4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include "input-compat.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_DEVICES 256
35 static LIST_HEAD(input_dev_list
);
36 static LIST_HEAD(input_handler_list
);
39 * input_mutex protects access to both input_dev_list and input_handler_list.
40 * This also causes input_[un]register_device and input_[un]register_handler
41 * be mutually exclusive which simplifies locking in drivers implementing
44 static DEFINE_MUTEX(input_mutex
);
46 static struct input_handler
*input_table
[8];
48 static inline int is_event_supported(unsigned int code
,
49 unsigned long *bm
, unsigned int max
)
51 return code
<= max
&& test_bit(code
, bm
);
54 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
57 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
60 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
61 return (old_val
* 3 + value
) / 4;
63 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
64 return (old_val
+ value
) / 2;
71 * Pass event first through all filters and then, if event has not been
72 * filtered out, through all open handles. This function is called with
73 * dev->event_lock held and interrupts disabled.
75 static void input_pass_event(struct input_dev
*dev
,
76 struct input_handler
*src_handler
,
77 unsigned int type
, unsigned int code
, int value
)
79 struct input_handler
*handler
;
80 struct input_handle
*handle
;
84 handle
= rcu_dereference(dev
->grab
);
86 handle
->handler
->event(handle
, type
, code
, value
);
88 bool filtered
= false;
90 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
) {
94 handler
= handle
->handler
;
97 * If this is the handler that injected this
98 * particular event we want to skip it to avoid
99 * filters firing again and again.
101 if (handler
== src_handler
)
104 if (!handler
->filter
) {
108 handler
->event(handle
, type
, code
, value
);
110 } else if (handler
->filter(handle
, type
, code
, value
))
119 * Generate software autorepeat event. Note that we take
120 * dev->event_lock here to avoid racing with input_event
121 * which may cause keys get "stuck".
123 static void input_repeat_key(unsigned long data
)
125 struct input_dev
*dev
= (void *) data
;
128 spin_lock_irqsave(&dev
->event_lock
, flags
);
130 if (test_bit(dev
->repeat_key
, dev
->key
) &&
131 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
133 input_pass_event(dev
, NULL
, EV_KEY
, dev
->repeat_key
, 2);
137 * Only send SYN_REPORT if we are not in a middle
138 * of driver parsing a new hardware packet.
139 * Otherwise assume that the driver will send
140 * SYN_REPORT once it's done.
142 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
145 if (dev
->rep
[REP_PERIOD
])
146 mod_timer(&dev
->timer
, jiffies
+
147 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
150 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
153 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
155 if (test_bit(EV_REP
, dev
->evbit
) &&
156 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
158 dev
->repeat_key
= code
;
159 mod_timer(&dev
->timer
,
160 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
164 static void input_stop_autorepeat(struct input_dev
*dev
)
166 del_timer(&dev
->timer
);
169 #define INPUT_IGNORE_EVENT 0
170 #define INPUT_PASS_TO_HANDLERS 1
171 #define INPUT_PASS_TO_DEVICE 2
172 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
174 static int input_handle_abs_event(struct input_dev
*dev
,
175 struct input_handler
*src_handler
,
176 unsigned int code
, int *pval
)
181 if (code
== ABS_MT_SLOT
) {
183 * "Stage" the event; we'll flush it later, when we
184 * get actual touch data.
186 if (*pval
>= 0 && *pval
< dev
->mtsize
)
189 return INPUT_IGNORE_EVENT
;
192 is_mt_event
= code
>= ABS_MT_FIRST
&& code
<= ABS_MT_LAST
;
195 pold
= &dev
->absinfo
[code
].value
;
196 } else if (dev
->mt
) {
197 struct input_mt_slot
*mtslot
= &dev
->mt
[dev
->slot
];
198 pold
= &mtslot
->abs
[code
- ABS_MT_FIRST
];
201 * Bypass filtering for multi-touch events when
202 * not employing slots.
208 *pval
= input_defuzz_abs_event(*pval
, *pold
,
209 dev
->absinfo
[code
].fuzz
);
211 return INPUT_IGNORE_EVENT
;
216 /* Flush pending "slot" event */
217 if (is_mt_event
&& dev
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
218 input_abs_set_val(dev
, ABS_MT_SLOT
, dev
->slot
);
219 input_pass_event(dev
, src_handler
,
220 EV_ABS
, ABS_MT_SLOT
, dev
->slot
);
223 return INPUT_PASS_TO_HANDLERS
;
226 static void input_handle_event(struct input_dev
*dev
,
227 struct input_handler
*src_handler
,
228 unsigned int type
, unsigned int code
, int value
)
230 int disposition
= INPUT_IGNORE_EVENT
;
237 disposition
= INPUT_PASS_TO_ALL
;
243 disposition
= INPUT_PASS_TO_HANDLERS
;
248 disposition
= INPUT_PASS_TO_HANDLERS
;
254 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
255 !!test_bit(code
, dev
->key
) != value
) {
258 __change_bit(code
, dev
->key
);
260 input_start_autorepeat(dev
, code
);
262 input_stop_autorepeat(dev
);
265 disposition
= INPUT_PASS_TO_HANDLERS
;
270 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
271 !!test_bit(code
, dev
->sw
) != value
) {
273 __change_bit(code
, dev
->sw
);
274 disposition
= INPUT_PASS_TO_HANDLERS
;
279 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
280 disposition
= input_handle_abs_event(dev
, src_handler
,
286 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
287 disposition
= INPUT_PASS_TO_HANDLERS
;
292 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
293 disposition
= INPUT_PASS_TO_ALL
;
298 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
299 !!test_bit(code
, dev
->led
) != value
) {
301 __change_bit(code
, dev
->led
);
302 disposition
= INPUT_PASS_TO_ALL
;
307 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
309 if (!!test_bit(code
, dev
->snd
) != !!value
)
310 __change_bit(code
, dev
->snd
);
311 disposition
= INPUT_PASS_TO_ALL
;
316 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
317 dev
->rep
[code
] = value
;
318 disposition
= INPUT_PASS_TO_ALL
;
324 disposition
= INPUT_PASS_TO_ALL
;
328 disposition
= INPUT_PASS_TO_ALL
;
332 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
335 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
336 dev
->event(dev
, type
, code
, value
);
338 if (disposition
& INPUT_PASS_TO_HANDLERS
)
339 input_pass_event(dev
, src_handler
, type
, code
, value
);
343 * input_event() - report new input event
344 * @dev: device that generated the event
345 * @type: type of the event
347 * @value: value of the event
349 * This function should be used by drivers implementing various input
350 * devices to report input events. See also input_inject_event().
