4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
43 static long ratelimit_pages
= 32;
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
51 static inline long sync_writeback_pages(unsigned long dirtied
)
53 if (dirtied
< ratelimit_pages
)
54 dirtied
= ratelimit_pages
;
56 return dirtied
+ dirtied
/ 2;
59 /* The following parameters are exported via /proc/sys/vm */
62 * Start background writeback (via writeback threads) at this percentage
64 int dirty_background_ratio
= 10;
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
70 unsigned long dirty_background_bytes
;
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
76 int vm_highmem_is_dirtyable
;
79 * The generator of dirty data starts writeback at this percentage
81 int vm_dirty_ratio
= 20;
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
87 unsigned long vm_dirty_bytes
;
90 * The interval between `kupdate'-style writebacks
92 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
95 * The longest time for which data is allowed to remain dirty
97 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
100 * Flag that makes the machine dump writes/reads and block dirtyings.
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
110 EXPORT_SYMBOL(laptop_mode
);
112 /* End of sysctl-exported parameters */
116 * Scale the writeback cache size proportional to the relative writeout speeds.
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
131 static struct prop_descriptor vm_completions
;
132 static struct prop_descriptor vm_dirties
;
135 * couple the period to the dirty_ratio:
137 * period/2 ~ roundup_pow_of_two(dirty limit)
139 static int calc_period_shift(void)
141 unsigned long dirty_total
;
144 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
146 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
148 return 2 + ilog2(dirty_total
- 1);
152 * update the period when the dirty threshold changes.
154 static void update_completion_period(void)
156 int shift
= calc_period_shift();
157 prop_change_shift(&vm_completions
, shift
);
158 prop_change_shift(&vm_dirties
, shift
);
161 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
162 void __user
*buffer
, size_t *lenp
,
167 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
168 if (ret
== 0 && write
)
169 dirty_background_bytes
= 0;
173 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
174 void __user
*buffer
, size_t *lenp
,
179 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
180 if (ret
== 0 && write
)
181 dirty_background_ratio
= 0;
185 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
186 void __user
*buffer
, size_t *lenp
,
189 int old_ratio
= vm_dirty_ratio
;
192 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
193 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
194 update_completion_period();
201 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
202 void __user
*buffer
, size_t *lenp
,
205 unsigned long old_bytes
= vm_dirty_bytes
;
208 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
209 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
210 update_completion_period();
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
220 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
222 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
226 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
230 local_irq_save(flags
);
231 __bdi_writeout_inc(bdi
);
232 local_irq_restore(flags
);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
236 void task_dirty_inc(struct task_struct
*tsk
)
238 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
242 * Obtain an accurate fraction of the BDI's portion.
244 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
245 long *numerator
, long *denominator
)
247 if (bdi_cap_writeback_dirty(bdi
)) {
248 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
249 numerator
, denominator
);
256 static inline void task_dirties_fraction(struct task_struct
*tsk
,
257 long *numerator
, long *denominator
)
259 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
260 numerator
, denominator
);
264 * task_dirty_limit - scale down dirty throttling threshold for one task
266 * task specific dirty limit:
268 * dirty -= (dirty/8) * p_{t}
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
277 static unsigned long task_dirty_limit(struct task_struct
*tsk
,
278 unsigned long bdi_dirty
)
280 long numerator
, denominator
;
281 unsigned long dirty
= bdi_dirty
;
282 u64 inv
= dirty
>> 3;
284 task_dirties_fraction(tsk
, &numerator
, &denominator
);
286 do_div(inv
, denominator
);
290 return max(dirty
, bdi_dirty
/2);
296 static unsigned int bdi_min_ratio
;
298 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
302 spin_lock_bh(&bdi_lock
);
303 if (min_ratio
> bdi
->max_ratio
) {
306 min_ratio
-= bdi
->min_ratio
;
307 if (bdi_min_ratio
+ min_ratio
< 100) {
308 bdi_min_ratio
+= min_ratio
;
309 bdi
->min_ratio
+= min_ratio
;
314 spin_unlock_bh(&bdi_lock
);
319 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
326 spin_lock_bh(&bdi_lock
);
327 if (bdi
->min_ratio
> max_ratio
) {
330 bdi
->max_ratio
= max_ratio
;
331 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
333 spin_unlock_bh(&bdi_lock
);
337 EXPORT_SYMBOL(bdi_set_max_ratio
);
340 * Work out the current dirty-memory clamping and background writeout
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around. To avoid stressing page reclaim with lots of unreclaimable
345 * pages. It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
350 * We don't permit the clamping level to fall below 5% - that is getting rather
353 * We make sure that the background writeout level is below the adjusted
357 static unsigned long highmem_dirtyable_memory(unsigned long total
)
359 #ifdef CONFIG_HIGHMEM
363 for_each_node_state(node
, N_HIGH_MEMORY
) {
365 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
367 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
368 zone_reclaimable_pages(z
);
371 * Make sure that the number of highmem pages is never larger
372 * than the number of the total dirtyable memory. This can only
373 * occur in very strange VM situations but we want to make sure
374 * that this does not occur.
