hwmon: (ibmpex) Initialize sysfs attributes
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / s390 / crypto / ap_bus.c
blob16e4a25596e78a03e53adc88d6170008b1ef3f2a
1 /*
2 * linux/drivers/s390/crypto/ap_bus.c
4 * Copyright (C) 2006 IBM Corporation
5 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Ralph Wuerthner <rwuerthn@de.ibm.com>
8 * Felix Beck <felix.beck@de.ibm.com>
10 * Adjunct processor bus.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #define KMSG_COMPONENT "ap"
28 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
30 #include <linux/kernel_stat.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/err.h>
35 #include <linux/interrupt.h>
36 #include <linux/workqueue.h>
37 #include <linux/slab.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/mutex.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <asm/atomic.h>
44 #include <asm/system.h>
45 #include <asm/isc.h>
46 #include <linux/hrtimer.h>
47 #include <linux/ktime.h>
49 #include "ap_bus.h"
51 /* Some prototypes. */
52 static void ap_scan_bus(struct work_struct *);
53 static void ap_poll_all(unsigned long);
54 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
55 static int ap_poll_thread_start(void);
56 static void ap_poll_thread_stop(void);
57 static void ap_request_timeout(unsigned long);
58 static inline void ap_schedule_poll_timer(void);
59 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
60 static int ap_device_remove(struct device *dev);
61 static int ap_device_probe(struct device *dev);
62 static void ap_interrupt_handler(void *unused1, void *unused2);
63 static void ap_reset(struct ap_device *ap_dev);
64 static void ap_config_timeout(unsigned long ptr);
65 static int ap_select_domain(void);
68 * Module description.
70 MODULE_AUTHOR("IBM Corporation");
71 MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
72 "Copyright 2006 IBM Corporation");
73 MODULE_LICENSE("GPL");
76 * Module parameter
78 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
79 module_param_named(domain, ap_domain_index, int, 0000);
80 MODULE_PARM_DESC(domain, "domain index for ap devices");
81 EXPORT_SYMBOL(ap_domain_index);
83 static int ap_thread_flag = 0;
84 module_param_named(poll_thread, ap_thread_flag, int, 0000);
85 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
87 static struct device *ap_root_device = NULL;
88 static DEFINE_SPINLOCK(ap_device_list_lock);
89 static LIST_HEAD(ap_device_list);
92 * Workqueue & timer for bus rescan.
94 static struct workqueue_struct *ap_work_queue;
95 static struct timer_list ap_config_timer;
96 static int ap_config_time = AP_CONFIG_TIME;
97 static DECLARE_WORK(ap_config_work, ap_scan_bus);
100 * Tasklet & timer for AP request polling and interrupts
102 static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
103 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
104 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
105 static struct task_struct *ap_poll_kthread = NULL;
106 static DEFINE_MUTEX(ap_poll_thread_mutex);
107 static DEFINE_SPINLOCK(ap_poll_timer_lock);
108 static void *ap_interrupt_indicator;
109 static struct hrtimer ap_poll_timer;
110 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
111 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
112 static unsigned long long poll_timeout = 250000;
114 /* Suspend flag */
115 static int ap_suspend_flag;
116 /* Flag to check if domain was set through module parameter domain=. This is
117 * important when supsend and resume is done in a z/VM environment where the
118 * domain might change. */
119 static int user_set_domain = 0;
120 static struct bus_type ap_bus_type;
123 * ap_using_interrupts() - Returns non-zero if interrupt support is
124 * available.
126 static inline int ap_using_interrupts(void)
128 return ap_interrupt_indicator != NULL;
132 * ap_intructions_available() - Test if AP instructions are available.
134 * Returns 0 if the AP instructions are installed.
136 static inline int ap_instructions_available(void)
138 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 register unsigned long reg1 asm ("1") = -ENODEV;
140 register unsigned long reg2 asm ("2") = 0UL;
142 asm volatile(
143 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
144 "0: la %1,0\n"
145 "1:\n"
146 EX_TABLE(0b, 1b)
147 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 return reg1;
152 * ap_interrupts_available(): Test if AP interrupts are available.
154 * Returns 1 if AP interrupts are available.
156 static int ap_interrupts_available(void)
158 return test_facility(2) && test_facility(65);
162 * ap_test_queue(): Test adjunct processor queue.
163 * @qid: The AP queue number
164 * @queue_depth: Pointer to queue depth value
165 * @device_type: Pointer to device type value
167 * Returns AP queue status structure.
169 static inline struct ap_queue_status
170 ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
172 register unsigned long reg0 asm ("0") = qid;
173 register struct ap_queue_status reg1 asm ("1");
174 register unsigned long reg2 asm ("2") = 0UL;
176 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
177 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
178 *device_type = (int) (reg2 >> 24);
179 *queue_depth = (int) (reg2 & 0xff);
180 return reg1;
184 * ap_reset_queue(): Reset adjunct processor queue.
185 * @qid: The AP queue number
187 * Returns AP queue status structure.
189 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
191 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
192 register struct ap_queue_status reg1 asm ("1");
193 register unsigned long reg2 asm ("2") = 0UL;
195 asm volatile(
196 ".long 0xb2af0000" /* PQAP(RAPQ) */
197 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
198 return reg1;
201 #ifdef CONFIG_64BIT
203 * ap_queue_interruption_control(): Enable interruption for a specific AP.
204 * @qid: The AP queue number
205 * @ind: The notification indicator byte
207 * Returns AP queue status.
209 static inline struct ap_queue_status
210 ap_queue_interruption_control(ap_qid_t qid, void *ind)
212 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
213 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
214 register struct ap_queue_status reg1_out asm ("1");
215 register void *reg2 asm ("2") = ind;
216 asm volatile(
217 ".long 0xb2af0000" /* PQAP(RAPQ) */
218 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
220 : "cc" );
221 return reg1_out;
223 #endif
225 static inline struct ap_queue_status __ap_4096_commands_available(ap_qid_t qid,
226 int *support)
228 register unsigned long reg0 asm ("0") = 0UL | qid | (1UL << 23);
229 register struct ap_queue_status reg1 asm ("1");
230 register unsigned long reg2 asm ("2") = 0UL;
232 asm volatile(
233 ".long 0xb2af0000\n"
234 "0: la %1,0\n"
235 "1:\n"
236 EX_TABLE(0b, 1b)
237 : "+d" (reg0), "=d" (reg1), "=d" (reg2)
239 : "cc");
241 if (reg2 & 0x6000000000000000ULL)
242 *support = 1;
243 else
244 *support = 0;
246 return reg1;
250 * ap_4096_commands_availablen(): Check for availability of 4096 bit RSA
251 * support.