352 * NOTE: input_event() may be safely used right after input device was
353 * allocated with input_allocate_device(), even before it is registered
354 * with input_register_device(), but the event will not reach any of the
355 * input handlers. Such early invocation of input_event() may be used
356 * to 'seed' initial state of a switch or initial position of absolute
359 void input_event(struct input_dev
*dev
,
360 unsigned int type
, unsigned int code
, int value
)
364 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
366 spin_lock_irqsave(&dev
->event_lock
, flags
);
367 add_input_randomness(type
, code
, value
);
368 input_handle_event(dev
, NULL
, type
, code
, value
);
369 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
372 EXPORT_SYMBOL(input_event
);
375 * input_inject_event() - send input event from input handler
376 * @handle: input handle to send event through
377 * @type: type of the event
379 * @value: value of the event
381 * Similar to input_event() but will ignore event if device is
382 * "grabbed" and handle injecting event is not the one that owns
385 void input_inject_event(struct input_handle
*handle
,
386 unsigned int type
, unsigned int code
, int value
)
388 struct input_dev
*dev
= handle
->dev
;
389 struct input_handle
*grab
;
392 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
393 spin_lock_irqsave(&dev
->event_lock
, flags
);
396 grab
= rcu_dereference(dev
->grab
);
397 if (!grab
|| grab
== handle
)
398 input_handle_event(dev
, handle
->handler
,
402 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
405 EXPORT_SYMBOL(input_inject_event
);
408 * input_alloc_absinfo - allocates array of input_absinfo structs
409 * @dev: the input device emitting absolute events
411 * If the absinfo struct the caller asked for is already allocated, this
412 * functions will not do anything.
414 void input_alloc_absinfo(struct input_dev
*dev
)
417 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
420 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
422 EXPORT_SYMBOL(input_alloc_absinfo
);
424 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
425 int min
, int max
, int fuzz
, int flat
)
427 struct input_absinfo
*absinfo
;
429 input_alloc_absinfo(dev
);
433 absinfo
= &dev
->absinfo
[axis
];
434 absinfo
->minimum
= min
;
435 absinfo
->maximum
= max
;
436 absinfo
->fuzz
= fuzz
;
437 absinfo
->flat
= flat
;
439 dev
->absbit
[BIT_WORD(axis
)] |= BIT_MASK(axis
);
441 EXPORT_SYMBOL(input_set_abs_params
);
445 * input_grab_device - grabs device for exclusive use
446 * @handle: input handle that wants to own the device
448 * When a device is grabbed by an input handle all events generated by
449 * the device are delivered only to this handle. Also events injected
450 * by other input handles are ignored while device is grabbed.
452 int input_grab_device(struct input_handle
*handle
)
454 struct input_dev
*dev
= handle
->dev
;
457 retval
= mutex_lock_interruptible(&dev
->mutex
);
466 rcu_assign_pointer(dev
->grab
, handle
);
470 mutex_unlock(&dev
->mutex
);
473 EXPORT_SYMBOL(input_grab_device
);
475 static void __input_release_device(struct input_handle
*handle
)
477 struct input_dev
*dev
= handle
->dev
;
479 if (dev
->grab
== handle
) {
480 rcu_assign_pointer(dev
->grab
, NULL
);
481 /* Make sure input_pass_event() notices that grab is gone */
484 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
485 if (handle
->open
&& handle
->handler
->start
)
486 handle
->handler
->start(handle
);
491 * input_release_device - release previously grabbed device
492 * @handle: input handle that owns the device
494 * Releases previously grabbed device so that other input handles can
495 * start receiving input events. Upon release all handlers attached
496 * to the device have their start() method called so they have a change
497 * to synchronize device state with the rest of the system.
499 void input_release_device(struct input_handle
*handle
)
501 struct input_dev
*dev
= handle
->dev
;
503 mutex_lock(&dev
->mutex
);
504 __input_release_device(handle
);
505 mutex_unlock(&dev
->mutex
);
507 EXPORT_SYMBOL(input_release_device
);
510 * input_open_device - open input device
511 * @handle: handle through which device is being accessed
513 * This function should be called by input handlers when they
514 * want to start receive events from given input device.
516 int input_open_device(struct input_handle
*handle
)
518 struct input_dev
*dev
= handle
->dev
;
521 retval
= mutex_lock_interruptible(&dev
->mutex
);
525 if (dev
->going_away
) {
532 if (!dev
->users
++ && dev
->open
)
533 retval
= dev
->open(dev
);
537 if (!--handle
->open
) {
539 * Make sure we are not delivering any more events
540 * through this handle
547 mutex_unlock(&dev
->mutex
);
550 EXPORT_SYMBOL(input_open_device
);
552 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
554 struct input_dev
*dev
= handle
->dev
;
557 retval
= mutex_lock_interruptible(&dev
->mutex
);
562 retval
= dev
->flush(dev
, file
);
564 mutex_unlock(&dev
->mutex
);
567 EXPORT_SYMBOL(input_flush_device
);
570 * input_close_device - close input device
571 * @handle: handle through which device is being accessed
573 * This function should be called by input handlers when they
574 * want to stop receive events from given input device.
576 void input_close_device(struct input_handle
*handle
)
578 struct input_dev
*dev
= handle
->dev
;
580 mutex_lock(&dev
->mutex
);
582 __input_release_device(handle
);
584 if (!--dev
->users
&& dev
->close
)
587 if (!--handle
->open
) {
589 * synchronize_rcu() makes sure that input_pass_event()
590 * completed and that no more input events are delivered
591 * through this handle
596 mutex_unlock(&dev
->mutex
);
598 EXPORT_SYMBOL(input_close_device
);
601 * Simulate keyup events for all keys that are marked as pressed.
