ipw2200 - Fix bad ipw_write8() macro
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ipw2200.c
blob9509fd2a25f873ecb1c5f1c56cc1801b0afbf20b
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
34 #include <linux/version.h>
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
73 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION IPW2200_VERSION
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
85 static int cmdlog = 0;
86 static int debug = 0;
87 static int channel = 0;
88 static int mode = 0;
90 static u32 ipw_debug_level;
91 static int associate = 1;
92 static int auto_create = 1;
93 static int led = 0;
94 static int disable = 0;
95 static int bt_coexist = 0;
96 static int hwcrypto = 0;
97 static int roaming = 1;
98 static const char ipw_modes[] = {
99 'a', 'b', 'g', '?'
101 static int antenna = CFG_SYS_ANTENNA_BOTH;
103 #ifdef CONFIG_IPW2200_PROMISCUOUS
104 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
105 #endif
108 #ifdef CONFIG_IPW2200_QOS
109 static int qos_enable = 0;
110 static int qos_burst_enable = 0;
111 static int qos_no_ack_mask = 0;
112 static int burst_duration_CCK = 0;
113 static int burst_duration_OFDM = 0;
115 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
116 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
117 QOS_TX3_CW_MIN_OFDM},
118 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
119 QOS_TX3_CW_MAX_OFDM},
120 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
121 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
122 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
123 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
127 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
128 QOS_TX3_CW_MIN_CCK},
129 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
130 QOS_TX3_CW_MAX_CCK},
131 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
132 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
133 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
134 QOS_TX3_TXOP_LIMIT_CCK}
137 static struct ieee80211_qos_parameters def_parameters_OFDM = {
138 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
139 DEF_TX3_CW_MIN_OFDM},
140 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
141 DEF_TX3_CW_MAX_OFDM},
142 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
143 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
144 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
145 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 static struct ieee80211_qos_parameters def_parameters_CCK = {
149 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
150 DEF_TX3_CW_MIN_CCK},
151 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
152 DEF_TX3_CW_MAX_CCK},
153 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
154 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
155 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
156 DEF_TX3_TXOP_LIMIT_CCK}
159 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
161 static int from_priority_to_tx_queue[] = {
162 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
163 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
168 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
169 *qos_param);
170 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
171 *qos_param);
172 #endif /* CONFIG_IPW2200_QOS */
174 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
175 static void ipw_remove_current_network(struct ipw_priv *priv);
176 static void ipw_rx(struct ipw_priv *priv);
177 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
178 struct clx2_tx_queue *txq, int qindex);
179 static int ipw_queue_reset(struct ipw_priv *priv);
181 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
182 int len, int sync);
184 static void ipw_tx_queue_free(struct ipw_priv *);
186 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
187 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
188 static void ipw_rx_queue_replenish(void *);
189 static int ipw_up(struct ipw_priv *);
190 static void ipw_bg_up(struct work_struct *work);
191 static void ipw_down(struct ipw_priv *);
192 static void ipw_bg_down(struct work_struct *work);
193 static int ipw_config(struct ipw_priv *);
194 static int init_supported_rates(struct ipw_priv *priv,
195 struct ipw_supported_rates *prates);
196 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
197 static void ipw_send_wep_keys(struct ipw_priv *, int);
199 static int snprint_line(char *buf, size_t count,
200 const u8 * data, u32 len, u32 ofs)
202 int out, i, j, l;
203 char c;
205 out = snprintf(buf, count, "%08X", ofs);
207 for (l = 0, i = 0; i < 2; i++) {
208 out += snprintf(buf + out, count - out, " ");
209 for (j = 0; j < 8 && l < len; j++, l++)
210 out += snprintf(buf + out, count - out, "%02X ",
211 data[(i * 8 + j)]);
212 for (; j < 8; j++)
213 out += snprintf(buf + out, count - out, " ");
216 out += snprintf(buf + out, count - out, " ");
217 for (l = 0, i = 0; i < 2; i++) {
218 out += snprintf(buf + out, count - out, " ");
219 for (j = 0; j < 8 && l < len; j++, l++) {
220 c = data[(i * 8 + j)];
221 if (!isascii(c) || !isprint(c))
222 c = '.';
224 out += snprintf(buf + out, count - out, "%c", c);
227 for (; j < 8; j++)
228 out += snprintf(buf + out, count - out, " ");
231 return out;
234 static void printk_buf(int level, const u8 * data, u32 len)
236 char line[81];
237 u32 ofs = 0;
238 if (!(ipw_debug_level & level))
239 return;
241 while (len) {
242 snprint_line(line, sizeof(line), &data[ofs],
243 min(len, 16U), ofs);
244 printk(KERN_DEBUG "%s\n", line);
245 ofs += 16;
246 len -= min(len, 16U);
250 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
252 size_t out = size;
253 u32 ofs = 0;
254 int total = 0;
256 while (size && len) {
257 out = snprint_line(output, size, &data[ofs],
258 min_t(size_t, len, 16U), ofs);
260 ofs += 16;
261 output += out;
262 size -= out;
263 len -= min_t(size_t, len, 16U);
264 total += out;
266 return total;
269 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
270 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
271 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
273 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
274 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
275 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
277 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
278 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
279 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
281 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
282 __LINE__, (u32) (b), (u32) (c));
283 _ipw_write_reg8(a, b, c);
286 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
287 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
288 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
290 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
291 __LINE__, (u32) (b), (u32) (c));
292 _ipw_write_reg16(a, b, c);
295 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
296 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
297 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
299 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
300 __LINE__, (u32) (b), (u32) (c));
301 _ipw_write_reg32(a, b, c);
304 /* 8-bit direct write (low 4K) */
305 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
307 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
308 #define ipw_write8(ipw, ofs, val) do { \
309 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
310 _ipw_write8(ipw, ofs, val); \
311 } while (0)
313 /* 16-bit direct write (low 4K) */
314 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
317 #define ipw_write16(ipw, ofs, val) \
318 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
319 _ipw_write16(ipw, ofs, val)
321 /* 32-bit direct write (low 4K) */
322 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
325 #define ipw_write32(ipw, ofs, val) \
326 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
327 _ipw_write32(ipw, ofs, val)
329 /* 8-bit direct read (low 4K) */
330 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332 /* 8-bit direct read (low 4K), with debug wrapper */
333 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
336 return _ipw_read8(ipw, ofs);
339 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
