pnfs: check that partial LAYOUTGET return is ignored
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ceph / messenger.c
blob1c7a2ec4f3cc81ee608821ddf589fc0b27db4dcc
1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
27 * the sender.
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
55 int i;
56 char *s;
57 struct sockaddr_in *in4 = (void *)ss;
58 struct sockaddr_in6 *in6 = (void *)ss;
60 spin_lock(&addr_str_lock);
61 i = last_addr_str++;
62 if (last_addr_str == MAX_ADDR_STR)
63 last_addr_str = 0;
64 spin_unlock(&addr_str_lock);
65 s = addr_str[i];
67 switch (ss->ss_family) {
68 case AF_INET:
69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 (unsigned int)ntohs(in4->sin_port));
71 break;
73 case AF_INET6:
74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 (unsigned int)ntohs(in6->sin6_port));
76 break;
78 default:
79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
82 return s;
84 EXPORT_SYMBOL(ceph_pr_addr);
86 static void encode_my_addr(struct ceph_messenger *msgr)
88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 ceph_encode_addr(&msgr->my_enc_addr);
93 * work queue for all reading and writing to/from the socket.
95 struct workqueue_struct *ceph_msgr_wq;
97 int ceph_msgr_init(void)
99 ceph_msgr_wq = create_workqueue("ceph-msgr");
100 if (IS_ERR(ceph_msgr_wq)) {
101 int ret = PTR_ERR(ceph_msgr_wq);
102 pr_err("msgr_init failed to create workqueue: %d\n", ret);
103 ceph_msgr_wq = NULL;
104 return ret;
106 return 0;
108 EXPORT_SYMBOL(ceph_msgr_init);
110 void ceph_msgr_exit(void)
112 destroy_workqueue(ceph_msgr_wq);
114 EXPORT_SYMBOL(ceph_msgr_exit);
116 void ceph_msgr_flush(void)
118 flush_workqueue(ceph_msgr_wq);
120 EXPORT_SYMBOL(ceph_msgr_flush);
124 * socket callback functions
127 /* data available on socket, or listen socket received a connect */
128 static void ceph_data_ready(struct sock *sk, int count_unused)
130 struct ceph_connection *con =
131 (struct ceph_connection *)sk->sk_user_data;
132 if (sk->sk_state != TCP_CLOSE_WAIT) {
133 dout("ceph_data_ready on %p state = %lu, queueing work\n",
134 con, con->state);
135 queue_con(con);
139 /* socket has buffer space for writing */
140 static void ceph_write_space(struct sock *sk)
142 struct ceph_connection *con =
143 (struct ceph_connection *)sk->sk_user_data;
145 /* only queue to workqueue if there is data we want to write. */
146 if (test_bit(WRITE_PENDING, &con->state)) {
147 dout("ceph_write_space %p queueing write work\n", con);
148 queue_con(con);
149 } else {
150 dout("ceph_write_space %p nothing to write\n", con);
153 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
154 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
157 /* socket's state has changed */
158 static void ceph_state_change(struct sock *sk)
160 struct ceph_connection *con =
161 (struct ceph_connection *)sk->sk_user_data;
163 dout("ceph_state_change %p state = %lu sk_state = %u\n",
164 con, con->state, sk->sk_state);
166 if (test_bit(CLOSED, &con->state))
167 return;
169 switch (sk->sk_state) {
170 case TCP_CLOSE:
171 dout("ceph_state_change TCP_CLOSE\n");
172 case TCP_CLOSE_WAIT:
173 dout("ceph_state_change TCP_CLOSE_WAIT\n");
174 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
175 if (test_bit(CONNECTING, &con->state))
176 con->error_msg = "connection failed";
177 else
178 con->error_msg = "socket closed";
179 queue_con(con);
181 break;
182 case TCP_ESTABLISHED:
183 dout("ceph_state_change TCP_ESTABLISHED\n");
184 queue_con(con);
185 break;
190 * set up socket callbacks
192 static void set_sock_callbacks(struct socket *sock,
193 struct ceph_connection *con)
195 struct sock *sk = sock->sk;
196 sk->sk_user_data = (void *)con;
197 sk->sk_data_ready = ceph_data_ready;
198 sk->sk_write_space = ceph_write_space;
199 sk->sk_state_change = ceph_state_change;
204 * socket helpers
208 * initiate connection to a remote socket.
210 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
212 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
213 struct socket *sock;
214 int ret;
216 BUG_ON(con->sock);
217 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
218 IPPROTO_TCP, &sock);
219 if (ret)
220 return ERR_PTR(ret);
221 con->sock = sock;
222 sock->sk->sk_allocation = GFP_NOFS;
224 #ifdef CONFIG_LOCKDEP
225 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
226 #endif
228 set_sock_callbacks(sock, con);
230 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
232 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
233 O_NONBLOCK);
234 if (ret == -EINPROGRESS) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 ceph_pr_addr(&con->peer_addr.in_addr),
237 sock->sk->sk_state);
238 ret = 0;
240 if (ret < 0) {
241 pr_err("connect %s error %d\n",
242 ceph_pr_addr(&con->peer_addr.in_addr), ret);
243 sock_release(sock);
244 con->sock = NULL;
245 con->error_msg = "connect error";
248 if (ret < 0)
249 return ERR_PTR(ret);
250 return sock;
253 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
255 struct kvec iov = {buf, len};
256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
258 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
262 * write something. @more is true if caller will be sending more data
263 * shortly.
265 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266 size_t kvlen, size_t len, int more)
268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
270 if (more)
271 msg.msg_flags |= MSG_MORE;
272 else
273 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
275 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
280 * Shutdown/close the socket for the given connection.
282 static int con_close_socket(struct ceph_connection *con)
284 int rc;
286 dout("con_close_socket on %p sock %p\n", con, con->sock);
287 if (!con->sock)
288 return 0;
289 set_bit(SOCK_CLOSED, &con->state);
290 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291 sock_release(con->sock);
292 con->sock = NULL;
293 clear_bit(SOCK_CLOSED, &con->state);
294 return rc;
298 * Reset a connection. Discard all incoming and outgoing messages
299 * and clear *_seq state.
301 static void ceph_msg_remove(struct ceph_msg *msg)
303 list_del_init(&msg->list_head);
304 ceph_msg_put(msg);
306 static void ceph_msg_remove_list(struct list_head *head)
308 while (!list_empty(head)) {
309 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310 list_head);
311 ceph_msg_remove(msg);
315 static void reset_connection(struct ceph_connection *con)
317 /* reset connection, out_queue, msg_ and connect_seq */
318 /* discard existing out_queue and msg_seq */
319 ceph_msg_remove_list(&con->out_queue);
320 ceph_msg_remove_list(&con->out_sent);
322 if (con->in_msg) {
323 ceph_msg_put(con->in_msg);
324 con->in_msg = NULL;
327 con->connect_seq = 0;
328 con->out_seq = 0;
329 if (con->out_msg) {
330 ceph_msg_put(con->out_msg);
331 con->out_msg = NULL;
333 con->out_keepalive_pending = false;
334 con->in_seq = 0;
335 con->in_seq_acked = 0;
339 * mark a peer down. drop any open connections.
341 void ceph_con_close(struct ceph_connection *con)
343 dout("con_close %p peer %s\n", con,
344 ceph_pr_addr(&con->peer_addr.in_addr));
345 set_bit(CLOSED, &con->state); /* in case there's queued work */
346 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
347 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
348 clear_bit(KEEPALIVE_PENDING, &con->state);
349 clear_bit(WRITE_PENDING, &con->state);
350 mutex_lock(&con->mutex);
351 reset_connection(con);
352 con->peer_global_seq = 0;
353 cancel_delayed_work(&con->work);
354 mutex_unlock(&con->mutex);
355 queue_con(con);
357 EXPORT_SYMBOL(ceph_con_close);
360 * Reopen a closed connection, with a new peer address.
