2 * Timer device implementation for SGI SN platforms.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
33 #include <linux/time.h>
34 #include <linux/math64.h>
35 #include <linux/mutex.h>
36 #include <linux/slab.h>
38 #include <asm/uaccess.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/intr.h>
41 #include <asm/sn/shub_mmr.h>
42 #include <asm/sn/nodepda.h>
43 #include <asm/sn/shubio.h>
45 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46 MODULE_DESCRIPTION("SGI Altix RTC Timer");
47 MODULE_LICENSE("GPL");
49 /* name of the device, usually in /dev */
50 #define MMTIMER_NAME "mmtimer"
51 #define MMTIMER_DESC "SGI Altix RTC Timer"
52 #define MMTIMER_VERSION "2.1"
54 #define RTC_BITS 55 /* 55 bits for this implementation */
56 extern unsigned long sn_rtc_cycles_per_second
;
58 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
60 #define rtc_time() (*RTC_COUNTER_ADDR)
62 static DEFINE_MUTEX(mmtimer_mutex
);
63 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
65 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
);
68 * Period in femtoseconds (10^-15 s)
70 static unsigned long mmtimer_femtoperiod
= 0;
72 static const struct file_operations mmtimer_fops
= {
75 .unlocked_ioctl
= mmtimer_ioctl
,
76 .llseek
= noop_llseek
,
80 * We only have comparison registers RTC1-4 currently available per
81 * node. RTC0 is used by SAL.
83 /* Check for an RTC interrupt pending */
84 static int mmtimer_int_pending(int comparator
)
86 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED
)) &
87 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
)
93 /* Clear the RTC interrupt pending bit */
94 static void mmtimer_clr_int_pending(int comparator
)
96 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS
),
97 SH_EVENT_OCCURRED_RTC1_INT_MASK
<< comparator
);
100 /* Setup timer on comparator RTC1 */
101 static void mmtimer_setup_int_0(int cpu
, u64 expires
)
105 /* Disable interrupt */
106 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 0UL);
108 /* Initialize comparator value */
109 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), -1L);
111 /* Clear pending bit */
112 mmtimer_clr_int_pending(0);
114 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC1_INT_CONFIG_IDX_SHFT
) |
115 ((u64
)cpu_physical_id(cpu
) <<
116 SH_RTC1_INT_CONFIG_PID_SHFT
);
118 /* Set configuration */
119 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG
), val
);
121 /* Enable RTC interrupts */
122 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
), 1UL);
124 /* Initialize comparator value */
125 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPB
), expires
);
130 /* Setup timer on comparator RTC2 */
131 static void mmtimer_setup_int_1(int cpu
, u64 expires
)
135 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 0UL);
137 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), -1L);
139 mmtimer_clr_int_pending(1);
141 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC2_INT_CONFIG_IDX_SHFT
) |
142 ((u64
)cpu_physical_id(cpu
) <<
143 SH_RTC2_INT_CONFIG_PID_SHFT
);
145 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG
), val
);
147 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
), 1UL);
149 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPC
), expires
);
152 /* Setup timer on comparator RTC3 */
153 static void mmtimer_setup_int_2(int cpu
, u64 expires
)
157 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 0UL);
159 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), -1L);
161 mmtimer_clr_int_pending(2);
163 val
= ((u64
)SGI_MMTIMER_VECTOR
<< SH_RTC3_INT_CONFIG_IDX_SHFT
) |
164 ((u64
)cpu_physical_id(cpu
) <<
165 SH_RTC3_INT_CONFIG_PID_SHFT
);
167 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG
), val
);
169 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
), 1UL);
171 HUB_S((u64
*)LOCAL_MMR_ADDR(SH_INT_CMPD
), expires
);
175 * This function must be called with interrupts disabled and preemption off
176 * in order to insure that the setup succeeds in a deterministic time frame.
177 * It will check if the interrupt setup succeeded.
