Staging: et131x: clean up WORD2 usage
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / et131x / et1310_tx.c
blob7926004172d341aaa07e50254cc37a7e8226f258
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 *------------------------------------------------------------------------------
11 * et1310_tx.c - Routines used to perform data transmission.
13 *------------------------------------------------------------------------------
15 * SOFTWARE LICENSE
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
41 * Disclaimer
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
74 #include <linux/in.h>
75 #include <linux/delay.h>
76 #include <linux/io.h>
77 #include <linux/bitops.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
86 #include "et1310_phy.h"
87 #include "et1310_pm.h"
88 #include "et1310_jagcore.h"
90 #include "et131x_adapter.h"
91 #include "et131x_initpci.h"
92 #include "et131x_isr.h"
94 #include "et1310_tx.h"
97 static void et131x_update_tcb_list(struct et131x_adapter *etdev);
98 static void et131x_check_send_wait_list(struct et131x_adapter *etdev);
99 static inline void et131x_free_send_packet(struct et131x_adapter *etdev,
100 PMP_TCB pMpTcb);
101 static int et131x_send_packet(struct sk_buff *skb,
102 struct et131x_adapter *etdev);
103 static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb);
106 * et131x_tx_dma_memory_alloc
107 * @adapter: pointer to our private adapter structure
109 * Returns 0 on success and errno on failure (as defined in errno.h).
111 * Allocates memory that will be visible both to the device and to the CPU.
112 * The OS will pass us packets, pointers to which we will insert in the Tx
113 * Descriptor queue. The device will read this queue to find the packets in
114 * memory. The device will update the "status" in memory each time it xmits a
115 * packet.
117 int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
119 int desc_size = 0;
120 TX_RING_t *tx_ring = &adapter->TxRing;
122 /* Allocate memory for the TCB's (Transmit Control Block) */
123 adapter->TxRing.MpTcbMem = (MP_TCB *)kcalloc(NUM_TCB, sizeof(MP_TCB),
124 GFP_ATOMIC | GFP_DMA);
125 if (!adapter->TxRing.MpTcbMem) {
126 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
127 return -ENOMEM;
130 /* Allocate enough memory for the Tx descriptor ring, and allocate
131 * some extra so that the ring can be aligned on a 4k boundary.
133 desc_size = (sizeof(TX_DESC_ENTRY_t) * NUM_DESC_PER_RING_TX) + 4096 - 1;
134 tx_ring->pTxDescRingVa =
135 (PTX_DESC_ENTRY_t) pci_alloc_consistent(adapter->pdev, desc_size,
136 &tx_ring->pTxDescRingPa);
137 if (!adapter->TxRing.pTxDescRingVa) {
138 dev_err(&adapter->pdev->dev, "Cannot alloc memory for Tx Ring\n");
139 return -ENOMEM;
142 /* Save physical address
144 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
145 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
146 * are ever returned, make sure the high part is retrieved here before
147 * storing the adjusted address.
149 tx_ring->pTxDescRingAdjustedPa = tx_ring->pTxDescRingPa;
151 /* Align Tx Descriptor Ring on a 4k (0x1000) byte boundary */
152 et131x_align_allocated_memory(adapter,
153 &tx_ring->pTxDescRingAdjustedPa,
154 &tx_ring->TxDescOffset, 0x0FFF);
156 tx_ring->pTxDescRingVa += tx_ring->TxDescOffset;
158 /* Allocate memory for the Tx status block */
159 tx_ring->pTxStatusVa = pci_alloc_consistent(adapter->pdev,
160 sizeof(TX_STATUS_BLOCK_t),
161 &tx_ring->pTxStatusPa);
162 if (!adapter->TxRing.pTxStatusPa) {
163 dev_err(&adapter->pdev->dev,
164 "Cannot alloc memory for Tx status block\n");
165 return -ENOMEM;
168 /* Allocate memory for a dummy buffer */
169 tx_ring->pTxDummyBlkVa = pci_alloc_consistent(adapter->pdev,
170 NIC_MIN_PACKET_SIZE,
171 &tx_ring->pTxDummyBlkPa);
172 if (!adapter->TxRing.pTxDummyBlkPa) {
173 dev_err(&adapter->pdev->dev,
174 "Cannot alloc memory for Tx dummy buffer\n");
175 return -ENOMEM;
178 return 0;
182 * et131x_tx_dma_memory_free - Free all memory allocated within this module
183 * @adapter: pointer to our private adapter structure
185 * Returns 0 on success and errno on failure (as defined in errno.h).
