drm/i915: Rearrange acquisition of mutex during pwrite
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blob1177ff5779141b07e36223b3682234b1753f967c
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/intel-gtt.h>
39 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
41 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
45 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
53 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
55 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
59 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
61 static int
62 i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
65 static void
66 i915_gem_object_put_pages(struct drm_gem_object *obj);
68 static LIST_HEAD(shrink_list);
69 static DEFINE_SPINLOCK(shrink_list_lock);
71 /* some bookkeeping */
72 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
79 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
86 static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
93 static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
100 static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
107 static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
115 i915_gem_check_is_wedged(struct drm_device *dev)
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
144 static int i915_mutex_lock_interruptible(struct drm_device *dev)
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
162 WARN_ON(i915_verify_lists(dev));
163 return 0;
166 static inline bool
167 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
174 int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
176 unsigned long end)
178 drm_i915_private_t *dev_priv = dev->dev_private;
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
183 return -EINVAL;
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
189 dev_priv->mm.gtt_total = end - start;
191 return 0;
195 i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
198 struct drm_i915_gem_init *args = data;
199 int ret;
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 mutex_unlock(&dev->struct_mutex);
205 return ret;
209 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
212 struct drm_i915_private *dev_priv = dev->dev_private;
213 struct drm_i915_gem_get_aperture *args = data;
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
223 return 0;
228 * Creates a new mm object and returns a handle to it.
231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
236 int ret;
237 u32 handle;
239 args->size = roundup(args->size, PAGE_SIZE);
241 /* Allocate the new object */
242 obj = i915_gem_alloc_object(dev, args->size);
243 if (obj == NULL)
244 return -ENOMEM;
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
247 if (ret) {
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
251 return ret;
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
258 args->handle = handle;
259 return 0;
262 static inline int
263 fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
268 int unwritten;
269 char *vaddr;
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
272 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
273 kunmap_atomic(vaddr, KM_USER0);
275 return unwritten ? -EFAULT : 0;
278 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
287 static inline void
288 slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
294 char *dst_vaddr, *src_vaddr;
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
301 kunmap(src_page);
302 kunmap(dst_page);
305 static inline void
306 slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
313 char *gpu_vaddr, *cpu_vaddr;
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
350 kunmap(cpu_page);
351 kunmap(gpu_page);
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
359 static int
360 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
369 int ret;
371 user_data = (char __user *) (uintptr_t) args->data_ptr;
372 remain = args->size;
374 ret = i915_mutex_lock_interruptible(dev);
375 if (ret)
376 return ret;
378 ret = i915_gem_object_get_pages(obj, 0);
379 if (ret != 0)
380 goto fail_unlock;
382 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
383 args->size);
384 if (ret != 0)
385 goto fail_put_pages;
387 obj_priv = to_intel_bo(obj);
388 offset = args->offset;
390 while (remain > 0) {
391 /* Operation in this page
393 * page_base = page offset within aperture
394 * page_offset = offset within page
395 * page_length = bytes to copy for this page
397 page_base = (offset & ~(PAGE_SIZE-1));
398 page_offset = offset & (PAGE_SIZE-1);
399 page_length = remain;
400 if ((page_offset + remain) > PAGE_SIZE)
401 page_length = PAGE_SIZE - page_offset;
403 ret = fast_shmem_read(obj_priv->pages,
404 page_base, page_offset,
405 user_data, page_length);
406 if (ret)
407 goto fail_put_pages;
409 remain -= page_length;
410 user_data += page_length;
411 offset += page_length;
414 fail_put_pages:
415 i915_gem_object_put_pages(obj);
416 fail_unlock:
417 mutex_unlock(&dev->struct_mutex);
419 return ret;
422 static int
423 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
425 int ret;
427 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
429 /* If we've insufficient memory to map in the pages, attempt
430 * to make some space by throwing out some old buffers.
432 if (ret == -ENOMEM) {
433 struct drm_device *dev = obj->dev;
435 ret = i915_gem_evict_something(dev, obj->size,
436 i915_gem_get_gtt_alignment(obj));
437 if (ret)
438 return ret;
440 ret = i915_gem_object_get_pages(obj, 0);
443 return ret;
447 * This is the fallback shmem pread path, which allocates temporary storage
448 * in kernel space to copy_to_user into outside of the struct_mutex, so we
449 * can copy out of the object's backing pages while holding the struct mutex
450 * and not take page faults.
452 static int
453 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
454 struct drm_i915_gem_pread *args,
455 struct drm_file *file_priv)
457 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
458 struct mm_struct *mm = current->mm;
459 struct page **user_pages;
460 ssize_t remain;
461 loff_t offset, pinned_pages, i;
462 loff_t first_data_page, last_data_page, num_pages;
463 int shmem_page_index, shmem_page_offset;
464 int data_page_index, data_page_offset;
465 int page_length;
466 int ret;
467 uint64_t data_ptr = args->data_ptr;
468 int do_bit17_swizzling;
470 remain = args->size;
472 /* Pin the user pages containing the data. We can't fault while
473 * holding the struct mutex, yet we want to hold it while
474 * dereferencing the user data.
476 first_data_page = data_ptr / PAGE_SIZE;
477 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
478 num_pages = last_data_page - first_data_page + 1;
480 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
481 if (user_pages == NULL)
482 return -ENOMEM;
484 down_read(&mm->mmap_sem);
485 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
486 num_pages, 1, 0, user_pages, NULL);
487 up_read(&mm->mmap_sem);
488 if (pinned_pages < num_pages) {
489 ret = -EFAULT;
490 goto fail_put_user_pages;
493 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
495 ret = i915_mutex_lock_interruptible(dev);
496 if (ret)
497 goto fail_put_user_pages;
499 ret = i915_gem_object_get_pages_or_evict(obj);
500 if (ret)
501 goto fail_unlock;
503 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
504 args->size);
505 if (ret != 0)
506 goto fail_put_pages;
508 obj_priv = to_intel_bo(obj);
509 offset = args->offset;
511 while (remain > 0) {
512 /* Operation in this page
514 * shmem_page_index = page number within shmem file
515 * shmem_page_offset = offset within page in shmem file
516 * data_page_index = page number in get_user_pages return
517 * data_page_offset = offset with data_page_index page.
518 * page_length = bytes to copy for this page
520 shmem_page_index = offset / PAGE_SIZE;
521 shmem_page_offset = offset & ~PAGE_MASK;
522 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
523 data_page_offset = data_ptr & ~PAGE_MASK;
525 page_length = remain;
526 if ((shmem_page_offset + page_length) > PAGE_SIZE)
527 page_length = PAGE_SIZE - shmem_page_offset;
528 if ((data_page_offset + page_length) > PAGE_SIZE)
529 page_length = PAGE_SIZE - data_page_offset;
531 if (do_bit17_swizzling) {
532 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
533 shmem_page_offset,
534 user_pages[data_page_index],
535 data_page_offset,
536 page_length,
538 } else {
539 slow_shmem_copy(user_pages[data_page_index],
540 data_page_offset,
541 obj_priv->pages[shmem_page_index],
542 shmem_page_offset,
543 page_length);
546 remain -= page_length;
547 data_ptr += page_length;
548 offset += page_length;
551 fail_put_pages:
552 i915_gem_object_put_pages(obj);
553 fail_unlock:
554 mutex_unlock(&dev->struct_mutex);
555 fail_put_user_pages:
556 for (i = 0; i < pinned_pages; i++) {
557 SetPageDirty(user_pages[i]);
558 page_cache_release(user_pages[i]);
560 drm_free_large(user_pages);
562 return ret;
566 * Reads data from the object referenced by handle.
568 * On error, the contents of *data are undefined.
571 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
572 struct drm_file *file_priv)
574 struct drm_i915_gem_pread *args = data;
575 struct drm_gem_object *obj;
576 struct drm_i915_gem_object *obj_priv;
577 int ret = 0;
579 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
580 if (obj == NULL)
581 return -ENOENT;
582 obj_priv = to_intel_bo(obj);
584 /* Bounds check source. */
585 if (args->offset > obj->size || args->size > obj->size - args->offset) {
586 ret = -EINVAL;
587 goto out;
590 if (args->size == 0)
591 goto out;
593 if (!access_ok(VERIFY_WRITE,
594 (char __user *)(uintptr_t)args->data_ptr,
595 args->size)) {
596 ret = -EFAULT;
597 goto out;
600 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
601 args->size);
602 if (ret) {
603 ret = -EFAULT;
604 goto out;
607 if (i915_gem_object_needs_bit17_swizzle(obj)) {
608 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
609 } else {
610 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
611 if (ret != 0)
612 ret = i915_gem_shmem_pread_slow(dev, obj, args,
613 file_priv);
616 out:
617 drm_gem_object_unreference_unlocked(obj);
618 return ret;
621 /* This is the fast write path which cannot handle
622 * page faults in the source data
625 static inline int
626 fast_user_write(struct io_mapping *mapping,
627 loff_t page_base, int page_offset,
628 char __user *user_data,
629 int length)
631 char *vaddr_atomic;
632 unsigned long unwritten;
634 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
635 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
636 user_data, length);
637 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
638 return unwritten;
641 /* Here's the write path which can sleep for
642 * page faults
645 static inline void
646 slow_kernel_write(struct io_mapping *mapping,
647 loff_t gtt_base, int gtt_offset,
648 struct page *user_page, int user_offset,
649 int length)
651 char __iomem *dst_vaddr;
652 char *src_vaddr;
654 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
655 src_vaddr = kmap(user_page);
657 memcpy_toio(dst_vaddr + gtt_offset,
658 src_vaddr + user_offset,
659 length);
661 kunmap(user_page);
662 io_mapping_unmap(dst_vaddr);
665 static inline int
666 fast_shmem_write(struct page **pages,
667 loff_t page_base, int page_offset,
668 char __user *data,
669 int length)
671 char *vaddr;
672 int ret;
674 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
675 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
676 kunmap_atomic(vaddr, KM_USER0);
678 return ret;
682 * This is the fast pwrite path, where we copy the data directly from the
683 * user into the GTT, uncached.
685 static int
686 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
687 struct drm_i915_gem_pwrite *args,
688 struct drm_file *file_priv)
690 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
691 drm_i915_private_t *dev_priv = dev->dev_private;
692 ssize_t remain;
693 loff_t offset, page_base;
694 char __user *user_data;
695 int page_offset, page_length;
697 user_data = (char __user *) (uintptr_t) args->data_ptr;
698 remain = args->size;
700 obj_priv = to_intel_bo(obj);
701 offset = obj_priv->gtt_offset + args->offset;
703 while (remain > 0) {
704 /* Operation in this page
706 * page_base = page offset within aperture
707 * page_offset = offset within page
708 * page_length = bytes to copy for this page
710 page_base = (offset & ~(PAGE_SIZE-1));
711 page_offset = offset & (PAGE_SIZE-1);
712 page_length = remain;
713 if ((page_offset + remain) > PAGE_SIZE)
714 page_length = PAGE_SIZE - page_offset;
716 /* If we get a fault while copying data, then (presumably) our
717 * source page isn't available. Return the error and we'll
718 * retry in the slow path.
720 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
721 page_offset, user_data, page_length))
723 return -EFAULT;
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
730 return 0;
734 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
735 * the memory and maps it using kmap_atomic for copying.
737 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
738 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
740 static int
741 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
742 struct drm_i915_gem_pwrite *args,
743 struct drm_file *file_priv)
745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
746 drm_i915_private_t *dev_priv = dev->dev_private;
747 ssize_t remain;
748 loff_t gtt_page_base, offset;
749 loff_t first_data_page, last_data_page, num_pages;
750 loff_t pinned_pages, i;
751 struct page **user_pages;
752 struct mm_struct *mm = current->mm;
753 int gtt_page_offset, data_page_offset, data_page_index, page_length;
754 int ret;
755 uint64_t data_ptr = args->data_ptr;
757 remain = args->size;
759 /* Pin the user pages containing the data. We can't fault while
760 * holding the struct mutex, and all of the pwrite implementations
761 * want to hold it while dereferencing the user data.
763 first_data_page = data_ptr / PAGE_SIZE;
764 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
765 num_pages = last_data_page - first_data_page + 1;
767 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
768 if (user_pages == NULL)
769 return -ENOMEM;
771 mutex_unlock(&dev->struct_mutex);
772 down_read(&mm->mmap_sem);
773 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
774 num_pages, 0, 0, user_pages, NULL);
775 up_read(&mm->mmap_sem);
776 mutex_lock(&dev->struct_mutex);
777 if (pinned_pages < num_pages) {
778 ret = -EFAULT;
779 goto out_unpin_pages;
782 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
783 if (ret)
784 goto out_unpin_pages;
786 obj_priv = to_intel_bo(obj);
787 offset = obj_priv->gtt_offset + args->offset;
789 while (remain > 0) {
790 /* Operation in this page
792 * gtt_page_base = page offset within aperture
793 * gtt_page_offset = offset within page in aperture
794 * data_page_index = page number in get_user_pages return
795 * data_page_offset = offset with data_page_index page.
796 * page_length = bytes to copy for this page
798 gtt_page_base = offset & PAGE_MASK;
799 gtt_page_offset = offset & ~PAGE_MASK;
800 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
801 data_page_offset = data_ptr & ~PAGE_MASK;
803 page_length = remain;
804 if ((gtt_page_offset + page_length) > PAGE_SIZE)
805 page_length = PAGE_SIZE - gtt_page_offset;
806 if ((data_page_offset + page_length) > PAGE_SIZE)
807 page_length = PAGE_SIZE - data_page_offset;
809 slow_kernel_write(dev_priv->mm.gtt_mapping,
810 gtt_page_base, gtt_page_offset,
811 user_pages[data_page_index],
812 data_page_offset,
813 page_length);
815 remain -= page_length;
816 offset += page_length;
817 data_ptr += page_length;
820 out_unpin_pages:
821 for (i = 0; i < pinned_pages; i++)
822 page_cache_release(user_pages[i]);
823 drm_free_large(user_pages);
825 return ret;
829 * This is the fast shmem pwrite path, which attempts to directly
830 * copy_from_user into the kmapped pages backing the object.
832 static int
833 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
834 struct drm_i915_gem_pwrite *args,
835 struct drm_file *file_priv)
837 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
838 ssize_t remain;
839 loff_t offset, page_base;
840 char __user *user_data;
841 int page_offset, page_length;
843 user_data = (char __user *) (uintptr_t) args->data_ptr;
844 remain = args->size;
846 obj_priv = to_intel_bo(obj);
847 offset = args->offset;
848 obj_priv->dirty = 1;
850 while (remain > 0) {
851 /* Operation in this page
853 * page_base = page offset within aperture
854 * page_offset = offset within page
855 * page_length = bytes to copy for this page
857 page_base = (offset & ~(PAGE_SIZE-1));
858 page_offset = offset & (PAGE_SIZE-1);
859 page_length = remain;
860 if ((page_offset + remain) > PAGE_SIZE)
861 page_length = PAGE_SIZE - page_offset;
863 if (fast_shmem_write(obj_priv->pages,
864 page_base, page_offset,
865 user_data, page_length))
866 return -EFAULT;
868 remain -= page_length;
869 user_data += page_length;
870 offset += page_length;
873 return 0;
877 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
878 * the memory and maps it using kmap_atomic for copying.
880 * This avoids taking mmap_sem for faulting on the user's address while the
881 * struct_mutex is held.
883 static int
884 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
885 struct drm_i915_gem_pwrite *args,
886 struct drm_file *file_priv)
888 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
889 struct mm_struct *mm = current->mm;
890 struct page **user_pages;
891 ssize_t remain;
892 loff_t offset, pinned_pages, i;
893 loff_t first_data_page, last_data_page, num_pages;
894 int shmem_page_index, shmem_page_offset;
895 int data_page_index, data_page_offset;
896 int page_length;
897 int ret;
898 uint64_t data_ptr = args->data_ptr;
899 int do_bit17_swizzling;
901 remain = args->size;
903 /* Pin the user pages containing the data. We can't fault while
904 * holding the struct mutex, and all of the pwrite implementations
905 * want to hold it while dereferencing the user data.