362 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
364 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
365 set_bit(OPENING, &con->state);
366 clear_bit(CLOSED, &con->state);
367 memcpy(&con->peer_addr, addr, sizeof(*addr));
368 con->delay = 0; /* reset backoff memory */
369 queue_con(con);
371 EXPORT_SYMBOL(ceph_con_open);
374 * return true if this connection ever successfully opened
376 bool ceph_con_opened(struct ceph_connection *con)
378 return con->connect_seq > 0;
382 * generic get/put
384 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
386 dout("con_get %p nref = %d -> %d\n", con,
387 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
388 if (atomic_inc_not_zero(&con->nref))
389 return con;
390 return NULL;
393 void ceph_con_put(struct ceph_connection *con)
395 dout("con_put %p nref = %d -> %d\n", con,
396 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
397 BUG_ON(atomic_read(&con->nref) == 0);
398 if (atomic_dec_and_test(&con->nref)) {
399 BUG_ON(con->sock);
400 kfree(con);
405 * initialize a new connection.
407 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
409 dout("con_init %p\n", con);
410 memset(con, 0, sizeof(*con));
411 atomic_set(&con->nref, 1);
412 con->msgr = msgr;
413 mutex_init(&con->mutex);
414 INIT_LIST_HEAD(&con->out_queue);
415 INIT_LIST_HEAD(&con->out_sent);
416 INIT_DELAYED_WORK(&con->work, con_work);
418 EXPORT_SYMBOL(ceph_con_init);
422 * We maintain a global counter to order connection attempts. Get
423 * a unique seq greater than @gt.
425 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
427 u32 ret;
429 spin_lock(&msgr->global_seq_lock);
430 if (msgr->global_seq < gt)
431 msgr->global_seq = gt;
432 ret = ++msgr->global_seq;
433 spin_unlock(&msgr->global_seq_lock);
434 return ret;
439 * Prepare footer for currently outgoing message, and finish things
440 * off. Assumes out_kvec* are already valid.. we just add on to the end.
442 static void prepare_write_message_footer(struct ceph_connection *con, int v)
444 struct ceph_msg *m = con->out_msg;
446 dout("prepare_write_message_footer %p\n", con);
447 con->out_kvec_is_msg = true;
448 con->out_kvec[v].iov_base = &m->footer;
449 con->out_kvec[v].iov_len = sizeof(m->footer);
450 con->out_kvec_bytes += sizeof(m->footer);
451 con->out_kvec_left++;
452 con->out_more = m->more_to_follow;
453 con->out_msg_done = true;
457 * Prepare headers for the next outgoing message.
459 static void prepare_write_message(struct ceph_connection *con)
461 struct ceph_msg *m;
462 int v = 0;
464 con->out_kvec_bytes = 0;
465 con->out_kvec_is_msg = true;
466 con->out_msg_done = false;
468 /* Sneak an ack in there first? If we can get it into the same
469 * TCP packet that's a good thing. */
470 if (con->in_seq > con->in_seq_acked) {
471 con->in_seq_acked = con->in_seq;
472 con->out_kvec[v].iov_base = &tag_ack;
473 con->out_kvec[v++].iov_len = 1;
474 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
475 con->out_kvec[v].iov_base = &con->out_temp_ack;
476 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
477 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
480 m = list_first_entry(&con->out_queue,
481 struct ceph_msg, list_head);
482 con->out_msg = m;
483 if (test_bit(LOSSYTX, &con->state)) {
484 list_del_init(&m->list_head);
485 } else {
486 /* put message on sent list */
487 ceph_msg_get(m);
488 list_move_tail(&m->list_head, &con->out_sent);
492 * only assign outgoing seq # if we haven't sent this message
493 * yet. if it is requeued, resend with it's original seq.
495 if (m->needs_out_seq) {
496 m->hdr.seq = cpu_to_le64(++con->out_seq);
497 m->needs_out_seq = false;
500 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
501 m, con->out_seq, le16_to_cpu(m->hdr.type),
502 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
503 le32_to_cpu(m->hdr.data_len),
504 m->nr_pages);
505 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
507 /* tag + hdr + front + middle */
508 con->out_kvec[v].iov_base = &tag_msg;
509 con->out_kvec[v++].iov_len = 1;
510 con->out_kvec[v].iov_base = &m->hdr;
511 con->out_kvec[v++].iov_len = sizeof(m->hdr);
512 con->out_kvec[v++] = m->front;
513 if (m->middle)
514 con->out_kvec[v++] = m->middle->vec;
515 con->out_kvec_left = v;
516 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
517 (m->middle ? m->middle->vec.iov_len : 0);
518 con->out_kvec_cur = con->out_kvec;
520 /* fill in crc (except data pages), footer */
521 con->out_msg->hdr.crc =
522 cpu_to_le32(crc32c(0, (void *)&m->hdr,
523 sizeof(m->hdr) - sizeof(m->hdr.crc)));
524 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
525 con->out_msg->footer.front_crc =
526 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
527 if (m->middle)
528 con->out_msg->footer.middle_crc =
529 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
530 m->middle->vec.iov_len));
531 else
532 con->out_msg->footer.middle_crc = 0;
533 con->out_msg->footer.data_crc = 0;
534 dout("prepare_write_message front_crc %u data_crc %u\n",
535 le32_to_cpu(con->out_msg->footer.front_crc),
536 le32_to_cpu(con->out_msg->footer.middle_crc));
538 /* is there a data payload? */
539 if (le32_to_cpu(m->hdr.data_len) > 0) {
540 /* initialize page iterator */
541 con->out_msg_pos.page = 0;
542 if (m->pages)
543 con->out_msg_pos.page_pos = m->page_alignment;
544 else
545 con->out_msg_pos.page_pos = 0;
546 con->out_msg_pos.data_pos = 0;
547 con->out_msg_pos.did_page_crc = 0;
548 con->out_more = 1; /* data + footer will follow */
549 } else {
550 /* no, queue up footer too and be done */
551 prepare_write_message_footer(con, v);
554 set_bit(WRITE_PENDING, &con->state);
558 * Prepare an ack.
560 static void prepare_write_ack(struct ceph_connection *con)
562 dout("prepare_write_ack %p %llu -> %llu\n", con,
563 con->in_seq_acked, con->in_seq);
564 con->in_seq_acked = con->in_seq;
566 con->out_kvec[0].iov_base = &tag_ack;
567 con->out_kvec[0].iov_len = 1;
568 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
569 con->out_kvec[1].iov_base = &con->out_temp_ack;
570 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
571 con->out_kvec_left = 2;
572 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
573 con->out_kvec_cur = con->out_kvec;
574 con->out_more = 1; /* more will follow.. eventually.. */
575 set_bit(WRITE_PENDING, &con->state);
579 * Prepare to write keepalive byte.
581 static void prepare_write_keepalive(struct ceph_connection *con)
583 dout("prepare_write_keepalive %p\n", con);
584 con->out_kvec[0].iov_base = &tag_keepalive;
585 con->out_kvec[0].iov_len = 1;
586 con->out_kvec_left = 1;
587 con->out_kvec_bytes = 1;
588 con->out_kvec_cur = con->out_kvec;
589 set_bit(WRITE_PENDING, &con->state);
593 * Connection negotiation.
596 static void prepare_connect_authorizer(struct ceph_connection *con)
598 void *auth_buf;
599 int auth_len = 0;
600 int auth_protocol = 0;
602 mutex_unlock(&con->mutex);
603 if (con->ops->get_authorizer)
604 con->ops->get_authorizer(con, &auth_buf, &auth_len,
605 &auth_protocol, &con->auth_reply_buf,
606 &con->auth_reply_buf_len,
607 con->auth_retry);
608 mutex_lock(&con->mutex);
610 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
611 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
613 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
614 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
615 con->out_kvec_left++;
616 con->out_kvec_bytes += auth_len;
620 * We connected to a peer and are saying hello.
