached_segment_base(int seg,
4128 struct kvm_vcpu *vcpu)
4130 return get_segment_base(vcpu, seg);
4133 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4134 struct kvm_vcpu *vcpu)
4136 struct kvm_segment var;
4138 kvm_get_segment(vcpu, &var, seg);
4140 if (var.unusable)
4141 return false;
4143 if (var.g)
4144 var.limit >>= 12;
4145 set_desc_limit(desc, var.limit);
4146 set_desc_base(desc, (unsigned long)var.base);
4147 desc->type = var.type;
4148 desc->s = var.s;
4149 desc->dpl = var.dpl;
4150 desc->p = var.present;
4151 desc->avl = var.avl;
4152 desc->l = var.l;
4153 desc->d = var.db;
4154 desc->g = var.g;
4156 return true;
4159 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4160 struct kvm_vcpu *vcpu)
4162 struct kvm_segment var;
4164 /* needed to preserve selector */
4165 kvm_get_segment(vcpu, &var, seg);
4167 var.base = get_desc_base(desc);
4168 var.limit = get_desc_limit(desc);
4169 if (desc->g)
4170 var.limit = (var.limit << 12) | 0xfff;
4171 var.type = desc->type;
4172 var.present = desc->p;
4173 var.dpl = desc->dpl;
4174 var.db = desc->d;
4175 var.s = desc->s;
4176 var.l = desc->l;
4177 var.g = desc->g;
4178 var.avl = desc->avl;
4179 var.present = desc->p;
4180 var.unusable = !var.present;
4181 var.padding = 0;
4183 kvm_set_segment(vcpu, &var, seg);
4184 return;
4187 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4189 struct kvm_segment kvm_seg;
4191 kvm_get_segment(vcpu, &kvm_seg, seg);
4192 return kvm_seg.selector;
4195 static void emulator_set_segment_selector(u16 sel, int seg,
4196 struct kvm_vcpu *vcpu)
4198 struct kvm_segment kvm_seg;
4200 kvm_get_segment(vcpu, &kvm_seg, seg);
4201 kvm_seg.selector = sel;
4202 kvm_set_segment(vcpu, &kvm_seg, seg);
4205 static struct x86_emulate_ops emulate_ops = {
4206 .read_std = kvm_read_guest_virt_system,
4207 .write_std = kvm_write_guest_virt_system,
4208 .fetch = kvm_fetch_guest_virt,
4209 .read_emulated = emulator_read_emulated,
4210 .write_emulated = emulator_write_emulated,
4211 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4212 .pio_in_emulated = emulator_pio_in_emulated,
4213 .pio_out_emulated = emulator_pio_out_emulated,
4214 .get_cached_descriptor = emulator_get_cached_descriptor,
4215 .set_cached_descriptor = emulator_set_cached_descriptor,
4216 .get_segment_selector = emulator_get_segment_selector,
4217 .set_segment_selector = emulator_set_segment_selector,
4218 .get_cached_segment_base = emulator_get_cached_segment_base,
4219 .get_gdt = emulator_get_gdt,
4220 .get_idt = emulator_get_idt,
4221 .get_cr = emulator_get_cr,
4222 .set_cr = emulator_set_cr,
4223 .cpl = emulator_get_cpl,
4224 .get_dr = emulator_get_dr,
4225 .set_dr = emulator_set_dr,
4226 .set_msr = kvm_set_msr,
4227 .get_msr = kvm_get_msr,
4230 static void cache_all_regs(struct kvm_vcpu *vcpu)
4232 kvm_register_read(vcpu, VCPU_REGS_RAX);
4233 kvm_register_read(vcpu, VCPU_REGS_RSP);
4234 kvm_register_read(vcpu, VCPU_REGS_RIP);
4235 vcpu->arch.regs_dirty = ~0;
4238 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4240 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4242 * an sti; sti; sequence only disable interrupts for the first
4243 * instruction. So, if the last instruction, be it emulated or
4244 * not, left the system with the INT_STI flag enabled, it
4245 * means that the last instruction is an sti. We should not
4246 * leave the flag on in this case. The same goes for mov ss
4248 if (!(int_shadow & mask))
4249 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4252 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4254 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4255 if (ctxt->exception.vector == PF_VECTOR)
4256 kvm_propagate_fault(vcpu, &ctxt->exception);
4257 else if (ctxt->exception.error_code_valid)
4258 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4259 ctxt->exception.error_code);
4260 else
4261 kvm_queue_exception(vcpu, ctxt->exception.vector);
4264 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4266 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4267 int cs_db, cs_l;
4269 cache_all_regs(vcpu);
4271 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4273 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4274 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4275 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4276 vcpu->arch.emulate_ctxt.mode =
4277 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4278 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4279 ? X86EMUL_MODE_VM86 : cs_l
4280 ? X86EMUL_MODE_PROT64 : cs_db
4281 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4282 memset(c, 0, sizeof(struct decode_cache));
4283 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4286 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4288 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4289 int ret;
4291 init_emulate_ctxt(vcpu);
4293 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4294 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4295 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4296 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4298 if (ret != X86EMUL_CONTINUE)
4299 return EMULATE_FAIL;
4301 vcpu->arch.emulate_ctxt.eip = c->eip;
4302 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4303 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4304 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4306 if (irq == NMI_VECTOR)
4307 vcpu->arch.nmi_pending = false;
4308 else
4309 vcpu->arch.interrupt.pending = false;
4311 return EMULATE_DONE;
4313 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4315 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4317 int r = EMULATE_DONE;
4319 ++vcpu->stat.insn_emulation_fail;
4320 trace_kvm_emulate_insn_failed(vcpu);
4321 if (!is_guest_mode(vcpu)) {
4322 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4323 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4324 vcpu->run->internal.ndata = 0;
4325 r = EMULATE_FAIL;
4327 kvm_queue_exception(vcpu, UD_VECTOR);
4329 return r;
4332 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4334 gpa_t gpa;
4336 if (tdp_enabled)
4337 return false;
4340 * if emulation was due to access to shadowed page table
4341 * and it failed try to unshadow page and re-entetr the
4342 * guest to let CPU execute the instruction.
4344 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4345 return true;
4347 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4349 if (gpa == UNMAPPED_GVA)
4350 return true; /* let cpu generate fault */
4352 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4353 return true;
4355 return false;
4358 int emulate_instruction(struct kvm_vcpu *vcpu,
4359 unsigned long cr2,
4360 u16 error_code,
4361 int emulation_type)
4363 int r;
4364 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4366 kvm_clear_exception_queue(vcpu);
4367 vcpu->arch.mmio_fault_cr2 = cr2;
4369 * TODO: fix emulate.c to use guest_read/write_register
4370 * instead of direct ->regs accesses, can save hundred cycles
4371 * on Intel for instructions that don't read/change RSP, for
4372 * for example.
