[ARM] pgtable: swp pte layout documentation, definitions, and check
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / include / asm / pgtable.h
blobc1d97938f3e214906d4637b9ad72d31e6bc14c3b
1 /*
2 * arch/arm/include/asm/pgtable.h
4 * Copyright (C) 1995-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_PGTABLE_H
11 #define _ASMARM_PGTABLE_H
13 #include <asm-generic/4level-fixup.h>
14 #include <asm/proc-fns.h>
16 #ifndef CONFIG_MMU
18 #include "pgtable-nommu.h"
20 #else
22 #include <asm/memory.h>
23 #include <mach/vmalloc.h>
24 #include <asm/pgtable-hwdef.h>
27 * Just any arbitrary offset to the start of the vmalloc VM area: the
28 * current 8MB value just means that there will be a 8MB "hole" after the
29 * physical memory until the kernel virtual memory starts. That means that
30 * any out-of-bounds memory accesses will hopefully be caught.
31 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
32 * area for the same reason. ;)
34 * Note that platforms may override VMALLOC_START, but they must provide
35 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
36 * which may not overlap IO space.
38 #ifndef VMALLOC_START
39 #define VMALLOC_OFFSET (8*1024*1024)
40 #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
41 #endif
44 * Hardware-wise, we have a two level page table structure, where the first
45 * level has 4096 entries, and the second level has 256 entries. Each entry
46 * is one 32-bit word. Most of the bits in the second level entry are used
47 * by hardware, and there aren't any "accessed" and "dirty" bits.
49 * Linux on the other hand has a three level page table structure, which can
50 * be wrapped to fit a two level page table structure easily - using the PGD
51 * and PTE only. However, Linux also expects one "PTE" table per page, and
52 * at least a "dirty" bit.
54 * Therefore, we tweak the implementation slightly - we tell Linux that we
55 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
56 * hardware pointers to the second level.) The second level contains two
57 * hardware PTE tables arranged contiguously, followed by Linux versions
58 * which contain the state information Linux needs. We, therefore, end up
59 * with 512 entries in the "PTE" level.
61 * This leads to the page tables having the following layout:
63 * pgd pte
64 * | |
65 * +--------+ +0
66 * | |-----> +------------+ +0
67 * +- - - - + +4 | h/w pt 0 |
68 * | |-----> +------------+ +1024
69 * +--------+ +8 | h/w pt 1 |
70 * | | +------------+ +2048
71 * +- - - - + | Linux pt 0 |
72 * | | +------------+ +3072
73 * +--------+ | Linux pt 1 |
74 * | | +------------+ +4096
76 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
77 * PTE_xxx for definitions of bits appearing in the "h/w pt".
79 * PMD_xxx definitions refer to bits in the first level page table.
81 * The "dirty" bit is emulated by only granting hardware write permission
82 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
83 * means that a write to a clean page will cause a permission fault, and
84 * the Linux MM layer will mark the page dirty via handle_pte_fault().
85 * For the hardware to notice the permission change, the TLB entry must
86 * be flushed, and ptep_set_access_flags() does that for us.
88 * The "accessed" or "young" bit is emulated by a similar method; we only
89 * allow accesses to the page if the "young" bit is set. Accesses to the
90 * page will cause a fault, and handle_pte_fault() will set the young bit
91 * for us as long as the page is marked present in the corresponding Linux
92 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
93 * up to date.
95 * However, when the "young" bit is cleared, we deny access to the page
96 * by clearing the hardware PTE. Currently Linux does not flush the TLB
97 * for us in this case, which means the TLB will retain the transation
98 * until either the TLB entry is evicted under pressure, or a context
99 * switch which changes the user space mapping occurs.
101 #define PTRS_PER_PTE 512
102 #define PTRS_PER_PMD 1
103 #define PTRS_PER_PGD 2048
106 * PMD_SHIFT determines the size of the area a second-level page table can map
107 * PGDIR_SHIFT determines what a third-level page table entry can map
109 #define PMD_SHIFT 21
110 #define PGDIR_SHIFT 21
112 #define LIBRARY_TEXT_START 0x0c000000
114 #ifndef __ASSEMBLY__
115 extern void __pte_error(const char *file, int line, unsigned long val);
116 extern void __pmd_error(const char *file, int line, unsigned long val);
117 extern void __pgd_error(const char *file, int line, unsigned long val);
119 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
120 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
121 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
122 #endif /* !__ASSEMBLY__ */
124 #define PMD_SIZE (1UL << PMD_SHIFT)
125 #define PMD_MASK (~(PMD_SIZE-1))
126 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
127 #define PGDIR_MASK (~(PGDIR_SIZE-1))
130 * This is the lowest virtual address we can permit any user space
131 * mapping to be mapped at. This is particularly important for
132 * non-high vector CPUs.