622 static void prepare_write_banner(struct ceph_messenger *msgr,
623 struct ceph_connection *con)
625 int len = strlen(CEPH_BANNER);
627 con->out_kvec[0].iov_base = CEPH_BANNER;
628 con->out_kvec[0].iov_len = len;
629 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
630 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
631 con->out_kvec_left = 2;
632 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
633 con->out_kvec_cur = con->out_kvec;
634 con->out_more = 0;
635 set_bit(WRITE_PENDING, &con->state);
638 static void prepare_write_connect(struct ceph_messenger *msgr,
639 struct ceph_connection *con,
640 int after_banner)
642 unsigned global_seq = get_global_seq(con->msgr, 0);
643 int proto;
645 switch (con->peer_name.type) {
646 case CEPH_ENTITY_TYPE_MON:
647 proto = CEPH_MONC_PROTOCOL;
648 break;
649 case CEPH_ENTITY_TYPE_OSD:
650 proto = CEPH_OSDC_PROTOCOL;
651 break;
652 case CEPH_ENTITY_TYPE_MDS:
653 proto = CEPH_MDSC_PROTOCOL;
654 break;
655 default:
656 BUG();
659 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
660 con->connect_seq, global_seq, proto);
662 con->out_connect.features = cpu_to_le64(msgr->supported_features);
663 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
664 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
665 con->out_connect.global_seq = cpu_to_le32(global_seq);
666 con->out_connect.protocol_version = cpu_to_le32(proto);
667 con->out_connect.flags = 0;
669 if (!after_banner) {
670 con->out_kvec_left = 0;
671 con->out_kvec_bytes = 0;
673 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
674 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
675 con->out_kvec_left++;
676 con->out_kvec_bytes += sizeof(con->out_connect);
677 con->out_kvec_cur = con->out_kvec;
678 con->out_more = 0;
679 set_bit(WRITE_PENDING, &con->state);
681 prepare_connect_authorizer(con);
686 * write as much of pending kvecs to the socket as we can.
687 * 1 -> done
688 * 0 -> socket full, but more to do
689 * <0 -> error
691 static int write_partial_kvec(struct ceph_connection *con)
693 int ret;
695 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
696 while (con->out_kvec_bytes > 0) {
697 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
698 con->out_kvec_left, con->out_kvec_bytes,
699 con->out_more);
700 if (ret <= 0)
701 goto out;
702 con->out_kvec_bytes -= ret;
703 if (con->out_kvec_bytes == 0)
704 break; /* done */
705 while (ret > 0) {
706 if (ret >= con->out_kvec_cur->iov_len) {
707 ret -= con->out_kvec_cur->iov_len;
708 con->out_kvec_cur++;
709 con->out_kvec_left--;
710 } else {
711 con->out_kvec_cur->iov_len -= ret;
712 con->out_kvec_cur->iov_base += ret;
713 ret = 0;
714 break;
718 con->out_kvec_left = 0;
719 con->out_kvec_is_msg = false;
720 ret = 1;
721 out:
722 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
723 con->out_kvec_bytes, con->out_kvec_left, ret);
724 return ret; /* done! */
727 #ifdef CONFIG_BLOCK
728 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
730 if (!bio) {
731 *iter = NULL;
732 *seg = 0;
733 return;
735 *iter = bio;
736 *seg = bio->bi_idx;
739 static void iter_bio_next(struct bio **bio_iter, int *seg)
741 if (*bio_iter == NULL)
742 return;
744 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
746 (*seg)++;
747 if (*seg == (*bio_iter)->bi_vcnt)
748 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
750 #endif
753 * Write as much message data payload as we can. If we finish, queue
754 * up the footer.
755 * 1 -> done, footer is now queued in out_kvec[].
756 * 0 -> socket full, but more to do
757 * <0 -> error
759 static int write_partial_msg_pages(struct ceph_connection *con)
761 struct ceph_msg *msg = con->out_msg;
762 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
763 size_t len;
764 int crc = con->msgr->nocrc;
765 int ret;
766 int total_max_write;
767 int in_trail = 0;
768 size_t trail_len = (msg->trail ? msg->trail->length : 0);
770 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
771 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
772 con->out_msg_pos.page_pos);
774 #ifdef CONFIG_BLOCK
775 if (msg->bio && !msg->bio_iter)
776 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
777 #endif
779 while (data_len > con->out_msg_pos.data_pos) {
780 struct page *page = NULL;
781 void *kaddr = NULL;
782 int max_write = PAGE_SIZE;
783 int page_shift = 0;
785 total_max_write = data_len - trail_len -
786 con->out_msg_pos.data_pos;
789 * if we are calculating the data crc (the default), we need
790 * to map the page. if our pages[] has been revoked, use the
791 * zero page.
794 /* have we reached the trail part of the data? */
795 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
796 in_trail = 1;
798 total_max_write = data_len - con->out_msg_pos.data_pos;
800 page = list_first_entry(&msg->trail->head,
801 struct page, lru);
802 if (crc)
803 kaddr = kmap(page);
804 max_write = PAGE_SIZE;
805 } else if (msg->pages) {
806 page = msg->pages[con->out_msg_pos.page];
807 if (crc)
808 kaddr = kmap(page);
809 } else if (msg->pagelist) {
810 page = list_first_entry(&msg->pagelist->head,
811 struct page, lru);
812 if (crc)
813 kaddr = kmap(page);
814 #ifdef CONFIG_BLOCK
815 } else if (msg->bio) {
816 struct bio_vec *bv;
818 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
819 page = bv->bv_page;
820 page_shift = bv->bv_offset;
821 if (crc)
822 kaddr = kmap(page) + page_shift;
823 max_write = bv->bv_len;
824 #endif
825 } else {
826 page = con->msgr->zero_page;
827 if (crc)
828 kaddr = page_address(con->msgr->zero_page);
830 len = min_t(int, max_write - con->out_msg_pos.page_pos,
831 total_max_write);
833 if (crc && !con->out_msg_pos.did_page_crc) {
834 void *base = kaddr + con->out_msg_pos.page_pos;
835 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
837 BUG_ON(kaddr == NULL);
838 con->out_msg->footer.data_crc =
839 cpu_to_le32(crc32c(tmpcrc, base, len));
840 con->out_msg_pos.did_page_crc = 1;
842 ret = kernel_sendpage(con->sock, page,
843 con->out_msg_pos.page_pos + page_shift,
844 len,
845 MSG_DONTWAIT | MSG_NOSIGNAL |
846 MSG_MORE);
848 if (crc &&
849 (msg->pages || msg->pagelist || msg->bio || in_trail))
850 kunmap(page);
852 if (ret <= 0)
853 goto out;
855 con->out_msg_pos.data_pos += ret;
856 con->out_msg_pos.page_pos += ret;
857 if (ret == len) {
858 con->out_msg_pos.page_pos = 0;
859 con->out_msg_pos.page++;
860 con->out_msg_pos.did_page_crc = 0;
861 if (in_trail)
862 list_move_tail(&page->lru,
863 &msg->trail->head);
864 else if (msg->pagelist)
865 list_move_tail(&page->lru,
866 &msg->pagelist->head);
867 #ifdef CONFIG_BLOCK
868 else if (msg->bio)
869 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
870 #endif
874 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
876 /* prepare and queue up footer, too */
877 if (!crc)
878 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
879 con->out_kvec_bytes = 0;
880 con->out_kvec_left = 0;
881 con->out_kvec_cur = con->out_kvec;
882 prepare_write_message_footer(con, 0);
883 ret = 1;
884 out:
885 return ret;
889 * write some zeros
891 static int write_partial_skip(struct ceph_connection *con)
893 int ret;
895 while (con->out_skip > 0) {
896 struct kvec iov = {
897 .iov_base = page_address(con->msgr->zero_page),
898 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
901 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
902 if (ret <= 0)
903 goto out;
904 con->out_skip -= ret;
906 ret = 1;
907 out:
908 return ret;
912 * Prepare to read connection handshake, or an ack.
914 static void prepare_read_banner(struct ceph_connection *con)
916 dout("prepare_read_banner %p\n", con);
917 con->in_base_pos = 0;
920 static void prepare_read_connect(struct ceph_connection *con)
922 dout("prepare_read_connect %p\n", con);
923 con->in_base_pos = 0;
926 static void prepare_read_ack(struct ceph_connection *con)
928 dout("prepare_read_ack %p\n", con);
929 con->in_base_pos = 0;
932 static void prepare_read_tag(struct ceph_connection *con)
934 dout("prepare_read_tag %p\n", con);
935 con->in_base_pos = 0;
936 con->in_tag = CEPH_MSGR_TAG_READY;
940 * Prepare to read a message.