376 return min(x
, total
);
383 * determine_dirtyable_memory - amount of memory that may be used
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
388 unsigned long determine_dirtyable_memory(void)
392 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
394 if (!vm_highmem_is_dirtyable
)
395 x
-= highmem_dirtyable_memory(x
);
397 return x
+ 1; /* Ensure that we never return 0 */
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio or vm.dirty_background_bytes
405 * - vm.dirty_ratio or vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
409 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
411 unsigned long background
;
413 unsigned long uninitialized_var(available_memory
);
414 struct task_struct
*tsk
;
416 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
417 available_memory
= determine_dirtyable_memory();
420 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
422 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
424 if (dirty_background_bytes
)
425 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
427 background
= (dirty_background_ratio
* available_memory
) / 100;
429 if (background
>= dirty
)
430 background
= dirty
/ 2;
432 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
433 background
+= background
/ 4;
436 *pbackground
= background
;
441 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
443 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
444 * - starving fast devices
445 * - piling up dirty pages (that will take long time to sync) on slow devices
447 * The bdi's share of dirty limit will be adapting to its throughput and
448 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
450 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
453 long numerator
, denominator
;
456 * Calculate this BDI's share of the dirty ratio.
458 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
460 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
461 bdi_dirty
*= numerator
;
462 do_div(bdi_dirty
, denominator
);
464 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
465 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
466 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
472 * balance_dirty_pages() must be called by processes which are generating dirty
473 * data. It looks at the number of dirty pages in the machine and will force
474 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
475 * If we're over `background_thresh' then the writeback threads are woken to
476 * perform some writeout.
478 static void balance_dirty_pages(struct address_space
*mapping
,
479 unsigned long write_chunk
)
481 long nr_reclaimable
, bdi_nr_reclaimable
;
482 long nr_writeback
, bdi_nr_writeback
;
483 unsigned long background_thresh
;
484 unsigned long dirty_thresh
;
485 unsigned long bdi_thresh
;
486 unsigned long pages_written
= 0;
487 unsigned long pause
= 1;
488 bool dirty_exceeded
= false;
489 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
492 struct writeback_control wbc
= {
493 .sync_mode
= WB_SYNC_NONE
,
494 .older_than_this
= NULL
,
495 .nr_to_write
= write_chunk
,
499 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
500 global_page_state(NR_UNSTABLE_NFS
);
501 nr_writeback
= global_page_state(NR_WRITEBACK
);
503 global_dirty_limits(&background_thresh
, &dirty_thresh
);
506 * Throttle it only when the background writeback cannot
507 * catch-up. This avoids (excessively) small writeouts
508 * when the bdi limits are ramping up.
510 if (nr_reclaimable
+ nr_writeback
<=
511 (background_thresh
+ dirty_thresh
) / 2)
514 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
515 bdi_thresh
= task_dirty_limit(current
, bdi_thresh
);
518 * In order to avoid the stacked BDI deadlock we need
519 * to ensure we accurately count the 'dirty' pages when
520 * the threshold is low.
522 * Otherwise it would be possible to get thresh+n pages
523 * reported dirty, even though there are thresh-m pages
524 * actually dirty; with m+n sitting in the percpu
527 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
528 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
529 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
531 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
532 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
536 * The bdi thresh is somehow "soft" limit derived from the
537 * global "hard" limit. The former helps to prevent heavy IO
538 * bdi or process from holding back light ones; The latter is
539 * the last resort safeguard.