907 first_data_page = data_ptr / PAGE_SIZE;
908 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
909 num_pages = last_data_page - first_data_page + 1;
911 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
912 if (user_pages == NULL)
913 return -ENOMEM;
915 mutex_unlock(&dev->struct_mutex);
916 down_read(&mm->mmap_sem);
917 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
918 num_pages, 0, 0, user_pages, NULL);
919 up_read(&mm->mmap_sem);
920 mutex_lock(&dev->struct_mutex);
921 if (pinned_pages < num_pages) {
922 ret = -EFAULT;
923 goto out;
926 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
927 if (ret)
928 goto out;
930 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932 obj_priv = to_intel_bo(obj);
933 offset = args->offset;
934 obj_priv->dirty = 1;
936 while (remain > 0) {
937 /* Operation in this page
939 * shmem_page_index = page number within shmem file
940 * shmem_page_offset = offset within page in shmem file
941 * data_page_index = page number in get_user_pages return
942 * data_page_offset = offset with data_page_index page.
943 * page_length = bytes to copy for this page
945 shmem_page_index = offset / PAGE_SIZE;
946 shmem_page_offset = offset & ~PAGE_MASK;
947 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
948 data_page_offset = data_ptr & ~PAGE_MASK;
950 page_length = remain;
951 if ((shmem_page_offset + page_length) > PAGE_SIZE)
952 page_length = PAGE_SIZE - shmem_page_offset;
953 if ((data_page_offset + page_length) > PAGE_SIZE)
954 page_length = PAGE_SIZE - data_page_offset;
956 if (do_bit17_swizzling) {
957 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
958 shmem_page_offset,
959 user_pages[data_page_index],
960 data_page_offset,
961 page_length,
963 } else {
964 slow_shmem_copy(obj_priv->pages[shmem_page_index],
965 shmem_page_offset,
966 user_pages[data_page_index],
967 data_page_offset,
968 page_length);
971 remain -= page_length;
972 data_ptr += page_length;
973 offset += page_length;
976 out:
977 for (i = 0; i < pinned_pages; i++)
978 page_cache_release(user_pages[i]);
979 drm_free_large(user_pages);
981 return ret;
985 * Writes data to the object referenced by handle.
987 * On error, the contents of the buffer that were to be modified are undefined.
990 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
991 struct drm_file *file)
993 struct drm_i915_gem_pwrite *args = data;
994 struct drm_gem_object *obj;
995 struct drm_i915_gem_object *obj_priv;
996 int ret = 0;
998 obj = drm_gem_object_lookup(dev, file, args->handle);
999 if (obj == NULL)
1000 return -ENOENT;
1001 obj_priv = to_intel_bo(obj);
1003 ret = i915_mutex_lock_interruptible(dev);
1004 if (ret) {
1005 drm_gem_object_unreference_unlocked(obj);
1006 return ret;
1009 /* Bounds check destination. */
1010 if (args->offset > obj->size || args->size > obj->size - args->offset) {
1011 ret = -EINVAL;
1012 goto out;
1015 if (args->size == 0)
1016 goto out;
1018 if (!access_ok(VERIFY_READ,
1019 (char __user *)(uintptr_t)args->data_ptr,
1020 args->size)) {
1021 ret = -EFAULT;
1022 goto out;
1025 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1026 args->size);
1027 if (ret) {
1028 ret = -EFAULT;
1029 goto out;
1032 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1033 * it would end up going through the fenced access, and we'll get
1034 * different detiling behavior between reading and writing.
1035 * pread/pwrite currently are reading and writing from the CPU
1036 * perspective, requiring manual detiling by the client.
1038 if (obj_priv->phys_obj)
1039 ret = i915_gem_phys_pwrite(dev, obj, args, file);
1040 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1041 obj_priv->gtt_space &&
1042 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1043 ret = i915_gem_object_pin(obj, 0);
1044 if (ret)
1045 goto out;
1047 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1048 if (ret)
1049 goto out_unpin;
1051 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1052 if (ret == -EFAULT)
1053 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1055 out_unpin:
1056 i915_gem_object_unpin(obj);
1057 } else {
1058 ret = i915_gem_object_get_pages_or_evict(obj);
1059 if (ret)
1060 goto out;
1062 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1063 if (ret)
1064 goto out_put;
1066 ret = -EFAULT;
1067 if (!i915_gem_object_needs_bit17_swizzle(obj))
1068 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1069 if (ret == -EFAULT)
1070 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1072 out_put:
1073 i915_gem_object_put_pages(obj);
1076 out:
1077 drm_gem_object_unreference(obj);
1078 mutex_unlock(&dev->struct_mutex);
1079 return ret;
1083 * Called when user space prepares to use an object with the CPU, either
1084 * through the mmap ioctl's mapping or a GTT mapping.
1087 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1088 struct drm_file *file_priv)
1090 struct drm_i915_private *dev_priv = dev->dev_private;
1091 struct drm_i915_gem_set_domain *args = data;
1092 struct drm_gem_object *obj;
1093 struct drm_i915_gem_object *obj_priv;
1094 uint32_t read_domains = args->read_domains;
1095 uint32_t write_domain = args->write_domain;
1096 int ret;
1098 if (!(dev->driver->driver_features & DRIVER_GEM))
1099 return -ENODEV;
1101 /* Only handle setting domains to types used by the CPU. */
1102 if (write_domain & I915_GEM_GPU_DOMAINS)
1103 return -EINVAL;
1105 if (read_domains & I915_GEM_GPU_DOMAINS)
1106 return -EINVAL;
1108 /* Having something in the write domain implies it's in the read
1109 * domain, and only that read domain. Enforce that in the request.
1111 if (write_domain != 0 && read_domains != write_domain)
1112 return -EINVAL;
1114 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1115 if (obj == NULL)
1116 return -ENOENT;
1117 obj_priv = to_intel_bo(obj);
1119 ret = i915_mutex_lock_interruptible(dev);
1120 if (ret) {
1121 drm_gem_object_unreference_unlocked(obj);
1122 return ret;
1125 intel_mark_busy(dev, obj);
1127 if (read_domains & I915_GEM_DOMAIN_GTT) {
1128 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1130 /* Update the LRU on the fence for the CPU access that's
1131 * about to occur.
1133 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1134 struct drm_i915_fence_reg *reg =
1135 &dev_priv->fence_regs[obj_priv->fence_reg];
1136 list_move_tail(&reg->lru_list,
1137 &dev_priv->mm.fence_list);
1140 /* Silently promote "you're not bound, there was nothing to do"
1141 * to success, since the client was just asking us to
1142 * make sure everything was done.
1144 if (ret == -EINVAL)
1145 ret = 0;
1146 } else {
1147 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1150 /* Maintain LRU order of "inactive" objects */
1151 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1152 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1154 drm_gem_object_unreference(obj);
1155 mutex_unlock(&dev->struct_mutex);
1156 return ret;
1160 * Called when user space has done writes to this buffer
1163 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1164 struct drm_file *file_priv)
1166 struct drm_i915_gem_sw_finish *args = data;
1167 struct drm_gem_object *obj;
1168 int ret = 0;
1170 if (!(dev->driver->driver_features & DRIVER_GEM))
1171 return -ENODEV;
1173 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1174 if (obj == NULL)
1175 return -ENOENT;
1177 ret = i915_mutex_lock_interruptible(dev);
1178 if (ret) {
1179 drm_gem_object_unreference_unlocked(obj);
1180 return ret;
1183 /* Pinned buffers may be scanout, so flush the cache */
1184 if (to_intel_bo(obj)->pin_count)
1185 i915_gem_object_flush_cpu_write_domain(obj);
1187 drm_gem_object_unreference(obj);
1188 mutex_unlock(&dev->struct_mutex);
1189 return ret;
1193 * Maps the contents of an object, returning the address it is mapped
1194 * into.
1196 * While the mapping holds a reference on the contents of the object, it doesn't
1197 * imply a ref on the object itself.
1200 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1201 struct drm_file *file_priv)
1203 struct drm_i915_gem_mmap *args = data;
1204 struct drm_gem_object *obj;
1205 loff_t offset;
1206 unsigned long addr;
1208 if (!(dev->driver->driver_features & DRIVER_GEM))
1209 return -ENODEV;
1211 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1212 if (obj == NULL)
1213 return -ENOENT;
1215 offset = args->offset;
1217 down_write(&current->mm->mmap_sem);
1218 addr = do_mmap(obj->filp, 0, args->size,
1219 PROT_READ | PROT_WRITE, MAP_SHARED,
1220 args->offset);
1221 up_write(&current->mm->mmap_sem);
1222 drm_gem_object_unreference_unlocked(obj);
1223 if (IS_ERR((void *)addr))
1224 return addr;
1226 args->addr_ptr = (uint64_t) addr;
1228 return 0;
1232 * i915_gem_fault - fault a page into the GTT
1233 * vma: VMA in question
1234 * vmf: fault info
1236 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1237 * from userspace. The fault handler takes care of binding the object to
1238 * the GTT (if needed), allocating and programming a fence register (again,
1239 * only if needed based on whether the old reg is still valid or the object
1240 * is tiled) and inserting a new PTE into the faulting process.
1242 * Note that the faulting process may involve evicting existing objects
1243 * from the GTT and/or fence registers to make room. So performance may
1244 * suffer if the GTT working set is large or there are few fence registers
1245 * left.
1247 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1249 struct drm_gem_object *obj = vma->vm_private_data;
1250 struct drm_device *dev = obj->dev;
1251 drm_i915_private_t *dev_priv = dev->dev_private;
1252 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1253 pgoff_t page_offset;
1254 unsigned long pfn;
1255 int ret = 0;
1256 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1258 /* We don't use vmf->pgoff since that has the fake offset */
1259 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1260 PAGE_SHIFT;
1262 /* Now bind it into the GTT if needed */
1263 mutex_lock(&dev->struct_mutex);
1264 if (!obj_priv->gtt_space) {
1265 ret = i915_gem_object_bind_to_gtt(obj, 0);
1266 if (ret)
1267 goto unlock;
1269 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1270 if (ret)
1271 goto unlock;
1274 /* Need a new fence register? */
1275 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1276 ret = i915_gem_object_get_fence_reg(obj, true);
1277 if (ret)
1278 goto unlock;
1281 if (i915_gem_object_is_inactive(obj_priv))
1282 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1284 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1285 page_offset;
1287 /* Finally, remap it using the new GTT offset */
1288 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1289 unlock:
1290 mutex_unlock(&dev->struct_mutex);
1292 switch (ret) {
1293 case 0:
1294 case -ERESTARTSYS:
1295 return VM_FAULT_NOPAGE;
1296 case -ENOMEM:
1297 case -EAGAIN:
1298 return VM_FAULT_OOM;
1299 default:
1300 return VM_FAULT_SIGBUS;
1305 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1306 * @obj: obj in question
1308 * GEM memory mapping works by handing back to userspace a fake mmap offset
1309 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1310 * up the object based on the offset and sets up the various memory mapping
1311 * structures.
1313 * This routine allocates and attaches a fake offset for @obj.
1315 static int
1316 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1318 struct drm_device *dev = obj->dev;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1321 struct drm_map_list *list;
1322 struct drm_local_map *map;
1323 int ret = 0;
1325 /* Set the object up for mmap'ing */
1326 list = &obj->map_list;
1327 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1328 if (!list->map)
1329 return -ENOMEM;
1331 map = list->map;
1332 map->type = _DRM_GEM;
1333 map->size = obj->size;
1334 map->handle = obj;
1336 /* Get a DRM GEM mmap offset allocated... */
1337 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1338 obj->size / PAGE_SIZE, 0, 0);
1339 if (!list->file_offset_node) {
1340 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1341 ret = -ENOSPC;
1342 goto out_free_list;
1345 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1346 obj->size / PAGE_SIZE, 0);
1347 if (!list->file_offset_node) {
1348 ret = -ENOMEM;
1349 goto out_free_list;
1352 list->hash.key = list->file_offset_node->start;
1353 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1354 if (ret) {
1355 DRM_ERROR("failed to add to map hash\n");
1356 goto out_free_mm;
1359 /* By now we should be all set, any drm_mmap request on the offset
1360 * below will get to our mmap & fault handler */
1361 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1363 return 0;
1365 out_free_mm:
1366 drm_mm_put_block(list->file_offset_node);
1367 out_free_list:
1368 kfree(list->map);
1370 return ret;
1374 * i915_gem_release_mmap - remove physical page mappings
1375 * @obj: obj in question
1377 * Preserve the reservation of the mmapping with the DRM core code, but
1378 * relinquish ownership of the pages back to the system.
1380 * It is vital that we remove the page mapping if we have mapped a tiled
1381 * object through the GTT and then lose the fence register due to
1382 * resource pressure. Similarly if the object has been moved out of the
1383 * aperture, than pages mapped into userspace must be revoked. Removing the
1384 * mapping will then trigger a page fault on the next user access, allowing
1385 * fixup by i915_gem_fault().
1387 void
1388 i915_gem_release_mmap(struct drm_gem_object *obj)
1390 struct drm_device *dev = obj->dev;
1391 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1393 if (dev->dev_mapping)
1394 unmap_mapping_range(dev->dev_mapping,
1395 obj_priv->mmap_offset, obj->size, 1);
1398 static void
1399 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1401 struct drm_device *dev = obj->dev;
1402 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1403 struct drm_gem_mm *mm = dev->mm_private;
1404 struct drm_map_list *list;
1406 list = &obj->map_list;
1407 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1409 if (list->file_offset_node) {
1410 drm_mm_put_block(list->file_offset_node);
1411 list->file_offset_node = NULL;
1414 if (list->map) {
1415 kfree(list->map);
1416 list->map = NULL;
1419 obj_priv->mmap_offset = 0;
1423 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1424 * @obj: object to check
1426 * Return the required GTT alignment for an object, taking into account
1427 * potential fence register mapping if needed.
1429 static uint32_t
1430 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1432 struct drm_device *dev = obj->dev;
1433 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1434 int start, i;
1437 * Minimum alignment is 4k (GTT page size), but might be greater
1438 * if a fence register is needed for the object.
1440 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1441 return 4096;
1444 * Previous chips need to be aligned to the size of the smallest
1445 * fence register that can contain the object.
1447 if (INTEL_INFO(dev)->gen == 3)
1448 start = 1024*1024;
1449 else
1450 start = 512*1024;
1452 for (i = start; i < obj->size; i <<= 1)
1455 return i;
1459 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1460 * @dev: DRM device
1461 * @data: GTT mapping ioctl data
1462 * @file_priv: GEM object info
1464 * Simply returns the fake offset to userspace so it can mmap it.
1465 * The mmap call will end up in drm_gem_mmap(), which will set things
1466 * up so we can get faults in the handler above.
1468 * The fault handler will take care of binding the object into the GTT
1469 * (since it may have been evicted to make room for something), allocating
1470 * a fence register, and mapping the appropriate aperture address into
1471 * userspace.
1474 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1475 struct drm_file *file_priv)
1477 struct drm_i915_gem_mmap_gtt *args = data;
1478 struct drm_gem_object *obj;
1479 struct drm_i915_gem_object *obj_priv;
1480 int ret;
1482 if (!(dev->driver->driver_features & DRIVER_GEM))
1483 return -ENODEV;
1485 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1486 if (obj == NULL)
1487 return -ENOENT;
1489 ret = i915_mutex_lock_interruptible(dev);
1490 if (ret) {
1491 drm_gem_object_unreference_unlocked(obj);
1492 return ret;
1495 obj_priv = to_intel_bo(obj);
1497 if (obj_priv->madv != I915_MADV_WILLNEED) {
1498 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1499 drm_gem_object_unreference(obj);
1500 mutex_unlock(&dev->struct_mutex);
1501 return -EINVAL;
1505 if (!obj_priv->mmap_offset) {
1506 ret = i915_gem_create_mmap_offset(obj);
1507 if (ret) {
1508 drm_gem_object_unreference(obj);
1509 mutex_unlock(&dev->struct_mutex);
1510 return ret;
1514 args->offset = obj_priv->mmap_offset;
1517 * Pull it into the GTT so that we have a page list (makes the
1518 * initial fault faster and any subsequent flushing possible).