942 static int prepare_read_message(struct ceph_connection *con)
944 dout("prepare_read_message %p\n", con);
945 BUG_ON(con->in_msg != NULL);
946 con->in_base_pos = 0;
947 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
948 return 0;
952 static int read_partial(struct ceph_connection *con,
953 int *to, int size, void *object)
955 *to += size;
956 while (con->in_base_pos < *to) {
957 int left = *to - con->in_base_pos;
958 int have = size - left;
959 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
960 if (ret <= 0)
961 return ret;
962 con->in_base_pos += ret;
964 return 1;
969 * Read all or part of the connect-side handshake on a new connection
971 static int read_partial_banner(struct ceph_connection *con)
973 int ret, to = 0;
975 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
977 /* peer's banner */
978 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
979 if (ret <= 0)
980 goto out;
981 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
982 &con->actual_peer_addr);
983 if (ret <= 0)
984 goto out;
985 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
986 &con->peer_addr_for_me);
987 if (ret <= 0)
988 goto out;
989 out:
990 return ret;
993 static int read_partial_connect(struct ceph_connection *con)
995 int ret, to = 0;
997 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
999 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1000 if (ret <= 0)
1001 goto out;
1002 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1003 con->auth_reply_buf);
1004 if (ret <= 0)
1005 goto out;
1007 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1008 con, (int)con->in_reply.tag,
1009 le32_to_cpu(con->in_reply.connect_seq),
1010 le32_to_cpu(con->in_reply.global_seq));
1011 out:
1012 return ret;
1017 * Verify the hello banner looks okay.
1019 static int verify_hello(struct ceph_connection *con)
1021 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1022 pr_err("connect to %s got bad banner\n",
1023 ceph_pr_addr(&con->peer_addr.in_addr));
1024 con->error_msg = "protocol error, bad banner";
1025 return -1;
1027 return 0;
1030 static bool addr_is_blank(struct sockaddr_storage *ss)
1032 switch (ss->ss_family) {
1033 case AF_INET:
1034 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1035 case AF_INET6:
1036 return
1037 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1038 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1039 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1040 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1042 return false;
1045 static int addr_port(struct sockaddr_storage *ss)
1047 switch (ss->ss_family) {
1048 case AF_INET:
1049 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1050 case AF_INET6:
1051 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1053 return 0;
1056 static void addr_set_port(struct sockaddr_storage *ss, int p)
1058 switch (ss->ss_family) {
1059 case AF_INET:
1060 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1061 case AF_INET6:
1062 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1067 * Parse an ip[:port] list into an addr array. Use the default
1068 * monitor port if a port isn't specified.
1070 int ceph_parse_ips(const char *c, const char *end,
1071 struct ceph_entity_addr *addr,
1072 int max_count, int *count)
1074 int i;
1075 const char *p = c;
1077 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1078 for (i = 0; i < max_count; i++) {
1079 const char *ipend;
1080 struct sockaddr_storage *ss = &addr[i].in_addr;
1081 struct sockaddr_in *in4 = (void *)ss;
1082 struct sockaddr_in6 *in6 = (void *)ss;
1083 int port;
1084 char delim = ',';
1086 if (*p == '[') {
1087 delim = ']';
1088 p++;
1091 memset(ss, 0, sizeof(*ss));
1092 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1093 delim, &ipend))
1094 ss->ss_family = AF_INET;
1095 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1096 delim, &ipend))
1097 ss->ss_family = AF_INET6;
1098 else
1099 goto bad;
1100 p = ipend;
1102 if (delim == ']') {
1103 if (*p != ']') {
1104 dout("missing matching ']'\n");
1105 goto bad;
1107 p++;
1110 /* port? */
1111 if (p < end && *p == ':') {
1112 port = 0;
1113 p++;
1114 while (p < end && *p >= '0' && *p <= '9') {
1115 port = (port * 10) + (*p - '0');
1116 p++;
1118 if (port > 65535 || port == 0)
1119 goto bad;
1120 } else {
1121 port = CEPH_MON_PORT;
1124 addr_set_port(ss, port);
1126 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1128 if (p == end)
1129 break;
1130 if (*p != ',')
1131 goto bad;
1132 p++;
1135 if (p != end)
1136 goto bad;
1138 if (count)
1139 *count = i + 1;
1140 return 0;
1142 bad:
1143 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1144 return -EINVAL;
1146 EXPORT_SYMBOL(ceph_parse_ips);
1148 static int process_banner(struct ceph_connection *con)
1150 dout("process_banner on %p\n", con);
1152 if (verify_hello(con) < 0)
1153 return -1;
1155 ceph_decode_addr(&con->actual_peer_addr);
1156 ceph_decode_addr(&con->peer_addr_for_me);
1159 * Make sure the other end is who we wanted. note that the other
1160 * end may not yet know their ip address, so if it's 0.0.0.0, give
1161 * them the benefit of the doubt.
1163 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1164 sizeof(con->peer_addr)) != 0 &&
1165 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1166 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1167 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1168 ceph_pr_addr(&con->peer_addr.in_addr),
1169 (int)le32_to_cpu(con->peer_addr.nonce),
1170 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1171 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1172 con->error_msg = "wrong peer at address";
1173 return -1;
1177 * did we learn our address?
1179 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1180 int port = addr_port(&con->msgr->inst.addr.in_addr);
1182 memcpy(&con->msgr->inst.addr.in_addr,
1183 &con->peer_addr_for_me.in_addr,
1184 sizeof(con->peer_addr_for_me.in_addr));
1185 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1186 encode_my_addr(con->msgr);
1187 dout("process_banner learned my addr is %s\n",
1188 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1191 set_bit(NEGOTIATING, &con->state);
1192 prepare_read_connect(con);
1193 return 0;
1196 static void fail_protocol(struct ceph_connection *con)
1198 reset_connection(con);
1199 set_bit(CLOSED, &con->state); /* in case there's queued work */
1201 mutex_unlock(&con->mutex);
1202 if (con->ops->bad_proto)
1203 con->ops->bad_proto(con);
1204 mutex_lock(&con->mutex);
1207 static int process_connect(struct ceph_connection *con)
1209 u64 sup_feat = con->msgr->supported_features;
1210 u64 req_feat = con->msgr->required_features;
1211 u64 server_feat = le64_to_cpu(con->in_reply.features);
1213 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1215 switch (con->in_reply.tag) {
1216 case CEPH_MSGR_TAG_FEATURES:
1217 pr_err("%s%lld %s feature set mismatch,"
1218 " my %llx < server's %llx, missing %llx\n",
1219 ENTITY_NAME(con->peer_name),
1220 ceph_pr_addr(&con->peer_addr.in_addr),
1221 sup_feat, server_feat, server_feat & ~sup_feat);
1222 con->error_msg = "missing required protocol features";
1223 fail_protocol(con);
1224 return -1;
1226 case CEPH_MSGR_TAG_BADPROTOVER:
1227 pr_err("%s%lld %s protocol version mismatch,"
1228 " my %d != server's %d\n",
1229 ENTITY_NAME(con->peer_name),
1230 ceph_pr_addr(&con->peer_addr.in_addr),
1231 le32_to_cpu(con->out_connect.protocol_version),
1232 le32_to_cpu(con->in_reply.protocol_version));
1233 con->error_msg = "protocol version mismatch";
1234 fail_protocol(con);
1235 return -1;
1237 case CEPH_MSGR_TAG_BADAUTHORIZER:
1238 con->auth_retry++;
1239 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1240 con->auth_retry);
1241 if (con->auth_retry == 2) {
1242 con->error_msg = "connect authorization failure";
1243 reset_connection(con);
1244 set_bit(CLOSED, &con->state);
1245 return -1;
1247 con->auth_retry = 1;
1248 prepare_write_connect(con->msgr, con, 0);
1249 prepare_read_connect(con);
1250 break;
1252 case CEPH_MSGR_TAG_RESETSESSION:
1254 * If we connected with a large connect_seq but the peer
1255 * has no record of a session with us (no connection, or
1256 * connect_seq == 0), they will send RESETSESION to indicate
1257 * that they must have reset their session, and may have
1258 * dropped messages.
1260 dout("process_connect got RESET peer seq %u\n",
1261 le32_to_cpu(con->in_connect.connect_seq));
1262 pr_err("%s%lld %s connection reset\n",
1263 ENTITY_NAME(con->peer_name),
1264 ceph_pr_addr(&con->peer_addr.in_addr));
1265 reset_connection(con);
1266 prepare_write_connect(con->msgr, con, 0);
1267 prepare_read_connect(con);
1269 /* Tell ceph about it. */
1270 mutex_unlock(&con->mutex);
1271 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1272 if (con->ops->peer_reset)
1273 con->ops->peer_reset(con);
1274 mutex_lock(&con->mutex);
1275 break;
1277 case CEPH_MSGR_TAG_RETRY_SESSION:
1279 * If we sent a smaller connect_seq than the peer has, try
1280 * again with a larger value.
