ext3: Add journal error check into ext3_delete_entry()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / ata / sata_dwc_460ex.c
blob6cf57c5c2b5f3d50d966e63bf1e1ad0d32dea13d
1 /*
2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
38 #include "libata.h"
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
43 #define DRV_NAME "sata-dwc"
44 #define DRV_VERSION "1.0"
46 /* SATA DMA driver Globals */
47 #define DMA_NUM_CHANS 1
48 #define DMA_NUM_CHAN_REGS 8
50 /* SATA DMA Register definitions */
51 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
53 struct dmareg {
54 u32 low; /* Low bits 0-31 */
55 u32 high; /* High bits 32-63 */
58 /* DMA Per Channel registers */
59 struct dma_chan_regs {
60 struct dmareg sar; /* Source Address */
61 struct dmareg dar; /* Destination address */
62 struct dmareg llp; /* Linked List Pointer */
63 struct dmareg ctl; /* Control */
64 struct dmareg sstat; /* Source Status not implemented in core */
65 struct dmareg dstat; /* Destination Status not implemented in core*/
66 struct dmareg sstatar; /* Source Status Address not impl in core */
67 struct dmareg dstatar; /* Destination Status Address not implemente */
68 struct dmareg cfg; /* Config */
69 struct dmareg sgr; /* Source Gather */
70 struct dmareg dsr; /* Destination Scatter */
73 /* Generic Interrupt Registers */
74 struct dma_interrupt_regs {
75 struct dmareg tfr; /* Transfer Interrupt */
76 struct dmareg block; /* Block Interrupt */
77 struct dmareg srctran; /* Source Transfer Interrupt */
78 struct dmareg dsttran; /* Dest Transfer Interrupt */
79 struct dmareg error; /* Error */
82 struct ahb_dma_regs {
83 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
84 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
85 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
86 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
87 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
88 struct dmareg statusInt; /* Interrupt combined*/
89 struct dmareg rq_srcreg; /* Src Trans Req */
90 struct dmareg rq_dstreg; /* Dst Trans Req */
91 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
92 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
93 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
94 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
95 struct dmareg dma_cfg; /* DMA Config */
96 struct dmareg dma_chan_en; /* DMA Channel Enable*/
97 struct dmareg dma_id; /* DMA ID */
98 struct dmareg dma_test; /* DMA Test */
99 struct dmareg res1; /* reserved */
100 struct dmareg res2; /* reserved */
102 * DMA Comp Params
103 * Param 6 = dma_param[0], Param 5 = dma_param[1],
104 * Param 4 = dma_param[2] ...
106 struct dmareg dma_params[6];
109 /* Data structure for linked list item */
110 struct lli {
111 u32 sar; /* Source Address */
112 u32 dar; /* Destination address */
113 u32 llp; /* Linked List Pointer */
114 struct dmareg ctl; /* Control */
115 struct dmareg dstat; /* Destination Status */
118 enum {
119 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
120 SATA_DWC_DMAC_LLI_NUM = 256,
121 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
122 SATA_DWC_DMAC_LLI_NUM),
123 SATA_DWC_DMAC_TWIDTH_BYTES = 4,
124 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
125 SATA_DWC_DMAC_TWIDTH_BYTES),
128 /* DMA Register Operation Bits */
129 enum {
130 DMA_EN = 0x00000001, /* Enable AHB DMA */
131 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
132 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
135 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
136 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
137 /* Enable channel */
138 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
139 ((0x000000001 << (ch)) << 8))
140 /* Disable channel */
141 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
142 /* Transfer Type & Flow Controller */
143 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
144 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
145 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
146 /* Src Burst Transaction Length */
147 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
148 /* Dst Burst Transaction Length */
149 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
150 /* Source Transfer Width */
151 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
152 /* Destination Transfer Width */
153 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
155 /* Assign HW handshaking interface (x) to destination / source peripheral */
156 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
157 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
158 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
161 * This define is used to set block chaining disabled in the control low
162 * register. It is already in little endian format so it can be &'d dirctly.
163 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
165 enum {
166 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
167 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
168 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
169 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
170 DMA_CTL_SINC_DEC = 0x00000200,
171 DMA_CTL_SINC_NOCHANGE = 0x00000400,
172 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
173 DMA_CTL_DINC_DEC = 0x00000080,
174 DMA_CTL_DINC_NOCHANGE = 0x00000100,
175 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
177 /* Channel Configuration Register high bits */
178 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
179 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
181 /* Channel Configuration Register low bits */
182 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
183 DMA_CFG_RELD_SRC = 0x40000000,
184 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
185 DMA_CFG_HS_SELDST = 0x00000400,
186 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
188 /* Channel Linked List Pointer Register */
189 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
190 DMA_LLP_AHBMASTER2 = 1,
192 SATA_DWC_MAX_PORTS = 1,
194 SATA_DWC_SCR_OFFSET = 0x24,
195 SATA_DWC_REG_OFFSET = 0x64,
198 /* DWC SATA Registers */
199 struct sata_dwc_regs {
200 u32 fptagr; /* 1st party DMA tag */
201 u32 fpbor; /* 1st party DMA buffer offset */
202 u32 fptcr; /* 1st party DMA Xfr count */
203 u32 dmacr; /* DMA Control */
204 u32 dbtsr; /* DMA Burst Transac size */
205 u32 intpr; /* Interrupt Pending */
206 u32 intmr; /* Interrupt Mask */
207 u32 errmr; /* Error Mask */
208 u32 llcr; /* Link Layer Control */
209 u32 phycr; /* PHY Control */