1520 if (!obj_priv->agp_mem) {
1521 ret = i915_gem_object_bind_to_gtt(obj, 0);
1522 if (ret) {
1523 drm_gem_object_unreference(obj);
1524 mutex_unlock(&dev->struct_mutex);
1525 return ret;
1529 drm_gem_object_unreference(obj);
1530 mutex_unlock(&dev->struct_mutex);
1532 return 0;
1535 static void
1536 i915_gem_object_put_pages(struct drm_gem_object *obj)
1538 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1539 int page_count = obj->size / PAGE_SIZE;
1540 int i;
1542 BUG_ON(obj_priv->pages_refcount == 0);
1543 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1545 if (--obj_priv->pages_refcount != 0)
1546 return;
1548 if (obj_priv->tiling_mode != I915_TILING_NONE)
1549 i915_gem_object_save_bit_17_swizzle(obj);
1551 if (obj_priv->madv == I915_MADV_DONTNEED)
1552 obj_priv->dirty = 0;
1554 for (i = 0; i < page_count; i++) {
1555 if (obj_priv->dirty)
1556 set_page_dirty(obj_priv->pages[i]);
1558 if (obj_priv->madv == I915_MADV_WILLNEED)
1559 mark_page_accessed(obj_priv->pages[i]);
1561 page_cache_release(obj_priv->pages[i]);
1563 obj_priv->dirty = 0;
1565 drm_free_large(obj_priv->pages);
1566 obj_priv->pages = NULL;
1569 static uint32_t
1570 i915_gem_next_request_seqno(struct drm_device *dev,
1571 struct intel_ring_buffer *ring)
1573 drm_i915_private_t *dev_priv = dev->dev_private;
1575 ring->outstanding_lazy_request = true;
1576 return dev_priv->next_seqno;
1579 static void
1580 i915_gem_object_move_to_active(struct drm_gem_object *obj,
1581 struct intel_ring_buffer *ring)
1583 struct drm_device *dev = obj->dev;
1584 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1585 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1587 BUG_ON(ring == NULL);
1588 obj_priv->ring = ring;
1590 /* Add a reference if we're newly entering the active list. */
1591 if (!obj_priv->active) {
1592 drm_gem_object_reference(obj);
1593 obj_priv->active = 1;
1596 /* Move from whatever list we were on to the tail of execution. */
1597 list_move_tail(&obj_priv->list, &ring->active_list);
1598 obj_priv->last_rendering_seqno = seqno;
1601 static void
1602 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1604 struct drm_device *dev = obj->dev;
1605 drm_i915_private_t *dev_priv = dev->dev_private;
1606 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1608 BUG_ON(!obj_priv->active);
1609 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1610 obj_priv->last_rendering_seqno = 0;
1613 /* Immediately discard the backing storage */
1614 static void
1615 i915_gem_object_truncate(struct drm_gem_object *obj)
1617 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1618 struct inode *inode;
1620 /* Our goal here is to return as much of the memory as
1621 * is possible back to the system as we are called from OOM.
1622 * To do this we must instruct the shmfs to drop all of its
1623 * backing pages, *now*. Here we mirror the actions taken
1624 * when by shmem_delete_inode() to release the backing store.
1626 inode = obj->filp->f_path.dentry->d_inode;
1627 truncate_inode_pages(inode->i_mapping, 0);
1628 if (inode->i_op->truncate_range)
1629 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1631 obj_priv->madv = __I915_MADV_PURGED;
1634 static inline int
1635 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1637 return obj_priv->madv == I915_MADV_DONTNEED;
1640 static void
1641 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1643 struct drm_device *dev = obj->dev;
1644 drm_i915_private_t *dev_priv = dev->dev_private;
1645 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1647 if (obj_priv->pin_count != 0)
1648 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1649 else
1650 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1652 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1654 obj_priv->last_rendering_seqno = 0;
1655 obj_priv->ring = NULL;
1656 if (obj_priv->active) {
1657 obj_priv->active = 0;
1658 drm_gem_object_unreference(obj);
1660 WARN_ON(i915_verify_lists(dev));
1663 static void
1664 i915_gem_process_flushing_list(struct drm_device *dev,
1665 uint32_t flush_domains,
1666 struct intel_ring_buffer *ring)
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669 struct drm_i915_gem_object *obj_priv, *next;
1671 list_for_each_entry_safe(obj_priv, next,
1672 &dev_priv->mm.gpu_write_list,
1673 gpu_write_list) {
1674 struct drm_gem_object *obj = &obj_priv->base;
1676 if (obj->write_domain & flush_domains &&
1677 obj_priv->ring == ring) {
1678 uint32_t old_write_domain = obj->write_domain;
1680 obj->write_domain = 0;
1681 list_del_init(&obj_priv->gpu_write_list);
1682 i915_gem_object_move_to_active(obj, ring);
1684 /* update the fence lru list */
1685 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1686 struct drm_i915_fence_reg *reg =
1687 &dev_priv->fence_regs[obj_priv->fence_reg];
1688 list_move_tail(&reg->lru_list,
1689 &dev_priv->mm.fence_list);
1692 trace_i915_gem_object_change_domain(obj,
1693 obj->read_domains,
1694 old_write_domain);
1699 uint32_t
1700 i915_add_request(struct drm_device *dev,
1701 struct drm_file *file,
1702 struct drm_i915_gem_request *request,
1703 struct intel_ring_buffer *ring)
1705 drm_i915_private_t *dev_priv = dev->dev_private;
1706 struct drm_i915_file_private *file_priv = NULL;
1707 uint32_t seqno;
1708 int was_empty;
1710 if (file != NULL)
1711 file_priv = file->driver_priv;
1713 if (request == NULL) {
1714 request = kzalloc(sizeof(*request), GFP_KERNEL);
1715 if (request == NULL)
1716 return 0;
1719 seqno = ring->add_request(dev, ring, 0);
1720 ring->outstanding_lazy_request = false;
1722 request->seqno = seqno;
1723 request->ring = ring;
1724 request->emitted_jiffies = jiffies;
1725 was_empty = list_empty(&ring->request_list);
1726 list_add_tail(&request->list, &ring->request_list);
1728 if (file_priv) {
1729 spin_lock(&file_priv->mm.lock);
1730 request->file_priv = file_priv;
1731 list_add_tail(&request->client_list,
1732 &file_priv->mm.request_list);
1733 spin_unlock(&file_priv->mm.lock);
1736 if (!dev_priv->mm.suspended) {
1737 mod_timer(&dev_priv->hangcheck_timer,
1738 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1739 if (was_empty)
1740 queue_delayed_work(dev_priv->wq,
1741 &dev_priv->mm.retire_work, HZ);
1743 return seqno;
1747 * Command execution barrier
1749 * Ensures that all commands in the ring are finished
1750 * before signalling the CPU
1752 static void
1753 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1755 uint32_t flush_domains = 0;
1757 /* The sampler always gets flushed on i965 (sigh) */
1758 if (INTEL_INFO(dev)->gen >= 4)
1759 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1761 ring->flush(dev, ring,
1762 I915_GEM_DOMAIN_COMMAND, flush_domains);
1765 static inline void
1766 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1768 struct drm_i915_file_private *file_priv = request->file_priv;
1770 if (!file_priv)
1771 return;
1773 spin_lock(&file_priv->mm.lock);
1774 list_del(&request->client_list);
1775 request->file_priv = NULL;
1776 spin_unlock(&file_priv->mm.lock);
1779 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1780 struct intel_ring_buffer *ring)
1782 while (!list_empty(&ring->request_list)) {
1783 struct drm_i915_gem_request *request;
1785 request = list_first_entry(&ring->request_list,
1786 struct drm_i915_gem_request,
1787 list);
1789 list_del(&request->list);
1790 i915_gem_request_remove_from_client(request);
1791 kfree(request);
1794 while (!list_empty(&ring->active_list)) {
1795 struct drm_i915_gem_object *obj_priv;
1797 obj_priv = list_first_entry(&ring->active_list,
1798 struct drm_i915_gem_object,
1799 list);
1801 obj_priv->base.write_domain = 0;
1802 list_del_init(&obj_priv->gpu_write_list);
1803 i915_gem_object_move_to_inactive(&obj_priv->base);
1807 void i915_gem_reset(struct drm_device *dev)
1809 struct drm_i915_private *dev_priv = dev->dev_private;
1810 struct drm_i915_gem_object *obj_priv;
1811 int i;
1813 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1814 if (HAS_BSD(dev))
1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1817 /* Remove anything from the flushing lists. The GPU cache is likely
1818 * to be lost on reset along with the data, so simply move the
1819 * lost bo to the inactive list.
1821 while (!list_empty(&dev_priv->mm.flushing_list)) {
1822 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1823 struct drm_i915_gem_object,
1824 list);
1826 obj_priv->base.write_domain = 0;
1827 list_del_init(&obj_priv->gpu_write_list);
1828 i915_gem_object_move_to_inactive(&obj_priv->base);
1831 /* Move everything out of the GPU domains to ensure we do any
1832 * necessary invalidation upon reuse.
1834 list_for_each_entry(obj_priv,
1835 &dev_priv->mm.inactive_list,
1836 list)
1838 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1841 /* The fence registers are invalidated so clear them out */
1842 for (i = 0; i < 16; i++) {
1843 struct drm_i915_fence_reg *reg;
1845 reg = &dev_priv->fence_regs[i];
1846 if (!reg->obj)
1847 continue;
1849 i915_gem_clear_fence_reg(reg->obj);
1854 * This function clears the request list as sequence numbers are passed.
1856 static void
1857 i915_gem_retire_requests_ring(struct drm_device *dev,
1858 struct intel_ring_buffer *ring)
1860 drm_i915_private_t *dev_priv = dev->dev_private;
1861 uint32_t seqno;
1863 if (!ring->status_page.page_addr ||
1864 list_empty(&ring->request_list))
1865 return;
1867 WARN_ON(i915_verify_lists(dev));
1869 seqno = ring->get_seqno(dev, ring);
1870 while (!list_empty(&ring->request_list)) {
1871 struct drm_i915_gem_request *request;
1873 request = list_first_entry(&ring->request_list,
1874 struct drm_i915_gem_request,
1875 list);
1877 if (!i915_seqno_passed(seqno, request->seqno))
1878 break;
1880 trace_i915_gem_request_retire(dev, request->seqno);
1882 list_del(&request->list);
1883 i915_gem_request_remove_from_client(request);
1884 kfree(request);
1887 /* Move any buffers on the active list that are no longer referenced
1888 * by the ringbuffer to the flushing/inactive lists as appropriate.
1890 while (!list_empty(&ring->active_list)) {
1891 struct drm_gem_object *obj;
1892 struct drm_i915_gem_object *obj_priv;
1894 obj_priv = list_first_entry(&ring->active_list,
1895 struct drm_i915_gem_object,
1896 list);
1898 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1899 break;
1901 obj = &obj_priv->base;
1902 if (obj->write_domain != 0)
1903 i915_gem_object_move_to_flushing(obj);
1904 else
1905 i915_gem_object_move_to_inactive(obj);
1908 if (unlikely (dev_priv->trace_irq_seqno &&
1909 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1910 ring->user_irq_put(dev, ring);
1911 dev_priv->trace_irq_seqno = 0;
1914 WARN_ON(i915_verify_lists(dev));
1917 void
1918 i915_gem_retire_requests(struct drm_device *dev)
1920 drm_i915_private_t *dev_priv = dev->dev_private;
1922 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1923 struct drm_i915_gem_object *obj_priv, *tmp;
1925 /* We must be careful that during unbind() we do not
1926 * accidentally infinitely recurse into retire requests.
1927 * Currently:
1928 * retire -> free -> unbind -> wait -> retire_ring
1930 list_for_each_entry_safe(obj_priv, tmp,
1931 &dev_priv->mm.deferred_free_list,
1932 list)
1933 i915_gem_free_object_tail(&obj_priv->base);
1936 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1937 if (HAS_BSD(dev))
1938 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1941 static void
1942 i915_gem_retire_work_handler(struct work_struct *work)
1944 drm_i915_private_t *dev_priv;
1945 struct drm_device *dev;
1947 dev_priv = container_of(work, drm_i915_private_t,
1948 mm.retire_work.work);
1949 dev = dev_priv->dev;
1951 /* Come back later if the device is busy... */
1952 if (!mutex_trylock(&dev->struct_mutex)) {
1953 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1954 return;
1957 i915_gem_retire_requests(dev);
1959 if (!dev_priv->mm.suspended &&
1960 (!list_empty(&dev_priv->render_ring.request_list) ||
1961 (HAS_BSD(dev) &&
1962 !list_empty(&dev_priv->bsd_ring.request_list))))
1963 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1964 mutex_unlock(&dev->struct_mutex);
1968 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1969 bool interruptible, struct intel_ring_buffer *ring)
1971 drm_i915_private_t *dev_priv = dev->dev_private;
1972 u32 ier;
1973 int ret = 0;
1975 BUG_ON(seqno == 0);
1977 if (atomic_read(&dev_priv->mm.wedged))
1978 return -EAGAIN;
1980 if (ring->outstanding_lazy_request) {
1981 seqno = i915_add_request(dev, NULL, NULL, ring);
1982 if (seqno == 0)
1983 return -ENOMEM;
1985 BUG_ON(seqno == dev_priv->next_seqno);
1987 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
1988 if (HAS_PCH_SPLIT(dev))
1989 ier = I915_READ(DEIER) | I915_READ(GTIER);
1990 else
1991 ier = I915_READ(IER);
1992 if (!ier) {
1993 DRM_ERROR("something (likely vbetool) disabled "
1994 "interrupts, re-enabling\n");
1995 i915_driver_irq_preinstall(dev);
1996 i915_driver_irq_postinstall(dev);
1999 trace_i915_gem_request_wait_begin(dev, seqno);
2001 ring->waiting_gem_seqno = seqno;
2002 ring->user_irq_get(dev, ring);
2003 if (interruptible)
2004 ret = wait_event_interruptible(ring->irq_queue,
2005 i915_seqno_passed(
2006 ring->get_seqno(dev, ring), seqno)
2007 || atomic_read(&dev_priv->mm.wedged));
2008 else
2009 wait_event(ring->irq_queue,
2010 i915_seqno_passed(
2011 ring->get_seqno(dev, ring), seqno)
2012 || atomic_read(&dev_priv->mm.wedged));
2014 ring->user_irq_put(dev, ring);
2015 ring->waiting_gem_seqno = 0;
2017 trace_i915_gem_request_wait_end(dev, seqno);
2019 if (atomic_read(&dev_priv->mm.wedged))
2020 ret = -EAGAIN;
2022 if (ret && ret != -ERESTARTSYS)
2023 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2024 __func__, ret, seqno, ring->get_seqno(dev, ring),
2025 dev_priv->next_seqno);
2027 /* Directly dispatch request retiring. While we have the work queue
2028 * to handle this, the waiter on a request often wants an associated
2029 * buffer to have made it to the inactive list, and we would need
2030 * a separate wait queue to handle that.
2032 if (ret == 0)
2033 i915_gem_retire_requests_ring(dev, ring);
2035 return ret;
2039 * Waits for a sequence number to be signaled, and cleans up the
2040 * request and object lists appropriately for that event.
2042 static int
2043 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2044 struct intel_ring_buffer *ring)
2046 return i915_do_wait_request(dev, seqno, 1, ring);
2049 static void
2050 i915_gem_flush_ring(struct drm_device *dev,
2051 struct drm_file *file_priv,
2052 struct intel_ring_buffer *ring,
2053 uint32_t invalidate_domains,
2054 uint32_t flush_domains)
2056 ring->flush(dev, ring, invalidate_domains, flush_domains);
2057 i915_gem_process_flushing_list(dev, flush_domains, ring);
2060 static void
2061 i915_gem_flush(struct drm_device *dev,
2062 struct drm_file *file_priv,
2063 uint32_t invalidate_domains,
2064 uint32_t flush_domains,
2065 uint32_t flush_rings)
2067 drm_i915_private_t *dev_priv = dev->dev_private;
2069 if (flush_domains & I915_GEM_DOMAIN_CPU)
2070 drm_agp_chipset_flush(dev);
2072 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2073 if (flush_rings & RING_RENDER)
2074 i915_gem_flush_ring(dev, file_priv,
2075 &dev_priv->render_ring,
2076 invalidate_domains, flush_domains);
2077 if (flush_rings & RING_BSD)
2078 i915_gem_flush_ring(dev, file_priv,
2079 &dev_priv->bsd_ring,
2080 invalidate_domains, flush_domains);
2085 * Ensures that all rendering to the object has completed and the object is
2086 * safe to unbind from the GTT or access from the CPU.