340 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342 /* 16-bit direct read (low 4K) */
343 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345 /* 16-bit direct read (low 4K), with debug wrapper */
346 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
349 return _ipw_read16(ipw, ofs);
352 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
353 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355 /* 32-bit direct read (low 4K) */
356 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358 /* 32-bit direct read (low 4K), with debug wrapper */
359 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
362 return _ipw_read32(ipw, ofs);
365 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
366 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368 /* multi-byte read (above 4K), with debug wrapper */
369 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
370 static inline void __ipw_read_indirect(const char *f, int l,
371 struct ipw_priv *a, u32 b, u8 * c, int d)
373 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375 _ipw_read_indirect(a, b, c, d);
378 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
379 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
382 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
383 int num);
384 #define ipw_write_indirect(a, b, c, d) \
385 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
386 _ipw_write_indirect(a, b, c, d)
388 /* 32-bit indirect write (above 4K) */
389 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
392 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
393 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
396 /* 8-bit indirect write (above 4K) */
397 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
400 u32 dif_len = reg - aligned_addr;
402 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
403 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
404 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
407 /* 16-bit indirect write (above 4K) */
408 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
411 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
414 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
418 /* 8-bit indirect read (above 4K) */
419 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 u32 word;
422 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
423 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
424 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
425 return (word >> ((reg & 0x3) * 8)) & 0xff;
428 /* 32-bit indirect read (above 4K) */
429 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 u32 value;
433 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
436 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
437 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
438 return value;
441 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
442 /* for area above 1st 4K of SRAM/reg space */
443 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
444 int num)
446 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
447 u32 dif_len = addr - aligned_addr;
448 u32 i;
450 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452 if (num <= 0) {
453 return;
456 /* Read the first dword (or portion) byte by byte */
457 if (unlikely(dif_len)) {
458 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
459 /* Start reading at aligned_addr + dif_len */
460 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
461 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
462 aligned_addr += 4;
465 /* Read all of the middle dwords as dwords, with auto-increment */
466 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
467 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
468 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470 /* Read the last dword (or portion) byte by byte */
471 if (unlikely(num)) {
472 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
473 for (i = 0; num > 0; i++, num--)
474 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
478 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
479 /* for area above 1st 4K of SRAM/reg space */
480 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
481 int num)
483 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
484 u32 dif_len = addr - aligned_addr;
485 u32 i;
487 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489 if (num <= 0) {
490 return;
493 /* Write the first dword (or portion) byte by byte */
494 if (unlikely(dif_len)) {
495 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
496 /* Start writing at aligned_addr + dif_len */
497 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
498 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
499 aligned_addr += 4;
502 /* Write all of the middle dwords as dwords, with auto-increment */
503 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
504 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
505 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507 /* Write the last dword (or portion) byte by byte */
508 if (unlikely(num)) {
509 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
510 for (i = 0; num > 0; i++, num--, buf++)
511 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
515 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
516 /* for 1st 4K of SRAM/regs space */
517 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
518 int num)
520 memcpy_toio((priv->hw_base + addr), buf, num);
523 /* Set bit(s) in low 4K of SRAM/regs */
524 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
529 /* Clear bit(s) in low 4K of SRAM/regs */
530 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
535 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 if (priv->status & STATUS_INT_ENABLED)
538 return;
539 priv->status |= STATUS_INT_ENABLED;
540 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
543 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 if (!(priv->status & STATUS_INT_ENABLED))
546 return;
547 priv->status &= ~STATUS_INT_ENABLED;
548 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
551 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 unsigned long flags;
555 spin_lock_irqsave(&priv->irq_lock, flags);
556 __ipw_enable_interrupts(priv);
557 spin_unlock_irqrestore(&priv->irq_lock, flags);
560 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 unsigned long flags;
564 spin_lock_irqsave(&priv->irq_lock, flags);
565 __ipw_disable_interrupts(priv);
566 spin_unlock_irqrestore(&priv->irq_lock, flags);
569 static char *ipw_error_desc(u32 val)
571 switch (val) {
572 case IPW_FW_ERROR_OK:
573 return "ERROR_OK";
574 case IPW_FW_ERROR_FAIL:
575 return "ERROR_FAIL";
576 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
577 return "MEMORY_UNDERFLOW";
578 case IPW_FW_ERROR_MEMORY_OVERFLOW:
579 return "MEMORY_OVERFLOW";
580 case IPW_FW_ERROR_BAD_PARAM:
581 return "BAD_PARAM";
582 case IPW_FW_ERROR_BAD_CHECKSUM:
583 return "BAD_CHECKSUM";
584 case IPW_FW_ERROR_NMI_INTERRUPT:
585 return "NMI_INTERRUPT";
586 case IPW_FW_ERROR_BAD_DATABASE:
587 return "BAD_DATABASE";
588 case IPW_FW_ERROR_ALLOC_FAIL:
589 return "ALLOC_FAIL";
590 case IPW_FW_ERROR_DMA_UNDERRUN:
591 return "DMA_UNDERRUN";
592 case IPW_FW_ERROR_DMA_STATUS:
593 return "DMA_STATUS";
594 case IPW_FW_ERROR_DINO_ERROR:
595 return "DINO_ERROR";
596 case IPW_FW_ERROR_EEPROM_ERROR:
597 return "EEPROM_ERROR";
598 case IPW_FW_ERROR_SYSASSERT:
599 return "SYSASSERT";
600 case IPW_FW_ERROR_FATAL_ERROR:
601 return "FATAL_ERROR";
602 default:
603 return "UNKNOWN_ERROR";
607 static void ipw_dump_error_log(struct ipw_priv *priv,
608 struct ipw_fw_error *error)
610 u32 i;
612 if (!error) {
613 IPW_ERROR("Error allocating and capturing error log. "
614 "Nothing to dump.\n");
615 return;
618 IPW_ERROR("Start IPW Error Log Dump:\n");
619 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
620 error->status, error->config);
622 for (i = 0; i < error->elem_len; i++)
623 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
624 ipw_error_desc(error->elem[i].desc),
625 error->elem[i].time,
626 error->elem[i].blink1,
627 error->elem[i].blink2,
628 error->elem[i].link1,
629 error->elem[i].link2, error->elem[i].data);
630 for (i = 0; i < error->log_len; i++)