602 * The function must be called with dev->event_lock held.
604 static void input_dev_release_keys(struct input_dev
*dev
)
608 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
609 for (code
= 0; code
<= KEY_MAX
; code
++) {
610 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
611 __test_and_clear_bit(code
, dev
->key
)) {
612 input_pass_event(dev
, NULL
, EV_KEY
, code
, 0);
615 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
620 * Prepare device for unregistering
622 static void input_disconnect_device(struct input_dev
*dev
)
624 struct input_handle
*handle
;
627 * Mark device as going away. Note that we take dev->mutex here
628 * not to protect access to dev->going_away but rather to ensure
629 * that there are no threads in the middle of input_open_device()
631 mutex_lock(&dev
->mutex
);
632 dev
->going_away
= true;
633 mutex_unlock(&dev
->mutex
);
635 spin_lock_irq(&dev
->event_lock
);
638 * Simulate keyup events for all pressed keys so that handlers
639 * are not left with "stuck" keys. The driver may continue
640 * generate events even after we done here but they will not
641 * reach any handlers.
643 input_dev_release_keys(dev
);
645 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
648 spin_unlock_irq(&dev
->event_lock
);
652 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
653 * @ke: keymap entry containing scancode to be converted.
654 * @scancode: pointer to the location where converted scancode should
657 * This function is used to convert scancode stored in &struct keymap_entry
658 * into scalar form understood by legacy keymap handling methods. These
659 * methods expect scancodes to be represented as 'unsigned int'.
661 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
662 unsigned int *scancode
)
666 *scancode
= *((u8
*)ke
->scancode
);
670 *scancode
= *((u16
*)ke
->scancode
);
674 *scancode
= *((u32
*)ke
->scancode
);
683 EXPORT_SYMBOL(input_scancode_to_scalar
);
686 * Those routines handle the default case where no [gs]etkeycode() is
687 * defined. In this case, an array indexed by the scancode is used.
690 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
693 switch (dev
->keycodesize
) {
695 return ((u8
*)dev
->keycode
)[index
];
698 return ((u16
*)dev
->keycode
)[index
];
701 return ((u32
*)dev
->keycode
)[index
];
705 static int input_default_getkeycode(struct input_dev
*dev
,
706 struct input_keymap_entry
*ke
)
711 if (!dev
->keycodesize
)
714 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
717 error
= input_scancode_to_scalar(ke
, &index
);
722 if (index
>= dev
->keycodemax
)
725 ke
->keycode
= input_fetch_keycode(dev
, index
);
727 ke
->len
= sizeof(index
);
728 memcpy(ke
->scancode
, &index
, sizeof(index
));
733 static int input_default_setkeycode(struct input_dev
*dev
,
734 const struct input_keymap_entry
*ke
,
735 unsigned int *old_keycode
)
741 if (!dev
->keycodesize
)
744 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
747 error
= input_scancode_to_scalar(ke
, &index
);
752 if (index
>= dev
->keycodemax
)
755 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
756 (ke
->keycode
>> (dev
->keycodesize
* 8)))
759 switch (dev
->keycodesize
) {
761 u8
*k
= (u8
*)dev
->keycode
;
762 *old_keycode
= k
[index
];
763 k
[index
] = ke
->keycode
;
767 u16
*k
= (u16
*)dev
->keycode
;
768 *old_keycode
= k
[index
];
769 k
[index
] = ke
->keycode
;
773 u32
*k
= (u32
*)dev
->keycode
;
774 *old_keycode
= k
[index
];
775 k
[index
] = ke
->keycode
;
780 __clear_bit(*old_keycode
, dev
->keybit
);
781 __set_bit(ke
->keycode
, dev
->keybit
);
783 for (i
= 0; i
< dev
->keycodemax
; i
++) {
784 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
785 __set_bit(*old_keycode
, dev
->keybit
);
786 break; /* Setting the bit twice is useless, so break */
794 * input_get_keycode - retrieve keycode currently mapped to a given scancode
795 * @dev: input device which keymap is being queried
798 * This function should be called by anyone interested in retrieving current
799 * keymap. Presently evdev handlers use it.
801 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
806 spin_lock_irqsave(&dev
->event_lock
, flags
);
808 if (dev
->getkeycode
) {
810 * Support for legacy drivers, that don't implement the new
813 u32 scancode
= ke
->index
;
815 memcpy(ke
->scancode
, &scancode
, sizeof(scancode
));
816 ke
->len
= sizeof(scancode
);
817 retval
= dev
->getkeycode(dev
, scancode
, &ke
->keycode
);
819 retval
= dev
->getkeycode_new(dev
, ke
);
822 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
825 EXPORT_SYMBOL(input_get_keycode
);
828 * input_set_keycode - attribute a keycode to a given scancode
829 * @dev: input device which keymap is being updated
830 * @ke: new keymap entry
832 * This function should be called by anyone needing to update current
833 * keymap. Presently keyboard and evdev handlers use it.