1282 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1283 le32_to_cpu(con->out_connect.connect_seq),
1284 le32_to_cpu(con->in_connect.connect_seq));
1285 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1286 prepare_write_connect(con->msgr, con, 0);
1287 prepare_read_connect(con);
1288 break;
1290 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1292 * If we sent a smaller global_seq than the peer has, try
1293 * again with a larger value.
1295 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1296 con->peer_global_seq,
1297 le32_to_cpu(con->in_connect.global_seq));
1298 get_global_seq(con->msgr,
1299 le32_to_cpu(con->in_connect.global_seq));
1300 prepare_write_connect(con->msgr, con, 0);
1301 prepare_read_connect(con);
1302 break;
1304 case CEPH_MSGR_TAG_READY:
1305 if (req_feat & ~server_feat) {
1306 pr_err("%s%lld %s protocol feature mismatch,"
1307 " my required %llx > server's %llx, need %llx\n",
1308 ENTITY_NAME(con->peer_name),
1309 ceph_pr_addr(&con->peer_addr.in_addr),
1310 req_feat, server_feat, req_feat & ~server_feat);
1311 con->error_msg = "missing required protocol features";
1312 fail_protocol(con);
1313 return -1;
1315 clear_bit(CONNECTING, &con->state);
1316 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1317 con->connect_seq++;
1318 con->peer_features = server_feat;
1319 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1320 con->peer_global_seq,
1321 le32_to_cpu(con->in_reply.connect_seq),
1322 con->connect_seq);
1323 WARN_ON(con->connect_seq !=
1324 le32_to_cpu(con->in_reply.connect_seq));
1326 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1327 set_bit(LOSSYTX, &con->state);
1329 prepare_read_tag(con);
1330 break;
1332 case CEPH_MSGR_TAG_WAIT:
1334 * If there is a connection race (we are opening
1335 * connections to each other), one of us may just have
1336 * to WAIT. This shouldn't happen if we are the
1337 * client.
1339 pr_err("process_connect peer connecting WAIT\n");
1341 default:
1342 pr_err("connect protocol error, will retry\n");
1343 con->error_msg = "protocol error, garbage tag during connect";
1344 return -1;
1346 return 0;
1351 * read (part of) an ack
1353 static int read_partial_ack(struct ceph_connection *con)
1355 int to = 0;
1357 return read_partial(con, &to, sizeof(con->in_temp_ack),
1358 &con->in_temp_ack);
1363 * We can finally discard anything that's been acked.
1365 static void process_ack(struct ceph_connection *con)
1367 struct ceph_msg *m;
1368 u64 ack = le64_to_cpu(con->in_temp_ack);
1369 u64 seq;
1371 while (!list_empty(&con->out_sent)) {
1372 m = list_first_entry(&con->out_sent, struct ceph_msg,
1373 list_head);
1374 seq = le64_to_cpu(m->hdr.seq);
1375 if (seq > ack)
1376 break;
1377 dout("got ack for seq %llu type %d at %p\n", seq,
1378 le16_to_cpu(m->hdr.type), m);
1379 ceph_msg_remove(m);
1381 prepare_read_tag(con);
1387 static int read_partial_message_section(struct ceph_connection *con,
1388 struct kvec *section,
1389 unsigned int sec_len, u32 *crc)
1391 int ret, left;
1393 BUG_ON(!section);
1395 while (section->iov_len < sec_len) {
1396 BUG_ON(section->iov_base == NULL);
1397 left = sec_len - section->iov_len;
1398 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1399 section->iov_len, left);
1400 if (ret <= 0)
1401 return ret;
1402 section->iov_len += ret;
1403 if (section->iov_len == sec_len)
1404 *crc = crc32c(0, section->iov_base,
1405 section->iov_len);
1408 return 1;
1411 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1412 struct ceph_msg_header *hdr,
1413 int *skip);
1416 static int read_partial_message_pages(struct ceph_connection *con,
1417 struct page **pages,
1418 unsigned data_len, int datacrc)
1420 void *p;
1421 int ret;
1422 int left;
1424 left = min((int)(data_len - con->in_msg_pos.data_pos),
1425 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1426 /* (page) data */
1427 BUG_ON(pages == NULL);
1428 p = kmap(pages[con->in_msg_pos.page]);
1429 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1430 left);
1431 if (ret > 0 && datacrc)
1432 con->in_data_crc =
1433 crc32c(con->in_data_crc,
1434 p + con->in_msg_pos.page_pos, ret);
1435 kunmap(pages[con->in_msg_pos.page]);
1436 if (ret <= 0)
1437 return ret;
1438 con->in_msg_pos.data_pos += ret;
1439 con->in_msg_pos.page_pos += ret;
1440 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1441 con->in_msg_pos.page_pos = 0;
1442 con->in_msg_pos.page++;
1445 return ret;
1448 #ifdef CONFIG_BLOCK
1449 static int read_partial_message_bio(struct ceph_connection *con,
1450 struct bio **bio_iter, int *bio_seg,
1451 unsigned data_len, int datacrc)
1453 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1454 void *p;
1455 int ret, left;
1457 if (IS_ERR(bv))
1458 return PTR_ERR(bv);
1460 left = min((int)(data_len - con->in_msg_pos.data_pos),
1461 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1463 p = kmap(bv->bv_page) + bv->bv_offset;
1465 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1466 left);
1467 if (ret > 0 && datacrc)
1468 con->in_data_crc =
1469 crc32c(con->in_data_crc,
1470 p + con->in_msg_pos.page_pos, ret);
1471 kunmap(bv->bv_page);
1472 if (ret <= 0)
1473 return ret;
1474 con->in_msg_pos.data_pos += ret;
1475 con->in_msg_pos.page_pos += ret;
1476 if (con->in_msg_pos.page_pos == bv->bv_len) {
1477 con->in_msg_pos.page_pos = 0;
1478 iter_bio_next(bio_iter, bio_seg);
1481 return ret;
1483 #endif
1486 * read (part of) a message.