134 #define FIRST_USER_ADDRESS PAGE_SIZE
136 #define FIRST_USER_PGD_NR 1
137 #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
140 * section address mask and size definitions.
142 #define SECTION_SHIFT 20
143 #define SECTION_SIZE (1UL << SECTION_SHIFT)
144 #define SECTION_MASK (~(SECTION_SIZE-1))
147 * ARMv6 supersection address mask and size definitions.
149 #define SUPERSECTION_SHIFT 24
150 #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
151 #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
154 * "Linux" PTE definitions.
156 * We keep two sets of PTEs - the hardware and the linux version.
157 * This allows greater flexibility in the way we map the Linux bits
158 * onto the hardware tables, and allows us to have YOUNG and DIRTY
159 * bits.
161 * The PTE table pointer refers to the hardware entries; the "Linux"
162 * entries are stored 1024 bytes below.
164 #define L_PTE_PRESENT (1 << 0)
165 #define L_PTE_FILE (1 << 1) /* only when !PRESENT */
166 #define L_PTE_YOUNG (1 << 1)
167 #define L_PTE_BUFFERABLE (1 << 2) /* obsolete, matches PTE */
168 #define L_PTE_CACHEABLE (1 << 3) /* obsolete, matches PTE */
169 #define L_PTE_DIRTY (1 << 6)
170 #define L_PTE_WRITE (1 << 7)
171 #define L_PTE_USER (1 << 8)
172 #define L_PTE_EXEC (1 << 9)
173 #define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */
176 * These are the memory types, defined to be compatible with
177 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
179 #define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */
180 #define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */
181 #define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */
182 #define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */
183 #define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */
184 #define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */
185 #define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */
186 #define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */
187 #define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */
188 #define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */
189 #define L_PTE_MT_MASK (0x0f << 2)
191 #ifndef __ASSEMBLY__
194 * The pgprot_* and protection_map entries will be fixed up in runtime
195 * to include the cachable and bufferable bits based on memory policy,
196 * as well as any architecture dependent bits like global/ASID and SMP
197 * shared mapping bits.
199 #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
201 extern pgprot_t pgprot_user;
202 extern pgprot_t pgprot_kernel;
204 #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
206 #define PAGE_NONE pgprot_user
207 #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
208 #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
209 #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
210 #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
211 #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
212 #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
213 #define PAGE_KERNEL pgprot_kernel
214 #define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
216 #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
217 #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
218 #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
219 #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
220 #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
221 #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
222 #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
224 #endif /* __ASSEMBLY__ */
227 * The table below defines the page protection levels that we insert into our
228 * Linux page table version. These get translated into the best that the
229 * architecture can perform. Note that on most ARM hardware:
230 * 1) We cannot do execute protection
231 * 2) If we could do execute protection, then read is implied
232 * 3) write implies read permissions
234 #define __P000 __PAGE_NONE
235 #define __P001 __PAGE_READONLY
236 #define __P010 __PAGE_COPY
237 #define __P011 __PAGE_COPY
238 #define __P100 __PAGE_READONLY_EXEC
239 #define __P101 __PAGE_READONLY_EXEC
240 #define __P110 __PAGE_COPY_EXEC
241 #define __P111 __PAGE_COPY_EXEC
243 #define __S000 __PAGE_NONE
244 #define __S001 __PAGE_READONLY
245 #define __S010 __PAGE_SHARED
246 #define __S011 __PAGE_SHARED
247 #define __S100 __PAGE_READONLY_EXEC
248 #define __S101 __PAGE_READONLY_EXEC
249 #define __S110 __PAGE_SHARED_EXEC
250 #define __S111 __PAGE_SHARED_EXEC
252 #ifndef __ASSEMBLY__
254 * ZERO_PAGE is a global shared page that is always zero: used
255 * for zero-mapped memory areas etc..