835 int input_set_keycode(struct input_dev
*dev
,
836 const struct input_keymap_entry
*ke
)
839 unsigned int old_keycode
;
842 if (ke
->keycode
> KEY_MAX
)
845 spin_lock_irqsave(&dev
->event_lock
, flags
);
847 if (dev
->setkeycode
) {
849 * Support for legacy drivers, that don't implement the new
852 unsigned int scancode
;
854 retval
= input_scancode_to_scalar(ke
, &scancode
);
859 * We need to know the old scancode, in order to generate a
860 * keyup effect, if the set operation happens successfully
862 if (!dev
->getkeycode
) {
867 retval
= dev
->getkeycode(dev
, scancode
, &old_keycode
);
871 retval
= dev
->setkeycode(dev
, scancode
, ke
->keycode
);
873 retval
= dev
->setkeycode_new(dev
, ke
, &old_keycode
);
879 /* Make sure KEY_RESERVED did not get enabled. */
880 __clear_bit(KEY_RESERVED
, dev
->keybit
);
883 * Simulate keyup event if keycode is not present
884 * in the keymap anymore
886 if (test_bit(EV_KEY
, dev
->evbit
) &&
887 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
888 __test_and_clear_bit(old_keycode
, dev
->key
)) {
890 input_pass_event(dev
, NULL
, EV_KEY
, old_keycode
, 0);
892 input_pass_event(dev
, NULL
, EV_SYN
, SYN_REPORT
, 1);
896 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
900 EXPORT_SYMBOL(input_set_keycode
);
902 #define MATCH_BIT(bit, max) \
903 for (i = 0; i < BITS_TO_LONGS(max); i++) \
904 if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
906 if (i != BITS_TO_LONGS(max)) \
909 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
910 struct input_dev
*dev
)
912 const struct input_device_id
*id
;
915 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
917 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
918 if (id
->bustype
!= dev
->id
.bustype
)
921 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
922 if (id
->vendor
!= dev
->id
.vendor
)
925 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
926 if (id
->product
!= dev
->id
.product
)
929 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
930 if (id
->version
!= dev
->id
.version
)
933 MATCH_BIT(evbit
, EV_MAX
);
934 MATCH_BIT(keybit
, KEY_MAX
);
935 MATCH_BIT(relbit
, REL_MAX
);
936 MATCH_BIT(absbit
, ABS_MAX
);
937 MATCH_BIT(mscbit
, MSC_MAX
);
938 MATCH_BIT(ledbit
, LED_MAX
);
939 MATCH_BIT(sndbit
, SND_MAX
);
940 MATCH_BIT(ffbit
, FF_MAX
);
941 MATCH_BIT(swbit
, SW_MAX
);
943 if (!handler
->match
|| handler
->match(handler
, dev
))
950 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
952 const struct input_device_id
*id
;
955 id
= input_match_device(handler
, dev
);
959 error
= handler
->connect(handler
, dev
, id
);
960 if (error
&& error
!= -ENODEV
)
962 "input: failed to attach handler %s to device %s, "
964 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
971 static int input_bits_to_string(char *buf
, int buf_size
,
972 unsigned long bits
, bool skip_empty
)
976 if (INPUT_COMPAT_TEST
) {
977 u32 dword
= bits
>> 32;
978 if (dword
|| !skip_empty
)
979 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
981 dword
= bits
& 0xffffffffUL
;
982 if (dword
|| !skip_empty
|| len
)
983 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
986 if (bits
|| !skip_empty
)
987 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
993 #else /* !CONFIG_COMPAT */
995 static int input_bits_to_string(char *buf
, int buf_size
,
996 unsigned long bits
, bool skip_empty
)
998 return bits
|| !skip_empty
?
999 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1004 #ifdef CONFIG_PROC_FS
1006 static struct proc_dir_entry
*proc_bus_input_dir
;
1007 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1008 static int input_devices_state
;
1010 static inline void input_wakeup_procfs_readers(void)
1012 input_devices_state
++;
1013 wake_up(&input_devices_poll_wait
);
1016 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1018 poll_wait(file
, &input_devices_poll_wait
, wait
);
1019 if (file
->f_version
!= input_devices_state
) {
1020 file
->f_version
= input_devices_state
;
1021 return POLLIN
| POLLRDNORM
;
1027 union input_seq_state
{
1030 bool mutex_acquired
;
1035 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1037 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1040 /* We need to fit into seq->private pointer */
1041 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1043 error
= mutex_lock_interruptible(&input_mutex
);
1045 state
->mutex_acquired
= false;
1046 return ERR_PTR(error
);
1049 state
->mutex_acquired
= true;
1051 return seq_list_start(&input_dev_list
, *pos
);
1054 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1056 return seq_list_next(v
, &input_dev_list
, pos
);
1059 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1061 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1063 if (state
->mutex_acquired
)
1064 mutex_unlock(&input_mutex
);
1067 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1068 unsigned long *bitmap
, int max
)
1071 bool skip_empty
= true;
1074 seq_printf(seq
, "B: %s=", name
);
1076 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1077 if (input_bits_to_string(buf
, sizeof(buf
),
1078 bitmap
[i
], skip_empty
)) {
1080 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1085 * If no output was produced print a single 0.
1090 seq_putc(seq
, '\n');
1093 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1095 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1096 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1097 struct input_handle
*handle
;
1099 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1100 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1102 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1103 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1104 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1105 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1106 seq_printf(seq
, "H: Handlers=");
1108 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1109 seq_printf(seq
, "%s ", handle
->name
);
1110 seq_putc(seq
, '\n');
1112 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1113 if (test_bit(EV_KEY
, dev
->evbit
))
1114 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1115 if (test_bit(EV_REL
, dev
->evbit
))
1116 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1117 if (test_bit(EV_ABS
, dev
->evbit
))
1118 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1119 if (test_bit(EV_MSC
, dev
->evbit
))
1120 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1121 if (test_bit(EV_LED
, dev
->evbit
))
1122 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1123 if (test_bit(EV_SND
, dev
->evbit
))
1124 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1125 if (test_bit(EV_FF
, dev
->evbit
))
1126 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1127 if (test_bit(EV_SW
, dev
->evbit
))