252 * @qid: The AP queue number
254 * Returns 1 if 4096 bit RSA keys are support fo the AP, returns 0 if not.
256 int ap_4096_commands_available(ap_qid_t qid)
258 struct ap_queue_status status;
259 int i, support = 0;
260 status = __ap_4096_commands_available(qid, &support);
262 for (i = 0; i < AP_MAX_RESET; i++) {
263 switch (status.response_code) {
264 case AP_RESPONSE_NORMAL:
265 return support;
266 case AP_RESPONSE_RESET_IN_PROGRESS:
267 case AP_RESPONSE_BUSY:
268 break;
269 case AP_RESPONSE_Q_NOT_AVAIL:
270 case AP_RESPONSE_DECONFIGURED:
271 case AP_RESPONSE_CHECKSTOPPED:
272 case AP_RESPONSE_INVALID_ADDRESS:
273 return 0;
274 case AP_RESPONSE_OTHERWISE_CHANGED:
275 break;
276 default:
277 break;
279 if (i < AP_MAX_RESET - 1) {
280 udelay(5);
281 status = __ap_4096_commands_available(qid, &support);
284 return support;
286 EXPORT_SYMBOL(ap_4096_commands_available);
289 * ap_queue_enable_interruption(): Enable interruption on an AP.
290 * @qid: The AP queue number
291 * @ind: the notification indicator byte
293 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
294 * on the return value it waits a while and tests the AP queue if interrupts
295 * have been switched on using ap_test_queue().
297 static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
299 #ifdef CONFIG_64BIT
300 struct ap_queue_status status;
301 int t_depth, t_device_type, rc, i;
303 rc = -EBUSY;
304 status = ap_queue_interruption_control(qid, ind);
306 for (i = 0; i < AP_MAX_RESET; i++) {
307 switch (status.response_code) {
308 case AP_RESPONSE_NORMAL:
309 if (status.int_enabled)
310 return 0;
311 break;
312 case AP_RESPONSE_RESET_IN_PROGRESS:
313 case AP_RESPONSE_BUSY:
314 break;
315 case AP_RESPONSE_Q_NOT_AVAIL:
316 case AP_RESPONSE_DECONFIGURED:
317 case AP_RESPONSE_CHECKSTOPPED:
318 case AP_RESPONSE_INVALID_ADDRESS:
319 return -ENODEV;
320 case AP_RESPONSE_OTHERWISE_CHANGED:
321 if (status.int_enabled)
322 return 0;
323 break;
324 default:
325 break;
327 if (i < AP_MAX_RESET - 1) {
328 udelay(5);
329 status = ap_test_queue(qid, &t_depth, &t_device_type);
332 return rc;
333 #else
334 return -EINVAL;
335 #endif
339 * __ap_send(): Send message to adjunct processor queue.
340 * @qid: The AP queue number
341 * @psmid: The program supplied message identifier
342 * @msg: The message text
343 * @length: The message length
344 * @special: Special Bit
346 * Returns AP queue status structure.
347 * Condition code 1 on NQAP can't happen because the L bit is 1.
348 * Condition code 2 on NQAP also means the send is incomplete,
349 * because a segment boundary was reached. The NQAP is repeated.
351 static inline struct ap_queue_status
352 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
353 unsigned int special)
355 typedef struct { char _[length]; } msgblock;
356 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
357 register struct ap_queue_status reg1 asm ("1");
358 register unsigned long reg2 asm ("2") = (unsigned long) msg;
359 register unsigned long reg3 asm ("3") = (unsigned long) length;
360 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
361 register unsigned long reg5 asm ("5") = (unsigned int) psmid;
363 if (special == 1)
364 reg0 |= 0x400000UL;
366 asm volatile (
367 "0: .long 0xb2ad0042\n" /* DQAP */
368 " brc 2,0b"
369 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
370 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
371 : "cc" );
372 return reg1;
375 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
377 struct ap_queue_status status;
379 status = __ap_send(qid, psmid, msg, length, 0);
380 switch (status.response_code) {
381 case AP_RESPONSE_NORMAL:
382 return 0;
383 case AP_RESPONSE_Q_FULL:
384 case AP_RESPONSE_RESET_IN_PROGRESS:
385 return -EBUSY;
386 case AP_RESPONSE_REQ_FAC_NOT_INST:
387 return -EINVAL;
388 default: /* Device is gone. */
389 return -ENODEV;
392 EXPORT_SYMBOL(ap_send);
395 * __ap_recv(): Receive message from adjunct processor queue.
396 * @qid: The AP queue number
397 * @psmid: Pointer to program supplied message identifier
398 * @msg: The message text
399 * @length: The message length
401 * Returns AP queue status structure.
402 * Condition code 1 on DQAP means the receive has taken place
403 * but only partially. The response is incomplete, hence the
404 * DQAP is repeated.
405 * Condition code 2 on DQAP also means the receive is incomplete,
406 * this time because a segment boundary was reached. Again, the
407 * DQAP is repeated.
408 * Note that gpr2 is used by the DQAP instruction to keep track of
409 * any 'residual' length, in case the instruction gets interrupted.
410 * Hence it gets zeroed before the instruction.
412 static inline struct ap_queue_status
413 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
415 typedef struct { char _[length]; } msgblock;
416 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
417 register struct ap_queue_status reg1 asm ("1");
418 register unsigned long reg2 asm("2") = 0UL;
419 register unsigned long reg4 asm("4") = (unsigned long) msg;
420 register unsigned long reg5 asm("5") = (unsigned long) length;
421 register unsigned long reg6 asm("6") = 0UL;
422 register unsigned long reg7 asm("7") = 0UL;
425 asm volatile(
426 "0: .long 0xb2ae0064\n"
427 " brc 6,0b\n"
428 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
429 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
430 "=m" (*(msgblock *) msg) : : "cc" );
431 *psmid = (((unsigned long long) reg6) << 32) + reg7;
432 return reg1;
435 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
437 struct ap_queue_status status;
439 status = __ap_recv(qid, psmid, msg, length);
440 switch (status.response_code) {
441 case AP_RESPONSE_NORMAL:
442 return 0;
443 case AP_RESPONSE_NO_PENDING_REPLY:
444 if (status.queue_empty)
445 return -ENOENT;
446 return -EBUSY;
447 case AP_RESPONSE_RESET_IN_PROGRESS:
448 return -EBUSY;
449 default:
450 return -ENODEV;
453 EXPORT_SYMBOL(ap_recv);
456 * ap_query_queue(): Check if an AP queue is available.