1488 static int read_partial_message(struct ceph_connection *con)
1490 struct ceph_msg *m = con->in_msg;
1491 int ret;
1492 int to, left;
1493 unsigned front_len, middle_len, data_len;
1494 int datacrc = con->msgr->nocrc;
1495 int skip;
1496 u64 seq;
1498 dout("read_partial_message con %p msg %p\n", con, m);
1500 /* header */
1501 while (con->in_base_pos < sizeof(con->in_hdr)) {
1502 left = sizeof(con->in_hdr) - con->in_base_pos;
1503 ret = ceph_tcp_recvmsg(con->sock,
1504 (char *)&con->in_hdr + con->in_base_pos,
1505 left);
1506 if (ret <= 0)
1507 return ret;
1508 con->in_base_pos += ret;
1509 if (con->in_base_pos == sizeof(con->in_hdr)) {
1510 u32 crc = crc32c(0, (void *)&con->in_hdr,
1511 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1512 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1513 pr_err("read_partial_message bad hdr "
1514 " crc %u != expected %u\n",
1515 crc, con->in_hdr.crc);
1516 return -EBADMSG;
1520 front_len = le32_to_cpu(con->in_hdr.front_len);
1521 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1522 return -EIO;
1523 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1524 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1525 return -EIO;
1526 data_len = le32_to_cpu(con->in_hdr.data_len);
1527 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1528 return -EIO;
1530 /* verify seq# */
1531 seq = le64_to_cpu(con->in_hdr.seq);
1532 if ((s64)seq - (s64)con->in_seq < 1) {
1533 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1534 ENTITY_NAME(con->peer_name),
1535 ceph_pr_addr(&con->peer_addr.in_addr),
1536 seq, con->in_seq + 1);
1537 con->in_base_pos = -front_len - middle_len - data_len -
1538 sizeof(m->footer);
1539 con->in_tag = CEPH_MSGR_TAG_READY;
1540 return 0;
1541 } else if ((s64)seq - (s64)con->in_seq > 1) {
1542 pr_err("read_partial_message bad seq %lld expected %lld\n",
1543 seq, con->in_seq + 1);
1544 con->error_msg = "bad message sequence # for incoming message";
1545 return -EBADMSG;
1548 /* allocate message? */
1549 if (!con->in_msg) {
1550 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1551 con->in_hdr.front_len, con->in_hdr.data_len);
1552 skip = 0;
1553 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1554 if (skip) {
1555 /* skip this message */
1556 dout("alloc_msg said skip message\n");
1557 BUG_ON(con->in_msg);
1558 con->in_base_pos = -front_len - middle_len - data_len -
1559 sizeof(m->footer);
1560 con->in_tag = CEPH_MSGR_TAG_READY;
1561 con->in_seq++;
1562 return 0;
1564 if (!con->in_msg) {
1565 con->error_msg =
1566 "error allocating memory for incoming message";
1567 return -ENOMEM;
1569 m = con->in_msg;
1570 m->front.iov_len = 0; /* haven't read it yet */
1571 if (m->middle)
1572 m->middle->vec.iov_len = 0;
1574 con->in_msg_pos.page = 0;
1575 if (m->pages)
1576 con->in_msg_pos.page_pos = m->page_alignment;
1577 else
1578 con->in_msg_pos.page_pos = 0;
1579 con->in_msg_pos.data_pos = 0;
1582 /* front */
1583 ret = read_partial_message_section(con, &m->front, front_len,
1584 &con->in_front_crc);
1585 if (ret <= 0)
1586 return ret;
1588 /* middle */
1589 if (m->middle) {
1590 ret = read_partial_message_section(con, &m->middle->vec,
1591 middle_len,
1592 &con->in_middle_crc);
1593 if (ret <= 0)
1594 return ret;
1596 #ifdef CONFIG_BLOCK
1597 if (m->bio && !m->bio_iter)
1598 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1599 #endif
1601 /* (page) data */
1602 while (con->in_msg_pos.data_pos < data_len) {
1603 if (m->pages) {
1604 ret = read_partial_message_pages(con, m->pages,
1605 data_len, datacrc);
1606 if (ret <= 0)
1607 return ret;
1608 #ifdef CONFIG_BLOCK
1609 } else if (m->bio) {
1611 ret = read_partial_message_bio(con,
1612 &m->bio_iter, &m->bio_seg,
1613 data_len, datacrc);
1614 if (ret <= 0)
1615 return ret;
1616 #endif
1617 } else {
1618 BUG_ON(1);
1622 /* footer */
1623 to = sizeof(m->hdr) + sizeof(m->footer);
1624 while (con->in_base_pos < to) {
1625 left = to - con->in_base_pos;
1626 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1627 (con->in_base_pos - sizeof(m->hdr)),
1628 left);
1629 if (ret <= 0)
1630 return ret;
1631 con->in_base_pos += ret;
1633 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1634 m, front_len, m->footer.front_crc, middle_len,
1635 m->footer.middle_crc, data_len, m->footer.data_crc);
1637 /* crc ok? */
1638 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1639 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1640 m, con->in_front_crc, m->footer.front_crc);
1641 return -EBADMSG;
1643 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1644 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1645 m, con->in_middle_crc, m->footer.middle_crc);
1646 return -EBADMSG;
1648 if (datacrc &&
1649 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1650 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1651 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1652 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1653 return -EBADMSG;
1656 return 1; /* done! */
1660 * Process message. This happens in the worker thread. The callback should
1661 * be careful not to do anything that waits on other incoming messages or it
1662 * may deadlock.
1664 static void process_message(struct ceph_connection *con)
1666 struct ceph_msg *msg;
1668 msg = con->in_msg;
1669 con->in_msg = NULL;
1671 /* if first message, set peer_name */
1672 if (con->peer_name.type == 0)
1673 con->peer_name = msg->hdr.src;
1675 con->in_seq++;
1676 mutex_unlock(&con->mutex);
1678 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1679 msg, le64_to_cpu(msg->hdr.seq),
1680 ENTITY_NAME(msg->hdr.src),
1681 le16_to_cpu(msg->hdr.type),
1682 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1683 le32_to_cpu(msg->hdr.front_len),
1684 le32_to_cpu(msg->hdr.data_len),
1685 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1686 con->ops->dispatch(con, msg);
1688 mutex_lock(&con->mutex);
1689 prepare_read_tag(con);
1694 * Write something to the socket. Called in a worker thread when the
1695 * socket appears to be writeable and we have something ready to send.
1697 static int try_write(struct ceph_connection *con)
1699 struct ceph_messenger *msgr = con->msgr;
1700 int ret = 1;
1702 dout("try_write start %p state %lu nref %d\n", con, con->state,
1703 atomic_read(&con->nref));
1705 more:
1706 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1708 /* open the socket first? */
1709 if (con->sock == NULL) {
1711 * if we were STANDBY and are reconnecting _this_
1712 * connection, bump connect_seq now. Always bump
1713 * global_seq.
1715 if (test_and_clear_bit(STANDBY, &con->state))
1716 con->connect_seq++;
1718 prepare_write_banner(msgr, con);
1719 prepare_write_connect(msgr, con, 1);
1720 prepare_read_banner(con);
1721 set_bit(CONNECTING, &con->state);
1722 clear_bit(NEGOTIATING, &con->state);
1724 BUG_ON(con->in_msg);
1725 con->in_tag = CEPH_MSGR_TAG_READY;
1726 dout("try_write initiating connect on %p new state %lu\n",
1727 con, con->state);
1728 con->sock = ceph_tcp_connect(con);
1729 if (IS_ERR(con->sock)) {
1730 con->sock = NULL;
1731 con->error_msg = "connect error";
1732 ret = -1;
1733 goto out;
1737 more_kvec:
1738 /* kvec data queued? */
1739 if (con->out_skip) {
1740 ret = write_partial_skip(con);
1741 if (ret <= 0)
1742 goto done;
1743 if (ret < 0) {
1744 dout("try_write write_partial_skip err %d\n", ret);
1745 goto done;
1748 if (con->out_kvec_left) {
1749 ret = write_partial_kvec(con);
1750 if (ret <= 0)
1751 goto done;
1754 /* msg pages? */
1755 if (con->out_msg) {
1756 if (con->out_msg_done) {
1757 ceph_msg_put(con->out_msg);
1758 con->out_msg = NULL; /* we're done with this one */
1759 goto do_next;
1762 ret = write_partial_msg_pages(con);
1763 if (ret == 1)
1764 goto more_kvec; /* we need to send the footer, too! */
1765 if (ret == 0)
1766 goto done;
1767 if (ret < 0) {
1768 dout("try_write write_partial_msg_pages err %d\n",
1769 ret);
1770 goto done;
1774 do_next:
1775 if (!test_bit(CONNECTING, &con->state)) {
1776 /* is anything else pending? */
1777 if (!list_empty(&con->out_queue)) {
1778 prepare_write_message(con);
1779 goto more;
1781 if (con->in_seq > con->in_seq_acked) {
1782 prepare_write_ack(con);
1783 goto more;
1785 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1786 prepare_write_keepalive(con);
1787 goto more;
1791 /* Nothing to do! */
1792 clear_bit(WRITE_PENDING, &con->state);
1793 dout("try_write nothing else to write.\n");
1794 done:
1795 ret = 0;
1796 out:
1797 dout("try_write done on %p\n", con);
1798 return ret;
1804 * Read what we can from the socket.
1806 static int try_read(struct ceph_connection *con)
1808 int ret = -1;
1810 if (!con->sock)
1811 return 0;
1813 if (test_bit(STANDBY, &con->state))
1814 return 0;
1816 dout("try_read start on %p\n", con);
1818 more:
1819 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1820 con->in_base_pos);
1821 if (test_bit(CONNECTING, &con->state)) {
1822 if (!test_bit(NEGOTIATING, &con->state)) {
1823 dout("try_read connecting\n");
1824 ret = read_partial_banner(con);
1825 if (ret <= 0)
1826 goto done;
1827 if (process_banner(con) < 0) {
1828 ret = -1;
1829 goto out;
1832 ret = read_partial_connect(con);
1833 if (ret <= 0)
1834 goto done;
1835 if (process_connect(con) < 0) {
1836 ret = -1;
1837 goto out;
1839 goto more;
1842 if (con->in_base_pos < 0) {
1844 * skipping + discarding content.
1846 * FIXME: there must be a better way to do this!
1848 static char buf[1024];
1849 int skip = min(1024, -con->in_base_pos);
1850 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1851 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1852 if (ret <= 0)
1853 goto done;
1854 con->in_base_pos += ret;
1855 if (con->in_base_pos)
1856 goto more;
1858 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1860 * what's next?