1128 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1130 seq_putc(seq
, '\n');
1136 static const struct seq_operations input_devices_seq_ops
= {
1137 .start
= input_devices_seq_start
,
1138 .next
= input_devices_seq_next
,
1139 .stop
= input_seq_stop
,
1140 .show
= input_devices_seq_show
,
1143 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1145 return seq_open(file
, &input_devices_seq_ops
);
1148 static const struct file_operations input_devices_fileops
= {
1149 .owner
= THIS_MODULE
,
1150 .open
= input_proc_devices_open
,
1151 .poll
= input_proc_devices_poll
,
1153 .llseek
= seq_lseek
,
1154 .release
= seq_release
,
1157 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1159 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1162 /* We need to fit into seq->private pointer */
1163 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1165 error
= mutex_lock_interruptible(&input_mutex
);
1167 state
->mutex_acquired
= false;
1168 return ERR_PTR(error
);
1171 state
->mutex_acquired
= true;
1174 return seq_list_start(&input_handler_list
, *pos
);
1177 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1179 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1181 state
->pos
= *pos
+ 1;
1182 return seq_list_next(v
, &input_handler_list
, pos
);
1185 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1187 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1188 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1190 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1191 if (handler
->filter
)
1192 seq_puts(seq
, " (filter)");
1194 seq_printf(seq
, " Minor=%d", handler
->minor
);
1195 seq_putc(seq
, '\n');
1200 static const struct seq_operations input_handlers_seq_ops
= {
1201 .start
= input_handlers_seq_start
,
1202 .next
= input_handlers_seq_next
,
1203 .stop
= input_seq_stop
,
1204 .show
= input_handlers_seq_show
,
1207 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1209 return seq_open(file
, &input_handlers_seq_ops
);
1212 static const struct file_operations input_handlers_fileops
= {
1213 .owner
= THIS_MODULE
,
1214 .open
= input_proc_handlers_open
,
1216 .llseek
= seq_lseek
,
1217 .release
= seq_release
,
1220 static int __init
input_proc_init(void)
1222 struct proc_dir_entry
*entry
;
1224 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1225 if (!proc_bus_input_dir
)
1228 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1229 &input_devices_fileops
);
1233 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1234 &input_handlers_fileops
);
1240 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1241 fail1
: remove_proc_entry("bus/input", NULL
);
1245 static void input_proc_exit(void)
1247 remove_proc_entry("devices", proc_bus_input_dir
);
1248 remove_proc_entry("handlers", proc_bus_input_dir
);
1249 remove_proc_entry("bus/input", NULL
);
1252 #else /* !CONFIG_PROC_FS */
1253 static inline void input_wakeup_procfs_readers(void) { }
1254 static inline int input_proc_init(void) { return 0; }
1255 static inline void input_proc_exit(void) { }
1258 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1259 static ssize_t input_dev_show_##name(struct device *dev, \
1260 struct device_attribute *attr, \
1263 struct input_dev *input_dev = to_input_dev(dev); \
1265 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1266 input_dev->name ? input_dev->name : ""); \
1268 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1270 INPUT_DEV_STRING_ATTR_SHOW(name
);
1271 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1272 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1274 static int input_print_modalias_bits(char *buf
, int size
,
1275 char name
, unsigned long *bm
,
1276 unsigned int min_bit
, unsigned int max_bit
)
1280 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1281 for (i
= min_bit
; i
< max_bit
; i
++)
1282 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1283 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1287 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1292 len
= snprintf(buf
, max(size
, 0),
1293 "input:b%04Xv%04Xp%04Xe%04X-",
1294 id
->id
.bustype
, id
->id
.vendor
,
1295 id
->id
.product
, id
->id
.version
);
1297 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1298 'e', id
->evbit
, 0, EV_MAX
);
1299 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1300 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1301 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1302 'r', id
->relbit
, 0, REL_MAX
);
1303 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1304 'a', id
->absbit
, 0, ABS_MAX
);
1305 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1306 'm', id
->mscbit
, 0, MSC_MAX
);
1307 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1308 'l', id
->ledbit
, 0, LED_MAX
);
1309 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1310 's', id
->sndbit
, 0, SND_MAX
);
1311 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1312 'f', id
->ffbit
, 0, FF_MAX
);
1313 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1314 'w', id
->swbit
, 0, SW_MAX
);
1317 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1322 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1323 struct device_attribute
*attr
,
1326 struct input_dev
*id
= to_input_dev(dev
);
1329 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1331 return min_t(int, len
, PAGE_SIZE
);
1333 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1335 static struct attribute
*input_dev_attrs
[] = {
1336 &dev_attr_name
.attr
,
1337 &dev_attr_phys
.attr
,
1338 &dev_attr_uniq
.attr
,
1339 &dev_attr_modalias
.attr
,
1343 static struct attribute_group input_dev_attr_group
= {
1344 .attrs
= input_dev_attrs
,
1347 #define INPUT_DEV_ID_ATTR(name) \
1348 static ssize_t input_dev_show_id_##name(struct device *dev, \
1349 struct device_attribute *attr, \
1352 struct input_dev *input_dev = to_input_dev(dev); \
1353 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1355 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1357 INPUT_DEV_ID_ATTR(bustype
);
1358 INPUT_DEV_ID_ATTR(vendor
);
1359 INPUT_DEV_ID_ATTR(product
);
1360 INPUT_DEV_ID_ATTR(version
);
1362 static struct attribute
*input_dev_id_attrs
[] = {
1363 &dev_attr_bustype
.attr
,
1364 &dev_attr_vendor
.attr
,
1365 &dev_attr_product
.attr
,
1366 &dev_attr_version
.attr
,
1370 static struct attribute_group input_dev_id_attr_group
= {
1372 .attrs
= input_dev_id_attrs
,
1375 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1376 int max
, int add_cr
)
1380 bool skip_empty
= true;
1382 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1383 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1384 bitmap
[i
], skip_empty
);
1388 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1393 * If no output was produced print a single 0.