457 * @qid: The AP queue number
458 * @queue_depth: Pointer to queue depth value
459 * @device_type: Pointer to device type value
461 * The test is repeated for AP_MAX_RESET times.
463 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
465 struct ap_queue_status status;
466 int t_depth, t_device_type, rc, i;
468 rc = -EBUSY;
469 for (i = 0; i < AP_MAX_RESET; i++) {
470 status = ap_test_queue(qid, &t_depth, &t_device_type);
471 switch (status.response_code) {
472 case AP_RESPONSE_NORMAL:
473 *queue_depth = t_depth + 1;
474 *device_type = t_device_type;
475 rc = 0;
476 break;
477 case AP_RESPONSE_Q_NOT_AVAIL:
478 rc = -ENODEV;
479 break;
480 case AP_RESPONSE_RESET_IN_PROGRESS:
481 break;
482 case AP_RESPONSE_DECONFIGURED:
483 rc = -ENODEV;
484 break;
485 case AP_RESPONSE_CHECKSTOPPED:
486 rc = -ENODEV;
487 break;
488 case AP_RESPONSE_INVALID_ADDRESS:
489 rc = -ENODEV;
490 break;
491 case AP_RESPONSE_OTHERWISE_CHANGED:
492 break;
493 case AP_RESPONSE_BUSY:
494 break;
495 default:
496 BUG();
498 if (rc != -EBUSY)
499 break;
500 if (i < AP_MAX_RESET - 1)
501 udelay(5);
503 return rc;
507 * ap_init_queue(): Reset an AP queue.
508 * @qid: The AP queue number
510 * Reset an AP queue and wait for it to become available again.
512 static int ap_init_queue(ap_qid_t qid)
514 struct ap_queue_status status;
515 int rc, dummy, i;
517 rc = -ENODEV;
518 status = ap_reset_queue(qid);
519 for (i = 0; i < AP_MAX_RESET; i++) {
520 switch (status.response_code) {
521 case AP_RESPONSE_NORMAL:
522 if (status.queue_empty)
523 rc = 0;
524 break;
525 case AP_RESPONSE_Q_NOT_AVAIL:
526 case AP_RESPONSE_DECONFIGURED:
527 case AP_RESPONSE_CHECKSTOPPED:
528 i = AP_MAX_RESET; /* return with -ENODEV */
529 break;
530 case AP_RESPONSE_RESET_IN_PROGRESS:
531 rc = -EBUSY;
532 case AP_RESPONSE_BUSY:
533 default:
534 break;
536 if (rc != -ENODEV && rc != -EBUSY)
537 break;
538 if (i < AP_MAX_RESET - 1) {
539 udelay(5);
540 status = ap_test_queue(qid, &dummy, &dummy);
543 if (rc == 0 && ap_using_interrupts()) {
544 rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
545 /* If interruption mode is supported by the machine,
546 * but an AP can not be enabled for interruption then
547 * the AP will be discarded. */
548 if (rc)
549 pr_err("Registering adapter interrupts for "
550 "AP %d failed\n", AP_QID_DEVICE(qid));
552 return rc;
556 * ap_increase_queue_count(): Arm request timeout.
557 * @ap_dev: Pointer to an AP device.
559 * Arm request timeout if an AP device was idle and a new request is submitted.
561 static void ap_increase_queue_count(struct ap_device *ap_dev)
563 int timeout = ap_dev->drv->request_timeout;
565 ap_dev->queue_count++;
566 if (ap_dev->queue_count == 1) {
567 mod_timer(&ap_dev->timeout, jiffies + timeout);
568 ap_dev->reset = AP_RESET_ARMED;
573 * ap_decrease_queue_count(): Decrease queue count.
574 * @ap_dev: Pointer to an AP device.
576 * If AP device is still alive, re-schedule request timeout if there are still
577 * pending requests.
579 static void ap_decrease_queue_count(struct ap_device *ap_dev)
581 int timeout = ap_dev->drv->request_timeout;
583 ap_dev->queue_count--;
584 if (ap_dev->queue_count > 0)
585 mod_timer(&ap_dev->timeout, jiffies + timeout);
586 else
588 * The timeout timer should to be disabled now - since
589 * del_timer_sync() is very expensive, we just tell via the
590 * reset flag to ignore the pending timeout timer.
592 ap_dev->reset = AP_RESET_IGNORE;
596 * AP device related attributes.
598 static ssize_t ap_hwtype_show(struct device *dev,
599 struct device_attribute *attr, char *buf)
601 struct ap_device *ap_dev = to_ap_dev(dev);
602 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
605 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
606 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
607 char *buf)
609 struct ap_device *ap_dev = to_ap_dev(dev);
610 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
613 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
614 static ssize_t ap_request_count_show(struct device *dev,
615 struct device_attribute *attr,
616 char *buf)
618 struct ap_device *ap_dev = to_ap_dev(dev);
619 int rc;
621 spin_lock_bh(&ap_dev->lock);
622 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
623 spin_unlock_bh(&ap_dev->lock);
624 return rc;
627 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
629 static ssize_t ap_modalias_show(struct device *dev,
630 struct device_attribute *attr, char *buf)
632 return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
635 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
637 static struct attribute *ap_dev_attrs[] = {
638 &dev_attr_hwtype.attr,
639 &dev_attr_depth.attr,
640 &dev_attr_request_count.attr,
641 &dev_attr_modalias.attr,
642 NULL
644 static struct attribute_group ap_dev_attr_group = {
645 .attrs = ap_dev_attrs
649 * ap_bus_match()
650 * @dev: Pointer to device
651 * @drv: Pointer to device_driver
653 * AP bus driver registration/unregistration.
655 static int ap_bus_match(struct device *dev, struct device_driver *drv)
657 struct ap_device *ap_dev = to_ap_dev(dev);
658 struct ap_driver *ap_drv = to_ap_drv(drv);
659 struct ap_device_id *id;
662 * Compare device type of the device with the list of
663 * supported types of the device_driver.
665 for (id = ap_drv->ids; id->match_flags; id++) {
666 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
667 (id->dev_type != ap_dev->device_type))
668 continue;
669 return 1;
671 return 0;
675 * ap_uevent(): Uevent function for AP devices.