1862 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1863 if (ret <= 0)
1864 goto done;
1865 dout("try_read got tag %d\n", (int)con->in_tag);
1866 switch (con->in_tag) {
1867 case CEPH_MSGR_TAG_MSG:
1868 prepare_read_message(con);
1869 break;
1870 case CEPH_MSGR_TAG_ACK:
1871 prepare_read_ack(con);
1872 break;
1873 case CEPH_MSGR_TAG_CLOSE:
1874 set_bit(CLOSED, &con->state); /* fixme */
1875 goto done;
1876 default:
1877 goto bad_tag;
1880 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1881 ret = read_partial_message(con);
1882 if (ret <= 0) {
1883 switch (ret) {
1884 case -EBADMSG:
1885 con->error_msg = "bad crc";
1886 ret = -EIO;
1887 goto out;
1888 case -EIO:
1889 con->error_msg = "io error";
1890 goto out;
1891 default:
1892 goto done;
1895 if (con->in_tag == CEPH_MSGR_TAG_READY)
1896 goto more;
1897 process_message(con);
1898 goto more;
1900 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1901 ret = read_partial_ack(con);
1902 if (ret <= 0)
1903 goto done;
1904 process_ack(con);
1905 goto more;
1908 done:
1909 ret = 0;
1910 out:
1911 dout("try_read done on %p\n", con);
1912 return ret;
1914 bad_tag:
1915 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1916 con->error_msg = "protocol error, garbage tag";
1917 ret = -1;
1918 goto out;
1923 * Atomically queue work on a connection. Bump @con reference to
1924 * avoid races with connection teardown.
1926 * There is some trickery going on with QUEUED and BUSY because we
1927 * only want a _single_ thread operating on each connection at any
1928 * point in time, but we want to use all available CPUs.
1930 * The worker thread only proceeds if it can atomically set BUSY. It
1931 * clears QUEUED and does it's thing. When it thinks it's done, it
1932 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1933 * (tries again to set BUSY).
1935 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1936 * try to queue work. If that fails (work is already queued, or BUSY)
1937 * we give up (work also already being done or is queued) but leave QUEUED
1938 * set so that the worker thread will loop if necessary.
1940 static void queue_con(struct ceph_connection *con)
1942 if (test_bit(DEAD, &con->state)) {
1943 dout("queue_con %p ignoring: DEAD\n",
1944 con);
1945 return;
1948 if (!con->ops->get(con)) {
1949 dout("queue_con %p ref count 0\n", con);
1950 return;
1953 set_bit(QUEUED, &con->state);
1954 if (test_bit(BUSY, &con->state)) {
1955 dout("queue_con %p - already BUSY\n", con);
1956 con->ops->put(con);
1957 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1958 dout("queue_con %p - already queued\n", con);
1959 con->ops->put(con);
1960 } else {
1961 dout("queue_con %p\n", con);
1966 * Do some work on a connection. Drop a connection ref when we're done.
1968 static void con_work(struct work_struct *work)
1970 struct ceph_connection *con = container_of(work, struct ceph_connection,
1971 work.work);
1972 int backoff = 0;
1974 more:
1975 if (test_and_set_bit(BUSY, &con->state) != 0) {
1976 dout("con_work %p BUSY already set\n", con);
1977 goto out;
1979 dout("con_work %p start, clearing QUEUED\n", con);
1980 clear_bit(QUEUED, &con->state);
1982 mutex_lock(&con->mutex);
1984 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1985 dout("con_work CLOSED\n");
1986 con_close_socket(con);
1987 goto done;
1989 if (test_and_clear_bit(OPENING, &con->state)) {
1990 /* reopen w/ new peer */
1991 dout("con_work OPENING\n");
1992 con_close_socket(con);
1995 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1996 try_read(con) < 0 ||
1997 try_write(con) < 0) {
1998 mutex_unlock(&con->mutex);
1999 backoff = 1;
2000 ceph_fault(con); /* error/fault path */
2001 goto done_unlocked;
2004 done:
2005 mutex_unlock(&con->mutex);
2007 done_unlocked:
2008 clear_bit(BUSY, &con->state);
2009 dout("con->state=%lu\n", con->state);
2010 if (test_bit(QUEUED, &con->state)) {
2011 if (!backoff || test_bit(OPENING, &con->state)) {
2012 dout("con_work %p QUEUED reset, looping\n", con);
2013 goto more;
2015 dout("con_work %p QUEUED reset, but just faulted\n", con);
2016 clear_bit(QUEUED, &con->state);
2018 dout("con_work %p done\n", con);
2020 out:
2021 con->ops->put(con);
2026 * Generic error/fault handler. A retry mechanism is used with
2027 * exponential backoff
2029 static void ceph_fault(struct ceph_connection *con)
2031 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2032 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2033 dout("fault %p state %lu to peer %s\n",
2034 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2036 if (test_bit(LOSSYTX, &con->state)) {
2037 dout("fault on LOSSYTX channel\n");
2038 goto out;
2041 mutex_lock(&con->mutex);
2042 if (test_bit(CLOSED, &con->state))
2043 goto out_unlock;
2045 con_close_socket(con);
2047 if (con->in_msg) {
2048 ceph_msg_put(con->in_msg);
2049 con->in_msg = NULL;
2052 /* Requeue anything that hasn't been acked */
2053 list_splice_init(&con->out_sent, &con->out_queue);
2055 /* If there are no messages in the queue, place the connection
2056 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2057 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
2058 dout("fault setting STANDBY\n");
2059 set_bit(STANDBY, &con->state);
2060 } else {
2061 /* retry after a delay. */
2062 if (con->delay == 0)
2063 con->delay = BASE_DELAY_INTERVAL;
2064 else if (con->delay < MAX_DELAY_INTERVAL)
2065 con->delay *= 2;
2066 dout("fault queueing %p delay %lu\n", con, con->delay);
2067 con->ops->get(con);
2068 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2069 round_jiffies_relative(con->delay)) == 0)
2070 con->ops->put(con);
2073 out_unlock:
2074 mutex_unlock(&con->mutex);
2075 out:
2077 * in case we faulted due to authentication, invalidate our
2078 * current tickets so that we can get new ones.
2080 if (con->auth_retry && con->ops->invalidate_authorizer) {
2081 dout("calling invalidate_authorizer()\n");
2082 con->ops->invalidate_authorizer(con);
2085 if (con->ops->fault)
2086 con->ops->fault(con);
2092 * create a new messenger instance
2094 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2095 u32 supported_features,
2096 u32 required_features)
2098 struct ceph_messenger *msgr;
2100 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2101 if (msgr == NULL)
2102 return ERR_PTR(-ENOMEM);
2104 msgr->supported_features = supported_features;
2105 msgr->required_features = required_features;
2107 spin_lock_init(&msgr->global_seq_lock);
2109 /* the zero page is needed if a request is "canceled" while the message
2110 * is being written over the socket */
2111 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2112 if (!msgr->zero_page) {
2113 kfree(msgr);
2114 return ERR_PTR(-ENOMEM);
2116 kmap(msgr->zero_page);
2118 if (myaddr)
2119 msgr->inst.addr = *myaddr;
2121 /* select a random nonce */
2122 msgr->inst.addr.type = 0;
2123 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2124 encode_my_addr(msgr);
2126 dout("messenger_create %p\n", msgr);
2127 return msgr;
2129 EXPORT_SYMBOL(ceph_messenger_create);
2131 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2133 dout("destroy %p\n", msgr);
2134 kunmap(msgr->zero_page);
2135 __free_page(msgr->zero_page);
2136 kfree(msgr);
2137 dout("destroyed messenger %p\n", msgr);
2139 EXPORT_SYMBOL(ceph_messenger_destroy);
2142 * Queue up an outgoing message on the given connection.