4374 cache_all_regs(vcpu);
4376 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4377 init_emulate_ctxt(vcpu);
4378 vcpu->arch.emulate_ctxt.interruptibility = 0;
4379 vcpu->arch.emulate_ctxt.have_exception = false;
4380 vcpu->arch.emulate_ctxt.perm_ok = false;
4382 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4383 if (r == X86EMUL_PROPAGATE_FAULT)
4384 goto done;
4386 trace_kvm_emulate_insn_start(vcpu);
4388 /* Only allow emulation of specific instructions on #UD
4389 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4390 if (emulation_type & EMULTYPE_TRAP_UD) {
4391 if (!c->twobyte)
4392 return EMULATE_FAIL;
4393 switch (c->b) {
4394 case 0x01: /* VMMCALL */
4395 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4396 return EMULATE_FAIL;
4397 break;
4398 case 0x34: /* sysenter */
4399 case 0x35: /* sysexit */
4400 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4401 return EMULATE_FAIL;
4402 break;
4403 case 0x05: /* syscall */
4404 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4405 return EMULATE_FAIL;
4406 break;
4407 default:
4408 return EMULATE_FAIL;
4411 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4412 return EMULATE_FAIL;
4415 ++vcpu->stat.insn_emulation;
4416 if (r) {
4417 if (reexecute_instruction(vcpu, cr2))
4418 return EMULATE_DONE;
4419 if (emulation_type & EMULTYPE_SKIP)
4420 return EMULATE_FAIL;
4421 return handle_emulation_failure(vcpu);
4425 if (emulation_type & EMULTYPE_SKIP) {
4426 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4427 return EMULATE_DONE;
4430 /* this is needed for vmware backdor interface to work since it
4431 changes registers values during IO operation */
4432 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4434 restart:
4435 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4437 if (r == EMULATION_FAILED) {
4438 if (reexecute_instruction(vcpu, cr2))
4439 return EMULATE_DONE;
4441 return handle_emulation_failure(vcpu);
4444 done:
4445 if (vcpu->arch.emulate_ctxt.have_exception) {
4446 inject_emulated_exception(vcpu);
4447 r = EMULATE_DONE;
4448 } else if (vcpu->arch.pio.count) {
4449 if (!vcpu->arch.pio.in)
4450 vcpu->arch.pio.count = 0;
4451 r = EMULATE_DO_MMIO;
4452 } else if (vcpu->mmio_needed) {
4453 if (vcpu->mmio_is_write)
4454 vcpu->mmio_needed = 0;
4455 r = EMULATE_DO_MMIO;
4456 } else if (r == EMULATION_RESTART)
4457 goto restart;
4458 else
4459 r = EMULATE_DONE;
4461 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4462 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4463 kvm_make_request(KVM_REQ_EVENT, vcpu);
4464 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4465 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4467 return r;
4469 EXPORT_SYMBOL_GPL(emulate_instruction);
4471 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4473 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4474 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4475 /* do not return to emulator after return from userspace */
4476 vcpu->arch.pio.count = 0;
4477 return ret;
4479 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4481 static void tsc_bad(void *info)
4483 __get_cpu_var(cpu_tsc_khz) = 0;
4486 static void tsc_khz_changed(void *data)
4488 struct cpufreq_freqs *freq = data;
4489 unsigned long khz = 0;
4491 if (data)
4492 khz = freq->new;
4493 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4494 khz = cpufreq_quick_get(raw_smp_processor_id());
4495 if (!khz)
4496 khz = tsc_khz;
4497 __get_cpu_var(cpu_tsc_khz) = khz;
4500 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4501 void *data)
4503 struct cpufreq_freqs *freq = data;
4504 struct kvm *kvm;
4505 struct kvm_vcpu *vcpu;
4506 int i, send_ipi = 0;
4509 * We allow guests to temporarily run on slowing clocks,
4510 * provided we notify them after, or to run on accelerating
4511 * clocks, provided we notify them before. Thus time never
4512 * goes backwards.
4514 * However, we have a problem. We can't atomically update
4515 * the frequency of a given CPU from this function; it is
4516 * merely a notifier, which can be called from any CPU.
4517 * Changing the TSC frequency at arbitrary points in time
4518 * requires a recomputation of local variables related to
4519 * the TSC for each VCPU. We must flag these local variables
4520 * to be updated and be sure the update takes place with the
4521 * new frequency before any guests proceed.
4523 * Unfortunately, the combination of hotplug CPU and frequency
4524 * change creates an intractable locking scenario; the order
4525 * of when these callouts happen is undefined with respect to
4526 * CPU hotplug, and they can race with each other. As such,
4527 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4528 * undefined; you can actually have a CPU frequency change take
4529 * place in between the computation of X and the setting of the
4530 * variable. To protect against this problem, all updates of
4531 * the per_cpu tsc_khz variable are done in an interrupt
4532 * protected IPI, and all callers wishing to update the value
4533 * must wait for a synchronous IPI to complete (which is trivial
4534 * if the caller is on the CPU already). This establishes the
4535 * necessary total order on variable updates.
4537 * Note that because a guest time update may take place
4538 * anytime after the setting of the VCPU's request bit, the
4539 * correct TSC value must be set before the request. However,
4540 * to ensure the update actually makes it to any guest which
4541 * starts running in hardware virtualization between the set
4542 * and the acquisition of the spinlock, we must also ping the
4543 * CPU after setting the request bit.
4547 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4548 return 0;
4549 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4550 return 0;
4552 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4554 spin_lock(&kvm_lock);
4555 list_for_each_entry(kvm, &vm_list, vm_list) {
4556 kvm_for_each_vcpu(i, vcpu, kvm) {
4557 if (vcpu->cpu != freq->cpu)
4558 continue;
4559 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4560 if (vcpu->cpu != smp_processor_id())
4561 send_ipi = 1;
4564 spin_unlock(&kvm_lock);
4566 if (freq->old < freq->new && send_ipi) {
4568 * We upscale the frequency. Must make the guest
4569 * doesn't see old kvmclock values while running with
4570 * the new frequency, otherwise we risk the guest sees
4571 * time go backwards.
4573 * In case we update the frequency for another cpu
4574 * (which might be in guest context) send an interrupt
4575 * to kick the cpu out of guest context. Next time
4576 * guest context is entered kvmclock will be updated,
4577 * so the guest will not see stale values.