210 u32 physr; /* PHY Status */
211 u32 rxbistpd; /* Recvd BIST pattern def register */
212 u32 rxbistpd1; /* Recvd BIST data dword1 */
213 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
214 u32 txbistpd; /* Trans BIST pattern def register */
215 u32 txbistpd1; /* Trans BIST data dword1 */
216 u32 txbistpd2; /* Trans BIST data dword2 */
217 u32 bistcr; /* BIST Control Register */
218 u32 bistfctr; /* BIST FIS Count Register */
219 u32 bistsr; /* BIST Status Register */
220 u32 bistdecr; /* BIST Dword Error count register */
221 u32 res[15]; /* Reserved locations */
222 u32 testr; /* Test Register */
223 u32 versionr; /* Version Register */
224 u32 idr; /* ID Register */
225 u32 unimpl[192]; /* Unimplemented */
226 u32 dmadr[256]; /* FIFO Locations in DMA Mode */
229 enum {
230 SCR_SCONTROL_DET_ENABLE = 0x00000001,
231 SCR_SSTATUS_DET_PRESENT = 0x00000001,
232 SCR_SERROR_DIAG_X = 0x04000000,
233 /* DWC SATA Register Operations */
234 SATA_DWC_TXFIFO_DEPTH = 0x01FF,
235 SATA_DWC_RXFIFO_DEPTH = 0x01FF,
236 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
237 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
238 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
239 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
240 SATA_DWC_INTPR_DMAT = 0x00000001,
241 SATA_DWC_INTPR_NEWFP = 0x00000002,
242 SATA_DWC_INTPR_PMABRT = 0x00000004,
243 SATA_DWC_INTPR_ERR = 0x00000008,
244 SATA_DWC_INTPR_NEWBIST = 0x00000010,
245 SATA_DWC_INTPR_IPF = 0x10000000,
246 SATA_DWC_INTMR_DMATM = 0x00000001,
247 SATA_DWC_INTMR_NEWFPM = 0x00000002,
248 SATA_DWC_INTMR_PMABRTM = 0x00000004,
249 SATA_DWC_INTMR_ERRM = 0x00000008,
250 SATA_DWC_INTMR_NEWBISTM = 0x00000010,
251 SATA_DWC_LLCR_SCRAMEN = 0x00000001,
252 SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
253 SATA_DWC_LLCR_RPDEN = 0x00000004,
254 /* This is all error bits, zero's are reserved fields. */
255 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
258 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
259 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
260 SATA_DWC_DMACR_TMOD_TXCHEN)
261 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
262 SATA_DWC_DMACR_TMOD_TXCHEN)
263 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
264 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
265 << 16)
266 struct sata_dwc_device {
267 struct device *dev; /* generic device struct */
268 struct ata_probe_ent *pe; /* ptr to probe-ent */
269 struct ata_host *host;
270 u8 *reg_base;
271 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
272 int irq_dma;
275 #define SATA_DWC_QCMD_MAX 32
277 struct sata_dwc_device_port {
278 struct sata_dwc_device *hsdev;
279 int cmd_issued[SATA_DWC_QCMD_MAX];
280 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
281 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
282 u32 dma_chan[SATA_DWC_QCMD_MAX];
283 int dma_pending[SATA_DWC_QCMD_MAX];
287 * Commonly used DWC SATA driver Macros
289 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
290 (host)->private_data)
291 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
292 (ap)->host->private_data)
293 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
294 (ap)->private_data)
295 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
296 (qc)->ap->host->private_data)
297 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
298 (hsdevp)->hsdev)
300 enum {
301 SATA_DWC_CMD_ISSUED_NOT = 0,
302 SATA_DWC_CMD_ISSUED_PEND = 1,
303 SATA_DWC_CMD_ISSUED_EXEC = 2,
304 SATA_DWC_CMD_ISSUED_NODATA = 3,
306 SATA_DWC_DMA_PENDING_NONE = 0,
307 SATA_DWC_DMA_PENDING_TX = 1,
308 SATA_DWC_DMA_PENDING_RX = 2,
311 struct sata_dwc_host_priv {
312 void __iomem *scr_addr_sstatus;
313 u32 sata_dwc_sactive_issued ;
314 u32 sata_dwc_sactive_queued ;
315 u32 dma_interrupt_count;
316 struct ahb_dma_regs *sata_dma_regs;
317 struct device *dwc_dev;
319 struct sata_dwc_host_priv host_pvt;
321 * Prototypes
323 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
324 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
325 u32 check_status);
326 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
327 static void sata_dwc_port_stop(struct ata_port *ap);
328 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
329 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
330 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
331 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
332 struct lli *lli, dma_addr_t dma_lli,
333 void __iomem *addr, int dir);
334 static void dma_dwc_xfer_start(int dma_ch);
336 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
338 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
339 "0x%lx device: %x\n", tf->command, ata_get_cmd_descript\
340 (tf->protocol), tf->flags, tf->device);
341 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
342 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
343 tf->lbam, tf->lbah);
344 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
345 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
346 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
347 tf->hob_lbah);
351 * Function: get_burst_length_encode
352 * arguments: datalength: length in bytes of data
353 * returns value to be programmed in register corrresponding to data length
354 * This value is effectively the log(base 2) of the length
356 static int get_burst_length_encode(int datalength)
358 int items = datalength >> 2; /* div by 4 to get lword count */
360 if (items >= 64)
361 return 5;
363 if (items >= 32)
364 return 4;
366 if (items >= 16)
367 return 3;
369 if (items >= 8)
370 return 2;
372 if (items >= 4)
373 return 1;
375 return 0;
378 static void clear_chan_interrupts(int c)
380 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
381 DMA_CHANNEL(c));
382 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
383 DMA_CHANNEL(c));
384 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
385 DMA_CHANNEL(c));
386 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
387 DMA_CHANNEL(c));
388 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
389 DMA_CHANNEL(c));
393 * Function: dma_request_channel
394 * arguments: None
395 * returns channel number if available else -1
396 * This function assigns the next available DMA channel from the list to the
397 * requester
399 static int dma_request_channel(void)
401 int i;
403 for (i = 0; i < DMA_NUM_CHANS; i++) {
404 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\
405 DMA_CHANNEL(i)))
406 return i;