179 static int mmtimer_setup(int cpu
, int comparator
, unsigned long expires
,
180 u64
*set_completion_time
)
182 switch (comparator
) {
184 mmtimer_setup_int_0(cpu
, expires
);
187 mmtimer_setup_int_1(cpu
, expires
);
190 mmtimer_setup_int_2(cpu
, expires
);
193 /* We might've missed our expiration time */
194 *set_completion_time
= rtc_time();
195 if (*set_completion_time
<= expires
)
199 * If an interrupt is already pending then its okay
200 * if not then we failed
202 return mmtimer_int_pending(comparator
);
205 static int mmtimer_disable_int(long nasid
, int comparator
)
207 switch (comparator
) {
209 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE
),
210 0UL) : REMOTE_HUB_S(nasid
, SH_RTC1_INT_ENABLE
, 0UL);
213 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE
),
214 0UL) : REMOTE_HUB_S(nasid
, SH_RTC2_INT_ENABLE
, 0UL);
217 nasid
== -1 ? HUB_S((u64
*)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE
),
218 0UL) : REMOTE_HUB_S(nasid
, SH_RTC3_INT_ENABLE
, 0UL);
226 #define COMPARATOR 1 /* The comparator to use */
228 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
229 #define TIMER_SET 0 /* Comparator is set for this timer */
231 #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
233 /* There is one of these for each timer */
236 struct k_itimer
*timer
;
240 struct mmtimer_node
{
241 spinlock_t lock ____cacheline_aligned
;
242 struct rb_root timer_head
;
243 struct rb_node
*next
;
244 struct tasklet_struct tasklet
;
246 static struct mmtimer_node
*timers
;
248 static unsigned mmtimer_interval_retry_increment
=
249 MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT
;
250 module_param(mmtimer_interval_retry_increment
, uint
, 0644);
251 MODULE_PARM_DESC(mmtimer_interval_retry_increment
,
252 "RTC ticks to add to expiration on interval retry (default 40)");
255 * Add a new mmtimer struct to the node's mmtimer list.
256 * This function assumes the struct mmtimer_node is locked.
258 static void mmtimer_add_list(struct mmtimer
*n
)
260 int nodeid
= n
->timer
->it
.mmtimer
.node
;
261 unsigned long expires
= n
->timer
->it
.mmtimer
.expires
;
262 struct rb_node
**link
= &timers
[nodeid
].timer_head
.rb_node
;
263 struct rb_node
*parent
= NULL
;
267 * Find the right place in the rbtree:
271 x
= rb_entry(parent
, struct mmtimer
, list
);
273 if (expires
< x
->timer
->it
.mmtimer
.expires
)
274 link
= &(*link
)->rb_left
;
276 link
= &(*link
)->rb_right
;
280 * Insert the timer to the rbtree and check whether it
281 * replaces the first pending timer
283 rb_link_node(&n
->list
, parent
, link
);
284 rb_insert_color(&n
->list
, &timers
[nodeid
].timer_head
);
286 if (!timers
[nodeid
].next
|| expires
< rb_entry(timers
[nodeid
].next
,
287 struct mmtimer
, list
)->timer
->it
.mmtimer
.expires
)
288 timers
[nodeid
].next
= &n
->list
;
292 * Set the comparator for the next timer.
293 * This function assumes the struct mmtimer_node is locked.
295 static void mmtimer_set_next_timer(int nodeid
)
297 struct mmtimer_node
*n
= &timers
[nodeid
];
300 u64 expires
, exp
, set_completion_time
;
307 x
= rb_entry(n
->next
, struct mmtimer
, list
);
309 if (!t
->it
.mmtimer
.incr
) {
310 /* Not an interval timer */
311 if (!mmtimer_setup(x
->cpu
, COMPARATOR
,
312 t
->it
.mmtimer
.expires
,
313 &set_completion_time
)) {
314 /* Late setup, fire now */
315 tasklet_schedule(&n
->tasklet
);
322 expires
= exp
= t
->it
.mmtimer
.expires
;
323 while (!mmtimer_setup(x
->cpu
, COMPARATOR
, expires
,
324 &set_completion_time
)) {
328 expires
= set_completion_time
+
329 mmtimer_interval_retry_increment
+ (1 << i
);
330 /* Calculate overruns as we go. */
331 to
= ((u64
)(expires
- exp
) / t
->it
.mmtimer
.incr
);
334 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
* to
;
335 exp
= t
->it
.mmtimer
.expires
;
338 printk(KERN_ALERT
"mmtimer: cannot reschedule timer\n");
339 t
->it
.mmtimer
.clock
= TIMER_OFF
;
340 n
->next
= rb_next(&x
->list
);
341 rb_erase(&x
->list
, &n
->timer_head
);
349 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
350 * @file: file structure for the device
351 * @cmd: command to execute
352 * @arg: optional argument to command
354 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
359 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
360 * of the page where the registers are mapped) for the counter in question.
362 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
365 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
368 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
370 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
372 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
373 * in the address specified by @arg.