676 * @dev: Pointer to device
677 * @env: Pointer to kobj_uevent_env
679 * It sets up a single environment variable DEV_TYPE which contains the
680 * hardware device type.
682 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
684 struct ap_device *ap_dev = to_ap_dev(dev);
685 int retval = 0;
687 if (!ap_dev)
688 return -ENODEV;
690 /* Set up DEV_TYPE environment variable. */
691 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
692 if (retval)
693 return retval;
695 /* Add MODALIAS= */
696 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
698 return retval;
701 static int ap_bus_suspend(struct device *dev, pm_message_t state)
703 struct ap_device *ap_dev = to_ap_dev(dev);
704 unsigned long flags;
706 if (!ap_suspend_flag) {
707 ap_suspend_flag = 1;
709 /* Disable scanning for devices, thus we do not want to scan
710 * for them after removing.
712 del_timer_sync(&ap_config_timer);
713 if (ap_work_queue != NULL) {
714 destroy_workqueue(ap_work_queue);
715 ap_work_queue = NULL;
718 tasklet_disable(&ap_tasklet);
720 /* Poll on the device until all requests are finished. */
721 do {
722 flags = 0;
723 spin_lock_bh(&ap_dev->lock);
724 __ap_poll_device(ap_dev, &flags);
725 spin_unlock_bh(&ap_dev->lock);
726 } while ((flags & 1) || (flags & 2));
728 spin_lock_bh(&ap_dev->lock);
729 ap_dev->unregistered = 1;
730 spin_unlock_bh(&ap_dev->lock);
732 return 0;
735 static int ap_bus_resume(struct device *dev)
737 int rc = 0;
738 struct ap_device *ap_dev = to_ap_dev(dev);
740 if (ap_suspend_flag) {
741 ap_suspend_flag = 0;
742 if (!ap_interrupts_available())
743 ap_interrupt_indicator = NULL;
744 if (!user_set_domain) {
745 ap_domain_index = -1;
746 ap_select_domain();
748 init_timer(&ap_config_timer);
749 ap_config_timer.function = ap_config_timeout;
750 ap_config_timer.data = 0;
751 ap_config_timer.expires = jiffies + ap_config_time * HZ;
752 add_timer(&ap_config_timer);
753 ap_work_queue = create_singlethread_workqueue("kapwork");
754 if (!ap_work_queue)
755 return -ENOMEM;
756 tasklet_enable(&ap_tasklet);
757 if (!ap_using_interrupts())
758 ap_schedule_poll_timer();
759 else
760 tasklet_schedule(&ap_tasklet);
761 if (ap_thread_flag)
762 rc = ap_poll_thread_start();
764 if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
765 spin_lock_bh(&ap_dev->lock);
766 ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
767 ap_domain_index);
768 spin_unlock_bh(&ap_dev->lock);
770 queue_work(ap_work_queue, &ap_config_work);
772 return rc;
775 static struct bus_type ap_bus_type = {
776 .name = "ap",
777 .match = &ap_bus_match,
778 .uevent = &ap_uevent,
779 .suspend = ap_bus_suspend,
780 .resume = ap_bus_resume
783 static int ap_device_probe(struct device *dev)
785 struct ap_device *ap_dev = to_ap_dev(dev);
786 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
787 int rc;
789 ap_dev->drv = ap_drv;
790 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
791 if (!rc) {
792 spin_lock_bh(&ap_device_list_lock);
793 list_add(&ap_dev->list, &ap_device_list);
794 spin_unlock_bh(&ap_device_list_lock);
796 return rc;
800 * __ap_flush_queue(): Flush requests.
801 * @ap_dev: Pointer to the AP device
803 * Flush all requests from the request/pending queue of an AP device.
805 static void __ap_flush_queue(struct ap_device *ap_dev)
807 struct ap_message *ap_msg, *next;
809 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
810 list_del_init(&ap_msg->list);
811 ap_dev->pendingq_count--;
812 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
814 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
815 list_del_init(&ap_msg->list);
816 ap_dev->requestq_count--;
817 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
821 void ap_flush_queue(struct ap_device *ap_dev)
823 spin_lock_bh(&ap_dev->lock);
824 __ap_flush_queue(ap_dev);
825 spin_unlock_bh(&ap_dev->lock);
827 EXPORT_SYMBOL(ap_flush_queue);
829 static int ap_device_remove(struct device *dev)
831 struct ap_device *ap_dev = to_ap_dev(dev);
832 struct ap_driver *ap_drv = ap_dev->drv;
834 ap_flush_queue(ap_dev);
835 del_timer_sync(&ap_dev->timeout);
836 spin_lock_bh(&ap_device_list_lock);
837 list_del_init(&ap_dev->list);
838 spin_unlock_bh(&ap_device_list_lock);
839 if (ap_drv->remove)
840 ap_drv->remove(ap_dev);
841 spin_lock_bh(&ap_dev->lock);
842 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
843 spin_unlock_bh(&ap_dev->lock);
844 return 0;
847 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
848 char *name)
850 struct device_driver *drv = &ap_drv->driver;
852 drv->bus = &ap_bus_type;
853 drv->probe = ap_device_probe;
854 drv->remove = ap_device_remove;
855 drv->owner = owner;
856 drv->name = name;
857 return driver_register(drv);
859 EXPORT_SYMBOL(ap_driver_register);
861 void ap_driver_unregister(struct ap_driver *ap_drv)
863 driver_unregister(&ap_drv->driver);
865 EXPORT_SYMBOL(ap_driver_unregister);
868 * AP bus attributes.