187 void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
189 int desc_size = 0;
191 if (adapter->TxRing.pTxDescRingVa) {
192 /* Free memory relating to Tx rings here */
193 adapter->TxRing.pTxDescRingVa -= adapter->TxRing.TxDescOffset;
195 desc_size =
196 (sizeof(TX_DESC_ENTRY_t) * NUM_DESC_PER_RING_TX) + 4096 - 1;
198 pci_free_consistent(adapter->pdev,
199 desc_size,
200 adapter->TxRing.pTxDescRingVa,
201 adapter->TxRing.pTxDescRingPa);
203 adapter->TxRing.pTxDescRingVa = NULL;
206 /* Free memory for the Tx status block */
207 if (adapter->TxRing.pTxStatusVa) {
208 pci_free_consistent(adapter->pdev,
209 sizeof(TX_STATUS_BLOCK_t),
210 adapter->TxRing.pTxStatusVa,
211 adapter->TxRing.pTxStatusPa);
213 adapter->TxRing.pTxStatusVa = NULL;
216 /* Free memory for the dummy buffer */
217 if (adapter->TxRing.pTxDummyBlkVa) {
218 pci_free_consistent(adapter->pdev,
219 NIC_MIN_PACKET_SIZE,
220 adapter->TxRing.pTxDummyBlkVa,
221 adapter->TxRing.pTxDummyBlkPa);
223 adapter->TxRing.pTxDummyBlkVa = NULL;
226 /* Free the memory for MP_TCB structures */
227 kfree(adapter->TxRing.MpTcbMem);
231 * ConfigTxDmaRegs - Set up the tx dma section of the JAGCore.
232 * @etdev: pointer to our private adapter structure
234 void ConfigTxDmaRegs(struct et131x_adapter *etdev)
236 struct _TXDMA_t __iomem *txdma = &etdev->regs->txdma;
238 /* Load the hardware with the start of the transmit descriptor ring. */
239 writel((uint32_t) (etdev->TxRing.pTxDescRingAdjustedPa >> 32),
240 &txdma->pr_base_hi);
241 writel((uint32_t) etdev->TxRing.pTxDescRingAdjustedPa,
242 &txdma->pr_base_lo);
244 /* Initialise the transmit DMA engine */
245 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des.value);
247 /* Load the completion writeback physical address
249 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
250 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
251 * are ever returned, make sure the high part is retrieved here before
252 * storing the adjusted address.
254 writel(0, &txdma->dma_wb_base_hi);
255 writel(etdev->TxRing.pTxStatusPa, &txdma->dma_wb_base_lo);
257 memset(etdev->TxRing.pTxStatusVa, 0, sizeof(TX_STATUS_BLOCK_t));
259 writel(0, &txdma->service_request);
260 etdev->TxRing.txDmaReadyToSend = 0;
264 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
265 * @etdev: pointer to our adapter structure
267 void et131x_tx_dma_disable(struct et131x_adapter *etdev)
269 /* Setup the tramsmit dma configuration register */
270 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
271 &etdev->regs->txdma.csr);
275 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
276 * @etdev: pointer to our adapter structure
278 * Mainly used after a return to the D0 (full-power) state from a lower state.
280 void et131x_tx_dma_enable(struct et131x_adapter *etdev)
282 /* Setup the transmit dma configuration register for normal
283 * operation
285 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
286 &etdev->regs->txdma.csr);
290 * et131x_init_send - Initialize send data structures
291 * @adapter: pointer to our private adapter structure
293 void et131x_init_send(struct et131x_adapter *adapter)
295 PMP_TCB pMpTcb;
296 uint32_t TcbCount;
297 TX_RING_t *tx_ring;
299 /* Setup some convenience pointers */
300 tx_ring = &adapter->TxRing;
301 pMpTcb = adapter->TxRing.MpTcbMem;
303 tx_ring->TCBReadyQueueHead = pMpTcb;
305 /* Go through and set up each TCB */
306 for (TcbCount = 0; TcbCount < NUM_TCB; TcbCount++) {
307 memset(pMpTcb, 0, sizeof(MP_TCB));
309 /* Set the link pointer in HW TCB to the next TCB in the
310 * chain. If this is the last TCB in the chain, also set the
311 * tail pointer.