375 static long mmtimer_ioctl(struct file
*file
, unsigned int cmd
,
380 mutex_lock(&mmtimer_mutex
);
383 case MMTIMER_GETOFFSET
: /* offset of the counter */
385 * SN RTC registers are on their own 64k page
387 if(PAGE_SIZE
<= (1 << 16))
388 ret
= (((long)RTC_COUNTER_ADDR
) & (PAGE_SIZE
-1)) / 8;
393 case MMTIMER_GETRES
: /* resolution of the clock in 10^-15 s */
394 if(copy_to_user((unsigned long __user
*)arg
,
395 &mmtimer_femtoperiod
, sizeof(unsigned long)))
399 case MMTIMER_GETFREQ
: /* frequency in Hz */
400 if(copy_to_user((unsigned long __user
*)arg
,
401 &sn_rtc_cycles_per_second
,
402 sizeof(unsigned long)))
406 case MMTIMER_GETBITS
: /* number of bits in the clock */
410 case MMTIMER_MMAPAVAIL
: /* can we mmap the clock into userspace? */
411 ret
= (PAGE_SIZE
<= (1 << 16)) ? 1 : 0;
414 case MMTIMER_GETCOUNTER
:
415 if(copy_to_user((unsigned long __user
*)arg
,
416 RTC_COUNTER_ADDR
, sizeof(unsigned long)))
423 mutex_unlock(&mmtimer_mutex
);
428 * mmtimer_mmap - maps the clock's registers into userspace
429 * @file: file structure for the device
430 * @vma: VMA to map the registers into
432 * Calls remap_pfn_range() to map the clock's registers into
433 * the calling process' address space.
435 static int mmtimer_mmap(struct file
*file
, struct vm_area_struct
*vma
)
437 unsigned long mmtimer_addr
;
439 if (vma
->vm_end
- vma
->vm_start
!= PAGE_SIZE
)
442 if (vma
->vm_flags
& VM_WRITE
)
445 if (PAGE_SIZE
> (1 << 16))
448 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
450 mmtimer_addr
= __pa(RTC_COUNTER_ADDR
);
451 mmtimer_addr
&= ~(PAGE_SIZE
- 1);
452 mmtimer_addr
&= 0xfffffffffffffffUL
;
454 if (remap_pfn_range(vma
, vma
->vm_start
, mmtimer_addr
>> PAGE_SHIFT
,
455 PAGE_SIZE
, vma
->vm_page_prot
)) {
456 printk(KERN_ERR
"remap_pfn_range failed in mmtimer.c\n");
463 static struct miscdevice mmtimer_miscdev
= {
469 static struct timespec sgi_clock_offset
;
470 static int sgi_clock_period
;
473 * Posix Timer Interface
476 static struct timespec sgi_clock_offset
;
477 static int sgi_clock_period
;
479 static int sgi_clock_get(clockid_t clockid
, struct timespec
*tp
)
483 nsec
= rtc_time() * sgi_clock_period
484 + sgi_clock_offset
.tv_nsec
;
485 *tp
= ns_to_timespec(nsec
);
486 tp
->tv_sec
+= sgi_clock_offset
.tv_sec
;
490 static int sgi_clock_set(clockid_t clockid
, struct timespec
*tp
)
496 nsec
= rtc_time() * sgi_clock_period
;
498 sgi_clock_offset
.tv_sec
= tp
->tv_sec
- div_u64_rem(nsec
, NSEC_PER_SEC
, &rem
);
500 if (rem
<= tp
->tv_nsec
)
501 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
- rem
;
503 sgi_clock_offset
.tv_nsec
= tp
->tv_sec
+ NSEC_PER_SEC
- rem
;
504 sgi_clock_offset
.tv_sec
--;
510 * mmtimer_interrupt - timer interrupt handler
512 * @dev_id: device the irq came from
514 * Called when one of the comarators matches the counter, This
515 * routine will send signals to processes that have requested
518 * This interrupt is run in an interrupt context
519 * by the SHUB. It is therefore safe to locally access SHub
523 mmtimer_interrupt(int irq
, void *dev_id
)
525 unsigned long expires
= 0;
526 int result
= IRQ_NONE
;
527 unsigned indx
= cpu_to_node(smp_processor_id());
528 struct mmtimer
*base
;
530 spin_lock(&timers
[indx
].lock
);
531 base
= rb_entry(timers
[indx
].next
, struct mmtimer
, list
);
533 spin_unlock(&timers
[indx
].lock
);
537 if (base
->cpu
== smp_processor_id()) {