870 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
872 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
875 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
877 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
879 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
882 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
884 return snprintf(buf, PAGE_SIZE, "%d\n",
885 ap_using_interrupts() ? 1 : 0);
888 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
890 static ssize_t ap_config_time_store(struct bus_type *bus,
891 const char *buf, size_t count)
893 int time;
895 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
896 return -EINVAL;
897 ap_config_time = time;
898 if (!timer_pending(&ap_config_timer) ||
899 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
900 ap_config_timer.expires = jiffies + ap_config_time * HZ;
901 add_timer(&ap_config_timer);
903 return count;
906 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
908 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
910 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
913 static ssize_t ap_poll_thread_store(struct bus_type *bus,
914 const char *buf, size_t count)
916 int flag, rc;
918 if (sscanf(buf, "%d\n", &flag) != 1)
919 return -EINVAL;
920 if (flag) {
921 rc = ap_poll_thread_start();
922 if (rc)
923 return rc;
925 else
926 ap_poll_thread_stop();
927 return count;
930 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
932 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
934 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
937 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
938 size_t count)
940 unsigned long long time;
941 ktime_t hr_time;
943 /* 120 seconds = maximum poll interval */
944 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
945 time > 120000000000ULL)
946 return -EINVAL;
947 poll_timeout = time;
948 hr_time = ktime_set(0, poll_timeout);
950 if (!hrtimer_is_queued(&ap_poll_timer) ||
951 !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
952 hrtimer_set_expires(&ap_poll_timer, hr_time);
953 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
955 return count;
958 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
960 static struct bus_attribute *const ap_bus_attrs[] = {
961 &bus_attr_ap_domain,
962 &bus_attr_config_time,
963 &bus_attr_poll_thread,
964 &bus_attr_ap_interrupts,
965 &bus_attr_poll_timeout,
966 NULL,
970 * ap_select_domain(): Select an AP domain.
972 * Pick one of the 16 AP domains.
974 static int ap_select_domain(void)
976 int queue_depth, device_type, count, max_count, best_domain;
977 int rc, i, j;
980 * We want to use a single domain. Either the one specified with
981 * the "domain=" parameter or the domain with the maximum number
982 * of devices.
984 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
985 /* Domain has already been selected. */
986 return 0;
987 best_domain = -1;
988 max_count = 0;
989 for (i = 0; i < AP_DOMAINS; i++) {
990 count = 0;
991 for (j = 0; j < AP_DEVICES; j++) {
992 ap_qid_t qid = AP_MKQID(j, i);
993 rc = ap_query_queue(qid, &queue_depth, &device_type);
994 if (rc)
995 continue;
996 count++;
998 if (count > max_count) {
999 max_count = count;
1000 best_domain = i;
1003 if (best_domain >= 0){
1004 ap_domain_index = best_domain;
1005 return 0;
1007 return -ENODEV;
1011 * ap_probe_device_type(): Find the device type of an AP.
1012 * @ap_dev: pointer to the AP device.
1014 * Find the device type if query queue returned a device type of 0.
1016 static int ap_probe_device_type(struct ap_device *ap_dev)
1018 static unsigned char msg[] = {
1019 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
1020 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1021 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
1022 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1023 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
1024 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
1025 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
1026 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
1027 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1028 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
1029 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1030 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
1031 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
1032 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1033 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
1034 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1035 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1036 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1037 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1038 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1039 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1040 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
1041 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1042 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
1043 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
1044 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
1045 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
1046 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1047 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
1048 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
1049 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
1050 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
1051 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1052 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
1053 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
1054 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
1055 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
1056 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
1057 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
1058 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
1059 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
1060 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
1061 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
1062 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
1063 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
1065 struct ap_queue_status status;
1066 unsigned long long psmid;
1067 char *reply;
1068 int rc, i;
1070 reply = (void *) get_zeroed_page(GFP_KERNEL);
1071 if (!reply) {
1072 rc = -ENOMEM;
1073 goto out;
1076 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
1077 msg, sizeof(msg), 0);
1078 if (status.response_code != AP_RESPONSE_NORMAL) {
1079 rc = -ENODEV;
1080 goto out_free;
1083 /* Wait for the test message to complete. */
1084 for (i = 0; i < 6; i++) {
1085 mdelay(300);
1086 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
1087 if (status.response_code == AP_RESPONSE_NORMAL &&
1088 psmid == 0x0102030405060708ULL)
1089 break;
1091 if (i < 6) {
1092 /* Got an answer. */
1093 if (reply[0] == 0x00 && reply[1] == 0x86)
1094 ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
1095 else
1096 ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
1097 rc = 0;
1098 } else
1099 rc = -ENODEV;
1101 out_free:
1102 free_page((unsigned long) reply);
1103 out:
1104 return rc;
1107 static void ap_interrupt_handler(void *unused1, void *unused2)
1109 kstat_cpu(smp_processor_id()).irqs[IOINT_APB]++;
1110 tasklet_schedule(&ap_tasklet);
1114 * __ap_scan_bus(): Scan the AP bus.
1115 * @dev: Pointer to device
1116 * @data: Pointer to data
1118 * Scan the AP bus for new devices.
1120 static int __ap_scan_bus(struct device *dev, void *data)
1122 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1125 static void ap_device_release(struct device *dev)
1127 struct ap_device *ap_dev = to_ap_dev(dev);
1129 kfree(ap_dev);
1132 static void ap_scan_bus(struct work_struct *unused)
1134 struct ap_device *ap_dev;
1135 struct device *dev;
1136 ap_qid_t qid;
1137 int queue_depth, device_type;
1138 int rc, i;
1140 if (ap_select_domain() != 0)
1141 return;
1142 for (i = 0; i < AP_DEVICES; i++) {
1143 qid = AP_MKQID(i, ap_domain_index);
1144 dev = bus_find_device(&ap_bus_type, NULL,
1145 (void *)(unsigned long)qid,
1146 __ap_scan_bus);
1147 rc = ap_query_queue(qid, &queue_depth, &device_type);
1148 if (dev) {
1149 if (rc == -EBUSY) {
1150 set_current_state(TASK_UNINTERRUPTIBLE);
1151 schedule_timeout(AP_RESET_TIMEOUT);
1152 rc = ap_query_queue(qid, &queue_depth,
1153 &device_type);
1155 ap_dev = to_ap_dev(dev);
1156 spin_lock_bh(&ap_dev->lock);
1157 if (rc || ap_dev->unregistered) {
1158 spin_unlock_bh(&ap_dev->lock);
1159 if (ap_dev->unregistered)
1160 i--;
1161 device_unregister(dev);
1162 put_device(dev);
1163 continue;
1165 spin_unlock_bh(&ap_dev->lock);
1166 put_device(dev);
1167 continue;
1169 if (rc)
1170 continue;
1171 rc = ap_init_queue(qid);
1172 if (rc)
1173 continue;
1174 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1175 if (!ap_dev)
1176 break;
1177 ap_dev->qid = qid;
1178 ap_dev->queue_depth = queue_depth;
1179 ap_dev->unregistered = 1;
1180 spin_lock_init(&ap_dev->lock);
1181 INIT_LIST_HEAD(&ap_dev->pendingq);
1182 INIT_LIST_HEAD(&ap_dev->requestq);
1183 INIT_LIST_HEAD(&ap_dev->list);
1184 setup_timer(&ap_dev->timeout, ap_request_timeout,
1185 (unsigned long) ap_dev);
1186 if (device_type == 0) {
1187 if (ap_probe_device_type(ap_dev)) {
1188 kfree(ap_dev);
1189 continue;
1192 else
1193 ap_dev->device_type = device_type;
1195 ap_dev->device.bus = &ap_bus_type;
1196 ap_dev->device.parent = ap_root_device;
1197 if (dev_set_name(&ap_dev->device, "card%02x",
1198 AP_QID_DEVICE(ap_dev->qid))) {
1199 kfree(ap_dev);
1200 continue;
1202 ap_dev->device.release = ap_device_release;
1203 rc = device_register(&ap_dev->device);
1204 if (rc) {
1205 put_device(&ap_dev->device);
1206 continue;
1208 /* Add device attributes. */
1209 rc = sysfs_create_group(&ap_dev->device.kobj,
1210 &ap_dev_attr_group);
1211 if (!rc) {
1212 spin_lock_bh(&ap_dev->lock);
1213 ap_dev->unregistered = 0;
1214 spin_unlock_bh(&ap_dev->lock);
1216 else
1217 device_unregister(&ap_dev->device);
1221 static void
1222 ap_config_timeout(unsigned long ptr)
1224 queue_work(ap_work_queue, &ap_config_work);
1225 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1226 add_timer(&ap_config_timer);
1230 * ap_schedule_poll_timer(): Schedule poll timer.