257 extern struct page *empty_zero_page;
258 #define ZERO_PAGE(vaddr) (empty_zero_page)
260 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
261 #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
263 #define pte_none(pte) (!pte_val(pte))
264 #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
265 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
266 #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
267 #define pte_offset_map(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
268 #define pte_offset_map_nested(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr))
269 #define pte_unmap(pte) do { } while (0)
270 #define pte_unmap_nested(pte) do { } while (0)
272 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
274 #define set_pte_at(mm,addr,ptep,pteval) do { \
275 set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \
276 } while (0)
279 * The following only work if pte_present() is true.
280 * Undefined behaviour if not..
282 #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
283 #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
284 #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
285 #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
286 #define pte_special(pte) (0)
289 * The following only works if pte_present() is not true.
291 #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
292 #define pte_to_pgoff(x) (pte_val(x) >> 2)
293 #define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
295 #define PTE_FILE_MAX_BITS 30
297 #define PTE_BIT_FUNC(fn,op) \
298 static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
300 PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
301 PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
302 PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
303 PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
304 PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
305 PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
307 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
310 * Mark the prot value as uncacheable and unbufferable.
312 #define pgprot_noncached(prot) \
313 __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_UNCACHED)
314 #define pgprot_writecombine(prot) \
315 __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_BUFFERABLE)
317 #define pmd_none(pmd) (!pmd_val(pmd))
318 #define pmd_present(pmd) (pmd_val(pmd))
319 #define pmd_bad(pmd) (pmd_val(pmd) & 2)
321 #define copy_pmd(pmdpd,pmdps) \
322 do { \
323 pmdpd[0] = pmdps[0]; \
324 pmdpd[1] = pmdps[1]; \
325 flush_pmd_entry(pmdpd); \
326 } while (0)
328 #define pmd_clear(pmdp) \
329 do { \
330 pmdp[0] = __pmd(0); \
331 pmdp[1] = __pmd(0); \
332 clean_pmd_entry(pmdp); \
333 } while (0)
335 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
337 unsigned long ptr;
339 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
340 ptr += PTRS_PER_PTE * sizeof(void *);
342 return __va(ptr);
345 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
348 * Conversion functions: convert a page and protection to a page entry,
349 * and a page entry and page directory to the page they refer to.
351 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
354 * The "pgd_xxx()" functions here are trivial for a folded two-level
355 * setup: the pgd is never bad, and a pmd always exists (as it's folded
356 * into the pgd entry)
358 #define pgd_none(pgd) (0)
359 #define pgd_bad(pgd) (0)
360 #define pgd_present(pgd) (1)
361 #define pgd_clear(pgdp) do { } while (0)
362 #define set_pgd(pgd,pgdp) do { } while (0)
364 /* to find an entry in a page-table-directory */
365 #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
367 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
369 /* to find an entry in a kernel page-table-directory */
370 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
372 /* Find an entry in the second-level page table.. */
373 #define pmd_offset(dir, addr) ((pmd_t *)(dir))
375 /* Find an entry in the third-level page table.. */
376 #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
378 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
380 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
381 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
382 return pte;
385 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
388 * Encode and decode a swap entry. Swap entries are stored in the Linux
389 * page tables as follows:
391 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
392 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
393 * <--------------- offset --------------------> <--- type --> 0 0
395 * This gives us up to 127 swap files and 32GB per swap file. Note that
396 * the offset field is always non-zero.
398 #define __SWP_TYPE_SHIFT 2
399 #define __SWP_TYPE_BITS 7
400 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
401 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
403 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
404 #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
405 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
407 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
408 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
411 * It is an error for the kernel to have more swap files than we can
412 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
413 * is increased beyond what we presently support.
415 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
417 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
418 /* FIXME: this is not correct */
419 #define kern_addr_valid(addr) (1)
421 #include <asm-generic/pgtable.h>
424 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
426 #define HAVE_ARCH_UNMAPPED_AREA
429 * remap a physical page `pfn' of size `size' with page protection `prot'
430 * into virtual address `from'
432 #define io_remap_pfn_range(vma,from,pfn,size,prot) \
433 remap_pfn_range(vma, from, pfn, size, prot)
435 #define pgtable_cache_init() do { } while (0)
437 #endif /* !__ASSEMBLY__ */
439 #endif /* CONFIG_MMU */
441 #endif /* _ASMARM_PGTABLE_H */