408 dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__,
409 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)));
410 return -1;
414 * Function: dma_dwc_interrupt
415 * arguments: irq, dev_id, pt_regs
416 * returns channel number if available else -1
417 * Interrupt Handler for DW AHB SATA DMA
419 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
421 int chan;
422 u32 tfr_reg, err_reg;
423 unsigned long flags;
424 struct sata_dwc_device *hsdev =
425 (struct sata_dwc_device *)hsdev_instance;
426 struct ata_host *host = (struct ata_host *)hsdev->host;
427 struct ata_port *ap;
428 struct sata_dwc_device_port *hsdevp;
429 u8 tag = 0;
430 unsigned int port = 0;
432 spin_lock_irqsave(&host->lock, flags);
433 ap = host->ports[port];
434 hsdevp = HSDEVP_FROM_AP(ap);
435 tag = ap->link.active_tag;
437 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
438 .low));
439 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
440 .low));
442 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
443 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
445 for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
446 /* Check for end-of-transfer interrupt. */
447 if (tfr_reg & DMA_CHANNEL(chan)) {
449 * Each DMA command produces 2 interrupts. Only
450 * complete the command after both interrupts have been
451 * seen. (See sata_dwc_isr())
453 host_pvt.dma_interrupt_count++;
454 sata_dwc_clear_dmacr(hsdevp, tag);
456 if (hsdevp->dma_pending[tag] ==
457 SATA_DWC_DMA_PENDING_NONE) {
458 dev_err(ap->dev, "DMA not pending eot=0x%08x "
459 "err=0x%08x tag=0x%02x pending=%d\n",
460 tfr_reg, err_reg, tag,
461 hsdevp->dma_pending[tag]);
464 if ((host_pvt.dma_interrupt_count % 2) == 0)
465 sata_dwc_dma_xfer_complete(ap, 1);
467 /* Clear the interrupt */
468 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
469 .tfr.low),
470 DMA_CHANNEL(chan));
473 /* Check for error interrupt. */
474 if (err_reg & DMA_CHANNEL(chan)) {
475 /* TODO Need error handler ! */
476 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
477 err_reg);
479 /* Clear the interrupt. */
480 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
481 .error.low),
482 DMA_CHANNEL(chan));
485 spin_unlock_irqrestore(&host->lock, flags);
486 return IRQ_HANDLED;
490 * Function: dma_request_interrupts
491 * arguments: hsdev
492 * returns status
493 * This function registers ISR for a particular DMA channel interrupt
495 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
497 int retval = 0;
498 int chan;
500 for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
501 /* Unmask error interrupt */
502 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
503 DMA_ENABLE_CHAN(chan));
505 /* Unmask end-of-transfer interrupt */
506 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
507 DMA_ENABLE_CHAN(chan));
510 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
511 if (retval) {
512 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
513 __func__, irq);
514 return -ENODEV;
517 /* Mark this interrupt as requested */
518 hsdev->irq_dma = irq;
519 return 0;
523 * Function: map_sg_to_lli
524 * The Synopsis driver has a comment proposing that better performance
525 * is possible by only enabling interrupts on the last item in the linked list.
526 * However, it seems that could be a problem if an error happened on one of the
527 * first items. The transfer would halt, but no error interrupt would occur.
528 * Currently this function sets interrupts enabled for each linked list item:
529 * DMA_CTL_INT_EN.
531 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
532 struct lli *lli, dma_addr_t dma_lli,
533 void __iomem *dmadr_addr, int dir)
535 int i, idx = 0;
536 int fis_len = 0;
537 dma_addr_t next_llp;
538 int bl;
540 dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
541 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
542 (u32)dmadr_addr);
544 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
546 for (i = 0; i < num_elems; i++, sg++) {
547 u32 addr, offset;
548 u32 sg_len, len;
550 addr = (u32) sg_dma_address(sg);
551 sg_len = sg_dma_len(sg);
553 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
554 "=%d\n", __func__, i, addr, sg_len);
556 while (sg_len) {
557 if (idx >= SATA_DWC_DMAC_LLI_NUM) {
558 /* The LLI table is not large enough. */
559 dev_err(host_pvt.dwc_dev, "LLI table overrun "
560 "(idx=%d)\n", idx);
561 break;
563 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
564 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
566 offset = addr & 0xffff;
567 if ((offset + sg_len) > 0x10000)
568 len = 0x10000 - offset;
571 * Make sure a LLI block is not created that will span
572 * 8K max FIS boundary. If the block spans such a FIS
573 * boundary, there is a chance that a DMA burst will
574 * cross that boundary -- this results in an error in
575 * the host controller.
577 if (fis_len + len > 8192) {
578 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
579 "%d(0x%x) len=%d(0x%x)\n", fis_len,
580 fis_len, len, len);
581 len = 8192 - fis_len;
582 fis_len = 0;
583 } else {
584 fis_len += len;
586 if (fis_len == 8192)
587 fis_len = 0;
590 * Set DMA addresses and lower half of control register
591 * based on direction.
593 if (dir == DMA_FROM_DEVICE) {
594 lli[idx].dar = cpu_to_le32(addr);
595 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
597 lli[idx].ctl.low = cpu_to_le32(
598 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
599 DMA_CTL_SMS(0) |
600 DMA_CTL_DMS(1) |
601 DMA_CTL_SRC_MSIZE(bl) |
602 DMA_CTL_DST_MSIZE(bl) |
603 DMA_CTL_SINC_NOCHANGE |
604 DMA_CTL_SRC_TRWID(2) |
605 DMA_CTL_DST_TRWID(2) |
606 DMA_CTL_INT_EN |
607 DMA_CTL_LLP_SRCEN |
608 DMA_CTL_LLP_DSTEN);
609 } else { /* DMA_TO_DEVICE */
610 lli[idx].sar = cpu_to_le32(addr);
611 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
613 lli[idx].ctl.low = cpu_to_le32(
614 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
615 DMA_CTL_SMS(1) |
616 DMA_CTL_DMS(0) |
617 DMA_CTL_SRC_MSIZE(bl) |
618 DMA_CTL_DST_MSIZE(bl) |
619 DMA_CTL_DINC_NOCHANGE |
620 DMA_CTL_SRC_TRWID(2) |
621 DMA_CTL_DST_TRWID(2) |
622 DMA_CTL_INT_EN |
623 DMA_CTL_LLP_SRCEN |
624 DMA_CTL_LLP_DSTEN);
627 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
628 "0x%08x val: 0x%08x\n", __func__,
629 len, DMA_CTL_BLK_TS(len / 4));
631 /* Program the LLI CTL high register */
632 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
633 (len / 4));
635 /* Program the next pointer. The next pointer must be
636 * the physical address, not the virtual address.