313 if (TcbCount < NUM_TCB - 1) {
314 pMpTcb->Next = pMpTcb + 1;
315 } else {
316 tx_ring->TCBReadyQueueTail = pMpTcb;
317 pMpTcb->Next = (PMP_TCB) NULL;
320 pMpTcb++;
323 /* Curr send queue should now be empty */
324 tx_ring->CurrSendHead = (PMP_TCB) NULL;
325 tx_ring->CurrSendTail = (PMP_TCB) NULL;
327 INIT_LIST_HEAD(&adapter->TxRing.SendWaitQueue);
331 * et131x_send_packets - This function is called by the OS to send packets
332 * @skb: the packet(s) to send
333 * @netdev:device on which to TX the above packet(s)
335 * Return 0 in almost all cases; non-zero value in extreme hard failure only
337 int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
339 int status = 0;
340 struct et131x_adapter *etdev = NULL;
342 etdev = netdev_priv(netdev);
344 /* Send these packets
346 * NOTE: The Linux Tx entry point is only given one packet at a time
347 * to Tx, so the PacketCount and it's array used makes no sense here
350 /* Queue is not empty or TCB is not available */
351 if (!list_empty(&etdev->TxRing.SendWaitQueue) ||
352 MP_TCB_RESOURCES_NOT_AVAILABLE(etdev)) {
353 /* NOTE: If there's an error on send, no need to queue the
354 * packet under Linux; if we just send an error up to the
355 * netif layer, it will resend the skb to us.
357 status = -ENOMEM;
358 } else {
359 /* We need to see if the link is up; if it's not, make the
360 * netif layer think we're good and drop the packet
363 * if( MP_SHOULD_FAIL_SEND( etdev ) ||
364 * etdev->DriverNoPhyAccess )
366 if (MP_SHOULD_FAIL_SEND(etdev) || !netif_carrier_ok(netdev)) {
367 dev_kfree_skb_any(skb);
368 skb = NULL;
370 etdev->net_stats.tx_dropped++;
371 } else {
372 status = et131x_send_packet(skb, etdev);
374 if (status == -ENOMEM) {
376 /* NOTE: If there's an error on send, no need
377 * to queue the packet under Linux; if we just
378 * send an error up to the netif layer, it
379 * will resend the skb to us.
381 } else if (status != 0) {
382 /* On any other error, make netif think we're
383 * OK and drop the packet
385 dev_kfree_skb_any(skb);
386 skb = NULL;
387 etdev->net_stats.tx_dropped++;
391 return status;
395 * et131x_send_packet - Do the work to send a packet
396 * @skb: the packet(s) to send
397 * @etdev: a pointer to the device's private adapter structure
399 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
401 * Assumption: Send spinlock has been acquired
403 static int et131x_send_packet(struct sk_buff *skb,
404 struct et131x_adapter *etdev)
406 int status = 0;
407 PMP_TCB pMpTcb = NULL;
408 uint16_t *shbufva;
409 unsigned long flags;
411 /* All packets must have at least a MAC address and a protocol type */
412 if (skb->len < ETH_HLEN) {
413 return -EIO;
416 /* Get a TCB for this packet */
417 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
419 pMpTcb = etdev->TxRing.TCBReadyQueueHead;
421 if (pMpTcb == NULL) {
422 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
423 return -ENOMEM;
426 etdev->TxRing.TCBReadyQueueHead = pMpTcb->Next;
428 if (etdev->TxRing.TCBReadyQueueHead == NULL)
429 etdev->TxRing.TCBReadyQueueTail = NULL;
431 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
433 pMpTcb->PacketLength = skb->len;
434 pMpTcb->Packet = skb;
436 if ((skb->data != NULL) && ((skb->len - skb->data_len) >= 6)) {
437 shbufva = (uint16_t *) skb->data;
439 if ((shbufva[0] == 0xffff) &&
440 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
441 pMpTcb->Flags |= fMP_DEST_BROAD;
442 } else if ((shbufva[0] & 0x3) == 0x0001) {
443 pMpTcb->Flags |= fMP_DEST_MULTI;
447 pMpTcb->Next = NULL;
449 /* Call the NIC specific send handler. */
450 if (status == 0)
451 status = nic_send_packet(etdev, pMpTcb);
453 if (status != 0) {
454 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
456 if (etdev->TxRing.TCBReadyQueueTail) {
457 etdev->TxRing.TCBReadyQueueTail->Next = pMpTcb;
458 } else {
459 /* Apparently ready Q is empty. */
460 etdev->TxRing.TCBReadyQueueHead = pMpTcb;
463 etdev->TxRing.TCBReadyQueueTail = pMpTcb;
464 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
465 return status;
467 WARN_ON(etdev->TxRing.nBusySend > NUM_TCB);
468 return 0;
472 * nic_send_packet - NIC specific send handler for version B silicon.