631 IPW_ERROR("%i\t0x%08x\t%i\n",
632 error->log[i].time,
633 error->log[i].data, error->log[i].event);
636 static inline int ipw_is_init(struct ipw_priv *priv)
638 return (priv->status & STATUS_INIT) ? 1 : 0;
641 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
643 u32 addr, field_info, field_len, field_count, total_len;
645 IPW_DEBUG_ORD("ordinal = %i\n", ord);
647 if (!priv || !val || !len) {
648 IPW_DEBUG_ORD("Invalid argument\n");
649 return -EINVAL;
652 /* verify device ordinal tables have been initialized */
653 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
654 IPW_DEBUG_ORD("Access ordinals before initialization\n");
655 return -EINVAL;
658 switch (IPW_ORD_TABLE_ID_MASK & ord) {
659 case IPW_ORD_TABLE_0_MASK:
661 * TABLE 0: Direct access to a table of 32 bit values
663 * This is a very simple table with the data directly
664 * read from the table
667 /* remove the table id from the ordinal */
668 ord &= IPW_ORD_TABLE_VALUE_MASK;
670 /* boundary check */
671 if (ord > priv->table0_len) {
672 IPW_DEBUG_ORD("ordinal value (%i) longer then "
673 "max (%i)\n", ord, priv->table0_len);
674 return -EINVAL;
677 /* verify we have enough room to store the value */
678 if (*len < sizeof(u32)) {
679 IPW_DEBUG_ORD("ordinal buffer length too small, "
680 "need %zd\n", sizeof(u32));
681 return -EINVAL;
684 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
685 ord, priv->table0_addr + (ord << 2));
687 *len = sizeof(u32);
688 ord <<= 2;
689 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
690 break;
692 case IPW_ORD_TABLE_1_MASK:
694 * TABLE 1: Indirect access to a table of 32 bit values
696 * This is a fairly large table of u32 values each
697 * representing starting addr for the data (which is
698 * also a u32)
701 /* remove the table id from the ordinal */
702 ord &= IPW_ORD_TABLE_VALUE_MASK;
704 /* boundary check */
705 if (ord > priv->table1_len) {
706 IPW_DEBUG_ORD("ordinal value too long\n");
707 return -EINVAL;
710 /* verify we have enough room to store the value */
711 if (*len < sizeof(u32)) {
712 IPW_DEBUG_ORD("ordinal buffer length too small, "
713 "need %zd\n", sizeof(u32));
714 return -EINVAL;
717 *((u32 *) val) =
718 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
719 *len = sizeof(u32);
720 break;
722 case IPW_ORD_TABLE_2_MASK:
724 * TABLE 2: Indirect access to a table of variable sized values
726 * This table consist of six values, each containing
727 * - dword containing the starting offset of the data
728 * - dword containing the lengh in the first 16bits
729 * and the count in the second 16bits
732 /* remove the table id from the ordinal */
733 ord &= IPW_ORD_TABLE_VALUE_MASK;
735 /* boundary check */
736 if (ord > priv->table2_len) {
737 IPW_DEBUG_ORD("ordinal value too long\n");
738 return -EINVAL;
741 /* get the address of statistic */
742 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
744 /* get the second DW of statistics ;
745 * two 16-bit words - first is length, second is count */
746 field_info =
747 ipw_read_reg32(priv,
748 priv->table2_addr + (ord << 3) +
749 sizeof(u32));
751 /* get each entry length */
752 field_len = *((u16 *) & field_info);
754 /* get number of entries */
755 field_count = *(((u16 *) & field_info) + 1);
757 /* abort if not enought memory */
758 total_len = field_len * field_count;
759 if (total_len > *len) {
760 *len = total_len;
761 return -EINVAL;
764 *len = total_len;
765 if (!total_len)
766 return 0;
768 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
769 "field_info = 0x%08x\n",
770 addr, total_len, field_info);
771 ipw_read_indirect(priv, addr, val, total_len);
772 break;
774 default:
775 IPW_DEBUG_ORD("Invalid ordinal!\n");
776 return -EINVAL;
780 return 0;
783 static void ipw_init_ordinals(struct ipw_priv *priv)
785 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
786 priv->table0_len = ipw_read32(priv, priv->table0_addr);
788 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
789 priv->table0_addr, priv->table0_len);
791 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
792 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
794 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
795 priv->table1_addr, priv->table1_len);
797 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
798 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
799 priv->table2_len &= 0x0000ffff; /* use first two bytes */
801 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
802 priv->table2_addr, priv->table2_len);
806 static u32 ipw_register_toggle(u32 reg)
808 reg &= ~IPW_START_STANDBY;
809 if (reg & IPW_GATE_ODMA)
810 reg &= ~IPW_GATE_ODMA;
811 if (reg & IPW_GATE_IDMA)
812 reg &= ~IPW_GATE_IDMA;
813 if (reg & IPW_GATE_ADMA)
814 reg &= ~IPW_GATE_ADMA;
815 return reg;
819 * LED behavior:
820 * - On radio ON, turn on any LEDs that require to be on during start
821 * - On initialization, start unassociated blink
822 * - On association, disable unassociated blink
823 * - On disassociation, start unassociated blink
824 * - On radio OFF, turn off any LEDs started during radio on
827 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
828 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
829 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
831 static void ipw_led_link_on(struct ipw_priv *priv)
833 unsigned long flags;
834 u32 led;
836 /* If configured to not use LEDs, or nic_type is 1,
837 * then we don't toggle a LINK led */
838 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
839 return;
841 spin_lock_irqsave(&priv->lock, flags);
843 if (!(priv->status & STATUS_RF_KILL_MASK) &&
844 !(priv->status & STATUS_LED_LINK_ON)) {
845 IPW_DEBUG_LED("Link LED On\n");
846 led = ipw_read_reg32(priv, IPW_EVENT_REG);
847 led |= priv->led_association_on;
849 led = ipw_register_toggle(led);
851 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
852 ipw_write_reg32(priv, IPW_EVENT_REG, led);
854 priv->status |= STATUS_LED_LINK_ON;
856 /* If we aren't associated, schedule turning the LED off */
857 if (!(priv->status & STATUS_ASSOCIATED))
858 queue_delayed_work(priv->workqueue,
859 &priv->led_link_off,
860 LD_TIME_LINK_ON);
863 spin_unlock_irqrestore(&priv->lock, flags);
866 static void ipw_bg_led_link_on(struct work_struct *work)
868 struct ipw_priv *priv =
869 container_of(work, struct ipw_priv, led_link_on.work);
870 mutex_lock(&priv->mutex);
871 ipw_led_link_on(priv);
872 mutex_unlock(&priv->mutex);
875 static void ipw_led_link_off(struct ipw_priv *priv)
877 unsigned long flags;
878 u32 led;
880 /* If configured not to use LEDs, or nic type is 1,
881 * then we don't goggle the LINK led. */
882 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883 return;
885 spin_lock_irqsave(&priv->lock, flags);
887 if (priv->status & STATUS_LED_LINK_ON) {
888 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889 led &= priv->led_association_off;
890 led = ipw_register_toggle(led);
892 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893 ipw_write_reg32(priv, IPW_EVENT_REG, led);
895 IPW_DEBUG_LED("Link LED Off\n");
897 priv->status &= ~STATUS_LED_LINK_ON;
899 /* If we aren't associated and the radio is on, schedule
900 * turning the LED on (blink while unassociated) */
901 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902 !(priv->status & STATUS_ASSOCIATED))
903 queue_delayed_work(priv->workqueue, &priv->led_link_on,
904 LD_TIME_LINK_OFF);
908 spin_unlock_irqrestore(&priv->lock, flags);
911 static void ipw_bg_led_link_off(struct work_struct *work)
913 struct ipw_priv *priv =
914 container_of(work, struct ipw_priv, led_link_off.work);
915 mutex_lock(&priv->mutex);
916 ipw_led_link_off(priv);
917 mutex_unlock(&priv->mutex);
920 static void __ipw_led_activity_on(struct ipw_priv *priv)
922 u32 led;
924 if (priv->config & CFG_NO_LED)
925 return;
927 if (priv->status & STATUS_RF_KILL_MASK)
928 return;
930 if (!(priv->status & STATUS_LED_ACT_ON)) {
931 led = ipw_read_reg32(priv, IPW_EVENT_REG);
932 led |= priv->led_activity_on;
934 led = ipw_register_toggle(led);
936 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
937 ipw_write_reg32(priv, IPW_EVENT_REG, led);
939 IPW_DEBUG_LED("Activity LED On\n");
941 priv->status |= STATUS_LED_ACT_ON;
943 cancel_delayed_work(&priv->led_act_off);