2088 static int
2089 i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2090 bool interruptible)
2092 struct drm_device *dev = obj->dev;
2093 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2094 int ret;
2096 /* This function only exists to support waiting for existing rendering,
2097 * not for emitting required flushes.
2099 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2101 /* If there is rendering queued on the buffer being evicted, wait for
2102 * it.
2104 if (obj_priv->active) {
2105 ret = i915_do_wait_request(dev,
2106 obj_priv->last_rendering_seqno,
2107 interruptible,
2108 obj_priv->ring);
2109 if (ret)
2110 return ret;
2113 return 0;
2117 * Unbinds an object from the GTT aperture.
2120 i915_gem_object_unbind(struct drm_gem_object *obj)
2122 struct drm_device *dev = obj->dev;
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2125 int ret = 0;
2127 if (obj_priv->gtt_space == NULL)
2128 return 0;
2130 if (obj_priv->pin_count != 0) {
2131 DRM_ERROR("Attempting to unbind pinned buffer\n");
2132 return -EINVAL;
2135 /* blow away mappings if mapped through GTT */
2136 i915_gem_release_mmap(obj);
2138 /* Move the object to the CPU domain to ensure that
2139 * any possible CPU writes while it's not in the GTT
2140 * are flushed when we go to remap it. This will
2141 * also ensure that all pending GPU writes are finished
2142 * before we unbind.
2144 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2145 if (ret == -ERESTARTSYS)
2146 return ret;
2147 /* Continue on if we fail due to EIO, the GPU is hung so we
2148 * should be safe and we need to cleanup or else we might
2149 * cause memory corruption through use-after-free.
2151 if (ret) {
2152 i915_gem_clflush_object(obj);
2153 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2156 /* release the fence reg _after_ flushing */
2157 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2158 i915_gem_clear_fence_reg(obj);
2160 drm_unbind_agp(obj_priv->agp_mem);
2161 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2163 i915_gem_object_put_pages(obj);
2164 BUG_ON(obj_priv->pages_refcount);
2166 i915_gem_info_remove_gtt(dev_priv, obj->size);
2167 list_del_init(&obj_priv->list);
2169 drm_mm_put_block(obj_priv->gtt_space);
2170 obj_priv->gtt_space = NULL;
2172 if (i915_gem_object_is_purgeable(obj_priv))
2173 i915_gem_object_truncate(obj);
2175 trace_i915_gem_object_unbind(obj);
2177 return ret;
2180 static int i915_ring_idle(struct drm_device *dev,
2181 struct intel_ring_buffer *ring)
2183 i915_gem_flush_ring(dev, NULL, ring,
2184 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2185 return i915_wait_request(dev,
2186 i915_gem_next_request_seqno(dev, ring),
2187 ring);
2191 i915_gpu_idle(struct drm_device *dev)
2193 drm_i915_private_t *dev_priv = dev->dev_private;
2194 bool lists_empty;
2195 int ret;
2197 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2198 list_empty(&dev_priv->render_ring.active_list) &&
2199 (!HAS_BSD(dev) ||
2200 list_empty(&dev_priv->bsd_ring.active_list)));
2201 if (lists_empty)
2202 return 0;
2204 /* Flush everything onto the inactive list. */
2205 ret = i915_ring_idle(dev, &dev_priv->render_ring);
2206 if (ret)
2207 return ret;
2209 if (HAS_BSD(dev)) {
2210 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2211 if (ret)
2212 return ret;
2215 return 0;
2218 static int
2219 i915_gem_object_get_pages(struct drm_gem_object *obj,
2220 gfp_t gfpmask)
2222 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2223 int page_count, i;
2224 struct address_space *mapping;
2225 struct inode *inode;
2226 struct page *page;
2228 BUG_ON(obj_priv->pages_refcount
2229 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2231 if (obj_priv->pages_refcount++ != 0)
2232 return 0;
2234 /* Get the list of pages out of our struct file. They'll be pinned
2235 * at this point until we release them.
2237 page_count = obj->size / PAGE_SIZE;
2238 BUG_ON(obj_priv->pages != NULL);
2239 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2240 if (obj_priv->pages == NULL) {
2241 obj_priv->pages_refcount--;
2242 return -ENOMEM;
2245 inode = obj->filp->f_path.dentry->d_inode;
2246 mapping = inode->i_mapping;
2247 for (i = 0; i < page_count; i++) {
2248 page = read_cache_page_gfp(mapping, i,
2249 GFP_HIGHUSER |
2250 __GFP_COLD |
2251 __GFP_RECLAIMABLE |
2252 gfpmask);
2253 if (IS_ERR(page))
2254 goto err_pages;
2256 obj_priv->pages[i] = page;
2259 if (obj_priv->tiling_mode != I915_TILING_NONE)
2260 i915_gem_object_do_bit_17_swizzle(obj);
2262 return 0;
2264 err_pages:
2265 while (i--)
2266 page_cache_release(obj_priv->pages[i]);
2268 drm_free_large(obj_priv->pages);
2269 obj_priv->pages = NULL;
2270 obj_priv->pages_refcount--;
2271 return PTR_ERR(page);
2274 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2276 struct drm_gem_object *obj = reg->obj;
2277 struct drm_device *dev = obj->dev;
2278 drm_i915_private_t *dev_priv = dev->dev_private;
2279 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2280 int regnum = obj_priv->fence_reg;
2281 uint64_t val;
2283 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2284 0xfffff000) << 32;
2285 val |= obj_priv->gtt_offset & 0xfffff000;
2286 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2287 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2289 if (obj_priv->tiling_mode == I915_TILING_Y)
2290 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2291 val |= I965_FENCE_REG_VALID;
2293 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2296 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2298 struct drm_gem_object *obj = reg->obj;
2299 struct drm_device *dev = obj->dev;
2300 drm_i915_private_t *dev_priv = dev->dev_private;
2301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2302 int regnum = obj_priv->fence_reg;
2303 uint64_t val;
2305 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2306 0xfffff000) << 32;
2307 val |= obj_priv->gtt_offset & 0xfffff000;
2308 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2309 if (obj_priv->tiling_mode == I915_TILING_Y)
2310 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2311 val |= I965_FENCE_REG_VALID;
2313 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2316 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2318 struct drm_gem_object *obj = reg->obj;
2319 struct drm_device *dev = obj->dev;
2320 drm_i915_private_t *dev_priv = dev->dev_private;
2321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2322 int regnum = obj_priv->fence_reg;
2323 int tile_width;
2324 uint32_t fence_reg, val;
2325 uint32_t pitch_val;
2327 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2328 (obj_priv->gtt_offset & (obj->size - 1))) {
2329 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2330 __func__, obj_priv->gtt_offset, obj->size);
2331 return;
2334 if (obj_priv->tiling_mode == I915_TILING_Y &&
2335 HAS_128_BYTE_Y_TILING(dev))
2336 tile_width = 128;
2337 else
2338 tile_width = 512;
2340 /* Note: pitch better be a power of two tile widths */
2341 pitch_val = obj_priv->stride / tile_width;
2342 pitch_val = ffs(pitch_val) - 1;
2344 if (obj_priv->tiling_mode == I915_TILING_Y &&
2345 HAS_128_BYTE_Y_TILING(dev))
2346 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2347 else
2348 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2350 val = obj_priv->gtt_offset;
2351 if (obj_priv->tiling_mode == I915_TILING_Y)
2352 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2353 val |= I915_FENCE_SIZE_BITS(obj->size);
2354 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2355 val |= I830_FENCE_REG_VALID;
2357 if (regnum < 8)
2358 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2359 else
2360 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2361 I915_WRITE(fence_reg, val);
2364 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2366 struct drm_gem_object *obj = reg->obj;
2367 struct drm_device *dev = obj->dev;
2368 drm_i915_private_t *dev_priv = dev->dev_private;
2369 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2370 int regnum = obj_priv->fence_reg;
2371 uint32_t val;
2372 uint32_t pitch_val;
2373 uint32_t fence_size_bits;
2375 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2376 (obj_priv->gtt_offset & (obj->size - 1))) {
2377 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2378 __func__, obj_priv->gtt_offset);
2379 return;
2382 pitch_val = obj_priv->stride / 128;
2383 pitch_val = ffs(pitch_val) - 1;
2384 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2386 val = obj_priv->gtt_offset;
2387 if (obj_priv->tiling_mode == I915_TILING_Y)
2388 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2389 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2390 WARN_ON(fence_size_bits & ~0x00000f00);
2391 val |= fence_size_bits;
2392 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2393 val |= I830_FENCE_REG_VALID;
2395 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2398 static int i915_find_fence_reg(struct drm_device *dev,
2399 bool interruptible)
2401 struct drm_i915_fence_reg *reg = NULL;
2402 struct drm_i915_gem_object *obj_priv = NULL;
2403 struct drm_i915_private *dev_priv = dev->dev_private;
2404 struct drm_gem_object *obj = NULL;
2405 int i, avail, ret;
2407 /* First try to find a free reg */
2408 avail = 0;
2409 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2410 reg = &dev_priv->fence_regs[i];
2411 if (!reg->obj)
2412 return i;
2414 obj_priv = to_intel_bo(reg->obj);
2415 if (!obj_priv->pin_count)
2416 avail++;
2419 if (avail == 0)
2420 return -ENOSPC;
2422 /* None available, try to steal one or wait for a user to finish */
2423 i = I915_FENCE_REG_NONE;
2424 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2425 lru_list) {
2426 obj = reg->obj;
2427 obj_priv = to_intel_bo(obj);
2429 if (obj_priv->pin_count)
2430 continue;
2432 /* found one! */
2433 i = obj_priv->fence_reg;
2434 break;
2437 BUG_ON(i == I915_FENCE_REG_NONE);
2439 /* We only have a reference on obj from the active list. put_fence_reg
2440 * might drop that one, causing a use-after-free in it. So hold a
2441 * private reference to obj like the other callers of put_fence_reg
2442 * (set_tiling ioctl) do. */
2443 drm_gem_object_reference(obj);
2444 ret = i915_gem_object_put_fence_reg(obj, interruptible);
2445 drm_gem_object_unreference(obj);
2446 if (ret != 0)
2447 return ret;
2449 return i;
2453 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2454 * @obj: object to map through a fence reg
2456 * When mapping objects through the GTT, userspace wants to be able to write
2457 * to them without having to worry about swizzling if the object is tiled.
2459 * This function walks the fence regs looking for a free one for @obj,
2460 * stealing one if it can't find any.
2462 * It then sets up the reg based on the object's properties: address, pitch
2463 * and tiling format.
2466 i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2467 bool interruptible)
2469 struct drm_device *dev = obj->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2472 struct drm_i915_fence_reg *reg = NULL;
2473 int ret;
2475 /* Just update our place in the LRU if our fence is getting used. */
2476 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2477 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2478 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2479 return 0;
2482 switch (obj_priv->tiling_mode) {
2483 case I915_TILING_NONE:
2484 WARN(1, "allocating a fence for non-tiled object?\n");
2485 break;
2486 case I915_TILING_X:
2487 if (!obj_priv->stride)
2488 return -EINVAL;
2489 WARN((obj_priv->stride & (512 - 1)),
2490 "object 0x%08x is X tiled but has non-512B pitch\n",
2491 obj_priv->gtt_offset);
2492 break;
2493 case I915_TILING_Y:
2494 if (!obj_priv->stride)
2495 return -EINVAL;
2496 WARN((obj_priv->stride & (128 - 1)),
2497 "object 0x%08x is Y tiled but has non-128B pitch\n",
2498 obj_priv->gtt_offset);
2499 break;
2502 ret = i915_find_fence_reg(dev, interruptible);
2503 if (ret < 0)
2504 return ret;
2506 obj_priv->fence_reg = ret;
2507 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2508 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2510 reg->obj = obj;
2512 switch (INTEL_INFO(dev)->gen) {
2513 case 6:
2514 sandybridge_write_fence_reg(reg);
2515 break;
2516 case 5:
2517 case 4:
2518 i965_write_fence_reg(reg);
2519 break;
2520 case 3:
2521 i915_write_fence_reg(reg);
2522 break;
2523 case 2:
2524 i830_write_fence_reg(reg);
2525 break;
2528 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2529 obj_priv->tiling_mode);
2531 return 0;
2535 * i915_gem_clear_fence_reg - clear out fence register info
2536 * @obj: object to clear
2538 * Zeroes out the fence register itself and clears out the associated
2539 * data structures in dev_priv and obj_priv.
2541 static void
2542 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2544 struct drm_device *dev = obj->dev;
2545 drm_i915_private_t *dev_priv = dev->dev_private;
2546 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2547 struct drm_i915_fence_reg *reg =
2548 &dev_priv->fence_regs[obj_priv->fence_reg];
2549 uint32_t fence_reg;
2551 switch (INTEL_INFO(dev)->gen) {
2552 case 6:
2553 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2554 (obj_priv->fence_reg * 8), 0);
2555 break;
2556 case 5:
2557 case 4:
2558 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2559 break;
2560 case 3:
2561 if (obj_priv->fence_reg >= 8)
2562 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2563 else
2564 case 2:
2565 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2567 I915_WRITE(fence_reg, 0);
2568 break;
2571 reg->obj = NULL;
2572 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2573 list_del_init(&reg->lru_list);
2577 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2578 * to the buffer to finish, and then resets the fence register.
2579 * @obj: tiled object holding a fence register.
2580 * @bool: whether the wait upon the fence is interruptible
2582 * Zeroes out the fence register itself and clears out the associated
2583 * data structures in dev_priv and obj_priv.
2586 i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2587 bool interruptible)
2589 struct drm_device *dev = obj->dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2592 struct drm_i915_fence_reg *reg;
2594 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2595 return 0;
2597 /* If we've changed tiling, GTT-mappings of the object
2598 * need to re-fault to ensure that the correct fence register
2599 * setup is in place.
2601 i915_gem_release_mmap(obj);
2603 /* On the i915, GPU access to tiled buffers is via a fence,
2604 * therefore we must wait for any outstanding access to complete
2605 * before clearing the fence.
2607 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2608 if (reg->gpu) {
2609 int ret;
2611 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2612 if (ret)
2613 return ret;
2615 ret = i915_gem_object_wait_rendering(obj, interruptible);
2616 if (ret)
2617 return ret;
2619 reg->gpu = false;
2622 i915_gem_object_flush_gtt_write_domain(obj);
2623 i915_gem_clear_fence_reg(obj);
2625 return 0;
2629 * Finds free space in the GTT aperture and binds the object there.
2631 static int
2632 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2634 struct drm_device *dev = obj->dev;
2635 drm_i915_private_t *dev_priv = dev->dev_private;
2636 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2637 struct drm_mm_node *free_space;
2638 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2639 int ret;
2641 if (obj_priv->madv != I915_MADV_WILLNEED) {
2642 DRM_ERROR("Attempting to bind a purgeable object\n");
2643 return -EINVAL;
2646 if (alignment == 0)
2647 alignment = i915_gem_get_gtt_alignment(obj);
2648 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2649 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2650 return -EINVAL;
2653 /* If the object is bigger than the entire aperture, reject it early
2654 * before evicting everything in a vain attempt to find space.
2656 if (obj->size > dev_priv->mm.gtt_total) {
2657 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2658 return -E2BIG;
2661 search_free:
2662 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2663 obj->size, alignment, 0);
2664 if (free_space != NULL) {
2665 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2666 alignment);
2667 if (obj_priv->gtt_space != NULL)
2668 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2670 if (obj_priv->gtt_space == NULL) {
2671 /* If the gtt is empty and we're still having trouble
2672 * fitting our object in, we're out of memory.
2674 ret = i915_gem_evict_something(dev, obj->size, alignment);
2675 if (ret)
2676 return ret;
2678 goto search_free;
2681 ret = i915_gem_object_get_pages(obj, gfpmask);
2682 if (ret) {
2683 drm_mm_put_block(obj_priv->gtt_space);
2684 obj_priv->gtt_space = NULL;
2686 if (ret == -ENOMEM) {
2687 /* first try to clear up some space from the GTT */
2688 ret = i915_gem_evict_something(dev, obj->size,
2689 alignment);
2690 if (ret) {
2691 /* now try to shrink everyone else */
2692 if (gfpmask) {
2693 gfpmask = 0;
2694 goto search_free;
2697 return ret;
2700 goto search_free;
2703 return ret;
2706 /* Create an AGP memory structure pointing at our pages, and bind it
2707 * into the GTT.