542 (bdi_nr_reclaimable
+ bdi_nr_writeback
> bdi_thresh
)
543 || (nr_reclaimable
+ nr_writeback
> dirty_thresh
);
548 if (!bdi
->dirty_exceeded
)
549 bdi
->dirty_exceeded
= 1;
551 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
552 * Unstable writes are a feature of certain networked
553 * filesystems (i.e. NFS) in which data may have been
554 * written to the server's write cache, but has not yet
555 * been flushed to permanent storage.
556 * Only move pages to writeback if this bdi is over its
557 * threshold otherwise wait until the disk writes catch
560 trace_wbc_balance_dirty_start(&wbc
, bdi
);
561 if (bdi_nr_reclaimable
> bdi_thresh
) {
562 writeback_inodes_wb(&bdi
->wb
, &wbc
);
563 pages_written
+= write_chunk
- wbc
.nr_to_write
;
564 trace_wbc_balance_dirty_written(&wbc
, bdi
);
565 if (pages_written
>= write_chunk
)
566 break; /* We've done our duty */
568 trace_wbc_balance_dirty_wait(&wbc
, bdi
);
569 __set_current_state(TASK_UNINTERRUPTIBLE
);
570 io_schedule_timeout(pause
);
573 * Increase the delay for each loop, up to our previous
574 * default of taking a 100ms nap.
581 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
582 bdi
->dirty_exceeded
= 0;
584 if (writeback_in_progress(bdi
))
588 * In laptop mode, we wait until hitting the higher threshold before
589 * starting background writeout, and then write out all the way down
590 * to the lower threshold. So slow writers cause minimal disk activity.
592 * In normal mode, we start background writeout at the lower
593 * background_thresh, to keep the amount of dirty memory low.
595 if ((laptop_mode
&& pages_written
) ||
596 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
597 bdi_start_background_writeback(bdi
);
600 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
602 if (set_page_dirty(page
) || page_mkwrite
) {
603 struct address_space
*mapping
= page_mapping(page
);
606 balance_dirty_pages_ratelimited(mapping
);
610 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
613 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
614 * @mapping: address_space which was dirtied
615 * @nr_pages_dirtied: number of pages which the caller has just dirtied
617 * Processes which are dirtying memory should call in here once for each page
618 * which was newly dirtied. The function will periodically check the system's
619 * dirty state and will initiate writeback if needed.
621 * On really big machines, get_writeback_state is expensive, so try to avoid
622 * calling it too often (ratelimiting). But once we're over the dirty memory
623 * limit we decrease the ratelimiting by a lot, to prevent individual processes
624 * from overshooting the limit by (ratelimit_pages) each.
626 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
627 unsigned long nr_pages_dirtied
)
629 unsigned long ratelimit
;
632 ratelimit
= ratelimit_pages
;
633 if (mapping
->backing_dev_info
->dirty_exceeded
)
637 * Check the rate limiting. Also, we do not want to throttle real-time
638 * tasks in balance_dirty_pages(). Period.
641 p
= &__get_cpu_var(bdp_ratelimits
);
642 *p
+= nr_pages_dirtied
;
643 if (unlikely(*p
>= ratelimit
)) {
644 ratelimit
= sync_writeback_pages(*p
);
647 balance_dirty_pages(mapping
, ratelimit
);
652 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
654 void throttle_vm_writeout(gfp_t gfp_mask
)
656 unsigned long background_thresh
;
657 unsigned long dirty_thresh
;
660 global_dirty_limits(&background_thresh
, &dirty_thresh
);
663 * Boost the allowable dirty threshold a bit for page
664 * allocators so they don't get DoS'ed by heavy writers
666 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
668 if (global_page_state(NR_UNSTABLE_NFS
) +
669 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
671 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
674 * The caller might hold locks which can prevent IO completion
675 * or progress in the filesystem. So we cannot just sit here
676 * waiting for IO to complete.
678 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
686 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
687 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
689 proc_dointvec(table
, write
, buffer
, length
, ppos
);
690 bdi_arm_supers_timer();
695 void laptop_mode_timer_fn(unsigned long data
)
697 struct request_queue
*q
= (struct request_queue
*)data
;
698 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
699 global_page_state(NR_UNSTABLE_NFS
);
702 * We want to write everything out, not just down to the dirty
705 if (bdi_has_dirty_io(&q
->backing_dev_info
))
706 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
);
710 * We've spun up the disk and we're in laptop mode: schedule writeback
711 * of all dirty data a few seconds from now. If the flush is already scheduled
712 * then push it back - the user is still using the disk.