944 queue_delayed_work(priv->workqueue, &priv->led_act_off,
945 LD_TIME_ACT_ON);
946 } else {
947 /* Reschedule LED off for full time period */
948 cancel_delayed_work(&priv->led_act_off);
949 queue_delayed_work(priv->workqueue, &priv->led_act_off,
950 LD_TIME_ACT_ON);
954 #if 0
955 void ipw_led_activity_on(struct ipw_priv *priv)
957 unsigned long flags;
958 spin_lock_irqsave(&priv->lock, flags);
959 __ipw_led_activity_on(priv);
960 spin_unlock_irqrestore(&priv->lock, flags);
962 #endif /* 0 */
964 static void ipw_led_activity_off(struct ipw_priv *priv)
966 unsigned long flags;
967 u32 led;
969 if (priv->config & CFG_NO_LED)
970 return;
972 spin_lock_irqsave(&priv->lock, flags);
974 if (priv->status & STATUS_LED_ACT_ON) {
975 led = ipw_read_reg32(priv, IPW_EVENT_REG);
976 led &= priv->led_activity_off;
978 led = ipw_register_toggle(led);
980 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
981 ipw_write_reg32(priv, IPW_EVENT_REG, led);
983 IPW_DEBUG_LED("Activity LED Off\n");
985 priv->status &= ~STATUS_LED_ACT_ON;
988 spin_unlock_irqrestore(&priv->lock, flags);
991 static void ipw_bg_led_activity_off(struct work_struct *work)
993 struct ipw_priv *priv =
994 container_of(work, struct ipw_priv, led_act_off.work);
995 mutex_lock(&priv->mutex);
996 ipw_led_activity_off(priv);
997 mutex_unlock(&priv->mutex);
1000 static void ipw_led_band_on(struct ipw_priv *priv)
1002 unsigned long flags;
1003 u32 led;
1005 /* Only nic type 1 supports mode LEDs */
1006 if (priv->config & CFG_NO_LED ||
1007 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1008 return;
1010 spin_lock_irqsave(&priv->lock, flags);
1012 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1013 if (priv->assoc_network->mode == IEEE_A) {
1014 led |= priv->led_ofdm_on;
1015 led &= priv->led_association_off;
1016 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1017 } else if (priv->assoc_network->mode == IEEE_G) {
1018 led |= priv->led_ofdm_on;
1019 led |= priv->led_association_on;
1020 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1021 } else {
1022 led &= priv->led_ofdm_off;
1023 led |= priv->led_association_on;
1024 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1027 led = ipw_register_toggle(led);
1029 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1030 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1032 spin_unlock_irqrestore(&priv->lock, flags);
1035 static void ipw_led_band_off(struct ipw_priv *priv)
1037 unsigned long flags;
1038 u32 led;
1040 /* Only nic type 1 supports mode LEDs */
1041 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1042 return;
1044 spin_lock_irqsave(&priv->lock, flags);
1046 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1047 led &= priv->led_ofdm_off;
1048 led &= priv->led_association_off;
1050 led = ipw_register_toggle(led);
1052 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1053 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1055 spin_unlock_irqrestore(&priv->lock, flags);
1058 static void ipw_led_radio_on(struct ipw_priv *priv)
1060 ipw_led_link_on(priv);
1063 static void ipw_led_radio_off(struct ipw_priv *priv)
1065 ipw_led_activity_off(priv);
1066 ipw_led_link_off(priv);
1069 static void ipw_led_link_up(struct ipw_priv *priv)
1071 /* Set the Link Led on for all nic types */
1072 ipw_led_link_on(priv);
1075 static void ipw_led_link_down(struct ipw_priv *priv)
1077 ipw_led_activity_off(priv);
1078 ipw_led_link_off(priv);
1080 if (priv->status & STATUS_RF_KILL_MASK)
1081 ipw_led_radio_off(priv);
1084 static void ipw_led_init(struct ipw_priv *priv)
1086 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1088 /* Set the default PINs for the link and activity leds */
1089 priv->led_activity_on = IPW_ACTIVITY_LED;
1090 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1092 priv->led_association_on = IPW_ASSOCIATED_LED;
1093 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1095 /* Set the default PINs for the OFDM leds */
1096 priv->led_ofdm_on = IPW_OFDM_LED;
1097 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1099 switch (priv->nic_type) {
1100 case EEPROM_NIC_TYPE_1:
1101 /* In this NIC type, the LEDs are reversed.... */
1102 priv->led_activity_on = IPW_ASSOCIATED_LED;
1103 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1104 priv->led_association_on = IPW_ACTIVITY_LED;
1105 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1107 if (!(priv->config & CFG_NO_LED))
1108 ipw_led_band_on(priv);
1110 /* And we don't blink link LEDs for this nic, so
1111 * just return here */
1112 return;
1114 case EEPROM_NIC_TYPE_3:
1115 case EEPROM_NIC_TYPE_2:
1116 case EEPROM_NIC_TYPE_4:
1117 case EEPROM_NIC_TYPE_0:
1118 break;
1120 default:
1121 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1122 priv->nic_type);
1123 priv->nic_type = EEPROM_NIC_TYPE_0;
1124 break;
1127 if (!(priv->config & CFG_NO_LED)) {
1128 if (priv->status & STATUS_ASSOCIATED)
1129 ipw_led_link_on(priv);
1130 else
1131 ipw_led_link_off(priv);
1135 static void ipw_led_shutdown(struct ipw_priv *priv)
1137 ipw_led_activity_off(priv);
1138 ipw_led_link_off(priv);
1139 ipw_led_band_off(priv);
1140 cancel_delayed_work(&priv->led_link_on);
1141 cancel_delayed_work(&priv->led_link_off);
1142 cancel_delayed_work(&priv->led_act_off);
1146 * The following adds a new attribute to the sysfs representation
1147 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1148 * used for controling the debug level.
1150 * See the level definitions in ipw for details.
1152 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1154 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1157 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1158 size_t count)
1160 char *p = (char *)buf;
1161 u32 val;
1163 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1164 p++;
1165 if (p[0] == 'x' || p[0] == 'X')
1166 p++;
1167 val = simple_strtoul(p, &p, 16);
1168 } else
1169 val = simple_strtoul(p, &p, 10);
1170 if (p == buf)
1171 printk(KERN_INFO DRV_NAME
1172 ": %s is not in hex or decimal form.\n", buf);
1173 else
1174 ipw_debug_level = val;
1176 return strnlen(buf, count);
1179 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1180 show_debug_level, store_debug_level);
1182 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1184 /* length = 1st dword in log */
1185 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1188 static void ipw_capture_event_log(struct ipw_priv *priv,
1189 u32 log_len, struct ipw_event *log)
1191 u32 base;
1193 if (log_len) {
1194 base = ipw_read32(priv, IPW_EVENT_LOG);
1195 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1196 (u8 *) log, sizeof(*log) * log_len);
1200 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1202 struct ipw_fw_error *error;
1203 u32 log_len = ipw_get_event_log_len(priv);
1204 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1205 u32 elem_len = ipw_read_reg32(priv, base);
1207 error = kmalloc(sizeof(*error) +
1208 sizeof(*error->elem) * elem_len +
1209 sizeof(*error->log) * log_len, GFP_ATOMIC);
1210 if (!error) {
1211 IPW_ERROR("Memory allocation for firmware error log "
1212 "failed.\n");
1213 return NULL;
1215 error->jiffies = jiffies;
1216 error->status = priv->status;
1217 error->config = priv->config;
1218 error->elem_len = elem_len;
1219 error->log_len = log_len;
1220 error->elem = (struct ipw_error_elem *)error->payload;
1221 error->log = (struct ipw_event *)(error->elem + elem_len);
1223 ipw_capture_event_log(priv, log_len, error->log);
1225 if (elem_len)
1226 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1227 sizeof(*error->elem) * elem_len);
1229 return error;
1232 static ssize_t show_event_log(struct device *d,
1233 struct device_attribute *attr, char *buf)
1235 struct ipw_priv *priv = dev_get_drvdata(d);
1236 u32 log_len = ipw_get_event_log_len(priv);
1237 u32 log_size;
1238 struct ipw_event *log;
1239 u32 len = 0, i;
1241 /* not using min() because of its strict type checking */
1242 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1243 sizeof(*log) * log_len : PAGE_SIZE;
1244 log = kzalloc(log_size, GFP_KERNEL);
1245 if (!log) {
1246 IPW_ERROR("Unable to allocate memory for log\n");
1247 return 0;
1249 log_len = log_size / sizeof(*log);