4579 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4581 return 0;
4584 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4585 .notifier_call = kvmclock_cpufreq_notifier
4588 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4589 unsigned long action, void *hcpu)
4591 unsigned int cpu = (unsigned long)hcpu;
4593 switch (action) {
4594 case CPU_ONLINE:
4595 case CPU_DOWN_FAILED:
4596 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4597 break;
4598 case CPU_DOWN_PREPARE:
4599 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4600 break;
4602 return NOTIFY_OK;
4605 static struct notifier_block kvmclock_cpu_notifier_block = {
4606 .notifier_call = kvmclock_cpu_notifier,
4607 .priority = -INT_MAX
4610 static void kvm_timer_init(void)
4612 int cpu;
4614 max_tsc_khz = tsc_khz;
4615 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4616 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4617 #ifdef CONFIG_CPU_FREQ
4618 struct cpufreq_policy policy;
4619 memset(&policy, 0, sizeof(policy));
4620 cpu = get_cpu();
4621 cpufreq_get_policy(&policy, cpu);
4622 if (policy.cpuinfo.max_freq)
4623 max_tsc_khz = policy.cpuinfo.max_freq;
4624 put_cpu();
4625 #endif
4626 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4627 CPUFREQ_TRANSITION_NOTIFIER);
4629 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4630 for_each_online_cpu(cpu)
4631 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4634 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4636 static int kvm_is_in_guest(void)
4638 return percpu_read(current_vcpu) != NULL;
4641 static int kvm_is_user_mode(void)
4643 int user_mode = 3;
4645 if (percpu_read(current_vcpu))
4646 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4648 return user_mode != 0;
4651 static unsigned long kvm_get_guest_ip(void)
4653 unsigned long ip = 0;
4655 if (percpu_read(current_vcpu))
4656 ip = kvm_rip_read(percpu_read(current_vcpu));
4658 return ip;
4661 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4662 .is_in_guest = kvm_is_in_guest,
4663 .is_user_mode = kvm_is_user_mode,
4664 .get_guest_ip = kvm_get_guest_ip,
4667 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4669 percpu_write(current_vcpu, vcpu);
4671 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4673 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4675 percpu_write(current_vcpu, NULL);
4677 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4679 int kvm_arch_init(void *opaque)
4681 int r;
4682 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4684 if (kvm_x86_ops) {
4685 printk(KERN_ERR "kvm: already loaded the other module\n");
4686 r = -EEXIST;
4687 goto out;
4690 if (!ops->cpu_has_kvm_support()) {
4691 printk(KERN_ERR "kvm: no hardware support\n");
4692 r = -EOPNOTSUPP;
4693 goto out;
4695 if (ops->disabled_by_bios()) {
4696 printk(KERN_ERR "kvm: disabled by bios\n");
4697 r = -EOPNOTSUPP;
4698 goto out;
4701 r = kvm_mmu_module_init();
4702 if (r)
4703 goto out;
4705 kvm_init_msr_list();
4707 kvm_x86_ops = ops;
4708 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4709 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4710 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4712 kvm_timer_init();
4714 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4716 if (cpu_has_xsave)
4717 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4719 return 0;
4721 out:
4722 return r;
4725 void kvm_arch_exit(void)
4727 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4729 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4730 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4731 CPUFREQ_TRANSITION_NOTIFIER);
4732 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4733 kvm_x86_ops = NULL;
4734 kvm_mmu_module_exit();
4737 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4739 ++vcpu->stat.halt_exits;
4740 if (irqchip_in_kernel(vcpu->kvm)) {
4741 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4742 return 1;
4743 } else {
4744 vcpu->run->exit_reason = KVM_EXIT_HLT;
4745 return 0;
4748 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4750 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4751 unsigned long a1)
4753 if (is_long_mode(vcpu))
4754 return a0;
4755 else
4756 return a0 | ((gpa_t)a1 << 32);
4759 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4761 u64 param, ingpa, outgpa, ret;
4762 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4763 bool fast, longmode;
4764 int cs_db, cs_l;
4767 * hypercall generates UD from non zero cpl and real mode
4768 * per HYPER-V spec
4770 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4771 kvm_queue_exception(vcpu, UD_VECTOR);
4772 return 0;
4775 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4776 longmode = is_long_mode(vcpu) && cs_l == 1;
4778 if (!longmode) {
4779 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4780 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4781 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4782 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4783 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4784 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4786 #ifdef CONFIG_X86_64
4787 else {
4788 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4789 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4790 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4792 #endif
4794 code = param & 0xffff;
4795 fast = (param >> 16) & 0x1;
4796 rep_cnt = (param >> 32) & 0xfff;
4797 rep_idx = (param >> 48) & 0xfff;
4799 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4801 switch (code) {
4802 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4803 kvm_vcpu_on_spin(vcpu);
4804 break;
4805 default:
4806 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4807 break;
4810 ret = res | (((u64)rep_done & 0xfff) << 32);
4811 if (longmode) {
4812 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4813 } else {
4814 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4815 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4818 return 1;
4821 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4823 unsigned long nr, a0, a1, a2, a3, ret;
4824 int r = 1;
4826 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4827 return kvm_hv_hypercall(vcpu);
4829 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4830 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4831 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4832 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4833 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4835 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4837 if (!is_long_mode(vcpu)) {
4838 nr &= 0xFFFFFFFF;
4839 a0 &= 0xFFFFFFFF;
4840 a1 &= 0xFFFFFFFF;
4841 a2 &= 0xFFFFFFFF;
4842 a3 &= 0xFFFFFFFF;
4845 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4846 ret = -KVM_EPERM;
4847 goto out;
4850 switch (nr) {
4851 case KVM_HC_VAPIC_POLL_IRQ:
4852 ret = 0;
4853 break;
4854 case KVM_HC_MMU_OP:
4855 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4856 break;
4857 default:
4858 ret = -KVM_ENOSYS;
4859 break;
4861 out:
4862 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4863 ++vcpu->stat.hypercalls;
4864 return r;
4866 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4868 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4870 char instruction[3];
4871 unsigned long rip = kvm_rip_read(vcpu);
4874 * Blow out the MMU to ensure that no other VCPU has an active mapping
4875 * to ensure that the updated hypercall appears atomically across all
4876 * VCPUs.
4878 kvm_mmu_zap_all(vcpu->kvm);
4880 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4882 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4885 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4887 struct desc_ptr dt = { limit, base };
4889 kvm_x86_ops->set_gdt(vcpu, &dt);
4892 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4894 struct desc_ptr dt = { limit, base };
4896 kvm_x86_ops->set_idt(vcpu, &dt);
4899 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4901 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4902 int j, nent = vcpu->arch.cpuid_nent;
4904 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4905 /* when no next entry is found, the current entry[i] is reselected */
4906 for (j = i + 1; ; j = (j + 1) % nent) {
4907 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4908 if (ej->function == e->function) {
4909 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4910 return j;
4913 return 0; /* silence gcc, even though control never reaches here */
4916 /* find an entry with matching function, matching index (if needed), and that
4917 * should be read next (if it's stateful) */
4918 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4919 u32 function, u32 index)
4921 if (e->function != function)
4922 return 0;
4923 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4924 return 0;
4925 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4926 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4927 return 0;
4928 return 1;
4931 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4932 u32 function, u32 index)
4934 int i;
4935 struct kvm_cpuid_entry2 *best = NULL;
4937 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4938 struct kvm_cpuid_entry2 *e;
4940 e = &vcpu->arch.cpuid_entries[i];
4941 if (is_matching_cpuid_entry(e, function, index)) {
4942 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4943 move_to_next_stateful_cpuid_entry(vcpu, i);
4944 best = e;
4945 break;
4948 * Both basic or both extended?