2709 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2710 obj_priv->pages,
2711 obj->size >> PAGE_SHIFT,
2712 obj_priv->gtt_offset,
2713 obj_priv->agp_type);
2714 if (obj_priv->agp_mem == NULL) {
2715 i915_gem_object_put_pages(obj);
2716 drm_mm_put_block(obj_priv->gtt_space);
2717 obj_priv->gtt_space = NULL;
2719 ret = i915_gem_evict_something(dev, obj->size, alignment);
2720 if (ret)
2721 return ret;
2723 goto search_free;
2726 /* keep track of bounds object by adding it to the inactive list */
2727 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2728 i915_gem_info_add_gtt(dev_priv, obj->size);
2730 /* Assert that the object is not currently in any GPU domain. As it
2731 * wasn't in the GTT, there shouldn't be any way it could have been in
2732 * a GPU cache
2734 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2735 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2737 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2739 return 0;
2742 void
2743 i915_gem_clflush_object(struct drm_gem_object *obj)
2745 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2747 /* If we don't have a page list set up, then we're not pinned
2748 * to GPU, and we can ignore the cache flush because it'll happen
2749 * again at bind time.
2751 if (obj_priv->pages == NULL)
2752 return;
2754 trace_i915_gem_object_clflush(obj);
2756 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2759 /** Flushes any GPU write domain for the object if it's dirty. */
2760 static int
2761 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2762 bool pipelined)
2764 struct drm_device *dev = obj->dev;
2765 uint32_t old_write_domain;
2767 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2768 return 0;
2770 /* Queue the GPU write cache flushing we need. */
2771 old_write_domain = obj->write_domain;
2772 i915_gem_flush_ring(dev, NULL,
2773 to_intel_bo(obj)->ring,
2774 0, obj->write_domain);
2775 BUG_ON(obj->write_domain);
2777 trace_i915_gem_object_change_domain(obj,
2778 obj->read_domains,
2779 old_write_domain);
2781 if (pipelined)
2782 return 0;
2784 return i915_gem_object_wait_rendering(obj, true);
2787 /** Flushes the GTT write domain for the object if it's dirty. */
2788 static void
2789 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2791 uint32_t old_write_domain;
2793 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2794 return;
2796 /* No actual flushing is required for the GTT write domain. Writes
2797 * to it immediately go to main memory as far as we know, so there's
2798 * no chipset flush. It also doesn't land in render cache.
2800 old_write_domain = obj->write_domain;
2801 obj->write_domain = 0;
2803 trace_i915_gem_object_change_domain(obj,
2804 obj->read_domains,
2805 old_write_domain);
2808 /** Flushes the CPU write domain for the object if it's dirty. */
2809 static void
2810 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2812 struct drm_device *dev = obj->dev;
2813 uint32_t old_write_domain;
2815 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2816 return;
2818 i915_gem_clflush_object(obj);
2819 drm_agp_chipset_flush(dev);
2820 old_write_domain = obj->write_domain;
2821 obj->write_domain = 0;
2823 trace_i915_gem_object_change_domain(obj,
2824 obj->read_domains,
2825 old_write_domain);
2829 * Moves a single object to the GTT read, and possibly write domain.
2831 * This function returns when the move is complete, including waiting on
2832 * flushes to occur.
2835 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2837 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2838 uint32_t old_write_domain, old_read_domains;
2839 int ret;
2841 /* Not valid to be called on unbound objects. */
2842 if (obj_priv->gtt_space == NULL)
2843 return -EINVAL;
2845 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2846 if (ret != 0)
2847 return ret;
2849 i915_gem_object_flush_cpu_write_domain(obj);
2851 if (write) {
2852 ret = i915_gem_object_wait_rendering(obj, true);
2853 if (ret)
2854 return ret;
2857 old_write_domain = obj->write_domain;
2858 old_read_domains = obj->read_domains;
2860 /* It should now be out of any other write domains, and we can update
2861 * the domain values for our changes.
2863 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2864 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2865 if (write) {
2866 obj->read_domains = I915_GEM_DOMAIN_GTT;
2867 obj->write_domain = I915_GEM_DOMAIN_GTT;
2868 obj_priv->dirty = 1;
2871 trace_i915_gem_object_change_domain(obj,
2872 old_read_domains,
2873 old_write_domain);
2875 return 0;
2879 * Prepare buffer for display plane. Use uninterruptible for possible flush
2880 * wait, as in modesetting process we're not supposed to be interrupted.
2883 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2884 bool pipelined)
2886 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2887 uint32_t old_read_domains;
2888 int ret;
2890 /* Not valid to be called on unbound objects. */
2891 if (obj_priv->gtt_space == NULL)
2892 return -EINVAL;
2894 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2895 if (ret)
2896 return ret;
2898 /* Currently, we are always called from an non-interruptible context. */
2899 if (!pipelined) {
2900 ret = i915_gem_object_wait_rendering(obj, false);
2901 if (ret)
2902 return ret;
2905 i915_gem_object_flush_cpu_write_domain(obj);
2907 old_read_domains = obj->read_domains;
2908 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2910 trace_i915_gem_object_change_domain(obj,
2911 old_read_domains,
2912 obj->write_domain);
2914 return 0;
2918 * Moves a single object to the CPU read, and possibly write domain.
2920 * This function returns when the move is complete, including waiting on
2921 * flushes to occur.
2923 static int
2924 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2926 uint32_t old_write_domain, old_read_domains;
2927 int ret;
2929 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2930 if (ret != 0)
2931 return ret;
2933 i915_gem_object_flush_gtt_write_domain(obj);
2935 /* If we have a partially-valid cache of the object in the CPU,
2936 * finish invalidating it and free the per-page flags.
2938 i915_gem_object_set_to_full_cpu_read_domain(obj);
2940 if (write) {
2941 ret = i915_gem_object_wait_rendering(obj, true);
2942 if (ret)
2943 return ret;
2946 old_write_domain = obj->write_domain;
2947 old_read_domains = obj->read_domains;
2949 /* Flush the CPU cache if it's still invalid. */
2950 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2951 i915_gem_clflush_object(obj);
2953 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2956 /* It should now be out of any other write domains, and we can update
2957 * the domain values for our changes.
2959 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2961 /* If we're writing through the CPU, then the GPU read domains will
2962 * need to be invalidated at next use.
2964 if (write) {
2965 obj->read_domains = I915_GEM_DOMAIN_CPU;
2966 obj->write_domain = I915_GEM_DOMAIN_CPU;
2969 trace_i915_gem_object_change_domain(obj,
2970 old_read_domains,
2971 old_write_domain);
2973 return 0;
2977 * Set the next domain for the specified object. This
2978 * may not actually perform the necessary flushing/invaliding though,
2979 * as that may want to be batched with other set_domain operations
2981 * This is (we hope) the only really tricky part of gem. The goal
2982 * is fairly simple -- track which caches hold bits of the object
2983 * and make sure they remain coherent. A few concrete examples may
2984 * help to explain how it works. For shorthand, we use the notation
2985 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2986 * a pair of read and write domain masks.
2988 * Case 1: the batch buffer
2990 * 1. Allocated
2991 * 2. Written by CPU
2992 * 3. Mapped to GTT
2993 * 4. Read by GPU
2994 * 5. Unmapped from GTT
2995 * 6. Freed
2997 * Let's take these a step at a time
2999 * 1. Allocated
3000 * Pages allocated from the kernel may still have
3001 * cache contents, so we set them to (CPU, CPU) always.
3002 * 2. Written by CPU (using pwrite)
3003 * The pwrite function calls set_domain (CPU, CPU) and
3004 * this function does nothing (as nothing changes)
3005 * 3. Mapped by GTT
3006 * This function asserts that the object is not
3007 * currently in any GPU-based read or write domains
3008 * 4. Read by GPU
3009 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3010 * As write_domain is zero, this function adds in the
3011 * current read domains (CPU+COMMAND, 0).
3012 * flush_domains is set to CPU.
3013 * invalidate_domains is set to COMMAND
3014 * clflush is run to get data out of the CPU caches
3015 * then i915_dev_set_domain calls i915_gem_flush to
3016 * emit an MI_FLUSH and drm_agp_chipset_flush
3017 * 5. Unmapped from GTT
3018 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3019 * flush_domains and invalidate_domains end up both zero
3020 * so no flushing/invalidating happens
3021 * 6. Freed
3022 * yay, done
3024 * Case 2: The shared render buffer
3026 * 1. Allocated
3027 * 2. Mapped to GTT
3028 * 3. Read/written by GPU
3029 * 4. set_domain to (CPU,CPU)
3030 * 5. Read/written by CPU
3031 * 6. Read/written by GPU
3033 * 1. Allocated
3034 * Same as last example, (CPU, CPU)
3035 * 2. Mapped to GTT
3036 * Nothing changes (assertions find that it is not in the GPU)
3037 * 3. Read/written by GPU
3038 * execbuffer calls set_domain (RENDER, RENDER)
3039 * flush_domains gets CPU
3040 * invalidate_domains gets GPU
3041 * clflush (obj)
3042 * MI_FLUSH and drm_agp_chipset_flush
3043 * 4. set_domain (CPU, CPU)
3044 * flush_domains gets GPU
3045 * invalidate_domains gets CPU
3046 * wait_rendering (obj) to make sure all drawing is complete.
3047 * This will include an MI_FLUSH to get the data from GPU
3048 * to memory
3049 * clflush (obj) to invalidate the CPU cache
3050 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3051 * 5. Read/written by CPU
3052 * cache lines are loaded and dirtied
3053 * 6. Read written by GPU
3054 * Same as last GPU access
3056 * Case 3: The constant buffer
3058 * 1. Allocated
3059 * 2. Written by CPU
3060 * 3. Read by GPU
3061 * 4. Updated (written) by CPU again
3062 * 5. Read by GPU
3064 * 1. Allocated
3065 * (CPU, CPU)
3066 * 2. Written by CPU
3067 * (CPU, CPU)
3068 * 3. Read by GPU
3069 * (CPU+RENDER, 0)
3070 * flush_domains = CPU
3071 * invalidate_domains = RENDER
3072 * clflush (obj)
3073 * MI_FLUSH
3074 * drm_agp_chipset_flush
3075 * 4. Updated (written) by CPU again
3076 * (CPU, CPU)
3077 * flush_domains = 0 (no previous write domain)
3078 * invalidate_domains = 0 (no new read domains)
3079 * 5. Read by GPU
3080 * (CPU+RENDER, 0)
3081 * flush_domains = CPU
3082 * invalidate_domains = RENDER
3083 * clflush (obj)
3084 * MI_FLUSH
3085 * drm_agp_chipset_flush
3087 static void
3088 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3090 struct drm_device *dev = obj->dev;
3091 struct drm_i915_private *dev_priv = dev->dev_private;
3092 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3093 uint32_t invalidate_domains = 0;
3094 uint32_t flush_domains = 0;
3095 uint32_t old_read_domains;
3097 intel_mark_busy(dev, obj);
3100 * If the object isn't moving to a new write domain,
3101 * let the object stay in multiple read domains
3103 if (obj->pending_write_domain == 0)
3104 obj->pending_read_domains |= obj->read_domains;
3105 else
3106 obj_priv->dirty = 1;
3109 * Flush the current write domain if
3110 * the new read domains don't match. Invalidate
3111 * any read domains which differ from the old
3112 * write domain
3114 if (obj->write_domain &&
3115 obj->write_domain != obj->pending_read_domains) {
3116 flush_domains |= obj->write_domain;
3117 invalidate_domains |=
3118 obj->pending_read_domains & ~obj->write_domain;
3121 * Invalidate any read caches which may have
3122 * stale data. That is, any new read domains.
3124 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3125 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3126 i915_gem_clflush_object(obj);
3128 old_read_domains = obj->read_domains;
3130 /* The actual obj->write_domain will be updated with
3131 * pending_write_domain after we emit the accumulated flush for all
3132 * of our domain changes in execbuffers (which clears objects'
3133 * write_domains). So if we have a current write domain that we
3134 * aren't changing, set pending_write_domain to that.
3136 if (flush_domains == 0 && obj->pending_write_domain == 0)
3137 obj->pending_write_domain = obj->write_domain;
3138 obj->read_domains = obj->pending_read_domains;
3140 dev->invalidate_domains |= invalidate_domains;
3141 dev->flush_domains |= flush_domains;
3142 if (obj_priv->ring)
3143 dev_priv->mm.flush_rings |= obj_priv->ring->id;
3145 trace_i915_gem_object_change_domain(obj,
3146 old_read_domains,
3147 obj->write_domain);
3151 * Moves the object from a partially CPU read to a full one.
3153 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3154 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3156 static void
3157 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3161 if (!obj_priv->page_cpu_valid)
3162 return;
3164 /* If we're partially in the CPU read domain, finish moving it in.
3166 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3167 int i;
3169 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3170 if (obj_priv->page_cpu_valid[i])
3171 continue;
3172 drm_clflush_pages(obj_priv->pages + i, 1);
3176 /* Free the page_cpu_valid mappings which are now stale, whether
3177 * or not we've got I915_GEM_DOMAIN_CPU.
3179 kfree(obj_priv->page_cpu_valid);
3180 obj_priv->page_cpu_valid = NULL;
3184 * Set the CPU read domain on a range of the object.
3186 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3187 * not entirely valid. The page_cpu_valid member of the object flags which
3188 * pages have been flushed, and will be respected by
3189 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3190 * of the whole object.
3192 * This function returns when the move is complete, including waiting on
3193 * flushes to occur.
3195 static int
3196 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3197 uint64_t offset, uint64_t size)
3199 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3200 uint32_t old_read_domains;
3201 int i, ret;
3203 if (offset == 0 && size == obj->size)
3204 return i915_gem_object_set_to_cpu_domain(obj, 0);
3206 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3207 if (ret != 0)
3208 return ret;
3209 i915_gem_object_flush_gtt_write_domain(obj);
3211 /* If we're already fully in the CPU read domain, we're done. */
3212 if (obj_priv->page_cpu_valid == NULL &&
3213 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3214 return 0;
3216 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3217 * newly adding I915_GEM_DOMAIN_CPU
3219 if (obj_priv->page_cpu_valid == NULL) {
3220 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3221 GFP_KERNEL);
3222 if (obj_priv->page_cpu_valid == NULL)
3223 return -ENOMEM;
3224 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3225 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3227 /* Flush the cache on any pages that are still invalid from the CPU's
3228 * perspective.
3230 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3231 i++) {
3232 if (obj_priv->page_cpu_valid[i])
3233 continue;
3235 drm_clflush_pages(obj_priv->pages + i, 1);
3237 obj_priv->page_cpu_valid[i] = 1;
3240 /* It should now be out of any other write domains, and we can update
3241 * the domain values for our changes.
3243 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3245 old_read_domains = obj->read_domains;
3246 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3248 trace_i915_gem_object_change_domain(obj,
3249 old_read_domains,
3250 obj->write_domain);
3252 return 0;
3256 * Pin an object to the GTT and evaluate the relocations landing in it.
3258 static int
3259 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3260 struct drm_file *file_priv,
3261 struct drm_i915_gem_exec_object2 *entry)
3263 struct drm_device *dev = obj->dev;
3264 drm_i915_private_t *dev_priv = dev->dev_private;
3265 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3266 struct drm_i915_gem_relocation_entry __user *user_relocs;
3267 int i, ret;
3268 bool need_fence;
3270 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3271 obj_priv->tiling_mode != I915_TILING_NONE;
3273 /* Check fence reg constraints and rebind if necessary */
3274 if (need_fence &&
3275 !i915_gem_object_fence_offset_ok(obj,
3276 obj_priv->tiling_mode)) {
3277 ret = i915_gem_object_unbind(obj);
3278 if (ret)
3279 return ret;
3282 /* Choose the GTT offset for our buffer and put it there. */
3283 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3284 if (ret)
3285 return ret;
3288 * Pre-965 chips need a fence register set up in order to
3289 * properly handle blits to/from tiled surfaces.
3291 if (need_fence) {
3292 ret = i915_gem_object_get_fence_reg(obj, true);
3293 if (ret != 0) {
3294 i915_gem_object_unpin(obj);
3295 return ret;
3298 dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
3301 entry->offset = obj_priv->gtt_offset;
3303 /* Apply the relocations, using the GTT aperture to avoid cache
3304 * flushing requirements.