1396 len
= snprintf(buf
, buf_size
, "%d", 0);
1399 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1404 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1405 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1406 struct device_attribute *attr, \
1409 struct input_dev *input_dev = to_input_dev(dev); \
1410 int len = input_print_bitmap(buf, PAGE_SIZE, \
1411 input_dev->bm##bit, ev##_MAX, \
1413 return min_t(int, len, PAGE_SIZE); \
1415 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1417 INPUT_DEV_CAP_ATTR(EV
, ev
);
1418 INPUT_DEV_CAP_ATTR(KEY
, key
);
1419 INPUT_DEV_CAP_ATTR(REL
, rel
);
1420 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1421 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1422 INPUT_DEV_CAP_ATTR(LED
, led
);
1423 INPUT_DEV_CAP_ATTR(SND
, snd
);
1424 INPUT_DEV_CAP_ATTR(FF
, ff
);
1425 INPUT_DEV_CAP_ATTR(SW
, sw
);
1427 static struct attribute
*input_dev_caps_attrs
[] = {
1440 static struct attribute_group input_dev_caps_attr_group
= {
1441 .name
= "capabilities",
1442 .attrs
= input_dev_caps_attrs
,
1445 static const struct attribute_group
*input_dev_attr_groups
[] = {
1446 &input_dev_attr_group
,
1447 &input_dev_id_attr_group
,
1448 &input_dev_caps_attr_group
,
1452 static void input_dev_release(struct device
*device
)
1454 struct input_dev
*dev
= to_input_dev(device
);
1456 input_ff_destroy(dev
);
1457 input_mt_destroy_slots(dev
);
1458 kfree(dev
->absinfo
);
1461 module_put(THIS_MODULE
);
1465 * Input uevent interface - loading event handlers based on
1468 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1469 const char *name
, unsigned long *bitmap
, int max
)
1473 if (add_uevent_var(env
, "%s=", name
))
1476 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1477 sizeof(env
->buf
) - env
->buflen
,
1478 bitmap
, max
, false);
1479 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1486 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1487 struct input_dev
*dev
)
1491 if (add_uevent_var(env
, "MODALIAS="))
1494 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1495 sizeof(env
->buf
) - env
->buflen
,
1497 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1504 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1506 int err = add_uevent_var(env, fmt, val); \
1511 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1513 int err = input_add_uevent_bm_var(env, name, bm, max); \
1518 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1520 int err = input_add_uevent_modalias_var(env, dev); \
1525 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1527 struct input_dev
*dev
= to_input_dev(device
);
1529 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1530 dev
->id
.bustype
, dev
->id
.vendor
,
1531 dev
->id
.product
, dev
->id
.version
);
1533 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1535 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1537 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1539 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1540 if (test_bit(EV_KEY
, dev
->evbit
))
1541 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1542 if (test_bit(EV_REL
, dev
->evbit
))
1543 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1544 if (test_bit(EV_ABS
, dev
->evbit
))
1545 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1546 if (test_bit(EV_MSC
, dev
->evbit
))
1547 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1548 if (test_bit(EV_LED
, dev
->evbit
))
1549 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1550 if (test_bit(EV_SND
, dev
->evbit
))
1551 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1552 if (test_bit(EV_FF
, dev
->evbit
))
1553 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1554 if (test_bit(EV_SW
, dev
->evbit
))
1555 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1557 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1562 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1567 if (!test_bit(EV_##type, dev->evbit)) \
1570 for (i = 0; i < type##_MAX; i++) { \
1571 if (!test_bit(i, dev->bits##bit)) \
1574 active = test_bit(i, dev->bits); \
1575 if (!active && !on) \
1578 dev->event(dev, EV_##type, i, on ? active : 0); \
1582 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1587 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1588 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1590 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1591 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1592 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1597 * input_reset_device() - reset/restore the state of input device
1598 * @dev: input device whose state needs to be reset
1600 * This function tries to reset the state of an opened input device and
1601 * bring internal state and state if the hardware in sync with each other.
1602 * We mark all keys as released, restore LED state, repeat rate, etc.
1604 void input_reset_device(struct input_dev
*dev
)
1606 mutex_lock(&dev
->mutex
);
1609 input_dev_toggle(dev
, true);
1612 * Keys that have been pressed at suspend time are unlikely
1613 * to be still pressed when we resume.
1615 spin_lock_irq(&dev
->event_lock
);
1616 input_dev_release_keys(dev
);
1617 spin_unlock_irq(&dev
->event_lock
);
1620 mutex_unlock(&dev
->mutex
);
1622 EXPORT_SYMBOL(input_reset_device
);
1625 static int input_dev_suspend(struct device
*dev
)
1627 struct input_dev
*input_dev
= to_input_dev(dev
);
1629 mutex_lock(&input_dev
->mutex
);
1631 if (input_dev
->users
)
1632 input_dev_toggle(input_dev
, false);
1634 mutex_unlock(&input_dev
->mutex
);
1639 static int input_dev_resume(struct device
*dev
)
1641 struct input_dev
*input_dev
= to_input_dev(dev
);
1643 input_reset_device(input_dev
);
1648 static const struct dev_pm_ops input_dev_pm_ops
= {
1649 .suspend
= input_dev_suspend
,
1650 .resume
= input_dev_resume
,
1651 .poweroff
= input_dev_suspend
,
1652 .restore
= input_dev_resume
,
1654 #endif /* CONFIG_PM */
1656 static struct device_type input_dev_type
= {
1657 .groups
= input_dev_attr_groups
,
1658 .release
= input_dev_release
,
1659 .uevent
= input_dev_uevent
,
1661 .pm
= &input_dev_pm_ops
,
1665 static char *input_devnode(struct device
*dev
, mode_t
*mode
)
1667 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1670 struct class input_class
= {
1672 .devnode
= input_devnode
,
1674 EXPORT_SYMBOL_GPL(input_class
);
1677 * input_allocate_device - allocate memory for new input device
1679 * Returns prepared struct input_dev or NULL.
1681 * NOTE: Use input_free_device() to free devices that have not been
1682 * registered; input_unregister_device() should be used for already
1683 * registered devices.
1685 struct input_dev
*input_allocate_device(void)
1687 struct input_dev
*dev
;
1689 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1691 dev
->dev
.type
= &input_dev_type
;
1692 dev
->dev
.class = &input_class
;
1693 device_initialize(&dev
->dev
);
1694 mutex_init(&dev
->mutex
);
1695 spin_lock_init(&dev
->event_lock
);
1696 INIT_LIST_HEAD(&dev
->h_list
);
1697 INIT_LIST_HEAD(&dev
->node
);
1699 __module_get(THIS_MODULE
);
1704 EXPORT_SYMBOL(input_allocate_device
);
1707 * input_free_device - free memory occupied by input_dev structure
1708 * @dev: input device to free
1710 * This function should only be used if input_register_device()
1711 * was not called yet or if it failed. Once device was registered
1712 * use input_unregister_device() and memory will be freed once last
1713 * reference to the device is dropped.
1715 * Device should be allocated by input_allocate_device().