473 * @etdev: pointer to our adapter
474 * @pMpTcb: pointer to MP_TCB
476 * Returns 0 or errno.
478 static int nic_send_packet(struct et131x_adapter *etdev, PMP_TCB pMpTcb)
480 uint32_t loopIndex;
481 TX_DESC_ENTRY_t CurDesc[24];
482 uint32_t FragmentNumber = 0;
483 uint32_t thiscopy, remainder;
484 struct sk_buff *pPacket = pMpTcb->Packet;
485 uint32_t FragListCount = skb_shinfo(pPacket)->nr_frags + 1;
486 struct skb_frag_struct *pFragList = &skb_shinfo(pPacket)->frags[0];
487 unsigned long flags;
489 /* Part of the optimizations of this send routine restrict us to
490 * sending 24 fragments at a pass. In practice we should never see
491 * more than 5 fragments.
493 * NOTE: The older version of this function (below) can handle any
494 * number of fragments. If needed, we can call this function,
495 * although it is less efficient.
497 if (FragListCount > 23) {
498 return -EIO;
501 memset(CurDesc, 0, sizeof(TX_DESC_ENTRY_t) * (FragListCount + 1));
503 for (loopIndex = 0; loopIndex < FragListCount; loopIndex++) {
504 /* If there is something in this element, lets get a
505 * descriptor from the ring and get the necessary data
507 if (loopIndex == 0) {
508 /* If the fragments are smaller than a standard MTU,
509 * then map them to a single descriptor in the Tx
510 * Desc ring. However, if they're larger, as is
511 * possible with support for jumbo packets, then
512 * split them each across 2 descriptors.
514 * This will work until we determine why the hardware
515 * doesn't seem to like large fragments.
517 if ((pPacket->len - pPacket->data_len) <= 1514) {
518 CurDesc[FragmentNumber].DataBufferPtrHigh = 0;
519 /* Low 16bits are length, high is vlan and
520 unused currently so zero */
521 CurDesc[FragmentNumber].word2 =
522 pPacket->len - pPacket->data_len;
524 /* NOTE: Here, the dma_addr_t returned from
525 * pci_map_single() is implicitly cast as a
526 * uint32_t. Although dma_addr_t can be
527 * 64-bit, the address returned by
528 * pci_map_single() is always 32-bit
529 * addressable (as defined by the pci/dma
530 * subsystem)
532 CurDesc[FragmentNumber++].DataBufferPtrLow =
533 pci_map_single(etdev->pdev,
534 pPacket->data,
535 pPacket->len -
536 pPacket->data_len,
537 PCI_DMA_TODEVICE);
538 } else {
539 CurDesc[FragmentNumber].DataBufferPtrHigh = 0;
540 CurDesc[FragmentNumber].word2 =
541 (pPacket->len - pPacket->data_len) / 2;
543 /* NOTE: Here, the dma_addr_t returned from
544 * pci_map_single() is implicitly cast as a
545 * uint32_t. Although dma_addr_t can be
546 * 64-bit, the address returned by
547 * pci_map_single() is always 32-bit
548 * addressable (as defined by the pci/dma
549 * subsystem)
551 CurDesc[FragmentNumber++].DataBufferPtrLow =
552 pci_map_single(etdev->pdev,
553 pPacket->data,
554 ((pPacket->len -
555 pPacket->data_len) / 2),
556 PCI_DMA_TODEVICE);
557 CurDesc[FragmentNumber].DataBufferPtrHigh = 0;
559 CurDesc[FragmentNumber].word2 =
560 (pPacket->len - pPacket->data_len) / 2;
562 /* NOTE: Here, the dma_addr_t returned from
563 * pci_map_single() is implicitly cast as a
564 * uint32_t. Although dma_addr_t can be
565 * 64-bit, the address returned by
566 * pci_map_single() is always 32-bit
567 * addressable (as defined by the pci/dma
568 * subsystem)
570 CurDesc[FragmentNumber++].DataBufferPtrLow =
571 pci_map_single(etdev->pdev,
572 pPacket->data +
573 ((pPacket->len -
574 pPacket->data_len) / 2),
575 ((pPacket->len -
576 pPacket->data_len) / 2),
577 PCI_DMA_TODEVICE);
579 } else {
580 CurDesc[FragmentNumber].DataBufferPtrHigh = 0;
581 CurDesc[FragmentNumber].word2 =
582 pFragList[loopIndex - 1].size;
584 /* NOTE: Here, the dma_addr_t returned from
585 * pci_map_page() is implicitly cast as a uint32_t.