714 void laptop_io_completion(struct backing_dev_info
*info
)
716 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
720 * We're in laptop mode and we've just synced. The sync's writes will have
721 * caused another writeback to be scheduled by laptop_io_completion.
722 * Nothing needs to be written back anymore, so we unschedule the writeback.
724 void laptop_sync_completion(void)
726 struct backing_dev_info
*bdi
;
730 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
731 del_timer(&bdi
->laptop_mode_wb_timer
);
738 * If ratelimit_pages is too high then we can get into dirty-data overload
739 * if a large number of processes all perform writes at the same time.
740 * If it is too low then SMP machines will call the (expensive)
741 * get_writeback_state too often.
743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745 * thresholds before writeback cuts in.
747 * But the limit should not be set too high. Because it also controls the
748 * amount of memory which the balance_dirty_pages() caller has to write back.
749 * If this is too large then the caller will block on the IO queue all the
750 * time. So limit it to four megabytes - the balance_dirty_pages() caller
751 * will write six megabyte chunks, max.
754 void writeback_set_ratelimit(void)
756 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
757 if (ratelimit_pages
< 16)
758 ratelimit_pages
= 16;
759 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
760 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
764 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
766 writeback_set_ratelimit();
770 static struct notifier_block __cpuinitdata ratelimit_nb
= {
771 .notifier_call
= ratelimit_handler
,
776 * Called early on to tune the page writeback dirty limits.
778 * We used to scale dirty pages according to how total memory
779 * related to pages that could be allocated for buffers (by
780 * comparing nr_free_buffer_pages() to vm_total_pages.
782 * However, that was when we used "dirty_ratio" to scale with
783 * all memory, and we don't do that any more. "dirty_ratio"
784 * is now applied to total non-HIGHPAGE memory (by subtracting
785 * totalhigh_pages from vm_total_pages), and as such we can't
786 * get into the old insane situation any more where we had
787 * large amounts of dirty pages compared to a small amount of
788 * non-HIGHMEM memory.
790 * But we might still want to scale the dirty_ratio by how
791 * much memory the box has..
793 void __init
page_writeback_init(void)
797 writeback_set_ratelimit();
798 register_cpu_notifier(&ratelimit_nb
);
800 shift
= calc_period_shift();
801 prop_descriptor_init(&vm_completions
, shift
);
802 prop_descriptor_init(&vm_dirties
, shift
);
806 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
807 * @mapping: address space structure to write
808 * @start: starting page index
809 * @end: ending page index (inclusive)
811 * This function scans the page range from @start to @end (inclusive) and tags
812 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
813 * that write_cache_pages (or whoever calls this function) will then use
814 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
815 * used to avoid livelocking of writeback by a process steadily creating new
816 * dirty pages in the file (thus it is important for this function to be quick
817 * so that it can tag pages faster than a dirtying process can create them).
820 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
822 void tag_pages_for_writeback(struct address_space
*mapping
,
823 pgoff_t start
, pgoff_t end
)
825 #define WRITEBACK_TAG_BATCH 4096
826 unsigned long tagged
;
829 spin_lock_irq(&mapping
->tree_lock
);
830 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
831 &start
, end
, WRITEBACK_TAG_BATCH
,
832 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
833 spin_unlock_irq(&mapping
->tree_lock
);
834 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
836 /* We check 'start' to handle wrapping when end == ~0UL */
837 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
839 EXPORT_SYMBOL(tag_pages_for_writeback
);
842 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
843 * @mapping: address space structure to write
844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
845 * @writepage: function called for each page
846 * @data: data passed to writepage function
848 * If a page is already under I/O, write_cache_pages() skips it, even
849 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
850 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
851 * and msync() need to guarantee that all the data which was dirty at the time
852 * the call was made get new I/O started against them. If wbc->sync_mode is
853 * WB_SYNC_ALL then we were called for data integrity and we must wait for
854 * existing IO to complete.
856 * To avoid livelocks (when other process dirties new pages), we first tag
857 * pages which should be written back with TOWRITE tag and only then start
858 * writing them. For data-integrity sync we have to be careful so that we do
859 * not miss some pages (e.g., because some other process has cleared TOWRITE
860 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
861 * by the process clearing the DIRTY tag (and submitting the page for IO).