3306 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
3307 for (i = 0; i < entry->relocation_count; i++) {
3308 struct drm_i915_gem_relocation_entry reloc;
3309 struct drm_gem_object *target_obj;
3310 struct drm_i915_gem_object *target_obj_priv;
3312 ret = __copy_from_user_inatomic(&reloc,
3313 user_relocs+i,
3314 sizeof(reloc));
3315 if (ret) {
3316 i915_gem_object_unpin(obj);
3317 return -EFAULT;
3320 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3321 reloc.target_handle);
3322 if (target_obj == NULL) {
3323 i915_gem_object_unpin(obj);
3324 return -ENOENT;
3326 target_obj_priv = to_intel_bo(target_obj);
3328 #if WATCH_RELOC
3329 DRM_INFO("%s: obj %p offset %08x target %d "
3330 "read %08x write %08x gtt %08x "
3331 "presumed %08x delta %08x\n",
3332 __func__,
3333 obj,
3334 (int) reloc.offset,
3335 (int) reloc.target_handle,
3336 (int) reloc.read_domains,
3337 (int) reloc.write_domain,
3338 (int) target_obj_priv->gtt_offset,
3339 (int) reloc.presumed_offset,
3340 reloc.delta);
3341 #endif
3343 /* The target buffer should have appeared before us in the
3344 * exec_object list, so it should have a GTT space bound by now.
3346 if (target_obj_priv->gtt_space == NULL) {
3347 DRM_ERROR("No GTT space found for object %d\n",
3348 reloc.target_handle);
3349 drm_gem_object_unreference(target_obj);
3350 i915_gem_object_unpin(obj);
3351 return -EINVAL;
3354 /* Validate that the target is in a valid r/w GPU domain */
3355 if (reloc.write_domain & (reloc.write_domain - 1)) {
3356 DRM_ERROR("reloc with multiple write domains: "
3357 "obj %p target %d offset %d "
3358 "read %08x write %08x",
3359 obj, reloc.target_handle,
3360 (int) reloc.offset,
3361 reloc.read_domains,
3362 reloc.write_domain);
3363 drm_gem_object_unreference(target_obj);
3364 i915_gem_object_unpin(obj);
3365 return -EINVAL;
3367 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3368 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
3369 DRM_ERROR("reloc with read/write CPU domains: "
3370 "obj %p target %d offset %d "
3371 "read %08x write %08x",
3372 obj, reloc.target_handle,
3373 (int) reloc.offset,
3374 reloc.read_domains,
3375 reloc.write_domain);
3376 drm_gem_object_unreference(target_obj);
3377 i915_gem_object_unpin(obj);
3378 return -EINVAL;
3380 if (reloc.write_domain && target_obj->pending_write_domain &&
3381 reloc.write_domain != target_obj->pending_write_domain) {
3382 DRM_ERROR("Write domain conflict: "
3383 "obj %p target %d offset %d "
3384 "new %08x old %08x\n",
3385 obj, reloc.target_handle,
3386 (int) reloc.offset,
3387 reloc.write_domain,
3388 target_obj->pending_write_domain);
3389 drm_gem_object_unreference(target_obj);
3390 i915_gem_object_unpin(obj);
3391 return -EINVAL;
3394 target_obj->pending_read_domains |= reloc.read_domains;
3395 target_obj->pending_write_domain |= reloc.write_domain;
3397 /* If the relocation already has the right value in it, no
3398 * more work needs to be done.
3400 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
3401 drm_gem_object_unreference(target_obj);
3402 continue;
3405 /* Check that the relocation address is valid... */
3406 if (reloc.offset > obj->size - 4) {
3407 DRM_ERROR("Relocation beyond object bounds: "
3408 "obj %p target %d offset %d size %d.\n",
3409 obj, reloc.target_handle,
3410 (int) reloc.offset, (int) obj->size);
3411 drm_gem_object_unreference(target_obj);
3412 i915_gem_object_unpin(obj);
3413 return -EINVAL;
3415 if (reloc.offset & 3) {
3416 DRM_ERROR("Relocation not 4-byte aligned: "
3417 "obj %p target %d offset %d.\n",
3418 obj, reloc.target_handle,
3419 (int) reloc.offset);
3420 drm_gem_object_unreference(target_obj);
3421 i915_gem_object_unpin(obj);
3422 return -EINVAL;
3425 /* and points to somewhere within the target object. */
3426 if (reloc.delta >= target_obj->size) {
3427 DRM_ERROR("Relocation beyond target object bounds: "
3428 "obj %p target %d delta %d size %d.\n",
3429 obj, reloc.target_handle,
3430 (int) reloc.delta, (int) target_obj->size);
3431 drm_gem_object_unreference(target_obj);
3432 i915_gem_object_unpin(obj);
3433 return -EINVAL;
3436 reloc.delta += target_obj_priv->gtt_offset;
3437 if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
3438 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3439 char *vaddr;
3441 vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
3442 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3443 kunmap_atomic(vaddr, KM_USER0);
3444 } else {
3445 uint32_t __iomem *reloc_entry;
3446 void __iomem *reloc_page;
3447 int ret;
3449 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3450 if (ret) {
3451 drm_gem_object_unreference(target_obj);
3452 i915_gem_object_unpin(obj);
3453 return ret;
3456 /* Map the page containing the relocation we're going to perform. */
3457 reloc.offset += obj_priv->gtt_offset;
3458 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3459 reloc.offset & PAGE_MASK,
3460 KM_USER0);
3461 reloc_entry = (uint32_t __iomem *)
3462 (reloc_page + (reloc.offset & ~PAGE_MASK));
3463 iowrite32(reloc.delta, reloc_entry);
3464 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3467 drm_gem_object_unreference(target_obj);
3470 return 0;
3473 /* Throttle our rendering by waiting until the ring has completed our requests
3474 * emitted over 20 msec ago.
3476 * Note that if we were to use the current jiffies each time around the loop,
3477 * we wouldn't escape the function with any frames outstanding if the time to
3478 * render a frame was over 20ms.
3480 * This should get us reasonable parallelism between CPU and GPU but also
3481 * relatively low latency when blocking on a particular request to finish.
3483 static int
3484 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct drm_i915_file_private *file_priv = file->driver_priv;
3488 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3489 struct drm_i915_gem_request *request;
3490 struct intel_ring_buffer *ring = NULL;
3491 u32 seqno = 0;
3492 int ret;
3494 spin_lock(&file_priv->mm.lock);
3495 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3496 if (time_after_eq(request->emitted_jiffies, recent_enough))
3497 break;
3499 ring = request->ring;
3500 seqno = request->seqno;
3502 spin_unlock(&file_priv->mm.lock);
3504 if (seqno == 0)
3505 return 0;
3507 ret = 0;
3508 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3509 /* And wait for the seqno passing without holding any locks and
3510 * causing extra latency for others. This is safe as the irq
3511 * generation is designed to be run atomically and so is
3512 * lockless.
3514 ring->user_irq_get(dev, ring);
3515 ret = wait_event_interruptible(ring->irq_queue,
3516 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3517 || atomic_read(&dev_priv->mm.wedged));
3518 ring->user_irq_put(dev, ring);
3520 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3521 ret = -EIO;
3524 if (ret == 0)
3525 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3527 return ret;
3530 static int
3531 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3532 uint64_t exec_offset)
3534 uint32_t exec_start, exec_len;
3536 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3537 exec_len = (uint32_t) exec->batch_len;
3539 if ((exec_start | exec_len) & 0x7)
3540 return -EINVAL;
3542 if (!exec_start)
3543 return -EINVAL;
3545 return 0;
3548 static int
3549 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3550 int count)
3552 int i;
3554 for (i = 0; i < count; i++) {
3555 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3556 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
3558 if (!access_ok(VERIFY_READ, ptr, length))
3559 return -EFAULT;
3561 if (fault_in_pages_readable(ptr, length))
3562 return -EFAULT;
3565 return 0;
3568 static int
3569 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3570 struct drm_file *file_priv,
3571 struct drm_i915_gem_execbuffer2 *args,
3572 struct drm_i915_gem_exec_object2 *exec_list)
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 struct drm_gem_object **object_list = NULL;
3576 struct drm_gem_object *batch_obj;
3577 struct drm_i915_gem_object *obj_priv;
3578 struct drm_clip_rect *cliprects = NULL;
3579 struct drm_i915_gem_request *request = NULL;
3580 int ret, i, pinned = 0;
3581 uint64_t exec_offset;
3582 int pin_tries, flips;
3584 struct intel_ring_buffer *ring = NULL;
3586 ret = i915_gem_check_is_wedged(dev);
3587 if (ret)
3588 return ret;
3590 ret = validate_exec_list(exec_list, args->buffer_count);
3591 if (ret)
3592 return ret;
3594 #if WATCH_EXEC
3595 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3596 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3597 #endif
3598 if (args->flags & I915_EXEC_BSD) {
3599 if (!HAS_BSD(dev)) {
3600 DRM_ERROR("execbuf with wrong flag\n");
3601 return -EINVAL;
3603 ring = &dev_priv->bsd_ring;
3604 } else {
3605 ring = &dev_priv->render_ring;
3608 if (args->buffer_count < 1) {
3609 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3610 return -EINVAL;
3612 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3613 if (object_list == NULL) {
3614 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3615 args->buffer_count);
3616 ret = -ENOMEM;
3617 goto pre_mutex_err;
3620 if (args->num_cliprects != 0) {
3621 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3622 GFP_KERNEL);
3623 if (cliprects == NULL) {
3624 ret = -ENOMEM;
3625 goto pre_mutex_err;
3628 ret = copy_from_user(cliprects,
3629 (struct drm_clip_rect __user *)
3630 (uintptr_t) args->cliprects_ptr,
3631 sizeof(*cliprects) * args->num_cliprects);
3632 if (ret != 0) {
3633 DRM_ERROR("copy %d cliprects failed: %d\n",
3634 args->num_cliprects, ret);
3635 ret = -EFAULT;
3636 goto pre_mutex_err;
3640 request = kzalloc(sizeof(*request), GFP_KERNEL);
3641 if (request == NULL) {
3642 ret = -ENOMEM;
3643 goto pre_mutex_err;
3646 ret = i915_mutex_lock_interruptible(dev);
3647 if (ret)
3648 goto pre_mutex_err;
3650 if (dev_priv->mm.suspended) {
3651 mutex_unlock(&dev->struct_mutex);
3652 ret = -EBUSY;
3653 goto pre_mutex_err;
3656 /* Look up object handles */
3657 for (i = 0; i < args->buffer_count; i++) {
3658 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3659 exec_list[i].handle);
3660 if (object_list[i] == NULL) {
3661 DRM_ERROR("Invalid object handle %d at index %d\n",
3662 exec_list[i].handle, i);
3663 /* prevent error path from reading uninitialized data */
3664 args->buffer_count = i + 1;
3665 ret = -ENOENT;
3666 goto err;
3669 obj_priv = to_intel_bo(object_list[i]);
3670 if (obj_priv->in_execbuffer) {
3671 DRM_ERROR("Object %p appears more than once in object list\n",
3672 object_list[i]);
3673 /* prevent error path from reading uninitialized data */
3674 args->buffer_count = i + 1;
3675 ret = -EINVAL;
3676 goto err;
3678 obj_priv->in_execbuffer = true;
3681 /* Pin and relocate */
3682 for (pin_tries = 0; ; pin_tries++) {
3683 ret = 0;
3685 for (i = 0; i < args->buffer_count; i++) {
3686 object_list[i]->pending_read_domains = 0;
3687 object_list[i]->pending_write_domain = 0;
3688 ret = i915_gem_object_pin_and_relocate(object_list[i],
3689 file_priv,
3690 &exec_list[i]);
3691 if (ret)
3692 break;
3693 pinned = i + 1;
3695 /* success */
3696 if (ret == 0)
3697 break;
3699 /* error other than GTT full, or we've already tried again */
3700 if (ret != -ENOSPC || pin_tries >= 1) {
3701 if (ret != -ERESTARTSYS) {
3702 unsigned long long total_size = 0;
3703 int num_fences = 0;
3704 for (i = 0; i < args->buffer_count; i++) {
3705 obj_priv = to_intel_bo(object_list[i]);
3707 total_size += object_list[i]->size;
3708 num_fences +=
3709 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3710 obj_priv->tiling_mode != I915_TILING_NONE;
3712 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3713 pinned+1, args->buffer_count,
3714 total_size, num_fences,
3715 ret);
3716 DRM_ERROR("%u objects [%u pinned, %u GTT], "
3717 "%zu object bytes [%zu pinned], "
3718 "%zu /%zu gtt bytes\n",
3719 dev_priv->mm.object_count,
3720 dev_priv->mm.pin_count,
3721 dev_priv->mm.gtt_count,
3722 dev_priv->mm.object_memory,
3723 dev_priv->mm.pin_memory,
3724 dev_priv->mm.gtt_memory,
3725 dev_priv->mm.gtt_total);
3727 goto err;
3730 /* unpin all of our buffers */
3731 for (i = 0; i < pinned; i++)
3732 i915_gem_object_unpin(object_list[i]);
3733 pinned = 0;
3735 /* evict everyone we can from the aperture */
3736 ret = i915_gem_evict_everything(dev);
3737 if (ret && ret != -ENOSPC)
3738 goto err;
3741 /* Set the pending read domains for the batch buffer to COMMAND */
3742 batch_obj = object_list[args->buffer_count-1];
3743 if (batch_obj->pending_write_domain) {
3744 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3745 ret = -EINVAL;
3746 goto err;
3748 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3750 /* Sanity check the batch buffer, prior to moving objects */
3751 exec_offset = exec_list[args->buffer_count - 1].offset;
3752 ret = i915_gem_check_execbuffer (args, exec_offset);
3753 if (ret != 0) {
3754 DRM_ERROR("execbuf with invalid offset/length\n");
3755 goto err;
3758 /* Zero the global flush/invalidate flags. These
3759 * will be modified as new domains are computed
3760 * for each object
3762 dev->invalidate_domains = 0;
3763 dev->flush_domains = 0;
3764 dev_priv->mm.flush_rings = 0;
3766 for (i = 0; i < args->buffer_count; i++) {
3767 struct drm_gem_object *obj = object_list[i];
3769 /* Compute new gpu domains and update invalidate/flush */
3770 i915_gem_object_set_to_gpu_domain(obj);
3773 if (dev->invalidate_domains | dev->flush_domains) {
3774 #if WATCH_EXEC
3775 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3776 __func__,
3777 dev->invalidate_domains,
3778 dev->flush_domains);
3779 #endif
3780 i915_gem_flush(dev, file_priv,
3781 dev->invalidate_domains,
3782 dev->flush_domains,
3783 dev_priv->mm.flush_rings);
3786 for (i = 0; i < args->buffer_count; i++) {
3787 struct drm_gem_object *obj = object_list[i];
3788 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3789 uint32_t old_write_domain = obj->write_domain;
3791 obj->write_domain = obj->pending_write_domain;
3792 if (obj->write_domain)
3793 list_move_tail(&obj_priv->gpu_write_list,
3794 &dev_priv->mm.gpu_write_list);
3796 trace_i915_gem_object_change_domain(obj,
3797 obj->read_domains,
3798 old_write_domain);
3801 #if WATCH_COHERENCY
3802 for (i = 0; i < args->buffer_count; i++) {
3803 i915_gem_object_check_coherency(object_list[i],
3804 exec_list[i].handle);
3806 #endif
3808 #if WATCH_EXEC
3809 i915_gem_dump_object(batch_obj,
3810 args->batch_len,
3811 __func__,
3812 ~0);
3813 #endif
3815 /* Check for any pending flips. As we only maintain a flip queue depth
3816 * of 1, we can simply insert a WAIT for the next display flip prior
3817 * to executing the batch and avoid stalling the CPU.