1717 * NOTE: If there are references to the input device then memory
1718 * will not be freed until last reference is dropped.
1720 void input_free_device(struct input_dev
*dev
)
1723 input_put_device(dev
);
1725 EXPORT_SYMBOL(input_free_device
);
1728 * input_mt_create_slots() - create MT input slots
1729 * @dev: input device supporting MT events and finger tracking
1730 * @num_slots: number of slots used by the device
1732 * This function allocates all necessary memory for MT slot handling in the
1733 * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1734 * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1.
1736 int input_mt_create_slots(struct input_dev
*dev
, unsigned int num_slots
)
1743 dev
->mt
= kcalloc(num_slots
, sizeof(struct input_mt_slot
), GFP_KERNEL
);
1747 dev
->mtsize
= num_slots
;
1748 input_set_abs_params(dev
, ABS_MT_SLOT
, 0, num_slots
- 1, 0, 0);
1750 /* Mark slots as 'unused' */
1751 for (i
= 0; i
< num_slots
; i
++)
1752 dev
->mt
[i
].abs
[ABS_MT_TRACKING_ID
- ABS_MT_FIRST
] = -1;
1756 EXPORT_SYMBOL(input_mt_create_slots
);
1759 * input_mt_destroy_slots() - frees the MT slots of the input device
1760 * @dev: input device with allocated MT slots
1762 * This function is only needed in error path as the input core will
1763 * automatically free the MT slots when the device is destroyed.
1765 void input_mt_destroy_slots(struct input_dev
*dev
)
1771 EXPORT_SYMBOL(input_mt_destroy_slots
);
1774 * input_set_capability - mark device as capable of a certain event
1775 * @dev: device that is capable of emitting or accepting event
1776 * @type: type of the event (EV_KEY, EV_REL, etc...)
1779 * In addition to setting up corresponding bit in appropriate capability
1780 * bitmap the function also adjusts dev->evbit.
1782 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1786 __set_bit(code
, dev
->keybit
);
1790 __set_bit(code
, dev
->relbit
);
1794 __set_bit(code
, dev
->absbit
);
1798 __set_bit(code
, dev
->mscbit
);
1802 __set_bit(code
, dev
->swbit
);
1806 __set_bit(code
, dev
->ledbit
);
1810 __set_bit(code
, dev
->sndbit
);
1814 __set_bit(code
, dev
->ffbit
);
1823 "input_set_capability: unknown type %u (code %u)\n",
1829 __set_bit(type
, dev
->evbit
);
1831 EXPORT_SYMBOL(input_set_capability
);
1833 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1835 if (!test_bit(EV_##type, dev->evbit)) \
1836 memset(dev->bits##bit, 0, \
1837 sizeof(dev->bits##bit)); \
1840 static void input_cleanse_bitmasks(struct input_dev
*dev
)
1842 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
1843 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
1844 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
1845 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
1846 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
1847 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
1848 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
1849 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
1853 * input_register_device - register device with input core
1854 * @dev: device to be registered
1856 * This function registers device with input core. The device must be
1857 * allocated with input_allocate_device() and all it's capabilities
1858 * set up before registering.
1859 * If function fails the device must be freed with input_free_device().
1860 * Once device has been successfully registered it can be unregistered
1861 * with input_unregister_device(); input_free_device() should not be
1862 * called in this case.
1864 int input_register_device(struct input_dev
*dev
)
1866 static atomic_t input_no
= ATOMIC_INIT(0);
1867 struct input_handler
*handler
;
1871 /* Every input device generates EV_SYN/SYN_REPORT events. */
1872 __set_bit(EV_SYN
, dev
->evbit
);
1874 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
1875 __clear_bit(KEY_RESERVED
, dev
->keybit
);
1877 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1878 input_cleanse_bitmasks(dev
);
1881 * If delay and period are pre-set by the driver, then autorepeating
1882 * is handled by the driver itself and we don't do it in input.c.
1884 init_timer(&dev
->timer
);
1885 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
1886 dev
->timer
.data
= (long) dev
;
1887 dev
->timer
.function
= input_repeat_key
;
1888 dev
->rep
[REP_DELAY
] = 250;
1889 dev
->rep
[REP_PERIOD
] = 33;
1892 if (!dev
->getkeycode
&& !dev
->getkeycode_new
)
1893 dev
->getkeycode_new
= input_default_getkeycode
;
1895 if (!dev
->setkeycode
&& !dev
->setkeycode_new
)
1896 dev
->setkeycode_new
= input_default_setkeycode
;
1898 dev_set_name(&dev
->dev
, "input%ld",
1899 (unsigned long) atomic_inc_return(&input_no
) - 1);
1901 error
= device_add(&dev
->dev
);
1905 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1906 printk(KERN_INFO
"input: %s as %s\n",
1907 dev
->name
? dev
->name
: "Unspecified device", path
? path
: "N/A");
1910 error
= mutex_lock_interruptible(&input_mutex
);
1912 device_del(&dev
->dev
);
1916 list_add_tail(&dev
->node
, &input_dev_list
);
1918 list_for_each_entry(handler
, &input_handler_list
, node
)
1919 input_attach_handler(dev
, handler
);
1921 input_wakeup_procfs_readers();
1923 mutex_unlock(&input_mutex
);
1927 EXPORT_SYMBOL(input_register_device
);
1930 * input_unregister_device - unregister previously registered device
1931 * @dev: device to be unregistered
1933 * This function unregisters an input device. Once device is unregistered
1934 * the caller should not try to access it as it may get freed at any moment.
1936 void input_unregister_device(struct input_dev
*dev
)
1938 struct input_handle
*handle
, *next
;
1940 input_disconnect_device(dev
);
1942 mutex_lock(&input_mutex
);
1944 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
1945 handle
->handler
->disconnect(handle
);
1946 WARN_ON(!list_empty(&dev
->h_list
));
1948 del_timer_sync(&dev
->timer
);
1949 list_del_init(&dev
->node
);
1951 input_wakeup_procfs_readers();
1953 mutex_unlock(&input_mutex
);
1955 device_unregister(&dev
->dev
);
1957 EXPORT_SYMBOL(input_unregister_device
);
1960 * input_register_handler - register a new input handler
1961 * @handler: handler to be registered
1963 * This function registers a new input handler (interface) for input
1964 * devices in the system and attaches it to all input devices that
1965 * are compatible with the handler.