1232 * Set up the timer to run the poll tasklet
1234 static inline void ap_schedule_poll_timer(void)
1236 ktime_t hr_time;
1238 spin_lock_bh(&ap_poll_timer_lock);
1239 if (ap_using_interrupts() || ap_suspend_flag)
1240 goto out;
1241 if (hrtimer_is_queued(&ap_poll_timer))
1242 goto out;
1243 if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
1244 hr_time = ktime_set(0, poll_timeout);
1245 hrtimer_forward_now(&ap_poll_timer, hr_time);
1246 hrtimer_restart(&ap_poll_timer);
1248 out:
1249 spin_unlock_bh(&ap_poll_timer_lock);
1253 * ap_poll_read(): Receive pending reply messages from an AP device.
1254 * @ap_dev: pointer to the AP device
1255 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1256 * required, bit 2^1 is set if the poll timer needs to get armed
1258 * Returns 0 if the device is still present, -ENODEV if not.
1260 static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
1262 struct ap_queue_status status;
1263 struct ap_message *ap_msg;
1265 if (ap_dev->queue_count <= 0)
1266 return 0;
1267 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
1268 ap_dev->reply->message, ap_dev->reply->length);
1269 switch (status.response_code) {
1270 case AP_RESPONSE_NORMAL:
1271 atomic_dec(&ap_poll_requests);
1272 ap_decrease_queue_count(ap_dev);
1273 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
1274 if (ap_msg->psmid != ap_dev->reply->psmid)
1275 continue;
1276 list_del_init(&ap_msg->list);
1277 ap_dev->pendingq_count--;
1278 ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
1279 break;
1281 if (ap_dev->queue_count > 0)
1282 *flags |= 1;
1283 break;
1284 case AP_RESPONSE_NO_PENDING_REPLY:
1285 if (status.queue_empty) {
1286 /* The card shouldn't forget requests but who knows. */
1287 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1288 ap_dev->queue_count = 0;
1289 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1290 ap_dev->requestq_count += ap_dev->pendingq_count;
1291 ap_dev->pendingq_count = 0;
1292 } else
1293 *flags |= 2;
1294 break;
1295 default:
1296 return -ENODEV;
1298 return 0;
1302 * ap_poll_write(): Send messages from the request queue to an AP device.
1303 * @ap_dev: pointer to the AP device
1304 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1305 * required, bit 2^1 is set if the poll timer needs to get armed
1307 * Returns 0 if the device is still present, -ENODEV if not.
1309 static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
1311 struct ap_queue_status status;
1312 struct ap_message *ap_msg;
1314 if (ap_dev->requestq_count <= 0 ||
1315 ap_dev->queue_count >= ap_dev->queue_depth)
1316 return 0;
1317 /* Start the next request on the queue. */
1318 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
1319 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1320 ap_msg->message, ap_msg->length, ap_msg->special);
1321 switch (status.response_code) {
1322 case AP_RESPONSE_NORMAL:
1323 atomic_inc(&ap_poll_requests);
1324 ap_increase_queue_count(ap_dev);
1325 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
1326 ap_dev->requestq_count--;
1327 ap_dev->pendingq_count++;
1328 if (ap_dev->queue_count < ap_dev->queue_depth &&
1329 ap_dev->requestq_count > 0)
1330 *flags |= 1;
1331 *flags |= 2;
1332 break;
1333 case AP_RESPONSE_Q_FULL:
1334 case AP_RESPONSE_RESET_IN_PROGRESS:
1335 *flags |= 2;
1336 break;
1337 case AP_RESPONSE_MESSAGE_TOO_BIG:
1338 case AP_RESPONSE_REQ_FAC_NOT_INST:
1339 return -EINVAL;
1340 default:
1341 return -ENODEV;
1343 return 0;
1347 * ap_poll_queue(): Poll AP device for pending replies and send new messages.
1348 * @ap_dev: pointer to the bus device
1349 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1350 * required, bit 2^1 is set if the poll timer needs to get armed
1352 * Poll AP device for pending replies and send new messages. If either
1353 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
1354 * Returns 0.
1356 static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
1358 int rc;
1360 rc = ap_poll_read(ap_dev, flags);
1361 if (rc)
1362 return rc;
1363 return ap_poll_write(ap_dev, flags);
1367 * __ap_queue_message(): Queue a message to a device.
1368 * @ap_dev: pointer to the AP device
1369 * @ap_msg: the message to be queued
1371 * Queue a message to a device. Returns 0 if successful.