539 expires
= base
->timer
->it
.mmtimer
.expires
;
540 /* expires test won't work with shared irqs */
541 if ((mmtimer_int_pending(COMPARATOR
) > 0) ||
542 (expires
&& (expires
<= rtc_time()))) {
543 mmtimer_clr_int_pending(COMPARATOR
);
544 tasklet_schedule(&timers
[indx
].tasklet
);
545 result
= IRQ_HANDLED
;
548 spin_unlock(&timers
[indx
].lock
);
552 static void mmtimer_tasklet(unsigned long data
)
555 struct mmtimer_node
*mn
= &timers
[nodeid
];
560 /* Send signal and deal with periodic signals */
561 spin_lock_irqsave(&mn
->lock
, flags
);
565 x
= rb_entry(mn
->next
, struct mmtimer
, list
);
568 if (t
->it
.mmtimer
.clock
== TIMER_OFF
)
573 mn
->next
= rb_next(&x
->list
);
574 rb_erase(&x
->list
, &mn
->timer_head
);
576 if (posix_timer_event(t
, 0) != 0)
579 if(t
->it
.mmtimer
.incr
) {
580 t
->it
.mmtimer
.expires
+= t
->it
.mmtimer
.incr
;
583 /* Ensure we don't false trigger in mmtimer_interrupt */
584 t
->it
.mmtimer
.clock
= TIMER_OFF
;
585 t
->it
.mmtimer
.expires
= 0;
588 /* Set comparator for next timer, if there is one */
589 mmtimer_set_next_timer(nodeid
);
591 t
->it_overrun_last
= t
->it_overrun
;
593 spin_unlock_irqrestore(&mn
->lock
, flags
);
596 static int sgi_timer_create(struct k_itimer
*timer
)
598 /* Insure that a newly created timer is off */
599 timer
->it
.mmtimer
.clock
= TIMER_OFF
;
603 /* This does not really delete a timer. It just insures
604 * that the timer is not active
606 * Assumption: it_lock is already held with irq's disabled
608 static int sgi_timer_del(struct k_itimer
*timr
)
610 cnodeid_t nodeid
= timr
->it
.mmtimer
.node
;
611 unsigned long irqflags
;
613 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
614 if (timr
->it
.mmtimer
.clock
!= TIMER_OFF
) {
615 unsigned long expires
= timr
->it
.mmtimer
.expires
;
616 struct rb_node
*n
= timers
[nodeid
].timer_head
.rb_node
;
617 struct mmtimer
*uninitialized_var(t
);
620 timr
->it
.mmtimer
.clock
= TIMER_OFF
;
621 timr
->it
.mmtimer
.expires
= 0;
624 t
= rb_entry(n
, struct mmtimer
, list
);
625 if (t
->timer
== timr
)
628 if (expires
< t
->timer
->it
.mmtimer
.expires
)
635 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
639 if (timers
[nodeid
].next
== n
) {
640 timers
[nodeid
].next
= rb_next(n
);
644 rb_erase(n
, &timers
[nodeid
].timer_head
);
648 mmtimer_disable_int(cnodeid_to_nasid(nodeid
),
650 mmtimer_set_next_timer(nodeid
);
653 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
657 /* Assumption: it_lock is already held with irq's disabled */
658 static void sgi_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
661 if (timr
->it
.mmtimer
.clock
== TIMER_OFF
) {
662 cur_setting
->it_interval
.tv_nsec
= 0;
663 cur_setting
->it_interval
.tv_sec
= 0;
664 cur_setting
->it_value
.tv_nsec
= 0;
665 cur_setting
->it_value
.tv_sec
=0;
669 cur_setting
->it_interval
= ns_to_timespec(timr
->it
.mmtimer
.incr
* sgi_clock_period
);
670 cur_setting
->it_value
= ns_to_timespec((timr
->it
.mmtimer
.expires
- rtc_time()) * sgi_clock_period
);
674 static int sgi_timer_set(struct k_itimer
*timr
, int flags
,
675 struct itimerspec
* new_setting
,
676 struct itimerspec
* old_setting
)
678 unsigned long when
, period
, irqflags
;
681 struct mmtimer
*base
;
685 sgi_timer_get(timr
, old_setting
);
688 when
= timespec_to_ns(&new_setting
->it_value
);
689 period
= timespec_to_ns(&new_setting
->it_interval
);
695 base