638 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
639 lli)));
641 /* The last 2 bits encode the list master select. */
642 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
644 lli[idx].llp = cpu_to_le32(next_llp);
645 idx++;
646 sg_len -= len;
647 addr += len;
652 * The last next ptr has to be zero and the last control low register
653 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
654 * and destination enable) set back to 0 (disabled.) This is what tells
655 * the core that this is the last item in the linked list.
657 if (idx) {
658 lli[idx-1].llp = 0x00000000;
659 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
661 /* Flush cache to memory */
662 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
663 DMA_BIDIRECTIONAL);
666 return idx;
670 * Function: dma_dwc_xfer_start
671 * arguments: Channel number
672 * Return : None
673 * Enables the DMA channel
675 static void dma_dwc_xfer_start(int dma_ch)
677 /* Enable the DMA channel */
678 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
679 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
680 DMA_ENABLE_CHAN(dma_ch));
683 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
684 struct lli *lli, dma_addr_t dma_lli,
685 void __iomem *addr, int dir)
687 int dma_ch;
688 int num_lli;
689 /* Acquire DMA channel */
690 dma_ch = dma_request_channel();
691 if (dma_ch == -1) {
692 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
693 __func__);
694 return -EAGAIN;
697 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
698 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
700 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
701 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
702 lli, (u32)dma_lli, addr, num_lli);
704 clear_chan_interrupts(dma_ch);
706 /* Program the CFG register. */
707 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
708 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
709 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0);
711 /* Program the address of the linked list */
712 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
713 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
715 /* Program the CTL register with src enable / dst enable */
716 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
717 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
718 return 0;
722 * Function: dma_dwc_exit
723 * arguments: None
724 * returns status
725 * This function exits the SATA DMA driver
727 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
729 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
730 if (host_pvt.sata_dma_regs)
731 iounmap(host_pvt.sata_dma_regs);
733 if (hsdev->irq_dma)
734 free_irq(hsdev->irq_dma, hsdev);
738 * Function: dma_dwc_init
739 * arguments: hsdev
740 * returns status
741 * This function initializes the SATA DMA driver
743 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
745 int err;
747 err = dma_request_interrupts(hsdev, irq);
748 if (err) {
749 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
750 " %d\n", __func__, err);
751 goto error_out;
754 /* Enabe DMA */
755 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
757 dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
758 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
759 sata_dma_regs);
761 return 0;
763 error_out:
764 dma_dwc_exit(hsdev);
766 return err;
769 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
771 if (scr > SCR_NOTIFICATION) {
772 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
773 __func__, scr);
774 return -EINVAL;
777 *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
778 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
779 __func__, link->ap->print_id, scr, *val);
781 return 0;
784 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
786 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
787 __func__, link->ap->print_id, scr, val);
788 if (scr > SCR_NOTIFICATION) {
789 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
790 __func__, scr);
791 return -EINVAL;
793 out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
795 return 0;
798 static u32 core_scr_read(unsigned int scr)
800 return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
801 (scr * 4));
804 static void core_scr_write(unsigned int scr, u32 val)
806 out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
807 val);
810 static void clear_serror(void)
812 u32 val;
813 val = core_scr_read(SCR_ERROR);
814 core_scr_write(SCR_ERROR, val);
818 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
820 out_le32(&hsdev->sata_dwc_regs->intpr,
821 in_le32(&hsdev->sata_dwc_regs->intpr));
824 static u32 qcmd_tag_to_mask(u8 tag)
826 return 0x00000001 << (tag & 0x1f);
829 /* See ahci.c */
830 static void sata_dwc_error_intr(struct ata_port *ap,
831 struct sata_dwc_device *hsdev, uint intpr)
833 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
834 struct ata_eh_info *ehi = &ap->link.eh_info;
835 unsigned int err_mask = 0, action = 0;
836 struct ata_queued_cmd *qc;
837 u32 serror;
838 u8 status, tag;
839 u32 err_reg;
841 ata_ehi_clear_desc(ehi);
843 serror = core_scr_read(SCR_ERROR);
844 status = ap->ops->sff_check_status(ap);
846 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
847 low));
848 tag = ap->link.active_tag;
850 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
851 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
852 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
853 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
855 /* Clear error register and interrupt bit */
856 clear_serror();
857 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
859 /* This is the only error happening now. TODO check for exact error */
861 err_mask |= AC_ERR_HOST_BUS;
862 action |= ATA_EH_RESET;
864 /* Pass this on to EH */
865 ehi->serror |= serror;
866 ehi->action |= action;
868 qc = ata_qc_from_tag(ap, tag);
869 if (qc)
870 qc->err_mask |= err_mask;
871 else
872 ehi->err_mask |= err_mask;
874 ata_port_abort(ap);
878 * Function : sata_dwc_isr
879 * arguments : irq, void *dev_instance, struct pt_regs *regs
880 * Return value : irqreturn_t - status of IRQ
881 * This Interrupt handler called via port ops registered function.