1967 int input_register_handler(struct input_handler
*handler
)
1969 struct input_dev
*dev
;
1972 retval
= mutex_lock_interruptible(&input_mutex
);
1976 INIT_LIST_HEAD(&handler
->h_list
);
1978 if (handler
->fops
!= NULL
) {
1979 if (input_table
[handler
->minor
>> 5]) {
1983 input_table
[handler
->minor
>> 5] = handler
;
1986 list_add_tail(&handler
->node
, &input_handler_list
);
1988 list_for_each_entry(dev
, &input_dev_list
, node
)
1989 input_attach_handler(dev
, handler
);
1991 input_wakeup_procfs_readers();
1994 mutex_unlock(&input_mutex
);
1997 EXPORT_SYMBOL(input_register_handler
);
2000 * input_unregister_handler - unregisters an input handler
2001 * @handler: handler to be unregistered
2003 * This function disconnects a handler from its input devices and
2004 * removes it from lists of known handlers.
2006 void input_unregister_handler(struct input_handler
*handler
)
2008 struct input_handle
*handle
, *next
;
2010 mutex_lock(&input_mutex
);
2012 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2013 handler
->disconnect(handle
);
2014 WARN_ON(!list_empty(&handler
->h_list
));
2016 list_del_init(&handler
->node
);
2018 if (handler
->fops
!= NULL
)
2019 input_table
[handler
->minor
>> 5] = NULL
;
2021 input_wakeup_procfs_readers();
2023 mutex_unlock(&input_mutex
);
2025 EXPORT_SYMBOL(input_unregister_handler
);
2028 * input_handler_for_each_handle - handle iterator
2029 * @handler: input handler to iterate
2030 * @data: data for the callback
2031 * @fn: function to be called for each handle
2033 * Iterate over @bus's list of devices, and call @fn for each, passing
2034 * it @data and stop when @fn returns a non-zero value. The function is
2035 * using RCU to traverse the list and therefore may be usind in atonic
2036 * contexts. The @fn callback is invoked from RCU critical section and
2037 * thus must not sleep.
2039 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2040 int (*fn
)(struct input_handle
*, void *))
2042 struct input_handle
*handle
;
2047 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2048 retval
= fn(handle
, data
);
2057 EXPORT_SYMBOL(input_handler_for_each_handle
);
2060 * input_register_handle - register a new input handle
2061 * @handle: handle to register
2063 * This function puts a new input handle onto device's
2064 * and handler's lists so that events can flow through
2065 * it once it is opened using input_open_device().
2067 * This function is supposed to be called from handler's
2070 int input_register_handle(struct input_handle
*handle
)
2072 struct input_handler
*handler
= handle
->handler
;
2073 struct input_dev
*dev
= handle
->dev
;
2077 * We take dev->mutex here to prevent race with
2078 * input_release_device().
2080 error
= mutex_lock_interruptible(&dev
->mutex
);
2085 * Filters go to the head of the list, normal handlers
2088 if (handler
->filter
)
2089 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2091 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2093 mutex_unlock(&dev
->mutex
);
2096 * Since we are supposed to be called from ->connect()
2097 * which is mutually exclusive with ->disconnect()
2098 * we can't be racing with input_unregister_handle()
2099 * and so separate lock is not needed here.
2101 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2104 handler
->start(handle
);
2108 EXPORT_SYMBOL(input_register_handle
);
2111 * input_unregister_handle - unregister an input handle
2112 * @handle: handle to unregister
2114 * This function removes input handle from device's
2115 * and handler's lists.
2117 * This function is supposed to be called from handler's
2118 * disconnect() method.
2120 void input_unregister_handle(struct input_handle
*handle
)
2122 struct input_dev
*dev
= handle
->dev
;
2124 list_del_rcu(&handle
->h_node
);
2127 * Take dev->mutex to prevent race with input_release_device().
2129 mutex_lock(&dev
->mutex
);
2130 list_del_rcu(&handle
->d_node
);
2131 mutex_unlock(&dev
->mutex
);
2135 EXPORT_SYMBOL(input_unregister_handle
);
2137 static int input_open_file(struct inode
*inode
, struct file
*file
)
2139 struct input_handler
*handler
;
2140 const struct file_operations
*old_fops
, *new_fops
= NULL
;
2143 err
= mutex_lock_interruptible(&input_mutex
);
2147 /* No load-on-demand here? */
2148 handler
= input_table
[iminor(inode
) >> 5];
2150 new_fops
= fops_get(handler
->fops
);
2152 mutex_unlock(&input_mutex
);
2155 * That's _really_ odd. Usually NULL ->open means "nothing special",
2156 * not "no device". Oh, well...
2158 if (!new_fops
|| !new_fops
->open
) {
2164 old_fops
= file
->f_op
;
2165 file
->f_op
= new_fops
;
2167 err
= new_fops
->open(inode
, file
);
2169 fops_put(file
->f_op
);
2170 file
->f_op
= fops_get(old_fops
);
2177 static const struct file_operations input_fops
= {
2178 .owner
= THIS_MODULE
,
2179 .open
= input_open_file
,
2180 .llseek
= noop_llseek
,
2183 static int __init
input_init(void)
2187 err
= class_register(&input_class
);
2189 printk(KERN_ERR
"input: unable to register input_dev class\n");
2193 err
= input_proc_init();
2197 err
= register_chrdev(INPUT_MAJOR
, "input", &input_fops
);
2199 printk(KERN_ERR
"input: unable to register char major %d", INPUT_MAJOR
);
2205 fail2
: input_proc_exit();
2206 fail1
: class_unregister(&input_class
);
2210 static void __exit
input_exit(void)
2213 unregister_chrdev(INPUT_MAJOR
, "input");
2214 class_unregister(&input_class
);
2217 subsys_initcall(input_init
);
2218 module_exit(input_exit
);