4950 if (((e->function ^ function) & 0x80000000) == 0)
4951 if (!best || e->function > best->function)
4952 best = e;
4954 return best;
4956 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4958 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4960 struct kvm_cpuid_entry2 *best;
4962 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4963 if (!best || best->eax < 0x80000008)
4964 goto not_found;
4965 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4966 if (best)
4967 return best->eax & 0xff;
4968 not_found:
4969 return 36;
4972 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4974 u32 function, index;
4975 struct kvm_cpuid_entry2 *best;
4977 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4978 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4979 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4980 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4981 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4982 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4983 best = kvm_find_cpuid_entry(vcpu, function, index);
4984 if (best) {
4985 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4986 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4987 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4988 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4990 kvm_x86_ops->skip_emulated_instruction(vcpu);
4991 trace_kvm_cpuid(function,
4992 kvm_register_read(vcpu, VCPU_REGS_RAX),
4993 kvm_register_read(vcpu, VCPU_REGS_RBX),
4994 kvm_register_read(vcpu, VCPU_REGS_RCX),
4995 kvm_register_read(vcpu, VCPU_REGS_RDX));
4997 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5000 * Check if userspace requested an interrupt window, and that the
5001 * interrupt window is open.
5003 * No need to exit to userspace if we already have an interrupt queued.
5005 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5007 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5008 vcpu->run->request_interrupt_window &&
5009 kvm_arch_interrupt_allowed(vcpu));
5012 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5014 struct kvm_run *kvm_run = vcpu->run;
5016 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5017 kvm_run->cr8 = kvm_get_cr8(vcpu);
5018 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5019 if (irqchip_in_kernel(vcpu->kvm))
5020 kvm_run->ready_for_interrupt_injection = 1;
5021 else
5022 kvm_run->ready_for_interrupt_injection =
5023 kvm_arch_interrupt_allowed(vcpu) &&
5024 !kvm_cpu_has_interrupt(vcpu) &&
5025 !kvm_event_needs_reinjection(vcpu);
5028 static void vapic_enter(struct kvm_vcpu *vcpu)
5030 struct kvm_lapic *apic = vcpu->arch.apic;
5031 struct page *page;
5033 if (!apic || !apic->vapic_addr)
5034 return;
5036 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5038 vcpu->arch.apic->vapic_page = page;
5041 static void vapic_exit(struct kvm_vcpu *vcpu)
5043 struct kvm_lapic *apic = vcpu->arch.apic;
5044 int idx;
5046 if (!apic || !apic->vapic_addr)
5047 return;
5049 idx = srcu_read_lock(&vcpu->kvm->srcu);
5050 kvm_release_page_dirty(apic->vapic_page);
5051 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5052 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5055 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5057 int max_irr, tpr;
5059 if (!kvm_x86_ops->update_cr8_intercept)
5060 return;
5062 if (!vcpu->arch.apic)
5063 return;
5065 if (!vcpu->arch.apic->vapic_addr)
5066 max_irr = kvm_lapic_find_highest_irr(vcpu);
5067 else
5068 max_irr = -1;
5070 if (max_irr != -1)
5071 max_irr >>= 4;
5073 tpr = kvm_lapic_get_cr8(vcpu);
5075 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5078 static void inject_pending_event(struct kvm_vcpu *vcpu)
5080 /* try to reinject previous events if any */
5081 if (vcpu->arch.exception.pending) {
5082 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5083 vcpu->arch.exception.has_error_code,
5084 vcpu->arch.exception.error_code);
5085 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5086 vcpu->arch.exception.has_error_code,
5087 vcpu->arch.exception.error_code,
5088 vcpu->arch.exception.reinject);
5089 return;
5092 if (vcpu->arch.nmi_injected) {
5093 kvm_x86_ops->set_nmi(vcpu);
5094 return;
5097 if (vcpu->arch.interrupt.pending) {
5098 kvm_x86_ops->set_irq(vcpu);
5099 return;
5102 /* try to inject new event if pending */
5103 if (vcpu->arch.nmi_pending) {
5104 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5105 vcpu->arch.nmi_pending = false;
5106 vcpu->arch.nmi_injected = true;
5107 kvm_x86_ops->set_nmi(vcpu);
5109 } else if (kvm_cpu_has_interrupt(vcpu)) {
5110 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5111 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5112 false);
5113 kvm_x86_ops->set_irq(vcpu);
5118 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5120 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5121 !vcpu->guest_xcr0_loaded) {
5122 /* kvm_set_xcr() also depends on this */
5123 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5124 vcpu->guest_xcr0_loaded = 1;
5128 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5130 if (vcpu->guest_xcr0_loaded) {
5131 if (vcpu->arch.xcr0 != host_xcr0)
5132 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5133 vcpu->guest_xcr0_loaded = 0;
5137 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5139 int r;
5140 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5141 vcpu->run->request_interrupt_window;
5143 if (vcpu->requests) {
5144 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5145 kvm_mmu_unload(vcpu);
5146 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5147 __kvm_migrate_timers(vcpu);
5148 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5149 r = kvm_guest_time_update(vcpu);
5150 if (unlikely(r))
5151 goto out;
5153 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5154 kvm_mmu_sync_roots(vcpu);
5155 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5156 kvm_x86_ops->tlb_flush(vcpu);
5157 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5158 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5159 r = 0;
5160 goto out;
5162 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5163 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5164 r = 0;
5165 goto out;
5167 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5168 vcpu->fpu_active = 0;
5169 kvm_x86_ops->fpu_deactivate(vcpu);
5171 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5172 /* Page is swapped out. Do synthetic halt */
5173 vcpu->arch.apf.halted = true;
5174 r = 1;
5175 goto out;
5179 r = kvm_mmu_reload(vcpu);
5180 if (unlikely(r))
5181 goto out;
5183 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5184 inject_pending_event(vcpu);
5186 /* enable NMI/IRQ window open exits if needed */
5187 if (vcpu->arch.nmi_pending)
5188 kvm_x86_ops->enable_nmi_window(vcpu);
5189 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5190 kvm_x86_ops->enable_irq_window(vcpu);
5192 if (kvm_lapic_enabled(vcpu)) {
5193 update_cr8_intercept(vcpu);
5194 kvm_lapic_sync_to_vapic(vcpu);
5198 preempt_disable();
5200 kvm_x86_ops->prepare_guest_switch(vcpu);
5201 if (vcpu->fpu_active)
5202 kvm_load_guest_fpu(vcpu);
5203 kvm_load_guest_xcr0(vcpu);
5205 atomic_set(&vcpu->guest_mode, 1);
5206 smp_wmb();
5208 local_irq_disable();
5210 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5211 || need_resched() || signal_pending(current)) {
5212 atomic_set(&vcpu->guest_mode, 0);
5213 smp_wmb();
5214 local_irq_enable();
5215 preempt_enable();
5216 kvm_x86_ops->cancel_injection(vcpu);
5217 r = 1;
5218 goto out;
5221 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5223 kvm_guest_enter();
5225 if (unlikely(vcpu->arch.switch_db_regs)) {
5226 set_debugreg(0, 7);
5227 set_debugreg(vcpu->arch.eff_db[0], 0);
5228 set_debugreg(vcpu->arch.eff_db[1], 1);
5229 set_debugreg(vcpu->arch.eff_db[2], 2);
5230 set_debugreg(vcpu->arch.eff_db[3], 3);
5233 trace_kvm_entry(vcpu->vcpu_id);
5234 kvm_x86_ops->run(vcpu);
5237 * If the guest has used debug registers, at least dr7
5238 * will be disabled while returning to the host.