863 int write_cache_pages(struct address_space
*mapping
,
864 struct writeback_control
*wbc
, writepage_t writepage
,
871 pgoff_t
uninitialized_var(writeback_index
);
873 pgoff_t end
; /* Inclusive */
879 pagevec_init(&pvec
, 0);
880 if (wbc
->range_cyclic
) {
881 writeback_index
= mapping
->writeback_index
; /* prev offset */
882 index
= writeback_index
;
889 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
890 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
891 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
893 cycled
= 1; /* ignore range_cyclic tests */
895 if (wbc
->sync_mode
== WB_SYNC_ALL
)
896 tag
= PAGECACHE_TAG_TOWRITE
;
898 tag
= PAGECACHE_TAG_DIRTY
;
900 if (wbc
->sync_mode
== WB_SYNC_ALL
)
901 tag_pages_for_writeback(mapping
, index
, end
);
903 while (!done
&& (index
<= end
)) {
906 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
907 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
911 for (i
= 0; i
< nr_pages
; i
++) {
912 struct page
*page
= pvec
.pages
[i
];
915 * At this point, the page may be truncated or
916 * invalidated (changing page->mapping to NULL), or
917 * even swizzled back from swapper_space to tmpfs file
918 * mapping. However, page->index will not change
919 * because we have a reference on the page.
921 if (page
->index
> end
) {
923 * can't be range_cyclic (1st pass) because
924 * end == -1 in that case.
930 done_index
= page
->index
;
935 * Page truncated or invalidated. We can freely skip it
936 * then, even for data integrity operations: the page
937 * has disappeared concurrently, so there could be no
938 * real expectation of this data interity operation
939 * even if there is now a new, dirty page at the same
942 if (unlikely(page
->mapping
!= mapping
)) {
948 if (!PageDirty(page
)) {
949 /* someone wrote it for us */
950 goto continue_unlock
;
953 if (PageWriteback(page
)) {
954 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
955 wait_on_page_writeback(page
);
957 goto continue_unlock
;
960 BUG_ON(PageWriteback(page
));
961 if (!clear_page_dirty_for_io(page
))
962 goto continue_unlock
;
964 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
965 ret
= (*writepage
)(page
, wbc
, data
);
967 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
972 * done_index is set past this page,
973 * so media errors will not choke
974 * background writeout for the entire
975 * file. This has consequences for
976 * range_cyclic semantics (ie. it may
977 * not be suitable for data integrity
980 done_index
= page
->index
+ 1;
987 * We stop writing back only if we are not doing
988 * integrity sync. In case of integrity sync we have to
989 * keep going until we have written all the pages
990 * we tagged for writeback prior to entering this loop.
992 if (--wbc
->nr_to_write
<= 0 &&
993 wbc
->sync_mode
== WB_SYNC_NONE
) {
998 pagevec_release(&pvec
);
1001 if (!cycled
&& !done
) {
1004 * We hit the last page and there is more work to be done: wrap
1005 * back to the start of the file
1009 end
= writeback_index
- 1;
1012 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1013 mapping
->writeback_index
= done_index
;
1017 EXPORT_SYMBOL(write_cache_pages
);
1020 * Function used by generic_writepages to call the real writepage
1021 * function and set the mapping flags on error
1023 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1026 struct address_space
*mapping
= data
;
1027 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1028 mapping_set_error(mapping
, ret
);
1033 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1034 * @mapping: address space structure to write
1035 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1037 * This is a library function, which implements the writepages()
1038 * address_space_operation.
1040 int generic_writepages(struct address_space
*mapping
,
1041 struct writeback_control
*wbc
)
1043 struct blk_plug plug
;
1046 /* deal with chardevs and other special file */
1047 if (!mapping
->a_ops
->writepage
)
1050 blk_start_plug(&plug
);
1051 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1052 blk_finish_plug(&plug
);
1056 EXPORT_SYMBOL(generic_writepages
);
1058 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1062 if (wbc
->nr_to_write
<= 0)
1064 if (mapping
->a_ops
->writepages
)
1065 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1067 ret
= generic_writepages(mapping
, wbc
);
1072 * write_one_page - write out a single page and optionally wait on I/O
1073 * @page: the page to write
1074 * @wait: if true, wait on writeout
1076 * The page must be locked by the caller and will be unlocked upon return.
1078 * write_one_page() returns a negative error code if I/O failed.