3819 flips = 0;
3820 for (i = 0; i < args->buffer_count; i++) {
3821 if (object_list[i]->write_domain)
3822 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3824 if (flips) {
3825 int plane, flip_mask;
3827 for (plane = 0; flips >> plane; plane++) {
3828 if (((flips >> plane) & 1) == 0)
3829 continue;
3831 if (plane)
3832 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3833 else
3834 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3836 intel_ring_begin(dev, ring, 2);
3837 intel_ring_emit(dev, ring,
3838 MI_WAIT_FOR_EVENT | flip_mask);
3839 intel_ring_emit(dev, ring, MI_NOOP);
3840 intel_ring_advance(dev, ring);
3844 /* Exec the batchbuffer */
3845 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3846 cliprects, exec_offset);
3847 if (ret) {
3848 DRM_ERROR("dispatch failed %d\n", ret);
3849 goto err;
3853 * Ensure that the commands in the batch buffer are
3854 * finished before the interrupt fires
3856 i915_retire_commands(dev, ring);
3858 for (i = 0; i < args->buffer_count; i++) {
3859 struct drm_gem_object *obj = object_list[i];
3860 obj_priv = to_intel_bo(obj);
3862 i915_gem_object_move_to_active(obj, ring);
3865 i915_add_request(dev, file_priv, request, ring);
3866 request = NULL;
3868 err:
3869 for (i = 0; i < pinned; i++)
3870 i915_gem_object_unpin(object_list[i]);
3872 for (i = 0; i < args->buffer_count; i++) {
3873 if (object_list[i]) {
3874 obj_priv = to_intel_bo(object_list[i]);
3875 obj_priv->in_execbuffer = false;
3877 drm_gem_object_unreference(object_list[i]);
3880 mutex_unlock(&dev->struct_mutex);
3882 pre_mutex_err:
3883 drm_free_large(object_list);
3884 kfree(cliprects);
3885 kfree(request);
3887 return ret;
3891 * Legacy execbuffer just creates an exec2 list from the original exec object
3892 * list array and passes it to the real function.
3895 i915_gem_execbuffer(struct drm_device *dev, void *data,
3896 struct drm_file *file_priv)
3898 struct drm_i915_gem_execbuffer *args = data;
3899 struct drm_i915_gem_execbuffer2 exec2;
3900 struct drm_i915_gem_exec_object *exec_list = NULL;
3901 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3902 int ret, i;
3904 #if WATCH_EXEC
3905 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3906 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3907 #endif
3909 if (args->buffer_count < 1) {
3910 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3911 return -EINVAL;
3914 /* Copy in the exec list from userland */
3915 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3916 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3917 if (exec_list == NULL || exec2_list == NULL) {
3918 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3919 args->buffer_count);
3920 drm_free_large(exec_list);
3921 drm_free_large(exec2_list);
3922 return -ENOMEM;
3924 ret = copy_from_user(exec_list,
3925 (struct drm_i915_relocation_entry __user *)
3926 (uintptr_t) args->buffers_ptr,
3927 sizeof(*exec_list) * args->buffer_count);
3928 if (ret != 0) {
3929 DRM_ERROR("copy %d exec entries failed %d\n",
3930 args->buffer_count, ret);
3931 drm_free_large(exec_list);
3932 drm_free_large(exec2_list);
3933 return -EFAULT;
3936 for (i = 0; i < args->buffer_count; i++) {
3937 exec2_list[i].handle = exec_list[i].handle;
3938 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3939 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3940 exec2_list[i].alignment = exec_list[i].alignment;
3941 exec2_list[i].offset = exec_list[i].offset;
3942 if (INTEL_INFO(dev)->gen < 4)
3943 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3944 else
3945 exec2_list[i].flags = 0;
3948 exec2.buffers_ptr = args->buffers_ptr;
3949 exec2.buffer_count = args->buffer_count;
3950 exec2.batch_start_offset = args->batch_start_offset;
3951 exec2.batch_len = args->batch_len;
3952 exec2.DR1 = args->DR1;
3953 exec2.DR4 = args->DR4;
3954 exec2.num_cliprects = args->num_cliprects;
3955 exec2.cliprects_ptr = args->cliprects_ptr;
3956 exec2.flags = I915_EXEC_RENDER;
3958 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3959 if (!ret) {
3960 /* Copy the new buffer offsets back to the user's exec list. */
3961 for (i = 0; i < args->buffer_count; i++)
3962 exec_list[i].offset = exec2_list[i].offset;
3963 /* ... and back out to userspace */
3964 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3965 (uintptr_t) args->buffers_ptr,
3966 exec_list,
3967 sizeof(*exec_list) * args->buffer_count);
3968 if (ret) {
3969 ret = -EFAULT;
3970 DRM_ERROR("failed to copy %d exec entries "
3971 "back to user (%d)\n",
3972 args->buffer_count, ret);
3976 drm_free_large(exec_list);
3977 drm_free_large(exec2_list);
3978 return ret;
3982 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3983 struct drm_file *file_priv)
3985 struct drm_i915_gem_execbuffer2 *args = data;
3986 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3987 int ret;
3989 #if WATCH_EXEC
3990 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3991 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3992 #endif
3994 if (args->buffer_count < 1) {
3995 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3996 return -EINVAL;
3999 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4000 if (exec2_list == NULL) {
4001 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4002 args->buffer_count);
4003 return -ENOMEM;
4005 ret = copy_from_user(exec2_list,
4006 (struct drm_i915_relocation_entry __user *)
4007 (uintptr_t) args->buffers_ptr,
4008 sizeof(*exec2_list) * args->buffer_count);
4009 if (ret != 0) {
4010 DRM_ERROR("copy %d exec entries failed %d\n",
4011 args->buffer_count, ret);
4012 drm_free_large(exec2_list);
4013 return -EFAULT;
4016 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4017 if (!ret) {
4018 /* Copy the new buffer offsets back to the user's exec list. */
4019 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4020 (uintptr_t) args->buffers_ptr,
4021 exec2_list,
4022 sizeof(*exec2_list) * args->buffer_count);
4023 if (ret) {
4024 ret = -EFAULT;
4025 DRM_ERROR("failed to copy %d exec entries "
4026 "back to user (%d)\n",
4027 args->buffer_count, ret);
4031 drm_free_large(exec2_list);
4032 return ret;
4036 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4038 struct drm_device *dev = obj->dev;
4039 struct drm_i915_private *dev_priv = dev->dev_private;
4040 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4041 int ret;
4043 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4044 WARN_ON(i915_verify_lists(dev));
4046 if (obj_priv->gtt_space != NULL) {
4047 if (alignment == 0)
4048 alignment = i915_gem_get_gtt_alignment(obj);
4049 if (obj_priv->gtt_offset & (alignment - 1)) {
4050 WARN(obj_priv->pin_count,
4051 "bo is already pinned with incorrect alignment:"
4052 " offset=%x, req.alignment=%x\n",
4053 obj_priv->gtt_offset, alignment);
4054 ret = i915_gem_object_unbind(obj);
4055 if (ret)
4056 return ret;
4060 if (obj_priv->gtt_space == NULL) {
4061 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4062 if (ret)
4063 return ret;
4066 obj_priv->pin_count++;
4068 /* If the object is not active and not pending a flush,
4069 * remove it from the inactive list
4071 if (obj_priv->pin_count == 1) {
4072 i915_gem_info_add_pin(dev_priv, obj->size);
4073 if (!obj_priv->active)
4074 list_move_tail(&obj_priv->list,
4075 &dev_priv->mm.pinned_list);
4078 WARN_ON(i915_verify_lists(dev));
4079 return 0;
4082 void
4083 i915_gem_object_unpin(struct drm_gem_object *obj)
4085 struct drm_device *dev = obj->dev;
4086 drm_i915_private_t *dev_priv = dev->dev_private;
4087 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4089 WARN_ON(i915_verify_lists(dev));
4090 obj_priv->pin_count--;
4091 BUG_ON(obj_priv->pin_count < 0);
4092 BUG_ON(obj_priv->gtt_space == NULL);
4094 /* If the object is no longer pinned, and is
4095 * neither active nor being flushed, then stick it on
4096 * the inactive list
4098 if (obj_priv->pin_count == 0) {
4099 if (!obj_priv->active)
4100 list_move_tail(&obj_priv->list,
4101 &dev_priv->mm.inactive_list);
4102 i915_gem_info_remove_pin(dev_priv, obj->size);
4104 WARN_ON(i915_verify_lists(dev));
4108 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4109 struct drm_file *file_priv)
4111 struct drm_i915_gem_pin *args = data;
4112 struct drm_gem_object *obj;
4113 struct drm_i915_gem_object *obj_priv;
4114 int ret;
4116 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4117 if (obj == NULL) {
4118 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4119 args->handle);
4120 return -ENOENT;
4122 obj_priv = to_intel_bo(obj);
4124 ret = i915_mutex_lock_interruptible(dev);
4125 if (ret) {
4126 drm_gem_object_unreference_unlocked(obj);
4127 return ret;
4130 if (obj_priv->madv != I915_MADV_WILLNEED) {
4131 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4132 drm_gem_object_unreference(obj);
4133 mutex_unlock(&dev->struct_mutex);
4134 return -EINVAL;
4137 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4138 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4139 args->handle);
4140 drm_gem_object_unreference(obj);
4141 mutex_unlock(&dev->struct_mutex);
4142 return -EINVAL;
4145 obj_priv->user_pin_count++;
4146 obj_priv->pin_filp = file_priv;
4147 if (obj_priv->user_pin_count == 1) {
4148 ret = i915_gem_object_pin(obj, args->alignment);
4149 if (ret != 0) {
4150 drm_gem_object_unreference(obj);
4151 mutex_unlock(&dev->struct_mutex);
4152 return ret;
4156 /* XXX - flush the CPU caches for pinned objects
4157 * as the X server doesn't manage domains yet
4159 i915_gem_object_flush_cpu_write_domain(obj);
4160 args->offset = obj_priv->gtt_offset;
4161 drm_gem_object_unreference(obj);
4162 mutex_unlock(&dev->struct_mutex);
4164 return 0;
4168 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4169 struct drm_file *file_priv)
4171 struct drm_i915_gem_pin *args = data;
4172 struct drm_gem_object *obj;
4173 struct drm_i915_gem_object *obj_priv;
4174 int ret;
4176 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4177 if (obj == NULL) {
4178 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4179 args->handle);
4180 return -ENOENT;
4183 obj_priv = to_intel_bo(obj);
4185 ret = i915_mutex_lock_interruptible(dev);
4186 if (ret) {
4187 drm_gem_object_unreference_unlocked(obj);
4188 return ret;
4191 if (obj_priv->pin_filp != file_priv) {
4192 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4193 args->handle);
4194 drm_gem_object_unreference(obj);
4195 mutex_unlock(&dev->struct_mutex);
4196 return -EINVAL;
4198 obj_priv->user_pin_count--;
4199 if (obj_priv->user_pin_count == 0) {
4200 obj_priv->pin_filp = NULL;
4201 i915_gem_object_unpin(obj);
4204 drm_gem_object_unreference(obj);
4205 mutex_unlock(&dev->struct_mutex);
4206 return 0;
4210 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4211 struct drm_file *file_priv)
4213 struct drm_i915_gem_busy *args = data;
4214 struct drm_gem_object *obj;
4215 struct drm_i915_gem_object *obj_priv;
4216 int ret;
4218 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4219 if (obj == NULL) {
4220 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4221 args->handle);
4222 return -ENOENT;
4225 ret = i915_mutex_lock_interruptible(dev);
4226 if (ret) {
4227 drm_gem_object_unreference_unlocked(obj);
4228 return ret;
4231 /* Count all active objects as busy, even if they are currently not used
4232 * by the gpu. Users of this interface expect objects to eventually
4233 * become non-busy without any further actions, therefore emit any
4234 * necessary flushes here.
4236 obj_priv = to_intel_bo(obj);
4237 args->busy = obj_priv->active;
4238 if (args->busy) {
4239 /* Unconditionally flush objects, even when the gpu still uses this
4240 * object. Userspace calling this function indicates that it wants to
4241 * use this buffer rather sooner than later, so issuing the required
4242 * flush earlier is beneficial.
4244 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4245 i915_gem_flush_ring(dev, file_priv,
4246 obj_priv->ring,
4247 0, obj->write_domain);
4249 /* Update the active list for the hardware's current position.
4250 * Otherwise this only updates on a delayed timer or when irqs
4251 * are actually unmasked, and our working set ends up being
4252 * larger than required.
4254 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4256 args->busy = obj_priv->active;
4259 drm_gem_object_unreference(obj);
4260 mutex_unlock(&dev->struct_mutex);
4261 return 0;
4265 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file_priv)
4268 return i915_gem_ring_throttle(dev, file_priv);
4272 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4273 struct drm_file *file_priv)
4275 struct drm_i915_gem_madvise *args = data;
4276 struct drm_gem_object *obj;
4277 struct drm_i915_gem_object *obj_priv;
4278 int ret;
4280 switch (args->madv) {
4281 case I915_MADV_DONTNEED:
4282 case I915_MADV_WILLNEED:
4283 break;
4284 default:
4285 return -EINVAL;
4288 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4289 if (obj == NULL) {
4290 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4291 args->handle);
4292 return -ENOENT;
4294 obj_priv = to_intel_bo(obj);
4296 ret = i915_mutex_lock_interruptible(dev);
4297 if (ret) {
4298 drm_gem_object_unreference_unlocked(obj);
4299 return ret;
4302 if (obj_priv->pin_count) {
4303 drm_gem_object_unreference(obj);
4304 mutex_unlock(&dev->struct_mutex);
4306 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4307 return -EINVAL;
4310 if (obj_priv->madv != __I915_MADV_PURGED)
4311 obj_priv->madv = args->madv;
4313 /* if the object is no longer bound, discard its backing storage */
4314 if (i915_gem_object_is_purgeable(obj_priv) &&
4315 obj_priv->gtt_space == NULL)
4316 i915_gem_object_truncate(obj);
4318 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4320 drm_gem_object_unreference(obj);
4321 mutex_unlock(&dev->struct_mutex);
4323 return 0;
4326 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4327 size_t size)
4329 struct drm_i915_private *dev_priv = dev->dev_private;
4330 struct drm_i915_gem_object *obj;
4332 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4333 if (obj == NULL)
4334 return NULL;
4336 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4337 kfree(obj);
4338 return NULL;
4341 i915_gem_info_add_obj(dev_priv, size);
4343 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4344 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4346 obj->agp_type = AGP_USER_MEMORY;
4347 obj->base.driver_private = NULL;
4348 obj->fence_reg = I915_FENCE_REG_NONE;
4349 INIT_LIST_HEAD(&obj->list);
4350 INIT_LIST_HEAD(&obj->gpu_write_list);
4351 obj->madv = I915_MADV_WILLNEED;
4353 return &obj->base;
4356 int i915_gem_init_object(struct drm_gem_object *obj)
4358 BUG();
4360 return 0;
4363 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4365 struct drm_device *dev = obj->dev;
4366 drm_i915_private_t *dev_priv = dev->dev_private;
4367 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4368 int ret;
4370 ret = i915_gem_object_unbind(obj);
4371 if (ret == -ERESTARTSYS) {
4372 list_move(&obj_priv->list,
4373 &dev_priv->mm.deferred_free_list);
4374 return;
4377 if (obj_priv->mmap_offset)
4378 i915_gem_free_mmap_offset(obj);
4380 drm_gem_object_release(obj);
4381 i915_gem_info_remove_obj(dev_priv, obj->size);
4383 kfree(obj_priv->page_cpu_valid);
4384 kfree(obj_priv->bit_17);
4385 kfree(obj_priv);
4388 void i915_gem_free_object(struct drm_gem_object *obj)
4390 struct drm_device *dev = obj->dev;
4391 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4393 trace_i915_gem_object_destroy(obj);
4395 while (obj_priv->pin_count > 0)
4396 i915_gem_object_unpin(obj);
4398 if (obj_priv->phys_obj)
4399 i915_gem_detach_phys_object(dev, obj);
4401 i915_gem_free_object_tail(obj);
4405 i915_gem_idle(struct drm_device *dev)
4407 drm_i915_private_t *dev_priv = dev->dev_private;
4408 int ret;
4410 mutex_lock(&dev->struct_mutex);
4412 if (dev_priv->mm.suspended ||
4413 (dev_priv->render_ring.gem_object == NULL) ||
4414 (HAS_BSD(dev) &&
4415 dev_priv->bsd_ring.gem_object == NULL)) {
4416 mutex_unlock(&dev->struct_mutex);
4417 return 0;
4420 ret = i915_gpu_idle(dev);
4421 if (ret) {
4422 mutex_unlock(&dev->struct_mutex);
4423 return ret;
4426 /* Under UMS, be paranoid and evict. */
4427 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4428 ret = i915_gem_evict_inactive(dev);
4429 if (ret) {
4430 mutex_unlock(&dev->struct_mutex);
4431 return ret;
4435 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4436 * We need to replace this with a semaphore, or something.