586 * Although dma_addr_t can be 64-bit, the address
587 * returned by pci_map_page() is always 32-bit
588 * addressable (as defined by the pci/dma subsystem)
590 CurDesc[FragmentNumber++].DataBufferPtrLow =
591 pci_map_page(etdev->pdev,
592 pFragList[loopIndex - 1].page,
593 pFragList[loopIndex - 1].page_offset,
594 pFragList[loopIndex - 1].size,
595 PCI_DMA_TODEVICE);
599 if (FragmentNumber == 0)
600 return -EIO;
602 if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
603 if (++etdev->TxRing.TxPacketsSinceLastinterrupt ==
604 PARM_TX_NUM_BUFS_DEF) {
605 /* Last element & Interrupt flag */
606 CurDesc[FragmentNumber - 1].word3 = 0x5;
607 etdev->TxRing.TxPacketsSinceLastinterrupt = 0;
608 } else { /* Last element */
609 CurDesc[FragmentNumber - 1].word3 = 0x1;
611 } else {
612 CurDesc[FragmentNumber - 1].word3 = 0x5;
614 CurDesc[0].word3 |= 2; /* First element flag */
616 pMpTcb->WrIndexStart = etdev->TxRing.txDmaReadyToSend;
617 pMpTcb->PacketStaleCount = 0;
619 spin_lock_irqsave(&etdev->SendHWLock, flags);
621 thiscopy = NUM_DESC_PER_RING_TX -
622 INDEX10(etdev->TxRing.txDmaReadyToSend);
624 if (thiscopy >= FragmentNumber) {
625 remainder = 0;
626 thiscopy = FragmentNumber;
627 } else {
628 remainder = FragmentNumber - thiscopy;
631 memcpy(etdev->TxRing.pTxDescRingVa +
632 INDEX10(etdev->TxRing.txDmaReadyToSend), CurDesc,
633 sizeof(TX_DESC_ENTRY_t) * thiscopy);
635 add_10bit(&etdev->TxRing.txDmaReadyToSend, thiscopy);
637 if (INDEX10(etdev->TxRing.txDmaReadyToSend)== 0 ||
638 INDEX10(etdev->TxRing.txDmaReadyToSend) == NUM_DESC_PER_RING_TX) {
639 etdev->TxRing.txDmaReadyToSend &= ~ET_DMA10_MASK;
640 etdev->TxRing.txDmaReadyToSend ^= ET_DMA10_WRAP;
643 if (remainder) {
644 memcpy(etdev->TxRing.pTxDescRingVa,
645 CurDesc + thiscopy,
646 sizeof(TX_DESC_ENTRY_t) * remainder);
648 add_10bit(&etdev->TxRing.txDmaReadyToSend, remainder);
651 if (INDEX10(etdev->TxRing.txDmaReadyToSend) == 0) {
652 if (etdev->TxRing.txDmaReadyToSend)
653 pMpTcb->WrIndex = NUM_DESC_PER_RING_TX - 1;
654 else
655 pMpTcb->WrIndex= ET_DMA10_WRAP | (NUM_DESC_PER_RING_TX - 1);
656 } else
657 pMpTcb->WrIndex = etdev->TxRing.txDmaReadyToSend - 1;
659 spin_lock(&etdev->TCBSendQLock);
661 if (etdev->TxRing.CurrSendTail)
662 etdev->TxRing.CurrSendTail->Next = pMpTcb;
663 else
664 etdev->TxRing.CurrSendHead = pMpTcb;
666 etdev->TxRing.CurrSendTail = pMpTcb;
668 WARN_ON(pMpTcb->Next != NULL);
670 etdev->TxRing.nBusySend++;
672 spin_unlock(&etdev->TCBSendQLock);
674 /* Write the new write pointer back to the device. */
675 writel(etdev->TxRing.txDmaReadyToSend,
676 &etdev->regs->txdma.service_request);
678 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
679 * timer to wake us up if this packet isn't followed by N more.