1080 int write_one_page(struct page
*page
, int wait
)
1082 struct address_space
*mapping
= page
->mapping
;
1084 struct writeback_control wbc
= {
1085 .sync_mode
= WB_SYNC_ALL
,
1089 BUG_ON(!PageLocked(page
));
1092 wait_on_page_writeback(page
);
1094 if (clear_page_dirty_for_io(page
)) {
1095 page_cache_get(page
);
1096 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1097 if (ret
== 0 && wait
) {
1098 wait_on_page_writeback(page
);
1099 if (PageError(page
))
1102 page_cache_release(page
);
1108 EXPORT_SYMBOL(write_one_page
);
1111 * For address_spaces which do not use buffers nor write back.
1113 int __set_page_dirty_no_writeback(struct page
*page
)
1115 if (!PageDirty(page
))
1116 return !TestSetPageDirty(page
);
1121 * Helper function for set_page_dirty family.
1122 * NOTE: This relies on being atomic wrt interrupts.
1124 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1126 if (mapping_cap_account_dirty(mapping
)) {
1127 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1128 __inc_zone_page_state(page
, NR_DIRTIED
);
1129 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1130 task_dirty_inc(current
);
1131 task_io_account_write(PAGE_CACHE_SIZE
);
1134 EXPORT_SYMBOL(account_page_dirtied
);
1137 * Helper function for set_page_writeback family.
1138 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1141 void account_page_writeback(struct page
*page
)
1143 inc_zone_page_state(page
, NR_WRITEBACK
);
1144 inc_zone_page_state(page
, NR_WRITTEN
);
1146 EXPORT_SYMBOL(account_page_writeback
);
1149 * For address_spaces which do not use buffers. Just tag the page as dirty in
1152 * This is also used when a single buffer is being dirtied: we want to set the
1153 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1154 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1156 * Most callers have locked the page, which pins the address_space in memory.
1157 * But zap_pte_range() does not lock the page, however in that case the
1158 * mapping is pinned by the vma's ->vm_file reference.
1160 * We take care to handle the case where the page was truncated from the
1161 * mapping by re-checking page_mapping() inside tree_lock.
1163 int __set_page_dirty_nobuffers(struct page
*page
)
1165 if (!TestSetPageDirty(page
)) {
1166 struct address_space
*mapping
= page_mapping(page
);
1167 struct address_space
*mapping2
;
1172 spin_lock_irq(&mapping
->tree_lock
);
1173 mapping2
= page_mapping(page
);
1174 if (mapping2
) { /* Race with truncate? */
1175 BUG_ON(mapping2
!= mapping
);
1176 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1177 account_page_dirtied(page
, mapping
);
1178 radix_tree_tag_set(&mapping
->page_tree
,
1179 page_index(page
), PAGECACHE_TAG_DIRTY
);
1181 spin_unlock_irq(&mapping
->tree_lock
);
1182 if (mapping
->host
) {
1183 /* !PageAnon && !swapper_space */
1184 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1190 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1193 * When a writepage implementation decides that it doesn't want to write this
1194 * page for some reason, it should redirty the locked page via
1195 * redirty_page_for_writepage() and it should then unlock the page and return 0
1197 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1199 wbc
->pages_skipped
++;
1200 return __set_page_dirty_nobuffers(page
);
1202 EXPORT_SYMBOL(redirty_page_for_writepage
);
1207 * For pages with a mapping this should be done under the page lock
1208 * for the benefit of asynchronous memory errors who prefer a consistent
1209 * dirty state. This rule can be broken in some special cases,
1210 * but should be better not to.
1212 * If the mapping doesn't provide a set_page_dirty a_op, then
1213 * just fall through and assume that it wants buffer_heads.
1215 int set_page_dirty(struct page
*page
)
1217 struct address_space
*mapping
= page_mapping(page
);
1219 if (likely(mapping
)) {
1220 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1222 * readahead/lru_deactivate_page could remain
1223 * PG_readahead/PG_reclaim due to race with end_page_writeback
1224 * About readahead, if the page is written, the flags would be
1225 * reset. So no problem.
1226 * About lru_deactivate_page, if the page is redirty, the flag
1227 * will be reset. So no problem. but if the page is used by readahead
1228 * it will confuse readahead and make it restart the size rampup
1229 * process. But it's a trivial problem.
1231 ClearPageReclaim(page
);
1234 spd
= __set_page_dirty_buffers
;
1236 return (*spd
)(page
);
1238 if (!PageDirty(page
)) {
1239 if (!TestSetPageDirty(page
))
1244 EXPORT_SYMBOL(set_page_dirty
);
1247 * set_page_dirty() is racy if the caller has no reference against
1248 * page->mapping->host, and if the page is unlocked. This is because another
1249 * CPU could truncate the page off the mapping and then free the mapping.