882 * .irq_handler = sata_dwc_isr
884 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
886 struct ata_host *host = (struct ata_host *)dev_instance;
887 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
888 struct ata_port *ap;
889 struct ata_queued_cmd *qc;
890 unsigned long flags;
891 u8 status, tag;
892 int handled, num_processed, port = 0;
893 uint intpr, sactive, sactive2, tag_mask;
894 struct sata_dwc_device_port *hsdevp;
895 host_pvt.sata_dwc_sactive_issued = 0;
897 spin_lock_irqsave(&host->lock, flags);
899 /* Read the interrupt register */
900 intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
902 ap = host->ports[port];
903 hsdevp = HSDEVP_FROM_AP(ap);
905 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
906 ap->link.active_tag);
908 /* Check for error interrupt */
909 if (intpr & SATA_DWC_INTPR_ERR) {
910 sata_dwc_error_intr(ap, hsdev, intpr);
911 handled = 1;
912 goto DONE;
915 /* Check for DMA SETUP FIS (FP DMA) interrupt */
916 if (intpr & SATA_DWC_INTPR_NEWFP) {
917 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
919 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
920 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
921 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
922 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
924 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
926 qc = ata_qc_from_tag(ap, tag);
928 * Start FP DMA for NCQ command. At this point the tag is the
929 * active tag. It is the tag that matches the command about to
930 * be completed.
932 qc->ap->link.active_tag = tag;
933 sata_dwc_bmdma_start_by_tag(qc, tag);
935 handled = 1;
936 goto DONE;
938 sactive = core_scr_read(SCR_ACTIVE);
939 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
941 /* If no sactive issued and tag_mask is zero then this is not NCQ */
942 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
943 if (ap->link.active_tag == ATA_TAG_POISON)
944 tag = 0;
945 else
946 tag = ap->link.active_tag;
947 qc = ata_qc_from_tag(ap, tag);
949 /* DEV interrupt w/ no active qc? */
950 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
951 dev_err(ap->dev, "%s interrupt with no active qc "
952 "qc=%p\n", __func__, qc);
953 ap->ops->sff_check_status(ap);
954 handled = 1;
955 goto DONE;
957 status = ap->ops->sff_check_status(ap);
959 qc->ap->link.active_tag = tag;
960 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
962 if (status & ATA_ERR) {
963 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
964 sata_dwc_qc_complete(ap, qc, 1);
965 handled = 1;
966 goto DONE;
969 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
970 __func__, ata_get_cmd_descript(qc->tf.protocol));
971 DRVSTILLBUSY:
972 if (ata_is_dma(qc->tf.protocol)) {
974 * Each DMA transaction produces 2 interrupts. The DMAC
975 * transfer complete interrupt and the SATA controller
976 * operation done interrupt. The command should be
977 * completed only after both interrupts are seen.
979 host_pvt.dma_interrupt_count++;
980 if (hsdevp->dma_pending[tag] == \
981 SATA_DWC_DMA_PENDING_NONE) {
982 dev_err(ap->dev, "%s: DMA not pending "
983 "intpr=0x%08x status=0x%08x pending"
984 "=%d\n", __func__, intpr, status,
985 hsdevp->dma_pending[tag]);
988 if ((host_pvt.dma_interrupt_count % 2) == 0)
989 sata_dwc_dma_xfer_complete(ap, 1);
990 } else if (ata_is_pio(qc->tf.protocol)) {
991 ata_sff_hsm_move(ap, qc, status, 0);
992 handled = 1;
993 goto DONE;
994 } else {
995 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
996 goto DRVSTILLBUSY;
999 handled = 1;
1000 goto DONE;
1004 * This is a NCQ command. At this point we need to figure out for which
1005 * tags we have gotten a completion interrupt. One interrupt may serve
1006 * as completion for more than one operation when commands are queued
1007 * (NCQ). We need to process each completed command.
1010 /* process completed commands */
1011 sactive = core_scr_read(SCR_ACTIVE);
1012 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1014 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1015 tag_mask > 1) {
1016 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1017 "tag_mask=0x%08x\n", __func__, sactive,
1018 host_pvt.sata_dwc_sactive_issued, tag_mask);
1021 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1022 (host_pvt.sata_dwc_sactive_issued)) {
1023 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
1024 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1025 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1026 tag_mask);
1029 /* read just to clear ... not bad if currently still busy */
1030 status = ap->ops->sff_check_status(ap);
1031 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1033 tag = 0;
1034 num_processed = 0;
1035 while (tag_mask) {
1036 num_processed++;
1037 while (!(tag_mask & 0x00000001)) {
1038 tag++;
1039 tag_mask <<= 1;
1042 tag_mask &= (~0x00000001);
1043 qc = ata_qc_from_tag(ap, tag);
1045 /* To be picked up by completion functions */
1046 qc->ap->link.active_tag = tag;
1047 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1049 /* Let libata/scsi layers handle error */
1050 if (status & ATA_ERR) {
1051 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1052 status);
1053 sata_dwc_qc_complete(ap, qc, 1);
1054 handled = 1;
1055 goto DONE;
1058 /* Process completed command */
1059 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1060 ata_get_cmd_descript(qc->tf.protocol));
1061 if (ata_is_dma(qc->tf.protocol)) {
1062 host_pvt.dma_interrupt_count++;
1063 if (hsdevp->dma_pending[tag] == \
1064 SATA_DWC_DMA_PENDING_NONE)
1065 dev_warn(ap->dev, "%s: DMA not pending?\n",
1066 __func__);
1067 if ((host_pvt.dma_interrupt_count % 2) == 0)
1068 sata_dwc_dma_xfer_complete(ap, 1);
1069 } else {
1070 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1071 goto STILLBUSY;
1073 continue;
1075 STILLBUSY:
1076 ap->stats.idle_irq++;
1077 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1078 ap->print_id);
1079 } /* while tag_mask */
1082 * Check to see if any commands completed while we were processing our
1083 * initial set of completed commands (read status clears interrupts,
1084 * so we might miss a completed command interrupt if one came in while
1085 * we were processing --we read status as part of processing a completed
1086 * command).