681 if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
682 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
683 &etdev->regs->global.watchdog_timer);
685 spin_unlock_irqrestore(&etdev->SendHWLock, flags);
687 return 0;
692 * et131x_free_send_packet - Recycle a MP_TCB, complete the packet if necessary
693 * @etdev: pointer to our adapter
694 * @pMpTcb: pointer to MP_TCB
696 * Assumption - Send spinlock has been acquired
698 inline void et131x_free_send_packet(struct et131x_adapter *etdev,
699 PMP_TCB pMpTcb)
701 unsigned long flags;
702 TX_DESC_ENTRY_t *desc = NULL;
703 struct net_device_stats *stats = &etdev->net_stats;
705 if (pMpTcb->Flags & fMP_DEST_BROAD)
706 atomic_inc(&etdev->Stats.brdcstxmt);
707 else if (pMpTcb->Flags & fMP_DEST_MULTI)
708 atomic_inc(&etdev->Stats.multixmt);
709 else
710 atomic_inc(&etdev->Stats.unixmt);
712 if (pMpTcb->Packet) {
713 stats->tx_bytes += pMpTcb->Packet->len;
715 /* Iterate through the TX descriptors on the ring
716 * corresponding to this packet and umap the fragments
717 * they point to
719 do {
720 desc =
721 (TX_DESC_ENTRY_t *) (etdev->TxRing.pTxDescRingVa +
722 INDEX10(pMpTcb->WrIndexStart));
724 pci_unmap_single(etdev->pdev,
725 desc->DataBufferPtrLow,
726 desc->word2, PCI_DMA_TODEVICE);
728 add_10bit(&pMpTcb->WrIndexStart, 1);
729 if (INDEX10(pMpTcb->WrIndexStart) >=
730 NUM_DESC_PER_RING_TX) {
731 pMpTcb->WrIndexStart &= ~ET_DMA10_MASK;
732 pMpTcb->WrIndexStart ^= ET_DMA10_WRAP;
734 } while (desc != (etdev->TxRing.pTxDescRingVa +
735 INDEX10(pMpTcb->WrIndex)));
737 dev_kfree_skb_any(pMpTcb->Packet);
740 memset(pMpTcb, 0, sizeof(MP_TCB));
742 /* Add the TCB to the Ready Q */
743 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
745 etdev->Stats.opackets++;
747 if (etdev->TxRing.TCBReadyQueueTail) {
748 etdev->TxRing.TCBReadyQueueTail->Next = pMpTcb;
749 } else {
750 /* Apparently ready Q is empty. */
751 etdev->TxRing.TCBReadyQueueHead = pMpTcb;
754 etdev->TxRing.TCBReadyQueueTail = pMpTcb;
756 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
757 WARN_ON(etdev->TxRing.nBusySend < 0);
761 * et131x_free_busy_send_packets - Free and complete the stopped active sends
762 * @etdev: pointer to our adapter
764 * Assumption - Send spinlock has been acquired
766 void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
768 PMP_TCB pMpTcb;
769 struct list_head *entry;
770 unsigned long flags;
771 uint32_t FreeCounter = 0;
773 while (!list_empty(&etdev->TxRing.SendWaitQueue)) {
774 spin_lock_irqsave(&etdev->SendWaitLock, flags);
776 etdev->TxRing.nWaitSend--;
777 spin_unlock_irqrestore(&etdev->SendWaitLock, flags);
779 entry = etdev->TxRing.SendWaitQueue.next;
782 etdev->TxRing.nWaitSend = 0;
784 /* Any packets being sent? Check the first TCB on the send list */
785 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
787 pMpTcb = etdev->TxRing.CurrSendHead;
789 while ((pMpTcb != NULL) && (FreeCounter < NUM_TCB)) {
790 PMP_TCB pNext = pMpTcb->Next;
792 etdev->TxRing.CurrSendHead = pNext;
794 if (pNext == NULL)
795 etdev->TxRing.CurrSendTail = NULL;
797 etdev->TxRing.nBusySend--;
799 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
801 FreeCounter++;
802 et131x_free_send_packet(etdev, pMpTcb);
804 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
806 pMpTcb = etdev->TxRing.CurrSendHead;
809 WARN_ON(FreeCounter == NUM_TCB);
811 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
813 etdev->TxRing.nBusySend = 0;
817 * et131x_handle_send_interrupt - Interrupt handler for sending processing
818 * @etdev: pointer to our adapter
820 * Re-claim the send resources, complete sends and get more to send from
821 * the send wait queue.