1250 ipw_capture_event_log(priv, log_len, log);
1252 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1253 for (i = 0; i < log_len; i++)
1254 len += snprintf(buf + len, PAGE_SIZE - len,
1255 "\n%08X%08X%08X",
1256 log[i].time, log[i].event, log[i].data);
1257 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1258 kfree(log);
1259 return len;
1262 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1264 static ssize_t show_error(struct device *d,
1265 struct device_attribute *attr, char *buf)
1267 struct ipw_priv *priv = dev_get_drvdata(d);
1268 u32 len = 0, i;
1269 if (!priv->error)
1270 return 0;
1271 len += snprintf(buf + len, PAGE_SIZE - len,
1272 "%08lX%08X%08X%08X",
1273 priv->error->jiffies,
1274 priv->error->status,
1275 priv->error->config, priv->error->elem_len);
1276 for (i = 0; i < priv->error->elem_len; i++)
1277 len += snprintf(buf + len, PAGE_SIZE - len,
1278 "\n%08X%08X%08X%08X%08X%08X%08X",
1279 priv->error->elem[i].time,
1280 priv->error->elem[i].desc,
1281 priv->error->elem[i].blink1,
1282 priv->error->elem[i].blink2,
1283 priv->error->elem[i].link1,
1284 priv->error->elem[i].link2,
1285 priv->error->elem[i].data);
1287 len += snprintf(buf + len, PAGE_SIZE - len,
1288 "\n%08X", priv->error->log_len);
1289 for (i = 0; i < priv->error->log_len; i++)
1290 len += snprintf(buf + len, PAGE_SIZE - len,
1291 "\n%08X%08X%08X",
1292 priv->error->log[i].time,
1293 priv->error->log[i].event,
1294 priv->error->log[i].data);
1295 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1296 return len;
1299 static ssize_t clear_error(struct device *d,
1300 struct device_attribute *attr,
1301 const char *buf, size_t count)
1303 struct ipw_priv *priv = dev_get_drvdata(d);
1305 kfree(priv->error);
1306 priv->error = NULL;
1307 return count;
1310 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1312 static ssize_t show_cmd_log(struct device *d,
1313 struct device_attribute *attr, char *buf)
1315 struct ipw_priv *priv = dev_get_drvdata(d);
1316 u32 len = 0, i;
1317 if (!priv->cmdlog)
1318 return 0;
1319 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1320 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1321 i = (i + 1) % priv->cmdlog_len) {
1322 len +=
1323 snprintf(buf + len, PAGE_SIZE - len,
1324 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1325 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1326 priv->cmdlog[i].cmd.len);
1327 len +=
1328 snprintk_buf(buf + len, PAGE_SIZE - len,
1329 (u8 *) priv->cmdlog[i].cmd.param,
1330 priv->cmdlog[i].cmd.len);
1331 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1334 return len;
1337 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1339 #ifdef CONFIG_IPW2200_PROMISCUOUS
1340 static void ipw_prom_free(struct ipw_priv *priv);
1341 static int ipw_prom_alloc(struct ipw_priv *priv);
1342 static ssize_t store_rtap_iface(struct device *d,
1343 struct device_attribute *attr,
1344 const char *buf, size_t count)
1346 struct ipw_priv *priv = dev_get_drvdata(d);
1347 int rc = 0;
1349 if (count < 1)
1350 return -EINVAL;
1352 switch (buf[0]) {
1353 case '0':
1354 if (!rtap_iface)
1355 return count;
1357 if (netif_running(priv->prom_net_dev)) {
1358 IPW_WARNING("Interface is up. Cannot unregister.\n");
1359 return count;
1362 ipw_prom_free(priv);
1363 rtap_iface = 0;
1364 break;
1366 case '1':
1367 if (rtap_iface)
1368 return count;
1370 rc = ipw_prom_alloc(priv);
1371 if (!rc)
1372 rtap_iface = 1;
1373 break;
1375 default:
1376 return -EINVAL;
1379 if (rc) {
1380 IPW_ERROR("Failed to register promiscuous network "
1381 "device (error %d).\n", rc);
1384 return count;
1387 static ssize_t show_rtap_iface(struct device *d,
1388 struct device_attribute *attr,
1389 char *buf)
1391 struct ipw_priv *priv = dev_get_drvdata(d);
1392 if (rtap_iface)
1393 return sprintf(buf, "%s", priv->prom_net_dev->name);
1394 else {
1395 buf[0] = '-';
1396 buf[1] = '1';
1397 buf[2] = '\0';
1398 return 3;
1402 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1403 store_rtap_iface);
1405 static ssize_t store_rtap_filter(struct device *d,
1406 struct device_attribute *attr,
1407 const char *buf, size_t count)
1409 struct ipw_priv *priv = dev_get_drvdata(d);
1411 if (!priv->prom_priv) {
1412 IPW_ERROR("Attempting to set filter without "
1413 "rtap_iface enabled.\n");
1414 return -EPERM;
1417 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1419 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1420 BIT_ARG16(priv->prom_priv->filter));
1422 return count;
1425 static ssize_t show_rtap_filter(struct device *d,
1426 struct device_attribute *attr,
1427 char *buf)
1429 struct ipw_priv *priv = dev_get_drvdata(d);
1430 return sprintf(buf, "0x%04X",
1431 priv->prom_priv ? priv->prom_priv->filter : 0);
1434 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1435 store_rtap_filter);
1436 #endif
1438 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1439 char *buf)
1441 struct ipw_priv *priv = dev_get_drvdata(d);
1442 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1445 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1446 const char *buf, size_t count)
1448 struct ipw_priv *priv = dev_get_drvdata(d);
1449 struct net_device *dev = priv->net_dev;
1450 char buffer[] = "00000000";
1451 unsigned long len =
1452 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1453 unsigned long val;
1454 char *p = buffer;
1456 IPW_DEBUG_INFO("enter\n");
1458 strncpy(buffer, buf, len);
1459 buffer[len] = 0;
1461 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1462 p++;
1463 if (p[0] == 'x' || p[0] == 'X')
1464 p++;
1465 val = simple_strtoul(p, &p, 16);
1466 } else
1467 val = simple_strtoul(p, &p, 10);
1468 if (p == buffer) {
1469 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1470 } else {
1471 priv->ieee->scan_age = val;
1472 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1475 IPW_DEBUG_INFO("exit\n");
1476 return len;
1479 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1481 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1482 char *buf)
1484 struct ipw_priv *priv = dev_get_drvdata(d);
1485 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1488 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1489 const char *buf, size_t count)
1491 struct ipw_priv *priv = dev_get_drvdata(d);
1493 IPW_DEBUG_INFO("enter\n");
1495 if (count == 0)
1496 return 0;
1498 if (*buf == 0) {
1499 IPW_DEBUG_LED("Disabling LED control.\n");
1500 priv->config |= CFG_NO_LED;
1501 ipw_led_shutdown(priv);
1502 } else {
1503 IPW_DEBUG_LED("Enabling LED control.\n");
1504 priv->config &= ~CFG_NO_LED;
1505 ipw_led_init(priv);
1508 IPW_DEBUG_INFO("exit\n");
1509 return count;
1512 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1514 static ssize_t show_status(struct device *d,
1515 struct device_attribute *attr, char *buf)
1517 struct ipw_priv *p = d->driver_data;
1518 return sprintf(buf, "0x%08x\n", (int)p->status);
1521 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1523 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1524 char *buf)
1526 struct ipw_priv *p = d->driver_data;
1527 return sprintf(buf, "0x%08x\n", (int)p->config);
1530 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1532 static ssize_t show_nic_type(struct device *d,
1533 struct device_attribute *attr, char *buf)
1535 struct ipw_priv *priv = d->driver_data;
1536 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1539 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1541 static ssize_t show_ucode_version(struct device *d,
1542 struct device_attribute *attr, char *buf)
1544 u32 len = sizeof(u32), tmp = 0;
1545 struct ipw_priv *p = d->driver_data;
1547 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1548 return 0;
1550 return sprintf(buf, "0x%08x\n", tmp);
1553 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1555 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1556 char *buf)
1558 u32 len = sizeof(u32), tmp = 0;
1559 struct ipw_priv *p = d->driver_data;
1561 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1562 return 0;
1564 return sprintf(buf, "0x%08x\n", tmp);
1567 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1570 * Add a device attribute to view/control the delay between eeprom
1571 * operations.