2144 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2146 if (test_bit(CLOSED, &con->state)) {
2147 dout("con_send %p closed, dropping %p\n", con, msg);
2148 ceph_msg_put(msg);
2149 return;
2152 /* set src+dst */
2153 msg->hdr.src = con->msgr->inst.name;
2155 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2157 msg->needs_out_seq = true;
2159 /* queue */
2160 mutex_lock(&con->mutex);
2161 BUG_ON(!list_empty(&msg->list_head));
2162 list_add_tail(&msg->list_head, &con->out_queue);
2163 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2164 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2165 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2166 le32_to_cpu(msg->hdr.front_len),
2167 le32_to_cpu(msg->hdr.middle_len),
2168 le32_to_cpu(msg->hdr.data_len));
2169 mutex_unlock(&con->mutex);
2171 /* if there wasn't anything waiting to send before, queue
2172 * new work */
2173 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2174 queue_con(con);
2176 EXPORT_SYMBOL(ceph_con_send);
2179 * Revoke a message that was previously queued for send
2181 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2183 mutex_lock(&con->mutex);
2184 if (!list_empty(&msg->list_head)) {
2185 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2186 list_del_init(&msg->list_head);
2187 ceph_msg_put(msg);
2188 msg->hdr.seq = 0;
2190 if (con->out_msg == msg) {
2191 dout("con_revoke %p msg %p - was sending\n", con, msg);
2192 con->out_msg = NULL;
2193 if (con->out_kvec_is_msg) {
2194 con->out_skip = con->out_kvec_bytes;
2195 con->out_kvec_is_msg = false;
2197 ceph_msg_put(msg);
2198 msg->hdr.seq = 0;
2200 mutex_unlock(&con->mutex);
2204 * Revoke a message that we may be reading data into
2206 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2208 mutex_lock(&con->mutex);
2209 if (con->in_msg && con->in_msg == msg) {
2210 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2211 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2212 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2214 /* skip rest of message */
2215 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2216 con->in_base_pos = con->in_base_pos -
2217 sizeof(struct ceph_msg_header) -
2218 front_len -
2219 middle_len -
2220 data_len -
2221 sizeof(struct ceph_msg_footer);
2222 ceph_msg_put(con->in_msg);
2223 con->in_msg = NULL;
2224 con->in_tag = CEPH_MSGR_TAG_READY;
2225 con->in_seq++;
2226 } else {
2227 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2228 con, con->in_msg, msg);
2230 mutex_unlock(&con->mutex);
2234 * Queue a keepalive byte to ensure the tcp connection is alive.
2236 void ceph_con_keepalive(struct ceph_connection *con)
2238 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2239 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2240 queue_con(con);
2242 EXPORT_SYMBOL(ceph_con_keepalive);
2246 * construct a new message with given type, size
2247 * the new msg has a ref count of 1.
2249 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2251 struct ceph_msg *m;
2253 m = kmalloc(sizeof(*m), flags);
2254 if (m == NULL)
2255 goto out;
2256 kref_init(&m->kref);
2257 INIT_LIST_HEAD(&m->list_head);
2259 m->hdr.tid = 0;
2260 m->hdr.type = cpu_to_le16(type);
2261 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2262 m->hdr.version = 0;
2263 m->hdr.front_len = cpu_to_le32(front_len);
2264 m->hdr.middle_len = 0;
2265 m->hdr.data_len = 0;
2266 m->hdr.data_off = 0;
2267 m->hdr.reserved = 0;
2268 m->footer.front_crc = 0;
2269 m->footer.middle_crc = 0;
2270 m->footer.data_crc = 0;
2271 m->footer.flags = 0;
2272 m->front_max = front_len;
2273 m->front_is_vmalloc = false;
2274 m->more_to_follow = false;
2275 m->pool = NULL;
2277 /* front */
2278 if (front_len) {
2279 if (front_len > PAGE_CACHE_SIZE) {
2280 m->front.iov_base = __vmalloc(front_len, flags,
2281 PAGE_KERNEL);
2282 m->front_is_vmalloc = true;
2283 } else {
2284 m->front.iov_base = kmalloc(front_len, flags);
2286 if (m->front.iov_base == NULL) {
2287 pr_err("msg_new can't allocate %d bytes\n",
2288 front_len);
2289 goto out2;
2291 } else {
2292 m->front.iov_base = NULL;
2294 m->front.iov_len = front_len;
2296 /* middle */
2297 m->middle = NULL;
2299 /* data */
2300 m->nr_pages = 0;
2301 m->page_alignment = 0;
2302 m->pages = NULL;
2303 m->pagelist = NULL;
2304 m->bio = NULL;
2305 m->bio_iter = NULL;
2306 m->bio_seg = 0;
2307 m->trail = NULL;
2309 dout("ceph_msg_new %p front %d\n", m, front_len);
2310 return m;
2312 out2:
2313 ceph_msg_put(m);
2314 out:
2315 pr_err("msg_new can't create type %d front %d\n", type, front_len);
2316 return NULL;
2318 EXPORT_SYMBOL(ceph_msg_new);
2321 * Allocate "middle" portion of a message, if it is needed and wasn't
2322 * allocated by alloc_msg. This allows us to read a small fixed-size
2323 * per-type header in the front and then gracefully fail (i.e.,
2324 * propagate the error to the caller based on info in the front) when
2325 * the middle is too large.
2327 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2329 int type = le16_to_cpu(msg->hdr.type);
2330 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2332 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2333 ceph_msg_type_name(type), middle_len);
2334 BUG_ON(!middle_len);
2335 BUG_ON(msg->middle);
2337 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2338 if (!msg->middle)
2339 return -ENOMEM;
2340 return 0;
2344 * Generic message allocator, for incoming messages.
2346 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2347 struct ceph_msg_header *hdr,
2348 int *skip)
2350 int type = le16_to_cpu(hdr->type);
2351 int front_len = le32_to_cpu(hdr->front_len);
2352 int middle_len = le32_to_cpu(hdr->middle_len);
2353 struct ceph_msg *msg = NULL;
2354 int ret;
2356 if (con->ops->alloc_msg) {
2357 mutex_unlock(&con->mutex);
2358 msg = con->ops->alloc_msg(con, hdr, skip);
2359 mutex_lock(&con->mutex);
2360 if (!msg || *skip)
2361 return NULL;
2363 if (!msg) {
2364 *skip = 0;
2365 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2366 if (!msg) {
2367 pr_err("unable to allocate msg type %d len %d\n",
2368 type, front_len);
2369 return NULL;
2371 msg->page_alignment = le16_to_cpu(hdr->data_off);
2373 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2375 if (middle_len && !msg->middle) {
2376 ret = ceph_alloc_middle(con, msg);
2377 if (ret < 0) {
2378 ceph_msg_put(msg);
2379 return NULL;
2383 return msg;
2388 * Free a generically kmalloc'd message.
2390 void ceph_msg_kfree(struct ceph_msg *m)
2392 dout("msg_kfree %p\n", m);
2393 if (m->front_is_vmalloc)
2394 vfree(m->front.iov_base);
2395 else
2396 kfree(m->front.iov_base);
2397 kfree(m);
2401 * Drop a msg ref. Destroy as needed.
2403 void ceph_msg_last_put(struct kref *kref)
2405 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2407 dout("ceph_msg_put last one on %p\n", m);
2408 WARN_ON(!list_empty(&m->list_head));
2410 /* drop middle, data, if any */
2411 if (m->middle) {
2412 ceph_buffer_put(m->middle);
2413 m->middle = NULL;
2415 m->nr_pages = 0;
2416 m->pages = NULL;
2418 if (m->pagelist) {
2419 ceph_pagelist_release(m->pagelist);
2420 kfree(m->pagelist);
2421 m->pagelist = NULL;
2424 m->trail = NULL;
2426 if (m->pool)
2427 ceph_msgpool_put(m->pool, m);
2428 else
2429 ceph_msg_kfree(m);
2431 EXPORT_SYMBOL(ceph_msg_last_put);
2433 void ceph_msg_dump(struct ceph_msg *msg)
2435 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2436 msg->front_max, msg->nr_pages);
2437 print_hex_dump(KERN_DEBUG, "header: ",
2438 DUMP_PREFIX_OFFSET, 16, 1,
2439 &msg->hdr, sizeof(msg->hdr), true);
2440 print_hex_dump(KERN_DEBUG, " front: ",
2441 DUMP_PREFIX_OFFSET, 16, 1,
2442 msg->front.iov_base, msg->front.iov_len, true);
2443 if (msg->middle)
2444 print_hex_dump(KERN_DEBUG, "middle: ",
2445 DUMP_PREFIX_OFFSET, 16, 1,
2446 msg->middle->vec.iov_base,
2447 msg->middle->vec.iov_len, true);
2448 print_hex_dump(KERN_DEBUG, "footer: ",
2449 DUMP_PREFIX_OFFSET, 16, 1,
2450 &msg->footer, sizeof(msg->footer), true);
2452 EXPORT_SYMBOL(ceph_msg_dump);