1088 sactive2 = core_scr_read(SCR_ACTIVE);
1089 if (sactive2 != sactive) {
1090 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1091 "=0x%x\n", sactive, sactive2);
1093 handled = 1;
1095 DONE:
1096 spin_unlock_irqrestore(&host->lock, flags);
1097 return IRQ_RETVAL(handled);
1100 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1102 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1104 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1105 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1106 SATA_DWC_DMACR_RX_CLEAR(
1107 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1108 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1109 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1110 SATA_DWC_DMACR_TX_CLEAR(
1111 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1112 } else {
1114 * This should not happen, it indicates the driver is out of
1115 * sync. If it does happen, clear dmacr anyway.
1117 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1118 "TX DMA not pending tag=0x%02x pending=%d"
1119 " dmacr: 0x%08x\n", __func__, tag,
1120 hsdevp->dma_pending[tag],
1121 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1122 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1123 SATA_DWC_DMACR_TXRXCH_CLEAR);
1127 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1129 struct ata_queued_cmd *qc;
1130 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1131 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1132 u8 tag = 0;
1134 tag = ap->link.active_tag;
1135 qc = ata_qc_from_tag(ap, tag);
1136 if (!qc) {
1137 dev_err(ap->dev, "failed to get qc");
1138 return;
1141 #ifdef DEBUG_NCQ
1142 if (tag > 0) {
1143 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1144 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1145 ata_get_cmd_descript(qc->dma_dir),
1146 ata_get_cmd_descript(qc->tf.protocol),
1147 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1149 #endif
1151 if (ata_is_dma(qc->tf.protocol)) {
1152 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1153 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1154 "pending dmacr: 0x%08x\n", __func__,
1155 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1158 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1159 sata_dwc_qc_complete(ap, qc, check_status);
1160 ap->link.active_tag = ATA_TAG_POISON;
1161 } else {
1162 sata_dwc_qc_complete(ap, qc, check_status);
1166 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1167 u32 check_status)
1169 u8 status = 0;
1170 u32 mask = 0x0;
1171 u8 tag = qc->tag;
1172 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1173 host_pvt.sata_dwc_sactive_queued = 0;
1174 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1176 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1177 dev_err(ap->dev, "TX DMA PENDING\n");
1178 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1179 dev_err(ap->dev, "RX DMA PENDING\n");
1180 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1181 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1182 qc->tf.protocol);
1184 /* clear active bit */
1185 mask = (~(qcmd_tag_to_mask(tag)));
1186 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1187 & mask;
1188 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1189 & mask;
1190 ata_qc_complete(qc);
1191 return 0;
1194 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1196 /* Enable selective interrupts by setting the interrupt maskregister*/
1197 out_le32(&hsdev->sata_dwc_regs->intmr,
1198 SATA_DWC_INTMR_ERRM |
1199 SATA_DWC_INTMR_NEWFPM |
1200 SATA_DWC_INTMR_PMABRTM |
1201 SATA_DWC_INTMR_DMATM);
1203 * Unmask the error bits that should trigger an error interrupt by
1204 * setting the error mask register.
1206 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1208 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1209 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1210 in_le32(&hsdev->sata_dwc_regs->errmr));
1213 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1215 port->cmd_addr = (void *)base + 0x00;
1216 port->data_addr = (void *)base + 0x00;
1218 port->error_addr = (void *)base + 0x04;
1219 port->feature_addr = (void *)base + 0x04;
1221 port->nsect_addr = (void *)base + 0x08;
1223 port->lbal_addr = (void *)base + 0x0c;
1224 port->lbam_addr = (void *)base + 0x10;
1225 port->lbah_addr = (void *)base + 0x14;
1227 port->device_addr = (void *)base + 0x18;
1228 port->command_addr = (void *)base + 0x1c;
1229 port->status_addr = (void *)base + 0x1c;
1231 port->altstatus_addr = (void *)base + 0x20;
1232 port->ctl_addr = (void *)base + 0x20;
1236 * Function : sata_dwc_port_start
1237 * arguments : struct ata_ioports *port
1238 * Return value : returns 0 if success, error code otherwise
1239 * This function allocates the scatter gather LLI table for AHB DMA
1241 static int sata_dwc_port_start(struct ata_port *ap)
1243 int err = 0;
1244 struct sata_dwc_device *hsdev;
1245 struct sata_dwc_device_port *hsdevp = NULL;
1246 struct device *pdev;
1247 int i;
1249 hsdev = HSDEV_FROM_AP(ap);
1251 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1253 hsdev->host = ap->host;
1254 pdev = ap->host->dev;
1255 if (!pdev) {
1256 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1257 err = -ENODEV;
1258 goto CLEANUP;
1261 /* Allocate Port Struct */
1262 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1263 if (!hsdevp) {
1264 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1265 err = -ENOMEM;
1266 goto CLEANUP;
1268 hsdevp->hsdev = hsdev;
1270 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1271 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1273 ap->bmdma_prd = 0; /* set these so libata doesn't use them */
1274 ap->bmdma_prd_dma = 0;
1277 * DMA - Assign scatter gather LLI table. We can't use the libata
1278 * version since it's PRD is IDE PCI specific.
1280 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1281 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1282 SATA_DWC_DMAC_LLI_TBL_SZ,
1283 &(hsdevp->llit_dma[i]),
1284 GFP_ATOMIC);
1285 if (!hsdevp->llit[i]) {
1286 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1287 __func__);
1288 err = -ENOMEM;
1289 goto CLEANUP;
1293 if (ap->port_no == 0) {
1294 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1295 __func__);
1296 out_le32(&hsdev->sata_dwc_regs->dmacr,
1297 SATA_DWC_DMACR_TXRXCH_CLEAR);
1299 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1300 __func__);
1301 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1302 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1303 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1306 /* Clear any error bits before libata starts issuing commands */
1307 clear_serror();
1308 ap->private_data = hsdevp;
1310 CLEANUP:
1311 if (err) {
1312 sata_dwc_port_stop(ap);
1313 dev_dbg(ap->dev, "%s: fail\n", __func__);
1314 } else {
1315 dev_dbg(ap->dev, "%s: done\n", __func__);
1318 return err;
1321 static void sata_dwc_port_stop(struct ata_port *ap)
1323 int i;
1324 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1325 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1327 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1329 if (hsdevp && hsdev) {
1330 /* deallocate LLI table */
1331 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1332 dma_free_coherent(ap->host->dev,
1333 SATA_DWC_DMAC_LLI_TBL_SZ,
1334 hsdevp->llit[i], hsdevp->llit_dma[i]);
1337 kfree(hsdevp);
1339 ap->private_data = NULL;
1343 * Function : sata_dwc_exec_command_by_tag
1344 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1345 * Return value : None
1346 * This function keeps track of individual command tag ids and calls
1347 * ata_exec_command in libata
1349 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1350 struct ata_taskfile *tf,
1351 u8 tag, u32 cmd_issued)
1353 unsigned long flags;
1354 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1356 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1357 ata_get_cmd_descript(tf), tag);
1359 spin_lock_irqsave(&ap->host->lock, flags);
1360 hsdevp->cmd_issued[tag] = cmd_issued;
1361 spin_unlock_irqrestore(&ap->host->lock, flags);
1363 * Clear SError before executing a new command.