1573 static ssize_t show_eeprom_delay(struct device *d,
1574 struct device_attribute *attr, char *buf)
1576 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1577 return sprintf(buf, "%i\n", n);
1579 static ssize_t store_eeprom_delay(struct device *d,
1580 struct device_attribute *attr,
1581 const char *buf, size_t count)
1583 struct ipw_priv *p = d->driver_data;
1584 sscanf(buf, "%i", &p->eeprom_delay);
1585 return strnlen(buf, count);
1588 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1589 show_eeprom_delay, store_eeprom_delay);
1591 static ssize_t show_command_event_reg(struct device *d,
1592 struct device_attribute *attr, char *buf)
1594 u32 reg = 0;
1595 struct ipw_priv *p = d->driver_data;
1597 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1598 return sprintf(buf, "0x%08x\n", reg);
1600 static ssize_t store_command_event_reg(struct device *d,
1601 struct device_attribute *attr,
1602 const char *buf, size_t count)
1604 u32 reg;
1605 struct ipw_priv *p = d->driver_data;
1607 sscanf(buf, "%x", &reg);
1608 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1609 return strnlen(buf, count);
1612 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1613 show_command_event_reg, store_command_event_reg);
1615 static ssize_t show_mem_gpio_reg(struct device *d,
1616 struct device_attribute *attr, char *buf)
1618 u32 reg = 0;
1619 struct ipw_priv *p = d->driver_data;
1621 reg = ipw_read_reg32(p, 0x301100);
1622 return sprintf(buf, "0x%08x\n", reg);
1624 static ssize_t store_mem_gpio_reg(struct device *d,
1625 struct device_attribute *attr,
1626 const char *buf, size_t count)
1628 u32 reg;
1629 struct ipw_priv *p = d->driver_data;
1631 sscanf(buf, "%x", &reg);
1632 ipw_write_reg32(p, 0x301100, reg);
1633 return strnlen(buf, count);
1636 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1637 show_mem_gpio_reg, store_mem_gpio_reg);
1639 static ssize_t show_indirect_dword(struct device *d,
1640 struct device_attribute *attr, char *buf)
1642 u32 reg = 0;
1643 struct ipw_priv *priv = d->driver_data;
1645 if (priv->status & STATUS_INDIRECT_DWORD)
1646 reg = ipw_read_reg32(priv, priv->indirect_dword);
1647 else
1648 reg = 0;
1650 return sprintf(buf, "0x%08x\n", reg);
1652 static ssize_t store_indirect_dword(struct device *d,
1653 struct device_attribute *attr,
1654 const char *buf, size_t count)
1656 struct ipw_priv *priv = d->driver_data;
1658 sscanf(buf, "%x", &priv->indirect_dword);
1659 priv->status |= STATUS_INDIRECT_DWORD;
1660 return strnlen(buf, count);
1663 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1664 show_indirect_dword, store_indirect_dword);
1666 static ssize_t show_indirect_byte(struct device *d,
1667 struct device_attribute *attr, char *buf)
1669 u8 reg = 0;
1670 struct ipw_priv *priv = d->driver_data;
1672 if (priv->status & STATUS_INDIRECT_BYTE)
1673 reg = ipw_read_reg8(priv, priv->indirect_byte);
1674 else
1675 reg = 0;
1677 return sprintf(buf, "0x%02x\n", reg);
1679 static ssize_t store_indirect_byte(struct device *d,
1680 struct device_attribute *attr,
1681 const char *buf, size_t count)
1683 struct ipw_priv *priv = d->driver_data;
1685 sscanf(buf, "%x", &priv->indirect_byte);
1686 priv->status |= STATUS_INDIRECT_BYTE;
1687 return strnlen(buf, count);
1690 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1691 show_indirect_byte, store_indirect_byte);
1693 static ssize_t show_direct_dword(struct device *d,
1694 struct device_attribute *attr, char *buf)
1696 u32 reg = 0;
1697 struct ipw_priv *priv = d->driver_data;
1699 if (priv->status & STATUS_DIRECT_DWORD)
1700 reg = ipw_read32(priv, priv->direct_dword);
1701 else
1702 reg = 0;
1704 return sprintf(buf, "0x%08x\n", reg);
1706 static ssize_t store_direct_dword(struct device *d,
1707 struct device_attribute *attr,
1708 const char *buf, size_t count)
1710 struct ipw_priv *priv = d->driver_data;
1712 sscanf(buf, "%x", &priv->direct_dword);
1713 priv->status |= STATUS_DIRECT_DWORD;
1714 return strnlen(buf, count);
1717 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1718 show_direct_dword, store_direct_dword);
1720 static int rf_kill_active(struct ipw_priv *priv)
1722 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1723 priv->status |= STATUS_RF_KILL_HW;
1724 else
1725 priv->status &= ~STATUS_RF_KILL_HW;
1727 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1730 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1731 char *buf)
1733 /* 0 - RF kill not enabled
1734 1 - SW based RF kill active (sysfs)
1735 2 - HW based RF kill active
1736 3 - Both HW and SW baed RF kill active */
1737 struct ipw_priv *priv = d->driver_data;
1738 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1739 (rf_kill_active(priv) ? 0x2 : 0x0);
1740 return sprintf(buf, "%i\n", val);
1743 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1745 if ((disable_radio ? 1 : 0) ==
1746 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1747 return 0;
1749 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1750 disable_radio ? "OFF" : "ON");
1752 if (disable_radio) {
1753 priv->status |= STATUS_RF_KILL_SW;
1755 if (priv->workqueue) {
1756 cancel_delayed_work(&priv->request_scan);
1757 cancel_delayed_work(&priv->request_direct_scan);
1758 cancel_delayed_work(&priv->request_passive_scan);
1759 cancel_delayed_work(&priv->scan_event);
1761 queue_work(priv->workqueue, &priv->down);
1762 } else {
1763 priv->status &= ~STATUS_RF_KILL_SW;
1764 if (rf_kill_active(priv)) {
1765 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1766 "disabled by HW switch\n");
1767 /* Make sure the RF_KILL check timer is running */
1768 cancel_delayed_work(&priv->rf_kill);
1769 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1770 round_jiffies_relative(2 * HZ));
1771 } else
1772 queue_work(priv->workqueue, &priv->up);
1775 return 1;
1778 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1779 const char *buf, size_t count)
1781 struct ipw_priv *priv = d->driver_data;
1783 ipw_radio_kill_sw(priv, buf[0] == '1');
1785 return count;
1788 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1790 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1791 char *buf)
1793 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1794 int pos = 0, len = 0;
1795 if (priv->config & CFG_SPEED_SCAN) {
1796 while (priv->speed_scan[pos] != 0)
1797 len += sprintf(&buf[len], "%d ",
1798 priv->speed_scan[pos++]);
1799 return len + sprintf(&buf[len], "\n");
1802 return sprintf(buf, "0\n");
1805 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1806 const char *buf, size_t count)
1808 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1809 int channel, pos = 0;
1810 const char *p = buf;
1812 /* list of space separated channels to scan, optionally ending with 0 */
1813 while ((channel = simple_strtol(p, NULL, 0))) {
1814 if (pos == MAX_SPEED_SCAN - 1) {
1815 priv->speed_scan[pos] = 0;
1816 break;
1819 if (ieee80211_is_valid_channel(priv->ieee, channel))
1820 priv->speed_scan[pos++] = channel;
1821 else
1822 IPW_WARNING("Skipping invalid channel request: %d\n",
1823 channel);
1824 p = strchr(p, ' ');
1825 if (!p)
1826 break;
1827 while (*p == ' ' || *p == '\t')
1828 p++;
1831 if (pos == 0)
1832 priv->config &= ~CFG_SPEED_SCAN;
1833 else {
1834 priv->speed_scan_pos = 0;
1835 priv->config |= CFG_SPEED_SCAN;
1838 return count;
1841 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1842 store_speed_scan);
1844 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1845 char *buf)
1847 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1848 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1851 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1852 const char *buf, size_t count)
1854 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1855 if (buf[0] == '1')
1856 priv->config |= CFG_NET_STATS;
1857 else
1858 priv->config &= ~CFG_NET_STATS;
1860 return count;
1863 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1864 show_net_stats, store_net_stats);
1866 static ssize_t show_channels(struct device *d,
1867 struct device_attribute *attr,
1868 char *buf)
1870 struct ipw_priv *priv = dev_get_drvdata(d);
1871 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1872 int len = 0, i;
1874 len = sprintf(&buf[len],
1875 "Displaying %d channels in 2.4Ghz band "
1876 "(802.11bg):\n", geo->bg_channels);
1878 for (i = 0; i < geo->bg_channels; i++) {
1879 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1880 geo->bg[i].channel,