5239 * If we don't have active breakpoints in the host, we don't
5240 * care about the messed up debug address registers. But if
5241 * we have some of them active, restore the old state.
5243 if (hw_breakpoint_active())
5244 hw_breakpoint_restore();
5246 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5248 atomic_set(&vcpu->guest_mode, 0);
5249 smp_wmb();
5250 local_irq_enable();
5252 ++vcpu->stat.exits;
5255 * We must have an instruction between local_irq_enable() and
5256 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5257 * the interrupt shadow. The stat.exits increment will do nicely.
5258 * But we need to prevent reordering, hence this barrier():
5260 barrier();
5262 kvm_guest_exit();
5264 preempt_enable();
5266 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5269 * Profile KVM exit RIPs:
5271 if (unlikely(prof_on == KVM_PROFILING)) {
5272 unsigned long rip = kvm_rip_read(vcpu);
5273 profile_hit(KVM_PROFILING, (void *)rip);
5277 kvm_lapic_sync_from_vapic(vcpu);
5279 r = kvm_x86_ops->handle_exit(vcpu);
5280 out:
5281 return r;
5285 static int __vcpu_run(struct kvm_vcpu *vcpu)
5287 int r;
5288 struct kvm *kvm = vcpu->kvm;
5290 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5291 pr_debug("vcpu %d received sipi with vector # %x\n",
5292 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5293 kvm_lapic_reset(vcpu);
5294 r = kvm_arch_vcpu_reset(vcpu);
5295 if (r)
5296 return r;
5297 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5300 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5301 vapic_enter(vcpu);
5303 r = 1;
5304 while (r > 0) {
5305 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5306 !vcpu->arch.apf.halted)
5307 r = vcpu_enter_guest(vcpu);
5308 else {
5309 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5310 kvm_vcpu_block(vcpu);
5311 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5312 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5314 switch(vcpu->arch.mp_state) {
5315 case KVM_MP_STATE_HALTED:
5316 vcpu->arch.mp_state =
5317 KVM_MP_STATE_RUNNABLE;
5318 case KVM_MP_STATE_RUNNABLE:
5319 vcpu->arch.apf.halted = false;
5320 break;
5321 case KVM_MP_STATE_SIPI_RECEIVED:
5322 default:
5323 r = -EINTR;
5324 break;
5329 if (r <= 0)
5330 break;
5332 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5333 if (kvm_cpu_has_pending_timer(vcpu))
5334 kvm_inject_pending_timer_irqs(vcpu);
5336 if (dm_request_for_irq_injection(vcpu)) {
5337 r = -EINTR;
5338 vcpu->run->exit_reason = KVM_EXIT_INTR;
5339 ++vcpu->stat.request_irq_exits;
5342 kvm_check_async_pf_completion(vcpu);
5344 if (signal_pending(current)) {
5345 r = -EINTR;
5346 vcpu->run->exit_reason = KVM_EXIT_INTR;
5347 ++vcpu->stat.signal_exits;
5349 if (need_resched()) {
5350 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5351 kvm_resched(vcpu);
5352 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5356 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5358 vapic_exit(vcpu);
5360 return r;
5363 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5365 int r;
5366 sigset_t sigsaved;
5368 if (vcpu->sigset_active)
5369 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5371 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5372 kvm_vcpu_block(vcpu);
5373 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5374 r = -EAGAIN;
5375 goto out;
5378 /* re-sync apic's tpr */
5379 if (!irqchip_in_kernel(vcpu->kvm))
5380 kvm_set_cr8(vcpu, kvm_run->cr8);
5382 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5383 if (vcpu->mmio_needed) {
5384 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5385 vcpu->mmio_read_completed = 1;
5386 vcpu->mmio_needed = 0;
5388 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5389 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5390 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5391 if (r != EMULATE_DONE) {
5392 r = 0;
5393 goto out;
5396 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5397 kvm_register_write(vcpu, VCPU_REGS_RAX,
5398 kvm_run->hypercall.ret);
5400 r = __vcpu_run(vcpu);
5402 out:
5403 post_kvm_run_save(vcpu);
5404 if (vcpu->sigset_active)
5405 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5407 return r;
5410 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5412 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5413 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5414 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5415 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5416 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5417 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5418 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5419 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5420 #ifdef CONFIG_X86_64
5421 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5422 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5423 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5424 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5425 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5426 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5427 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5428 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5429 #endif
5431 regs->rip = kvm_rip_read(vcpu);
5432 regs->rflags = kvm_get_rflags(vcpu);
5434 return 0;
5437 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5439 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5440 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5441 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5442 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5443 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5444 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5445 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5446 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5447 #ifdef CONFIG_X86_64
5448 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5449 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5450 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5451 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5452 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5453 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5454 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5455 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5456 #endif
5458 kvm_rip_write(vcpu, regs->rip);
5459 kvm_set_rflags(vcpu, regs->rflags);
5461 vcpu->arch.exception.pending = false;
5463 kvm_make_request(KVM_REQ_EVENT, vcpu);
5465 return 0;
5468 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5470 struct kvm_segment cs;
5472 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5473 *db = cs.db;
5474 *l = cs.l;
5476 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5478 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5479 struct kvm_sregs *sregs)
5481 struct desc_ptr dt;
5483 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5484 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5485 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5486 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5487 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5488 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5490 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5491 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5493 kvm_x86_ops->get_idt(vcpu, &dt);
5494 sregs->idt.limit = dt.size;
5495 sregs->idt.base = dt.address;
5496 kvm_x86_ops->get_gdt(vcpu, &dt);
5497 sregs->gdt.limit = dt.size;
5498 sregs->gdt.base = dt.address;