823 * Assumption - Send spinlock has been acquired
825 void et131x_handle_send_interrupt(struct et131x_adapter *etdev)
827 /* Mark as completed any packets which have been sent by the device. */
828 et131x_update_tcb_list(etdev);
830 /* If we queued any transmits because we didn't have any TCBs earlier,
831 * dequeue and send those packets now, as long as we have free TCBs.
833 et131x_check_send_wait_list(etdev);
837 * et131x_update_tcb_list - Helper routine for Send Interrupt handler
838 * @etdev: pointer to our adapter
840 * Re-claims the send resources and completes sends. Can also be called as
841 * part of the NIC send routine when the "ServiceComplete" indication has
842 * wrapped.
844 static void et131x_update_tcb_list(struct et131x_adapter *etdev)
846 unsigned long flags;
847 u32 ServiceComplete;
848 PMP_TCB pMpTcb;
849 u32 index;
851 ServiceComplete = readl(&etdev->regs->txdma.NewServiceComplete);
852 index = INDEX10(ServiceComplete);
854 /* Has the ring wrapped? Process any descriptors that do not have
855 * the same "wrap" indicator as the current completion indicator
857 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
859 pMpTcb = etdev->TxRing.CurrSendHead;
861 while (pMpTcb &&
862 ((ServiceComplete ^ pMpTcb->WrIndex) & ET_DMA10_WRAP) &&
863 index < INDEX10(pMpTcb->WrIndex)) {
864 etdev->TxRing.nBusySend--;
865 etdev->TxRing.CurrSendHead = pMpTcb->Next;
866 if (pMpTcb->Next == NULL)
867 etdev->TxRing.CurrSendTail = NULL;
869 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
870 et131x_free_send_packet(etdev, pMpTcb);
871 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
873 /* Goto the next packet */
874 pMpTcb = etdev->TxRing.CurrSendHead;
876 while (pMpTcb &&
877 !((ServiceComplete ^ pMpTcb->WrIndex) & ET_DMA10_WRAP)
878 && index > (pMpTcb->WrIndex & ET_DMA10_MASK)) {
879 etdev->TxRing.nBusySend--;
880 etdev->TxRing.CurrSendHead = pMpTcb->Next;
881 if (pMpTcb->Next == NULL)
882 etdev->TxRing.CurrSendTail = NULL;
884 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
885 et131x_free_send_packet(etdev, pMpTcb);
886 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
888 /* Goto the next packet */
889 pMpTcb = etdev->TxRing.CurrSendHead;
892 /* Wake up the queue when we hit a low-water mark */
893 if (etdev->TxRing.nBusySend <= (NUM_TCB / 3))
894 netif_wake_queue(etdev->netdev);
896 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
900 * et131x_check_send_wait_list - Helper routine for the interrupt handler
901 * @etdev: pointer to our adapter
903 * Takes packets from the send wait queue and posts them to the device (if
904 * room available).
906 static void et131x_check_send_wait_list(struct et131x_adapter *etdev)
908 unsigned long flags;
910 spin_lock_irqsave(&etdev->SendWaitLock, flags);
912 while (!list_empty(&etdev->TxRing.SendWaitQueue) &&
913 MP_TCB_RESOURCES_AVAILABLE(etdev)) {
914 struct list_head *entry;
916 entry = etdev->TxRing.SendWaitQueue.next;
918 etdev->TxRing.nWaitSend--;
921 spin_unlock_irqrestore(&etdev->SendWaitLock, flags);