1251 * Usually, the page _is_ locked, or the caller is a user-space process which
1252 * holds a reference on the inode by having an open file.
1254 * In other cases, the page should be locked before running set_page_dirty().
1256 int set_page_dirty_lock(struct page
*page
)
1261 ret
= set_page_dirty(page
);
1265 EXPORT_SYMBOL(set_page_dirty_lock
);
1268 * Clear a page's dirty flag, while caring for dirty memory accounting.
1269 * Returns true if the page was previously dirty.
1271 * This is for preparing to put the page under writeout. We leave the page
1272 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1273 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1274 * implementation will run either set_page_writeback() or set_page_dirty(),
1275 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1278 * This incoherency between the page's dirty flag and radix-tree tag is
1279 * unfortunate, but it only exists while the page is locked.
1281 int clear_page_dirty_for_io(struct page
*page
)
1283 struct address_space
*mapping
= page_mapping(page
);
1285 BUG_ON(!PageLocked(page
));
1287 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1289 * Yes, Virginia, this is indeed insane.
1291 * We use this sequence to make sure that
1292 * (a) we account for dirty stats properly
1293 * (b) we tell the low-level filesystem to
1294 * mark the whole page dirty if it was
1295 * dirty in a pagetable. Only to then
1296 * (c) clean the page again and return 1 to
1297 * cause the writeback.
1299 * This way we avoid all nasty races with the
1300 * dirty bit in multiple places and clearing
1301 * them concurrently from different threads.
1303 * Note! Normally the "set_page_dirty(page)"
1304 * has no effect on the actual dirty bit - since
1305 * that will already usually be set. But we
1306 * need the side effects, and it can help us
1309 * We basically use the page "master dirty bit"
1310 * as a serialization point for all the different
1311 * threads doing their things.
1313 if (page_mkclean(page
))
1314 set_page_dirty(page
);
1316 * We carefully synchronise fault handlers against
1317 * installing a dirty pte and marking the page dirty
1318 * at this point. We do this by having them hold the
1319 * page lock at some point after installing their
1320 * pte, but before marking the page dirty.
1321 * Pages are always locked coming in here, so we get
1322 * the desired exclusion. See mm/memory.c:do_wp_page()
1323 * for more comments.
1325 if (TestClearPageDirty(page
)) {
1326 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1327 dec_bdi_stat(mapping
->backing_dev_info
,
1333 return TestClearPageDirty(page
);
1335 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1337 int test_clear_page_writeback(struct page
*page
)
1339 struct address_space
*mapping
= page_mapping(page
);
1343 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1344 unsigned long flags
;
1346 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1347 ret
= TestClearPageWriteback(page
);
1349 radix_tree_tag_clear(&mapping
->page_tree
,
1351 PAGECACHE_TAG_WRITEBACK
);
1352 if (bdi_cap_account_writeback(bdi
)) {
1353 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1354 __bdi_writeout_inc(bdi
);
1357 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1359 ret
= TestClearPageWriteback(page
);
1362 dec_zone_page_state(page
, NR_WRITEBACK
);
1366 int test_set_page_writeback(struct page
*page
)
1368 struct address_space
*mapping
= page_mapping(page
);
1372 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1373 unsigned long flags
;
1375 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1376 ret
= TestSetPageWriteback(page
);
1378 radix_tree_tag_set(&mapping
->page_tree
,
1380 PAGECACHE_TAG_WRITEBACK
);
1381 if (bdi_cap_account_writeback(bdi
))
1382 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1384 if (!PageDirty(page
))
1385 radix_tree_tag_clear(&mapping
->page_tree
,
1387 PAGECACHE_TAG_DIRTY
);
1388 radix_tree_tag_clear(&mapping
->page_tree
,
1390 PAGECACHE_TAG_TOWRITE
);
1391 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1393 ret
= TestSetPageWriteback(page
);
1396 account_page_writeback(page
);
1400 EXPORT_SYMBOL(test_set_page_writeback
);
1403 * Return true if any of the pages in the mapping are marked with the
1406 int mapping_tagged(struct address_space
*mapping
, int tag
)
1410 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1414 EXPORT_SYMBOL(mapping_tagged
);