5500 sregs->cr0 = kvm_read_cr0(vcpu);
5501 sregs->cr2 = vcpu->arch.cr2;
5502 sregs->cr3 = vcpu->arch.cr3;
5503 sregs->cr4 = kvm_read_cr4(vcpu);
5504 sregs->cr8 = kvm_get_cr8(vcpu);
5505 sregs->efer = vcpu->arch.efer;
5506 sregs->apic_base = kvm_get_apic_base(vcpu);
5508 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5510 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5511 set_bit(vcpu->arch.interrupt.nr,
5512 (unsigned long *)sregs->interrupt_bitmap);
5514 return 0;
5517 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5518 struct kvm_mp_state *mp_state)
5520 mp_state->mp_state = vcpu->arch.mp_state;
5521 return 0;
5524 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5525 struct kvm_mp_state *mp_state)
5527 vcpu->arch.mp_state = mp_state->mp_state;
5528 kvm_make_request(KVM_REQ_EVENT, vcpu);
5529 return 0;
5532 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5533 bool has_error_code, u32 error_code)
5535 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5536 int ret;
5538 init_emulate_ctxt(vcpu);
5540 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5541 tss_selector, reason, has_error_code,
5542 error_code);
5544 if (ret)
5545 return EMULATE_FAIL;
5547 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5548 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5549 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5550 kvm_make_request(KVM_REQ_EVENT, vcpu);
5551 return EMULATE_DONE;
5553 EXPORT_SYMBOL_GPL(kvm_task_switch);
5555 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5556 struct kvm_sregs *sregs)
5558 int mmu_reset_needed = 0;
5559 int pending_vec, max_bits;
5560 struct desc_ptr dt;
5562 dt.size = sregs->idt.limit;
5563 dt.address = sregs->idt.base;
5564 kvm_x86_ops->set_idt(vcpu, &dt);
5565 dt.size = sregs->gdt.limit;
5566 dt.address = sregs->gdt.base;
5567 kvm_x86_ops->set_gdt(vcpu, &dt);
5569 vcpu->arch.cr2 = sregs->cr2;
5570 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5571 vcpu->arch.cr3 = sregs->cr3;
5573 kvm_set_cr8(vcpu, sregs->cr8);
5575 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5576 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5577 kvm_set_apic_base(vcpu, sregs->apic_base);
5579 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5580 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5581 vcpu->arch.cr0 = sregs->cr0;
5583 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5584 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5585 if (sregs->cr4 & X86_CR4_OSXSAVE)
5586 update_cpuid(vcpu);
5587 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5588 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5589 mmu_reset_needed = 1;
5592 if (mmu_reset_needed)
5593 kvm_mmu_reset_context(vcpu);
5595 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5596 pending_vec = find_first_bit(
5597 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5598 if (pending_vec < max_bits) {
5599 kvm_queue_interrupt(vcpu, pending_vec, false);
5600 pr_debug("Set back pending irq %d\n", pending_vec);
5601 if (irqchip_in_kernel(vcpu->kvm))
5602 kvm_pic_clear_isr_ack(vcpu->kvm);
5605 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5606 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5607 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5608 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5609 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5610 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5612 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5613 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5615 update_cr8_intercept(vcpu);
5617 /* Older userspace won't unhalt the vcpu on reset. */
5618 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5619 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5620 !is_protmode(vcpu))
5621 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5623 kvm_make_request(KVM_REQ_EVENT, vcpu);
5625 return 0;
5628 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5629 struct kvm_guest_debug *dbg)
5631 unsigned long rflags;
5632 int i, r;
5634 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5635 r = -EBUSY;
5636 if (vcpu->arch.exception.pending)
5637 goto out;
5638 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5639 kvm_queue_exception(vcpu, DB_VECTOR);
5640 else
5641 kvm_queue_exception(vcpu, BP_VECTOR);
5645 * Read rflags as long as potentially injected trace flags are still
5646 * filtered out.
5648 rflags = kvm_get_rflags(vcpu);
5650 vcpu->guest_debug = dbg->control;
5651 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5652 vcpu->guest_debug = 0;
5654 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5655 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5656 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5657 vcpu->arch.switch_db_regs =
5658 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5659 } else {
5660 for (i = 0; i < KVM_NR_DB_REGS; i++)
5661 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5662 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5665 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5666 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5667 get_segment_base(vcpu, VCPU_SREG_CS);
5670 * Trigger an rflags update that will inject or remove the trace
5671 * flags.
5673 kvm_set_rflags(vcpu, rflags);
5675 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5677 r = 0;
5679 out:
5681 return r;
5685 * Translate a guest virtual address to a guest physical address.
5687 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5688 struct kvm_translation *tr)
5690 unsigned long vaddr = tr->linear_address;
5691 gpa_t gpa;
5692 int idx;
5694 idx = srcu_read_lock(&vcpu->kvm->srcu);
5695 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5696 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5697 tr->physical_address = gpa;
5698 tr->valid = gpa != UNMAPPED_GVA;
5699 tr->writeable = 1;
5700 tr->usermode = 0;
5702 return 0;
5705 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5707 struct i387_fxsave_struct *fxsave =
5708 &vcpu->arch.guest_fpu.state->fxsave;
5710 memcpy(fpu->fpr, fxsave->st_space, 128);
5711 fpu->fcw = fxsave->cwd;
5712 fpu->fsw = fxsave->swd;
5713 fpu->ftwx = fxsave->twd;
5714 fpu->last_opcode = fxsave->fop;
5715 fpu->last_ip = fxsave->rip;
5716 fpu->last_dp = fxsave->rdp;
5717 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5719 return 0;
5722 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5724 struct i387_fxsave_struct *fxsave =
5725 &vcpu->arch.guest_fpu.state->fxsave;
5727 memcpy(fxsave->st_space, fpu->fpr, 128);
5728 fxsave->cwd = fpu->fcw;
5729 fxsave->swd = fpu->fsw;
5730 fxsave->twd = fpu->ftwx;
5731 fxsave->fop = fpu->last_opcode;
5732 fxsave->rip = fpu->last_ip;
5733 fxsave->rdp = fpu->last_dp;
5734 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5736 return 0;
5739 int fx_init(struct kvm_vcpu *vcpu)
5741 int err;
5743 err = fpu_alloc(&vcpu->arch.guest_fpu);
5744 if (err)
5745 return err;
5747 fpu_finit(&vcpu->arch.guest_fpu);
5750 * Ensure guest xcr0 is valid for loading
5752 vcpu->arch.xcr0 = XSTATE_FP;
5754 vcpu->arch.cr0 |= X86_CR0_ET;
5756 return 0;
5758 EXPORT_SYMBOL_GPL(fx_init);
5760 static void fx_free(struct kvm_vcpu *vcpu)
5762 fpu_free(&vcpu->arch.guest_fpu);
5765 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5767 if (vcpu->guest_fpu_loaded)
5768 return;
5771 * Restore all possible states in the guest,
5772 * and assume host would use all available bits.
5773 * Guest xcr0 would be loaded later.