1364 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1365 * managed SError register for the disk needs to be done before the
1366 * task file is loaded.
1368 clear_serror();
1369 ata_sff_exec_command(ap, tf);
1372 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1374 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1375 SATA_DWC_CMD_ISSUED_PEND);
1378 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1380 u8 tag = qc->tag;
1382 if (ata_is_ncq(qc->tf.protocol)) {
1383 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1384 __func__, qc->ap->link.sactive, tag);
1385 } else {
1386 tag = 0;
1388 sata_dwc_bmdma_setup_by_tag(qc, tag);
1391 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1393 int start_dma;
1394 u32 reg, dma_chan;
1395 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1396 struct ata_port *ap = qc->ap;
1397 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1398 int dir = qc->dma_dir;
1399 dma_chan = hsdevp->dma_chan[tag];
1401 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1402 start_dma = 1;
1403 if (dir == DMA_TO_DEVICE)
1404 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1405 else
1406 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1407 } else {
1408 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1409 "(tag=%d) DMA NOT started\n", __func__,
1410 hsdevp->cmd_issued[tag], tag);
1411 start_dma = 0;
1414 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1415 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1416 ata_get_cmd_descript(qc->dma_dir), start_dma);
1417 sata_dwc_tf_dump(&(qc->tf));
1419 if (start_dma) {
1420 reg = core_scr_read(SCR_ERROR);
1421 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1422 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1423 __func__, reg);
1426 if (dir == DMA_TO_DEVICE)
1427 out_le32(&hsdev->sata_dwc_regs->dmacr,
1428 SATA_DWC_DMACR_TXCHEN);
1429 else
1430 out_le32(&hsdev->sata_dwc_regs->dmacr,
1431 SATA_DWC_DMACR_RXCHEN);
1433 /* Enable AHB DMA transfer on the specified channel */
1434 dma_dwc_xfer_start(dma_chan);
1438 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1440 u8 tag = qc->tag;
1442 if (ata_is_ncq(qc->tf.protocol)) {
1443 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1444 __func__, qc->ap->link.sactive, tag);
1445 } else {
1446 tag = 0;
1448 dev_dbg(qc->ap->dev, "%s\n", __func__);
1449 sata_dwc_bmdma_start_by_tag(qc, tag);
1453 * Function : sata_dwc_qc_prep_by_tag
1454 * arguments : ata_queued_cmd *qc, u8 tag
1455 * Return value : None
1456 * qc_prep for a particular queued command based on tag
1458 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1460 struct scatterlist *sg = qc->sg;
1461 struct ata_port *ap = qc->ap;
1462 int dma_chan;
1463 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1464 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1465 int err;
1467 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1468 __func__, ap->port_no, ata_get_cmd_descript(qc->dma_dir),
1469 qc->n_elem);
1471 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1472 hsdevp->llit_dma[tag],
1473 (void *__iomem)(&hsdev->sata_dwc_regs->\
1474 dmadr), qc->dma_dir);
1475 if (dma_chan < 0) {
1476 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1477 __func__, err);
1478 return;
1480 hsdevp->dma_chan[tag] = dma_chan;
1483 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1485 u32 sactive;
1486 u8 tag = qc->tag;
1487 struct ata_port *ap = qc->ap;
1489 #ifdef DEBUG_NCQ
1490 if (qc->tag > 0 || ap->link.sactive > 1)
1491 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1492 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1493 __func__, ap->print_id, qc->tf.command,
1494 ata_get_cmd_descript(&qc->tf),
1495 qc->tag, ata_get_cmd_descript(qc->tf.protocol),
1496 ap->link.active_tag, ap->link.sactive);
1497 #endif
1499 if (!ata_is_ncq(qc->tf.protocol))
1500 tag = 0;
1501 sata_dwc_qc_prep_by_tag(qc, tag);
1503 if (ata_is_ncq(qc->tf.protocol)) {
1504 sactive = core_scr_read(SCR_ACTIVE);
1505 sactive |= (0x00000001 << tag);
1506 core_scr_write(SCR_ACTIVE, sactive);
1508 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1509 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1510 sactive);
1512 ap->ops->sff_tf_load(ap, &qc->tf);
1513 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1514 SATA_DWC_CMD_ISSUED_PEND);
1515 } else {
1516 ata_sff_qc_issue(qc);
1518 return 0;
1522 * Function : sata_dwc_qc_prep
1523 * arguments : ata_queued_cmd *qc
1524 * Return value : None
1525 * qc_prep for a particular queued command
1528 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1530 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1531 return;
1533 #ifdef DEBUG_NCQ
1534 if (qc->tag > 0)
1535 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1536 __func__, tag, qc->ap->link.active_tag);
1538 return ;
1539 #endif
1542 static void sata_dwc_error_handler(struct ata_port *ap)
1544 ap->link.flags |= ATA_LFLAG_NO_HRST;
1545 ata_sff_error_handler(ap);
1549 * scsi mid-layer and libata interface structures
1551 static struct scsi_host_template sata_dwc_sht = {
1552 ATA_NCQ_SHT(DRV_NAME),
1554 * test-only: Currently this driver doesn't handle NCQ
1555 * correctly. We enable NCQ but set the queue depth to a
1556 * max of 1. This will get fixed in in a future release.