1881 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1882 " (radar spectrum)" : "",
1883 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1884 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1885 ? "" : ", IBSS",
1886 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1887 "passive only" : "active/passive",
1888 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1889 "B" : "B/G");
1892 len += sprintf(&buf[len],
1893 "Displaying %d channels in 5.2Ghz band "
1894 "(802.11a):\n", geo->a_channels);
1895 for (i = 0; i < geo->a_channels; i++) {
1896 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1897 geo->a[i].channel,
1898 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1899 " (radar spectrum)" : "",
1900 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1901 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1902 ? "" : ", IBSS",
1903 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1904 "passive only" : "active/passive");
1907 return len;
1910 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1912 static void notify_wx_assoc_event(struct ipw_priv *priv)
1914 union iwreq_data wrqu;
1915 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1916 if (priv->status & STATUS_ASSOCIATED)
1917 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1918 else
1919 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1920 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1923 static void ipw_irq_tasklet(struct ipw_priv *priv)
1925 u32 inta, inta_mask, handled = 0;
1926 unsigned long flags;
1927 int rc = 0;
1929 spin_lock_irqsave(&priv->irq_lock, flags);
1931 inta = ipw_read32(priv, IPW_INTA_RW);
1932 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1933 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1935 /* Add any cached INTA values that need to be handled */
1936 inta |= priv->isr_inta;
1938 spin_unlock_irqrestore(&priv->irq_lock, flags);
1940 spin_lock_irqsave(&priv->lock, flags);
1942 /* handle all the justifications for the interrupt */
1943 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1944 ipw_rx(priv);
1945 handled |= IPW_INTA_BIT_RX_TRANSFER;
1948 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1949 IPW_DEBUG_HC("Command completed.\n");
1950 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1951 priv->status &= ~STATUS_HCMD_ACTIVE;
1952 wake_up_interruptible(&priv->wait_command_queue);
1953 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1956 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1957 IPW_DEBUG_TX("TX_QUEUE_1\n");
1958 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1959 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1962 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1963 IPW_DEBUG_TX("TX_QUEUE_2\n");
1964 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1965 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1968 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1969 IPW_DEBUG_TX("TX_QUEUE_3\n");
1970 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1971 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1974 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1975 IPW_DEBUG_TX("TX_QUEUE_4\n");
1976 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1977 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1980 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1981 IPW_WARNING("STATUS_CHANGE\n");
1982 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1985 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1986 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1987 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1990 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1991 IPW_WARNING("HOST_CMD_DONE\n");
1992 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1995 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1996 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1997 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2000 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2001 IPW_WARNING("PHY_OFF_DONE\n");
2002 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2005 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2006 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2007 priv->status |= STATUS_RF_KILL_HW;
2008 wake_up_interruptible(&priv->wait_command_queue);
2009 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2010 cancel_delayed_work(&priv->request_scan);
2011 cancel_delayed_work(&priv->request_direct_scan);
2012 cancel_delayed_work(&priv->request_passive_scan);
2013 cancel_delayed_work(&priv->scan_event);
2014 schedule_work(&priv->link_down);
2015 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2016 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2019 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2020 IPW_WARNING("Firmware error detected. Restarting.\n");
2021 if (priv->error) {
2022 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2023 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2024 struct ipw_fw_error *error =
2025 ipw_alloc_error_log(priv);
2026 ipw_dump_error_log(priv, error);
2027 kfree(error);
2029 } else {
2030 priv->error = ipw_alloc_error_log(priv);
2031 if (priv->error)
2032 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2033 else
2034 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2035 "log.\n");
2036 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2037 ipw_dump_error_log(priv, priv->error);
2040 /* XXX: If hardware encryption is for WPA/WPA2,
2041 * we have to notify the supplicant. */
2042 if (priv->ieee->sec.encrypt) {
2043 priv->status &= ~STATUS_ASSOCIATED;
2044 notify_wx_assoc_event(priv);
2047 /* Keep the restart process from trying to send host
2048 * commands by clearing the INIT status bit */
2049 priv->status &= ~STATUS_INIT;
2051 /* Cancel currently queued command. */
2052 priv->status &= ~STATUS_HCMD_ACTIVE;
2053 wake_up_interruptible(&priv->wait_command_queue);
2055 queue_work(priv->workqueue, &priv->adapter_restart);
2056 handled |= IPW_INTA_BIT_FATAL_ERROR;
2059 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2060 IPW_ERROR("Parity error\n");
2061 handled |= IPW_INTA_BIT_PARITY_ERROR;
2064 if (handled != inta) {
2065 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2068 spin_unlock_irqrestore(&priv->lock, flags);
2070 /* enable all interrupts */
2071 ipw_enable_interrupts(priv);
2074 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2075 static char *get_cmd_string(u8 cmd)
2077 switch (cmd) {
2078 IPW_CMD(HOST_COMPLETE);
2079 IPW_CMD(POWER_DOWN);
2080 IPW_CMD(SYSTEM_CONFIG);
2081 IPW_CMD(MULTICAST_ADDRESS);
2082 IPW_CMD(SSID);
2083 IPW_CMD(ADAPTER_ADDRESS);
2084 IPW_CMD(PORT_TYPE);
2085 IPW_CMD(RTS_THRESHOLD);
2086 IPW_CMD(FRAG_THRESHOLD);
2087 IPW_CMD(POWER_MODE);
2088 IPW_CMD(WEP_KEY);
2089 IPW_CMD(TGI_TX_KEY);
2090 IPW_CMD(SCAN_REQUEST);
2091 IPW_CMD(SCAN_REQUEST_EXT);
2092 IPW_CMD(ASSOCIATE);
2093 IPW_CMD(SUPPORTED_RATES);
2094 IPW_CMD(SCAN_ABORT);
2095 IPW_CMD(TX_FLUSH);
2096 IPW_CMD(QOS_PARAMETERS);
2097 IPW_CMD(DINO_CONFIG);
2098 IPW_CMD(RSN_CAPABILITIES);
2099 IPW_CMD(RX_KEY);
2100 IPW_CMD(CARD_DISABLE);
2101 IPW_CMD(SEED_NUMBER);
2102 IPW_CMD(TX_POWER);
2103 IPW_CMD(COUNTRY_INFO);
2104 IPW_CMD(AIRONET_INFO);
2105 IPW_CMD(AP_TX_POWER);
2106 IPW_CMD(CCKM_INFO);
2107 IPW_CMD(CCX_VER_INFO);
2108 IPW_CMD(SET_CALIBRATION);
2109 IPW_CMD(SENSITIVITY_CALIB);
2110 IPW_CMD(RETRY_LIMIT);
2111 IPW_CMD(IPW_PRE_POWER_DOWN);
2112 IPW_CMD(VAP_BEACON_TEMPLATE);
2113 IPW_CMD(VAP_DTIM_PERIOD);
2114 IPW_CMD(EXT_SUPPORTED_RATES);
2115 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2116 IPW_CMD(VAP_QUIET_INTERVALS);
2117 IPW_CMD(VAP_CHANNEL_SWITCH);
2118 IPW_CMD(VAP_MANDATORY_CHANNELS);
2119 IPW_CMD(VAP_CELL_PWR_LIMIT);
2120 IPW_CMD(VAP_CF_PARAM_SET);
2121 IPW_CMD(VAP_SET_BEACONING_STATE);
2122 IPW_CMD(MEASUREMENT);
2123 IPW_CMD(POWER_CAPABILITY);
2124 IPW_CMD(SUPPORTED_CHANNELS);
2125 IPW_CMD(TPC_REPORT);
2126 IPW_CMD(WME_INFO);
2127 IPW_CMD(PRODUCTION_COMMAND);
2128 default:
2129 return "UNKNOWN";
2133 #define HOST_COMPLETE_TIMEOUT HZ
2135 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2137 int rc = 0;
2138 unsigned long flags;
2140 spin_lock_irqsave(&priv->lock, flags);
2141 if (priv->status & STATUS_HCMD_ACTIVE) {
2142 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2143 get_cmd_string(cmd->cmd));
2144 spin_unlock_irqrestore(&priv->lock, flags);
2145 return -EAGAIN;
2148 priv->status |= STATUS_HCMD_ACTIVE;