5775 kvm_put_guest_xcr0(vcpu);
5776 vcpu->guest_fpu_loaded = 1;
5777 unlazy_fpu(current);
5778 fpu_restore_checking(&vcpu->arch.guest_fpu);
5779 trace_kvm_fpu(1);
5782 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5784 kvm_put_guest_xcr0(vcpu);
5786 if (!vcpu->guest_fpu_loaded)
5787 return;
5789 vcpu->guest_fpu_loaded = 0;
5790 fpu_save_init(&vcpu->arch.guest_fpu);
5791 ++vcpu->stat.fpu_reload;
5792 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5793 trace_kvm_fpu(0);
5796 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5798 if (vcpu->arch.time_page) {
5799 kvm_release_page_dirty(vcpu->arch.time_page);
5800 vcpu->arch.time_page = NULL;
5803 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5804 fx_free(vcpu);
5805 kvm_x86_ops->vcpu_free(vcpu);
5808 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5809 unsigned int id)
5811 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5812 printk_once(KERN_WARNING
5813 "kvm: SMP vm created on host with unstable TSC; "
5814 "guest TSC will not be reliable\n");
5815 return kvm_x86_ops->vcpu_create(kvm, id);
5818 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5820 int r;
5822 vcpu->arch.mtrr_state.have_fixed = 1;
5823 vcpu_load(vcpu);
5824 r = kvm_arch_vcpu_reset(vcpu);
5825 if (r == 0)
5826 r = kvm_mmu_setup(vcpu);
5827 vcpu_put(vcpu);
5828 if (r < 0)
5829 goto free_vcpu;
5831 return 0;
5832 free_vcpu:
5833 kvm_x86_ops->vcpu_free(vcpu);
5834 return r;
5837 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5839 vcpu->arch.apf.msr_val = 0;
5841 vcpu_load(vcpu);
5842 kvm_mmu_unload(vcpu);
5843 vcpu_put(vcpu);
5845 fx_free(vcpu);
5846 kvm_x86_ops->vcpu_free(vcpu);
5849 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5851 vcpu->arch.nmi_pending = false;
5852 vcpu->arch.nmi_injected = false;
5854 vcpu->arch.switch_db_regs = 0;
5855 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5856 vcpu->arch.dr6 = DR6_FIXED_1;
5857 vcpu->arch.dr7 = DR7_FIXED_1;
5859 kvm_make_request(KVM_REQ_EVENT, vcpu);
5860 vcpu->arch.apf.msr_val = 0;
5862 kvm_clear_async_pf_completion_queue(vcpu);
5863 kvm_async_pf_hash_reset(vcpu);
5864 vcpu->arch.apf.halted = false;
5866 return kvm_x86_ops->vcpu_reset(vcpu);
5869 int kvm_arch_hardware_enable(void *garbage)
5871 struct kvm *kvm;
5872 struct kvm_vcpu *vcpu;
5873 int i;
5875 kvm_shared_msr_cpu_online();
5876 list_for_each_entry(kvm, &vm_list, vm_list)
5877 kvm_for_each_vcpu(i, vcpu, kvm)
5878 if (vcpu->cpu == smp_processor_id())
5879 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5880 return kvm_x86_ops->hardware_enable(garbage);
5883 void kvm_arch_hardware_disable(void *garbage)
5885 kvm_x86_ops->hardware_disable(garbage);
5886 drop_user_return_notifiers(garbage);
5889 int kvm_arch_hardware_setup(void)
5891 return kvm_x86_ops->hardware_setup();
5894 void kvm_arch_hardware_unsetup(void)
5896 kvm_x86_ops->hardware_unsetup();
5899 void kvm_arch_check_processor_compat(void *rtn)
5901 kvm_x86_ops->check_processor_compatibility(rtn);
5904 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5906 struct page *page;
5907 struct kvm *kvm;
5908 int r;
5910 BUG_ON(vcpu->kvm == NULL);
5911 kvm = vcpu->kvm;
5913 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5914 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5915 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5916 vcpu->arch.mmu.translate_gpa = translate_gpa;
5917 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5918 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5919 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5920 else
5921 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5923 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5924 if (!page) {
5925 r = -ENOMEM;
5926 goto fail;
5928 vcpu->arch.pio_data = page_address(page);
5930 if (!kvm->arch.virtual_tsc_khz)
5931 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5933 r = kvm_mmu_create(vcpu);
5934 if (r < 0)
5935 goto fail_free_pio_data;
5937 if (irqchip_in_kernel(kvm)) {
5938 r = kvm_create_lapic(vcpu);
5939 if (r < 0)
5940 goto fail_mmu_destroy;
5943 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5944 GFP_KERNEL);
5945 if (!vcpu->arch.mce_banks) {
5946 r = -ENOMEM;
5947 goto fail_free_lapic;
5949 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5951 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5952 goto fail_free_mce_banks;
5954 kvm_async_pf_hash_reset(vcpu);
5956 return 0;
5957 fail_free_mce_banks:
5958 kfree(vcpu->arch.mce_banks);
5959 fail_free_lapic:
5960 kvm_free_lapic(vcpu);
5961 fail_mmu_destroy:
5962 kvm_mmu_destroy(vcpu);
5963 fail_free_pio_data:
5964 free_page((unsigned long)vcpu->arch.pio_data);
5965 fail:
5966 return r;
5969 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5971 int idx;
5973 kfree(vcpu->arch.mce_banks);
5974 kvm_free_lapic(vcpu);
5975 idx = srcu_read_lock(&vcpu->kvm->srcu);
5976 kvm_mmu_destroy(vcpu);
5977 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5978 free_page((unsigned long)vcpu->arch.pio_data);
5981 int kvm_arch_init_vm(struct kvm *kvm)
5983 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5984 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5986 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5987 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5989 spin_lock_init(&kvm->arch.tsc_write_lock);
5991 return 0;
5994 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5996 vcpu_load(vcpu);
5997 kvm_mmu_unload(vcpu);
5998 vcpu_put(vcpu);
6001 static void kvm_free_vcpus(struct kvm *kvm)
6003 unsigned int i;
6004 struct kvm_vcpu *vcpu;
6007 * Unpin any mmu pages first.
6009 kvm_for_each_vcpu(i, vcpu, kvm) {
6010 kvm_clear_async_pf_completion_queue(vcpu);
6011 kvm_unload_vcpu_mmu(vcpu);
6013 kvm_for_each_vcpu(i, vcpu, kvm)
6014 kvm_arch_vcpu_free(vcpu);
6016 mutex_lock(&kvm->lock);
6017 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6018 kvm->vcpus[i] = NULL;
6020 atomic_set(&kvm->online_vcpus, 0);
6021 mutex_unlock(&kvm->lock);
6024 void kvm_arch_sync_events(struct kvm *kvm)
6026 kvm_free_all_assigned_devices(kvm);
6027 kvm_free_pit(kvm);
6030 void kvm_arch_destroy_vm(struct kvm *kvm)
6032 kvm_iommu_unmap_guest(kvm);
6033 kfree(kvm->arch.vpic);
6034 kfree(kvm->arch.vioapic);
6035 kvm_free_vcpus(kvm);
6036 if (kvm->arch.apic_access_page)
6037 put_page(kvm->arch.apic_access_page);
6038 if (kvm->arch.ept_identity_pagetable)
6039 put_page(kvm->arch.ept_identity_pagetable);
6042 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6043 struct kvm_memory_slot *memslot,
6044 struct kvm_memory_slot old,
6045 struct kvm_userspace_memory_region *mem,
6046 int user_alloc)
6048 int npages = memslot->npages;
6049 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6051 /* Prevent internal slot pages from being moved by fork()/COW. */
6052 if (memslot->id >= KVM_MEMORY_SLOTS)
6053 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6055 /*To keep backward compatibility with older userspace,
6056 *x86 needs to hanlde !user_alloc case.