4437 * And not confound mm.suspended!
4439 dev_priv->mm.suspended = 1;
4440 del_timer_sync(&dev_priv->hangcheck_timer);
4442 i915_kernel_lost_context(dev);
4443 i915_gem_cleanup_ringbuffer(dev);
4445 mutex_unlock(&dev->struct_mutex);
4447 /* Cancel the retire work handler, which should be idle now. */
4448 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4450 return 0;
4454 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4455 * over cache flushing.
4457 static int
4458 i915_gem_init_pipe_control(struct drm_device *dev)
4460 drm_i915_private_t *dev_priv = dev->dev_private;
4461 struct drm_gem_object *obj;
4462 struct drm_i915_gem_object *obj_priv;
4463 int ret;
4465 obj = i915_gem_alloc_object(dev, 4096);
4466 if (obj == NULL) {
4467 DRM_ERROR("Failed to allocate seqno page\n");
4468 ret = -ENOMEM;
4469 goto err;
4471 obj_priv = to_intel_bo(obj);
4472 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4474 ret = i915_gem_object_pin(obj, 4096);
4475 if (ret)
4476 goto err_unref;
4478 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4479 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4480 if (dev_priv->seqno_page == NULL)
4481 goto err_unpin;
4483 dev_priv->seqno_obj = obj;
4484 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4486 return 0;
4488 err_unpin:
4489 i915_gem_object_unpin(obj);
4490 err_unref:
4491 drm_gem_object_unreference(obj);
4492 err:
4493 return ret;
4497 static void
4498 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4500 drm_i915_private_t *dev_priv = dev->dev_private;
4501 struct drm_gem_object *obj;
4502 struct drm_i915_gem_object *obj_priv;
4504 obj = dev_priv->seqno_obj;
4505 obj_priv = to_intel_bo(obj);
4506 kunmap(obj_priv->pages[0]);
4507 i915_gem_object_unpin(obj);
4508 drm_gem_object_unreference(obj);
4509 dev_priv->seqno_obj = NULL;
4511 dev_priv->seqno_page = NULL;
4515 i915_gem_init_ringbuffer(struct drm_device *dev)
4517 drm_i915_private_t *dev_priv = dev->dev_private;
4518 int ret;
4520 if (HAS_PIPE_CONTROL(dev)) {
4521 ret = i915_gem_init_pipe_control(dev);
4522 if (ret)
4523 return ret;
4526 ret = intel_init_render_ring_buffer(dev);
4527 if (ret)
4528 goto cleanup_pipe_control;
4530 if (HAS_BSD(dev)) {
4531 ret = intel_init_bsd_ring_buffer(dev);
4532 if (ret)
4533 goto cleanup_render_ring;
4536 dev_priv->next_seqno = 1;
4538 return 0;
4540 cleanup_render_ring:
4541 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4542 cleanup_pipe_control:
4543 if (HAS_PIPE_CONTROL(dev))
4544 i915_gem_cleanup_pipe_control(dev);
4545 return ret;
4548 void
4549 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4551 drm_i915_private_t *dev_priv = dev->dev_private;
4553 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4554 if (HAS_BSD(dev))
4555 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4556 if (HAS_PIPE_CONTROL(dev))
4557 i915_gem_cleanup_pipe_control(dev);
4561 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4562 struct drm_file *file_priv)
4564 drm_i915_private_t *dev_priv = dev->dev_private;
4565 int ret;
4567 if (drm_core_check_feature(dev, DRIVER_MODESET))
4568 return 0;
4570 if (atomic_read(&dev_priv->mm.wedged)) {
4571 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4572 atomic_set(&dev_priv->mm.wedged, 0);
4575 mutex_lock(&dev->struct_mutex);
4576 dev_priv->mm.suspended = 0;
4578 ret = i915_gem_init_ringbuffer(dev);
4579 if (ret != 0) {
4580 mutex_unlock(&dev->struct_mutex);
4581 return ret;
4584 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4585 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4586 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4587 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4588 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4589 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4590 mutex_unlock(&dev->struct_mutex);
4592 ret = drm_irq_install(dev);
4593 if (ret)
4594 goto cleanup_ringbuffer;
4596 return 0;
4598 cleanup_ringbuffer:
4599 mutex_lock(&dev->struct_mutex);
4600 i915_gem_cleanup_ringbuffer(dev);
4601 dev_priv->mm.suspended = 1;
4602 mutex_unlock(&dev->struct_mutex);
4604 return ret;
4608 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4609 struct drm_file *file_priv)
4611 if (drm_core_check_feature(dev, DRIVER_MODESET))
4612 return 0;
4614 drm_irq_uninstall(dev);
4615 return i915_gem_idle(dev);
4618 void
4619 i915_gem_lastclose(struct drm_device *dev)
4621 int ret;
4623 if (drm_core_check_feature(dev, DRIVER_MODESET))
4624 return;
4626 ret = i915_gem_idle(dev);
4627 if (ret)
4628 DRM_ERROR("failed to idle hardware: %d\n", ret);
4631 void
4632 i915_gem_load(struct drm_device *dev)
4634 int i;
4635 drm_i915_private_t *dev_priv = dev->dev_private;
4637 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4638 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4639 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4640 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4641 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4642 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4643 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4644 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4645 if (HAS_BSD(dev)) {
4646 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4647 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4649 for (i = 0; i < 16; i++)
4650 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4651 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4652 i915_gem_retire_work_handler);
4653 init_completion(&dev_priv->error_completion);
4654 spin_lock(&shrink_list_lock);
4655 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4656 spin_unlock(&shrink_list_lock);
4658 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4659 if (IS_GEN3(dev)) {
4660 u32 tmp = I915_READ(MI_ARB_STATE);
4661 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4662 /* arb state is a masked write, so set bit + bit in mask */
4663 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4664 I915_WRITE(MI_ARB_STATE, tmp);
4668 /* Old X drivers will take 0-2 for front, back, depth buffers */
4669 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4670 dev_priv->fence_reg_start = 3;
4672 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4673 dev_priv->num_fence_regs = 16;
4674 else
4675 dev_priv->num_fence_regs = 8;
4677 /* Initialize fence registers to zero */
4678 switch (INTEL_INFO(dev)->gen) {
4679 case 6:
4680 for (i = 0; i < 16; i++)
4681 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4682 break;
4683 case 5:
4684 case 4:
4685 for (i = 0; i < 16; i++)
4686 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4687 break;
4688 case 3:
4689 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4690 for (i = 0; i < 8; i++)
4691 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4692 case 2:
4693 for (i = 0; i < 8; i++)
4694 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4695 break;
4697 i915_gem_detect_bit_6_swizzle(dev);
4698 init_waitqueue_head(&dev_priv->pending_flip_queue);
4702 * Create a physically contiguous memory object for this object
4703 * e.g. for cursor + overlay regs
4705 static int i915_gem_init_phys_object(struct drm_device *dev,
4706 int id, int size, int align)
4708 drm_i915_private_t *dev_priv = dev->dev_private;
4709 struct drm_i915_gem_phys_object *phys_obj;
4710 int ret;
4712 if (dev_priv->mm.phys_objs[id - 1] || !size)
4713 return 0;
4715 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4716 if (!phys_obj)
4717 return -ENOMEM;
4719 phys_obj->id = id;
4721 phys_obj->handle = drm_pci_alloc(dev, size, align);
4722 if (!phys_obj->handle) {
4723 ret = -ENOMEM;
4724 goto kfree_obj;
4726 #ifdef CONFIG_X86
4727 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4728 #endif
4730 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4732 return 0;
4733 kfree_obj:
4734 kfree(phys_obj);
4735 return ret;
4738 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4740 drm_i915_private_t *dev_priv = dev->dev_private;
4741 struct drm_i915_gem_phys_object *phys_obj;
4743 if (!dev_priv->mm.phys_objs[id - 1])
4744 return;
4746 phys_obj = dev_priv->mm.phys_objs[id - 1];
4747 if (phys_obj->cur_obj) {
4748 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4751 #ifdef CONFIG_X86
4752 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4753 #endif
4754 drm_pci_free(dev, phys_obj->handle);
4755 kfree(phys_obj);
4756 dev_priv->mm.phys_objs[id - 1] = NULL;
4759 void i915_gem_free_all_phys_object(struct drm_device *dev)
4761 int i;
4763 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4764 i915_gem_free_phys_object(dev, i);
4767 void i915_gem_detach_phys_object(struct drm_device *dev,
4768 struct drm_gem_object *obj)
4770 struct drm_i915_gem_object *obj_priv;
4771 int i;
4772 int ret;
4773 int page_count;
4775 obj_priv = to_intel_bo(obj);
4776 if (!obj_priv->phys_obj)
4777 return;
4779 ret = i915_gem_object_get_pages(obj, 0);
4780 if (ret)
4781 goto out;
4783 page_count = obj->size / PAGE_SIZE;
4785 for (i = 0; i < page_count; i++) {
4786 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4787 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4789 memcpy(dst, src, PAGE_SIZE);
4790 kunmap_atomic(dst, KM_USER0);
4792 drm_clflush_pages(obj_priv->pages, page_count);
4793 drm_agp_chipset_flush(dev);
4795 i915_gem_object_put_pages(obj);
4796 out:
4797 obj_priv->phys_obj->cur_obj = NULL;
4798 obj_priv->phys_obj = NULL;
4802 i915_gem_attach_phys_object(struct drm_device *dev,
4803 struct drm_gem_object *obj,
4804 int id,
4805 int align)
4807 drm_i915_private_t *dev_priv = dev->dev_private;
4808 struct drm_i915_gem_object *obj_priv;
4809 int ret = 0;
4810 int page_count;
4811 int i;
4813 if (id > I915_MAX_PHYS_OBJECT)
4814 return -EINVAL;
4816 obj_priv = to_intel_bo(obj);
4818 if (obj_priv->phys_obj) {
4819 if (obj_priv->phys_obj->id == id)
4820 return 0;
4821 i915_gem_detach_phys_object(dev, obj);
4824 /* create a new object */
4825 if (!dev_priv->mm.phys_objs[id - 1]) {
4826 ret = i915_gem_init_phys_object(dev, id,
4827 obj->size, align);
4828 if (ret) {
4829 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4830 goto out;
4834 /* bind to the object */
4835 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4836 obj_priv->phys_obj->cur_obj = obj;
4838 ret = i915_gem_object_get_pages(obj, 0);
4839 if (ret) {
4840 DRM_ERROR("failed to get page list\n");
4841 goto out;
4844 page_count = obj->size / PAGE_SIZE;
4846 for (i = 0; i < page_count; i++) {
4847 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4848 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4850 memcpy(dst, src, PAGE_SIZE);
4851 kunmap_atomic(src, KM_USER0);
4854 i915_gem_object_put_pages(obj);
4856 return 0;
4857 out:
4858 return ret;
4861 static int
4862 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4863 struct drm_i915_gem_pwrite *args,
4864 struct drm_file *file_priv)
4866 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4867 void *obj_addr;
4868 int ret;
4869 char __user *user_data;
4871 user_data = (char __user *) (uintptr_t) args->data_ptr;
4872 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4874 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4875 ret = copy_from_user(obj_addr, user_data, args->size);
4876 if (ret)
4877 return -EFAULT;
4879 drm_agp_chipset_flush(dev);
4880 return 0;
4883 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4885 struct drm_i915_file_private *file_priv = file->driver_priv;
4887 /* Clean up our request list when the client is going away, so that
4888 * later retire_requests won't dereference our soon-to-be-gone
4889 * file_priv.
4891 spin_lock(&file_priv->mm.lock);
4892 while (!list_empty(&file_priv->mm.request_list)) {
4893 struct drm_i915_gem_request *request;
4895 request = list_first_entry(&file_priv->mm.request_list,
4896 struct drm_i915_gem_request,
4897 client_list);
4898 list_del(&request->client_list);
4899 request->file_priv = NULL;
4901 spin_unlock(&file_priv->mm.lock);
4904 static int
4905 i915_gpu_is_active(struct drm_device *dev)
4907 drm_i915_private_t *dev_priv = dev->dev_private;
4908 int lists_empty;
4910 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4911 list_empty(&dev_priv->render_ring.active_list);
4912 if (HAS_BSD(dev))
4913 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4915 return !lists_empty;
4918 static int
4919 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4921 drm_i915_private_t *dev_priv, *next_dev;
4922 struct drm_i915_gem_object *obj_priv, *next_obj;
4923 int cnt = 0;
4924 int would_deadlock = 1;
4926 /* "fast-path" to count number of available objects */
4927 if (nr_to_scan == 0) {
4928 spin_lock(&shrink_list_lock);
4929 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4930 struct drm_device *dev = dev_priv->dev;
4932 if (mutex_trylock(&dev->struct_mutex)) {
4933 list_for_each_entry(obj_priv,
4934 &dev_priv->mm.inactive_list,
4935 list)
4936 cnt++;
4937 mutex_unlock(&dev->struct_mutex);
4940 spin_unlock(&shrink_list_lock);
4942 return (cnt / 100) * sysctl_vfs_cache_pressure;
4945 spin_lock(&shrink_list_lock);
4947 rescan:
4948 /* first scan for clean buffers */
4949 list_for_each_entry_safe(dev_priv, next_dev,
4950 &shrink_list, mm.shrink_list) {
4951 struct drm_device *dev = dev_priv->dev;
4953 if (! mutex_trylock(&dev->struct_mutex))
4954 continue;
4956 spin_unlock(&shrink_list_lock);
4957 i915_gem_retire_requests(dev);
4959 list_for_each_entry_safe(obj_priv, next_obj,
4960 &dev_priv->mm.inactive_list,
4961 list) {
4962 if (i915_gem_object_is_purgeable(obj_priv)) {
4963 i915_gem_object_unbind(&obj_priv->base);
4964 if (--nr_to_scan <= 0)
4965 break;
4969 spin_lock(&shrink_list_lock);
4970 mutex_unlock(&dev->struct_mutex);
4972 would_deadlock = 0;
4974 if (nr_to_scan <= 0)
4975 break;
4978 /* second pass, evict/count anything still on the inactive list */
4979 list_for_each_entry_safe(dev_priv, next_dev,
4980 &shrink_list, mm.shrink_list) {
4981 struct drm_device *dev = dev_priv->dev;
4983 if (! mutex_trylock(&dev->struct_mutex))
4984 continue;
4986 spin_unlock(&shrink_list_lock);
4988 list_for_each_entry_safe(obj_priv, next_obj,
4989 &dev_priv->mm.inactive_list,
4990 list) {
4991 if (nr_to_scan > 0) {
4992 i915_gem_object_unbind(&obj_priv->base);
4993 nr_to_scan--;
4994 } else
4995 cnt++;
4998 spin_lock(&shrink_list_lock);
4999 mutex_unlock(&dev->struct_mutex);
5001 would_deadlock = 0;
5004 if (nr_to_scan) {
5005 int active = 0;
5008 * We are desperate for pages, so as a last resort, wait
5009 * for the GPU to finish and discard whatever we can.
5010 * This has a dramatic impact to reduce the number of
5011 * OOM-killer events whilst running the GPU aggressively.
5013 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5014 struct drm_device *dev = dev_priv->dev;
5016 if (!mutex_trylock(&dev->struct_mutex))
5017 continue;
5019 spin_unlock(&shrink_list_lock);
5021 if (i915_gpu_is_active(dev)) {
5022 i915_gpu_idle(dev);
5023 active++;
5026 spin_lock(&shrink_list_lock);
5027 mutex_unlock(&dev->struct_mutex);
5030 if (active)
5031 goto rescan;
5034 spin_unlock(&shrink_list_lock);
5036 if (would_deadlock)
5037 return -1;
5038 else if (cnt > 0)
5039 return (cnt / 100) * sysctl_vfs_cache_pressure;
5040 else
5041 return 0;
5044 static struct shrinker shrinker = {
5045 .shrink = i915_gem_shrink,
5046 .seeks = DEFAULT_SEEKS,
5049 __init void
5050 i915_gem_shrinker_init(void)
5052 register_shrinker(&shrinker);
5055 __exit void
5056 i915_gem_shrinker_exit(void)
5058 unregister_shrinker(&shrinker);