1373 static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1375 struct ap_queue_status status;
1377 if (list_empty(&ap_dev->requestq) &&
1378 ap_dev->queue_count < ap_dev->queue_depth) {
1379 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1380 ap_msg->message, ap_msg->length,
1381 ap_msg->special);
1382 switch (status.response_code) {
1383 case AP_RESPONSE_NORMAL:
1384 list_add_tail(&ap_msg->list, &ap_dev->pendingq);
1385 atomic_inc(&ap_poll_requests);
1386 ap_dev->pendingq_count++;
1387 ap_increase_queue_count(ap_dev);
1388 ap_dev->total_request_count++;
1389 break;
1390 case AP_RESPONSE_Q_FULL:
1391 case AP_RESPONSE_RESET_IN_PROGRESS:
1392 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1393 ap_dev->requestq_count++;
1394 ap_dev->total_request_count++;
1395 return -EBUSY;
1396 case AP_RESPONSE_REQ_FAC_NOT_INST:
1397 case AP_RESPONSE_MESSAGE_TOO_BIG:
1398 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
1399 return -EINVAL;
1400 default: /* Device is gone. */
1401 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1402 return -ENODEV;
1404 } else {
1405 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1406 ap_dev->requestq_count++;
1407 ap_dev->total_request_count++;
1408 return -EBUSY;
1410 ap_schedule_poll_timer();
1411 return 0;
1414 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1416 unsigned long flags;
1417 int rc;
1419 spin_lock_bh(&ap_dev->lock);
1420 if (!ap_dev->unregistered) {
1421 /* Make room on the queue by polling for finished requests. */
1422 rc = ap_poll_queue(ap_dev, &flags);
1423 if (!rc)
1424 rc = __ap_queue_message(ap_dev, ap_msg);
1425 if (!rc)
1426 wake_up(&ap_poll_wait);
1427 if (rc == -ENODEV)
1428 ap_dev->unregistered = 1;
1429 } else {
1430 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1431 rc = -ENODEV;
1433 spin_unlock_bh(&ap_dev->lock);
1434 if (rc == -ENODEV)
1435 device_unregister(&ap_dev->device);
1437 EXPORT_SYMBOL(ap_queue_message);
1440 * ap_cancel_message(): Cancel a crypto request.
1441 * @ap_dev: The AP device that has the message queued
1442 * @ap_msg: The message that is to be removed
1444 * Cancel a crypto request. This is done by removing the request
1445 * from the device pending or request queue. Note that the
1446 * request stays on the AP queue. When it finishes the message
1447 * reply will be discarded because the psmid can't be found.
1449 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1451 struct ap_message *tmp;
1453 spin_lock_bh(&ap_dev->lock);
1454 if (!list_empty(&ap_msg->list)) {
1455 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1456 if (tmp->psmid == ap_msg->psmid) {
1457 ap_dev->pendingq_count--;
1458 goto found;
1460 ap_dev->requestq_count--;
1461 found:
1462 list_del_init(&ap_msg->list);
1464 spin_unlock_bh(&ap_dev->lock);
1466 EXPORT_SYMBOL(ap_cancel_message);
1469 * ap_poll_timeout(): AP receive polling for finished AP requests.
1470 * @unused: Unused pointer.
1472 * Schedules the AP tasklet using a high resolution timer.
1474 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
1476 tasklet_schedule(&ap_tasklet);
1477 return HRTIMER_NORESTART;
1481 * ap_reset(): Reset a not responding AP device.
1482 * @ap_dev: Pointer to the AP device
1484 * Reset a not responding AP device and move all requests from the
1485 * pending queue to the request queue.
1487 static void ap_reset(struct ap_device *ap_dev)
1489 int rc;
1491 ap_dev->reset = AP_RESET_IGNORE;
1492 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1493 ap_dev->queue_count = 0;
1494 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1495 ap_dev->requestq_count += ap_dev->pendingq_count;
1496 ap_dev->pendingq_count = 0;
1497 rc = ap_init_queue(ap_dev->qid);
1498 if (rc == -ENODEV)
1499 ap_dev->unregistered = 1;
1502 static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
1504 if (!ap_dev->unregistered) {
1505 if (ap_poll_queue(ap_dev, flags))
1506 ap_dev->unregistered = 1;
1507 if (ap_dev->reset == AP_RESET_DO)
1508 ap_reset(ap_dev);
1510 return 0;
1514 * ap_poll_all(): Poll all AP devices.
1515 * @dummy: Unused variable
1517 * Poll all AP devices on the bus in a round robin fashion. Continue
1518 * polling until bit 2^0 of the control flags is not set. If bit 2^1
1519 * of the control flags has been set arm the poll timer.
1521 static void ap_poll_all(unsigned long dummy)
1523 unsigned long flags;
1524 struct ap_device *ap_dev;
1526 /* Reset the indicator if interrupts are used. Thus new interrupts can
1527 * be received. Doing it in the beginning of the tasklet is therefor
1528 * important that no requests on any AP get lost.
1530 if (ap_using_interrupts())
1531 xchg((u8 *)ap_interrupt_indicator, 0);
1532 do {
1533 flags = 0;
1534 spin_lock(&ap_device_list_lock);
1535 list_for_each_entry(ap_dev, &ap_device_list, list) {
1536 spin_lock(&ap_dev->lock);
1537 __ap_poll_device(ap_dev, &flags);
1538 spin_unlock(&ap_dev->lock);
1540 spin_unlock(&ap_device_list_lock);
1541 } while (flags & 1);
1542 if (flags & 2)
1543 ap_schedule_poll_timer();
1547 * ap_poll_thread(): Thread that polls for finished requests.
1548 * @data: Unused pointer
1550 * AP bus poll thread. The purpose of this thread is to poll for
1551 * finished requests in a loop if there is a "free" cpu - that is
1552 * a cpu that doesn't have anything better to do. The polling stops
1553 * as soon as there is another task or if all messages have been
1554 * delivered.