1558 .sg_tablesize = LIBATA_MAX_PRD,
1559 .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
1560 .dma_boundary = ATA_DMA_BOUNDARY,
1563 static struct ata_port_operations sata_dwc_ops = {
1564 .inherits = &ata_sff_port_ops,
1566 .error_handler = sata_dwc_error_handler,
1568 .qc_prep = sata_dwc_qc_prep,
1569 .qc_issue = sata_dwc_qc_issue,
1571 .scr_read = sata_dwc_scr_read,
1572 .scr_write = sata_dwc_scr_write,
1574 .port_start = sata_dwc_port_start,
1575 .port_stop = sata_dwc_port_stop,
1577 .bmdma_setup = sata_dwc_bmdma_setup,
1578 .bmdma_start = sata_dwc_bmdma_start,
1581 static const struct ata_port_info sata_dwc_port_info[] = {
1583 .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
1584 ATA_FLAG_MMIO | ATA_FLAG_NCQ,
1585 .pio_mask = 0x1f, /* pio 0-4 */
1586 .udma_mask = ATA_UDMA6,
1587 .port_ops = &sata_dwc_ops,
1591 static int sata_dwc_probe(struct platform_device *ofdev,
1592 const struct of_device_id *match)
1594 struct sata_dwc_device *hsdev;
1595 u32 idr, versionr;
1596 char *ver = (char *)&versionr;
1597 u8 *base = NULL;
1598 int err = 0;
1599 int irq, rc;
1600 struct ata_host *host;
1601 struct ata_port_info pi = sata_dwc_port_info[0];
1602 const struct ata_port_info *ppi[] = { &pi, NULL };
1604 /* Allocate DWC SATA device */
1605 hsdev = kmalloc(sizeof(*hsdev), GFP_KERNEL);
1606 if (hsdev == NULL) {
1607 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1608 err = -ENOMEM;
1609 goto error_out;
1611 memset(hsdev, 0, sizeof(*hsdev));
1613 /* Ioremap SATA registers */
1614 base = of_iomap(ofdev->dev.of_node, 0);
1615 if (!base) {
1616 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1617 " address\n");
1618 err = -ENODEV;
1619 goto error_out;
1621 hsdev->reg_base = base;
1622 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1624 /* Synopsys DWC SATA specific Registers */
1625 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1627 /* Allocate and fill host */
1628 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1629 if (!host) {
1630 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1631 err = -ENOMEM;
1632 goto error_out;
1635 host->private_data = hsdev;
1637 /* Setup port */
1638 host->ports[0]->ioaddr.cmd_addr = base;
1639 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1640 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1641 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1643 /* Read the ID and Version Registers */
1644 idr = in_le32(&hsdev->sata_dwc_regs->idr);
1645 versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1646 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1647 idr, ver[0], ver[1], ver[2]);
1649 /* Get SATA DMA interrupt number */
1650 irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1651 if (irq == NO_IRQ) {
1652 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1653 err = -ENODEV;
1654 goto error_out;
1657 /* Get physical SATA DMA register base address */
1658 host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1659 if (!(host_pvt.sata_dma_regs)) {
1660 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1661 " address\n");
1662 err = -ENODEV;
1663 goto error_out;
1666 /* Save dev for later use in dev_xxx() routines */
1667 host_pvt.dwc_dev = &ofdev->dev;
1669 /* Initialize AHB DMAC */
1670 dma_dwc_init(hsdev, irq);
1672 /* Enable SATA Interrupts */
1673 sata_dwc_enable_interrupts(hsdev);
1675 /* Get SATA interrupt number */
1676 irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1677 if (irq == NO_IRQ) {
1678 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1679 err = -ENODEV;
1680 goto error_out;
1684 * Now, register with libATA core, this will also initiate the
1685 * device discovery process, invoking our port_start() handler &
1686 * error_handler() to execute a dummy Softreset EH session
1688 rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1690 if (rc != 0)
1691 dev_err(&ofdev->dev, "failed to activate host");
1693 dev_set_drvdata(&ofdev->dev, host);
1694 return 0;
1696 error_out:
1697 /* Free SATA DMA resources */
1698 dma_dwc_exit(hsdev);
1700 if (base)
1701 iounmap(base);
1702 return err;
1705 static int sata_dwc_remove(struct platform_device *ofdev)
1707 struct device *dev = &ofdev->dev;
1708 struct ata_host *host = dev_get_drvdata(dev);
1709 struct sata_dwc_device *hsdev = host->private_data;
1711 ata_host_detach(host);
1712 dev_set_drvdata(dev, NULL);
1714 /* Free SATA DMA resources */
1715 dma_dwc_exit(hsdev);
1717 iounmap(hsdev->reg_base);
1718 kfree(hsdev);
1719 kfree(host);
1720 dev_dbg(&ofdev->dev, "done\n");
1721 return 0;
1724 static const struct of_device_id sata_dwc_match[] = {
1725 { .compatible = "amcc,sata-460ex", },
1728 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1730 static struct of_platform_driver sata_dwc_driver = {
1731 .driver = {
1732 .name = DRV_NAME,
1733 .owner = THIS_MODULE,
1734 .of_match_table = sata_dwc_match,
1736 .probe = sata_dwc_probe,
1737 .remove = sata_dwc_remove,
1740 static int __init sata_dwc_init(void)
1742 return of_register_platform_driver(&sata_dwc_driver);
1745 static void __exit sata_dwc_exit(void)
1747 of_unregister_platform_driver(&sata_dwc_driver);
1750 module_init(sata_dwc_init);
1751 module_exit(sata_dwc_exit);
1753 MODULE_LICENSE("GPL");
1754 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1755 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1756 MODULE_VERSION(DRV_VERSION);