= kmalloc(sizeof(struct mmtimer
), GFP_KERNEL
);
699 if (flags
& TIMER_ABSTIME
) {
704 now
= timespec_to_ns(&n
);
708 /* Fire the timer immediately */
713 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
714 * to getnstimeofday() in order to be as faithful as possible to the time
717 when
= (when
+ sgi_clock_period
- 1) / sgi_clock_period
+ rtc_time();
718 period
= (period
+ sgi_clock_period
- 1) / sgi_clock_period
;
721 * We are allocating a local SHub comparator. If we would be moved to another
722 * cpu then another SHub may be local to us. Prohibit that by switching off
727 nodeid
= cpu_to_node(smp_processor_id());
729 /* Lock the node timer structure */
730 spin_lock_irqsave(&timers
[nodeid
].lock
, irqflags
);
733 base
->cpu
= smp_processor_id();
735 timr
->it
.mmtimer
.clock
= TIMER_SET
;
736 timr
->it
.mmtimer
.node
= nodeid
;
737 timr
->it
.mmtimer
.incr
= period
;
738 timr
->it
.mmtimer
.expires
= when
;
740 n
= timers
[nodeid
].next
;
742 /* Add the new struct mmtimer to node's timer list */
743 mmtimer_add_list(base
);
745 if (timers
[nodeid
].next
== n
) {
746 /* No need to reprogram comparator for now */
747 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
752 /* We need to reprogram the comparator */
754 mmtimer_disable_int(cnodeid_to_nasid(nodeid
), COMPARATOR
);
756 mmtimer_set_next_timer(nodeid
);
758 /* Unlock the node timer structure */
759 spin_unlock_irqrestore(&timers
[nodeid
].lock
, irqflags
);
766 static struct k_clock sgi_clock
= {
768 .clock_set
= sgi_clock_set
,
769 .clock_get
= sgi_clock_get
,
770 .timer_create
= sgi_timer_create
,
771 .nsleep
= do_posix_clock_nonanosleep
,
772 .timer_set
= sgi_timer_set
,
773 .timer_del
= sgi_timer_del
,
774 .timer_get
= sgi_timer_get
778 * mmtimer_init - device initialization routine
780 * Does initial setup for the mmtimer device.
782 static int __init
mmtimer_init(void)
784 cnodeid_t node
, maxn
= -1;
786 if (!ia64_platform_is("sn2"))
790 * Sanity check the cycles/sec variable
792 if (sn_rtc_cycles_per_second
< 100000) {
793 printk(KERN_ERR
"%s: unable to determine clock frequency\n",
798 mmtimer_femtoperiod
= ((unsigned long)1E15
+ sn_rtc_cycles_per_second
/
799 2) / sn_rtc_cycles_per_second
;
801 if (request_irq(SGI_MMTIMER_VECTOR
, mmtimer_interrupt
, IRQF_PERCPU
, MMTIMER_NAME
, NULL
)) {
802 printk(KERN_WARNING
"%s: unable to allocate interrupt.",
807 if (misc_register(&mmtimer_miscdev
)) {
808 printk(KERN_ERR
"%s: failed to register device\n",
813 /* Get max numbered node, calculate slots needed */
814 for_each_online_node(node
) {
819 /* Allocate list of node ptrs to mmtimer_t's */
820 timers
= kzalloc(sizeof(struct mmtimer_node
)*maxn
, GFP_KERNEL
);
821 if (timers
== NULL
) {
822 printk(KERN_ERR
"%s: failed to allocate memory for device\n",
827 /* Initialize struct mmtimer's for each online node */
828 for_each_online_node(node
) {
829 spin_lock_init(&timers
[node
].lock
);
830 tasklet_init(&timers
[node
].tasklet
, mmtimer_tasklet
,
831 (unsigned long) node
);
834 sgi_clock_period
= sgi_clock
.res
= NSEC_PER_SEC
/ sn_rtc_cycles_per_second
;
835 register_posix_clock(CLOCK_SGI_CYCLE
, &sgi_clock
);
837 printk(KERN_INFO
"%s: v%s, %ld MHz\n", MMTIMER_DESC
, MMTIMER_VERSION
,
838 sn_rtc_cycles_per_second
/(unsigned long)1E6
);
844 misc_deregister(&mmtimer_miscdev
);
846 free_irq(SGI_MMTIMER_VECTOR
, NULL
);
851 module_init(mmtimer_init
);