1556 static int ap_poll_thread(void *data)
1558 DECLARE_WAITQUEUE(wait, current);
1559 unsigned long flags;
1560 int requests;
1561 struct ap_device *ap_dev;
1563 set_user_nice(current, 19);
1564 while (1) {
1565 if (ap_suspend_flag)
1566 return 0;
1567 if (need_resched()) {
1568 schedule();
1569 continue;
1571 add_wait_queue(&ap_poll_wait, &wait);
1572 set_current_state(TASK_INTERRUPTIBLE);
1573 if (kthread_should_stop())
1574 break;
1575 requests = atomic_read(&ap_poll_requests);
1576 if (requests <= 0)
1577 schedule();
1578 set_current_state(TASK_RUNNING);
1579 remove_wait_queue(&ap_poll_wait, &wait);
1581 flags = 0;
1582 spin_lock_bh(&ap_device_list_lock);
1583 list_for_each_entry(ap_dev, &ap_device_list, list) {
1584 spin_lock(&ap_dev->lock);
1585 __ap_poll_device(ap_dev, &flags);
1586 spin_unlock(&ap_dev->lock);
1588 spin_unlock_bh(&ap_device_list_lock);
1590 set_current_state(TASK_RUNNING);
1591 remove_wait_queue(&ap_poll_wait, &wait);
1592 return 0;
1595 static int ap_poll_thread_start(void)
1597 int rc;
1599 if (ap_using_interrupts() || ap_suspend_flag)
1600 return 0;
1601 mutex_lock(&ap_poll_thread_mutex);
1602 if (!ap_poll_kthread) {
1603 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1604 rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
1605 if (rc)
1606 ap_poll_kthread = NULL;
1608 else
1609 rc = 0;
1610 mutex_unlock(&ap_poll_thread_mutex);
1611 return rc;
1614 static void ap_poll_thread_stop(void)
1616 mutex_lock(&ap_poll_thread_mutex);
1617 if (ap_poll_kthread) {
1618 kthread_stop(ap_poll_kthread);
1619 ap_poll_kthread = NULL;
1621 mutex_unlock(&ap_poll_thread_mutex);
1625 * ap_request_timeout(): Handling of request timeouts
1626 * @data: Holds the AP device.
1628 * Handles request timeouts.
1630 static void ap_request_timeout(unsigned long data)
1632 struct ap_device *ap_dev = (struct ap_device *) data;
1634 if (ap_dev->reset == AP_RESET_ARMED) {
1635 ap_dev->reset = AP_RESET_DO;
1637 if (ap_using_interrupts())
1638 tasklet_schedule(&ap_tasklet);
1642 static void ap_reset_domain(void)
1644 int i;
1646 if (ap_domain_index != -1)
1647 for (i = 0; i < AP_DEVICES; i++)
1648 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1651 static void ap_reset_all(void)
1653 int i, j;
1655 for (i = 0; i < AP_DOMAINS; i++)
1656 for (j = 0; j < AP_DEVICES; j++)
1657 ap_reset_queue(AP_MKQID(j, i));
1660 static struct reset_call ap_reset_call = {
1661 .fn = ap_reset_all,
1665 * ap_module_init(): The module initialization code.
1667 * Initializes the module.
1669 int __init ap_module_init(void)
1671 int rc, i;
1673 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
1674 pr_warning("%d is not a valid cryptographic domain\n",
1675 ap_domain_index);
1676 return -EINVAL;
1678 /* In resume callback we need to know if the user had set the domain.
1679 * If so, we can not just reset it.
1681 if (ap_domain_index >= 0)
1682 user_set_domain = 1;
1684 if (ap_instructions_available() != 0) {
1685 pr_warning("The hardware system does not support "
1686 "AP instructions\n");
1687 return -ENODEV;
1689 if (ap_interrupts_available()) {
1690 isc_register(AP_ISC);
1691 ap_interrupt_indicator = s390_register_adapter_interrupt(
1692 &ap_interrupt_handler, NULL, AP_ISC);
1693 if (IS_ERR(ap_interrupt_indicator)) {
1694 ap_interrupt_indicator = NULL;
1695 isc_unregister(AP_ISC);
1699 register_reset_call(&ap_reset_call);
1701 /* Create /sys/bus/ap. */
1702 rc = bus_register(&ap_bus_type);
1703 if (rc)
1704 goto out;
1705 for (i = 0; ap_bus_attrs[i]; i++) {
1706 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1707 if (rc)
1708 goto out_bus;
1711 /* Create /sys/devices/ap. */
1712 ap_root_device = root_device_register("ap");
1713 rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
1714 if (rc)
1715 goto out_bus;
1717 ap_work_queue = create_singlethread_workqueue("kapwork");
1718 if (!ap_work_queue) {
1719 rc = -ENOMEM;
1720 goto out_root;
1723 if (ap_select_domain() == 0)
1724 ap_scan_bus(NULL);
1726 /* Setup the AP bus rescan timer. */
1727 init_timer(&ap_config_timer);
1728 ap_config_timer.function = ap_config_timeout;
1729 ap_config_timer.data = 0;
1730 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1731 add_timer(&ap_config_timer);
1733 /* Setup the high resultion poll timer.
1734 * If we are running under z/VM adjust polling to z/VM polling rate.
1736 if (MACHINE_IS_VM)
1737 poll_timeout = 1500000;
1738 spin_lock_init(&ap_poll_timer_lock);
1739 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1740 ap_poll_timer.function = ap_poll_timeout;
1742 /* Start the low priority AP bus poll thread. */
1743 if (ap_thread_flag) {
1744 rc = ap_poll_thread_start();
1745 if (rc)
1746 goto out_work;
1749 return 0;
1751 out_work:
1752 del_timer_sync(&ap_config_timer);
1753 hrtimer_cancel(&ap_poll_timer);
1754 destroy_workqueue(ap_work_queue);
1755 out_root:
1756 root_device_unregister(ap_root_device);
1757 out_bus:
1758 while (i--)
1759 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1760 bus_unregister(&ap_bus_type);
1761 out:
1762 unregister_reset_call(&ap_reset_call);
1763 if (ap_using_interrupts()) {
1764 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1765 isc_unregister(AP_ISC);
1767 return rc;
1770 static int __ap_match_all(struct device *dev, void *data)
1772 return 1;
1776 * ap_modules_exit(): The module termination code
1778 * Terminates the module.
1780 void ap_module_exit(void)
1782 int i;
1783 struct device *dev;
1785 ap_reset_domain();
1786 ap_poll_thread_stop();
1787 del_timer_sync(&ap_config_timer);
1788 hrtimer_cancel(&ap_poll_timer);
1789 destroy_workqueue(ap_work_queue);
1790 tasklet_kill(&ap_tasklet);
1791 root_device_unregister(ap_root_device);
1792 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
1793 __ap_match_all)))
1795 device_unregister(dev);
1796 put_device(dev);
1798 for (i = 0; ap_bus_attrs[i]; i++)
1799 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1800 bus_unregister(&ap_bus_type);
1801 unregister_reset_call(&ap_reset_call);
1802 if (ap_using_interrupts()) {
1803 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1804 isc_unregister(AP_ISC);
1808 #ifndef CONFIG_ZCRYPT_MONOLITHIC
1809 module_init(ap_module_init);
1810 module_exit(ap_module_exit);
1811 #endif