6058 if (!user_alloc) {
6059 if (npages && !old.rmap) {
6060 unsigned long userspace_addr;
6062 down_write(&current->mm->mmap_sem);
6063 userspace_addr = do_mmap(NULL, 0,
6064 npages * PAGE_SIZE,
6065 PROT_READ | PROT_WRITE,
6066 map_flags,
6068 up_write(&current->mm->mmap_sem);
6070 if (IS_ERR((void *)userspace_addr))
6071 return PTR_ERR((void *)userspace_addr);
6073 memslot->userspace_addr = userspace_addr;
6078 return 0;
6081 void kvm_arch_commit_memory_region(struct kvm *kvm,
6082 struct kvm_userspace_memory_region *mem,
6083 struct kvm_memory_slot old,
6084 int user_alloc)
6087 int npages = mem->memory_size >> PAGE_SHIFT;
6089 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6090 int ret;
6092 down_write(&current->mm->mmap_sem);
6093 ret = do_munmap(current->mm, old.userspace_addr,
6094 old.npages * PAGE_SIZE);
6095 up_write(&current->mm->mmap_sem);
6096 if (ret < 0)
6097 printk(KERN_WARNING
6098 "kvm_vm_ioctl_set_memory_region: "
6099 "failed to munmap memory\n");
6102 spin_lock(&kvm->mmu_lock);
6103 if (!kvm->arch.n_requested_mmu_pages) {
6104 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6105 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6108 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6109 spin_unlock(&kvm->mmu_lock);
6112 void kvm_arch_flush_shadow(struct kvm *kvm)
6114 kvm_mmu_zap_all(kvm);
6115 kvm_reload_remote_mmus(kvm);
6118 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6120 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6121 !vcpu->arch.apf.halted)
6122 || !list_empty_careful(&vcpu->async_pf.done)
6123 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6124 || vcpu->arch.nmi_pending ||
6125 (kvm_arch_interrupt_allowed(vcpu) &&
6126 kvm_cpu_has_interrupt(vcpu));
6129 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6131 int me;
6132 int cpu = vcpu->cpu;
6134 if (waitqueue_active(&vcpu->wq)) {
6135 wake_up_interruptible(&vcpu->wq);
6136 ++vcpu->stat.halt_wakeup;
6139 me = get_cpu();
6140 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6141 if (atomic_xchg(&vcpu->guest_mode, 0))
6142 smp_send_reschedule(cpu);
6143 put_cpu();
6146 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6148 return kvm_x86_ops->interrupt_allowed(vcpu);
6151 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6153 unsigned long current_rip = kvm_rip_read(vcpu) +
6154 get_segment_base(vcpu, VCPU_SREG_CS);
6156 return current_rip == linear_rip;
6158 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6160 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6162 unsigned long rflags;
6164 rflags = kvm_x86_ops->get_rflags(vcpu);
6165 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6166 rflags &= ~X86_EFLAGS_TF;
6167 return rflags;
6169 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6171 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6173 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6174 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6175 rflags |= X86_EFLAGS_TF;
6176 kvm_x86_ops->set_rflags(vcpu, rflags);
6177 kvm_make_request(KVM_REQ_EVENT, vcpu);
6179 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6181 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6183 int r;
6185 if (!vcpu->arch.mmu.direct_map || !work->arch.direct_map ||
6186 is_error_page(work->page))
6187 return;
6189 r = kvm_mmu_reload(vcpu);
6190 if (unlikely(r))
6191 return;
6193 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6196 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6198 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6201 static inline u32 kvm_async_pf_next_probe(u32 key)
6203 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6206 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6208 u32 key = kvm_async_pf_hash_fn(gfn);
6210 while (vcpu->arch.apf.gfns[key] != ~0)
6211 key = kvm_async_pf_next_probe(key);
6213 vcpu->arch.apf.gfns[key] = gfn;
6216 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6218 int i;
6219 u32 key = kvm_async_pf_hash_fn(gfn);
6221 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6222 (vcpu->arch.apf.gfns[key] != gfn &&
6223 vcpu->arch.apf.gfns[key] != ~0); i++)
6224 key = kvm_async_pf_next_probe(key);
6226 return key;
6229 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6231 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6234 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6236 u32 i, j, k;
6238 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6239 while (true) {
6240 vcpu->arch.apf.gfns[i] = ~0;
6241 do {
6242 j = kvm_async_pf_next_probe(j);
6243 if (vcpu->arch.apf.gfns[j] == ~0)
6244 return;
6245 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6247 * k lies cyclically in ]i,j]
6248 * | i.k.j |
6249 * |....j i.k.| or |.k..j i...|
6251 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6252 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6253 i = j;
6257 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6260 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6261 sizeof(val));
6264 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6265 struct kvm_async_pf *work)
6267 struct x86_exception fault;
6269 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6270 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6272 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6273 (vcpu->arch.apf.send_user_only &&
6274 kvm_x86_ops->get_cpl(vcpu) == 0))
6275 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6276 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6277 fault.vector = PF_VECTOR;
6278 fault.error_code_valid = true;
6279 fault.error_code = 0;
6280 fault.nested_page_fault = false;
6281 fault.address = work->arch.token;
6282 kvm_inject_page_fault(vcpu, &fault);
6286 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6287 struct kvm_async_pf *work)
6289 struct x86_exception fault;
6291 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6292 if (is_error_page(work->page))
6293 work->arch.token = ~0; /* broadcast wakeup */
6294 else
6295 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6297 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6298 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6299 fault.vector = PF_VECTOR;
6300 fault.error_code_valid = true;
6301 fault.error_code = 0;
6302 fault.nested_page_fault = false;
6303 fault.address = work->arch.token;
6304 kvm_inject_page_fault(vcpu, &fault);
6306 vcpu->arch.apf.halted = false;
6309 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6311 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6312 return true;
6313 else
6314 return !kvm_event_needs_reinjection(vcpu) &&
6315 kvm_x86_ops->interrupt_allowed(vcpu);
6318 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6319 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6320 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6321 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6322 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6323 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6324 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6325 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6326 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6327 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6328 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6329 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);