2150 if (priv->cmdlog) {
2151 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2153 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2154 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2155 cmd->len);
2156 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2159 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2160 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2161 priv->status);
2163 #ifndef DEBUG_CMD_WEP_KEY
2164 if (cmd->cmd == IPW_CMD_WEP_KEY)
2165 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2166 else
2167 #endif
2168 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2170 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2171 if (rc) {
2172 priv->status &= ~STATUS_HCMD_ACTIVE;
2173 IPW_ERROR("Failed to send %s: Reason %d\n",
2174 get_cmd_string(cmd->cmd), rc);
2175 spin_unlock_irqrestore(&priv->lock, flags);
2176 goto exit;
2178 spin_unlock_irqrestore(&priv->lock, flags);
2180 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2181 !(priv->
2182 status & STATUS_HCMD_ACTIVE),
2183 HOST_COMPLETE_TIMEOUT);
2184 if (rc == 0) {
2185 spin_lock_irqsave(&priv->lock, flags);
2186 if (priv->status & STATUS_HCMD_ACTIVE) {
2187 IPW_ERROR("Failed to send %s: Command timed out.\n",
2188 get_cmd_string(cmd->cmd));
2189 priv->status &= ~STATUS_HCMD_ACTIVE;
2190 spin_unlock_irqrestore(&priv->lock, flags);
2191 rc = -EIO;
2192 goto exit;
2194 spin_unlock_irqrestore(&priv->lock, flags);
2195 } else
2196 rc = 0;
2198 if (priv->status & STATUS_RF_KILL_HW) {
2199 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2200 get_cmd_string(cmd->cmd));
2201 rc = -EIO;
2202 goto exit;
2205 exit:
2206 if (priv->cmdlog) {
2207 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2208 priv->cmdlog_pos %= priv->cmdlog_len;
2210 return rc;
2213 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2215 struct host_cmd cmd = {
2216 .cmd = command,
2219 return __ipw_send_cmd(priv, &cmd);
2222 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2223 void *data)
2225 struct host_cmd cmd = {
2226 .cmd = command,
2227 .len = len,
2228 .param = data,
2231 return __ipw_send_cmd(priv, &cmd);
2234 static int ipw_send_host_complete(struct ipw_priv *priv)
2236 if (!priv) {
2237 IPW_ERROR("Invalid args\n");
2238 return -1;
2241 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2244 static int ipw_send_system_config(struct ipw_priv *priv)
2246 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2247 sizeof(priv->sys_config),
2248 &priv->sys_config);
2251 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2253 if (!priv || !ssid) {
2254 IPW_ERROR("Invalid args\n");
2255 return -1;
2258 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2259 ssid);
2262 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2264 if (!priv || !mac) {
2265 IPW_ERROR("Invalid args\n");
2266 return -1;
2269 IPW_DEBUG_INFO("%s: Setting MAC to %s\n",
2270 priv->net_dev->name, print_mac(mac, mac));
2272 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2276 * NOTE: This must be executed from our workqueue as it results in udelay
2277 * being called which may corrupt the keyboard if executed on default
2278 * workqueue
2280 static void ipw_adapter_restart(void *adapter)
2282 struct ipw_priv *priv = adapter;
2284 if (priv->status & STATUS_RF_KILL_MASK)
2285 return;
2287 ipw_down(priv);
2289 if (priv->assoc_network &&
2290 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2291 ipw_remove_current_network(priv);
2293 if (ipw_up(priv)) {
2294 IPW_ERROR("Failed to up device\n");
2295 return;
2299 static void ipw_bg_adapter_restart(struct work_struct *work)
2301 struct ipw_priv *priv =
2302 container_of(work, struct ipw_priv, adapter_restart);
2303 mutex_lock(&priv->mutex);
2304 ipw_adapter_restart(priv);
2305 mutex_unlock(&priv->mutex);
2308 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2310 static void ipw_scan_check(void *data)
2312 struct ipw_priv *priv = data;
2313 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2314 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2315 "adapter after (%dms).\n",
2316 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2317 queue_work(priv->workqueue, &priv->adapter_restart);
2321 static void ipw_bg_scan_check(struct work_struct *work)
2323 struct ipw_priv *priv =
2324 container_of(work, struct ipw_priv, scan_check.work);
2325 mutex_lock(&priv->mutex);
2326 ipw_scan_check(priv);
2327 mutex_unlock(&priv->mutex);
2330 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2331 struct ipw_scan_request_ext *request)
2333 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2334 sizeof(*request), request);
2337 static int ipw_send_scan_abort(struct ipw_priv *priv)
2339 if (!priv) {
2340 IPW_ERROR("Invalid args\n");
2341 return -1;
2344 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2347 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2349 struct ipw_sensitivity_calib calib = {
2350 .beacon_rssi_raw = cpu_to_le16(sens),
2353 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2354 &calib);
2357 static int ipw_send_associate(struct ipw_priv *priv,
2358 struct ipw_associate *associate)
2360 if (!priv || !associate) {
2361 IPW_ERROR("Invalid args\n");
2362 return -1;
2365 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2366 associate);
2369 static int ipw_send_supported_rates(struct ipw_priv *priv,
2370 struct ipw_supported_rates *rates)
2372 if (!priv || !rates) {
2373 IPW_ERROR("Invalid args\n");
2374 return -1;
2377 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2378 rates);
2381 static int ipw_set_random_seed(struct ipw_priv *priv)
2383 u32 val;
2385 if (!priv) {
2386 IPW_ERROR("Invalid args\n");
2387 return -1;
2390 get_random_bytes(&val, sizeof(val));
2392 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2395 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2397 __le32 v = cpu_to_le32(phy_off);
2398 if (!priv) {
2399 IPW_ERROR("Invalid args\n");
2400 return -1;
2403 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2406 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2408 if (!priv || !power) {
2409 IPW_ERROR("Invalid args\n");
2410 return -1;
2413 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2416 static int ipw_set_tx_power(struct ipw_priv *priv)
2418 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2419 struct ipw_tx_power tx_power;
2420 s8 max_power;
2421 int i;
2423 memset(&tx_power, 0, sizeof(tx_power));
2425 /* configure device for 'G' band */
2426 tx_power.ieee_mode = IPW_G_MODE;
2427 tx_power.num_channels = geo->bg_channels;
2428 for (i = 0; i < geo->bg_channels; i++) {
2429 max_power = geo->bg[i].max_power;
2430 tx_power.channels_tx_power[i].channel_number =
2431 geo->bg[i].channel;
2432 tx_power.channels_tx_power[i].tx_power = max_power ?
2433 min(max_power, priv->tx_power) : priv->tx_power;
2435 if (ipw_send_tx_power(priv, &tx_power))
2436 return -EIO;
2438 /* configure device to also handle 'B' band */
2439 tx_power.ieee_mode = IPW_B_MODE;
2440 if (ipw_send_tx_power(priv, &tx_power))
2441 return -EIO;
2443 /* configure device to also handle 'A' band */
2444 if (priv->ieee->abg_true) {
2445 tx_power.ieee_mode = IPW_A_MODE;
2446 tx_power.num_channels = geo->a_channels;
2447 for (i = 0; i < tx_power.num_channels; i++) {
2448 max_power = geo->a[i].max_power;
2449 tx_power.channels_tx_power[i].channel_number =
2450 geo->a[i].channel;
2451 tx_power.channels_tx_power[i].tx_power = max_power ?
2452 min(max_power, priv->tx_power) : priv->tx_power;
2454 if (ipw_send_tx_power(priv, &tx_power))
2455 return -EIO;
2457 return 0;
2460 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2462 struct ipw_rts_threshold rts_threshold = {
2463 .rts_threshold = cpu_to_le16(rts),
2466 if (!priv) {
2467 IPW_ERROR("Invalid args\n");
2468 return -1;
2471 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2472 sizeof(rts_threshold), &rts_threshold);
2475 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2477 struct ipw_frag_threshold frag_threshold = {
2478 .frag_threshold = cpu_to_le16(frag),
2481 if (!priv) {
2482 IPW_ERROR("Invalid args\n");
2483 return -1;
2486 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2487 sizeof(frag_threshold), &frag_threshold);
2490 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2492 __le32 param;
2494 if (!priv) {
2495 IPW_ERROR("Invalid args\n");
2496 return -1;
2499 /* If on battery, set to 3, if AC set to CAM, else user
2500 * level */
2501 switch (mode) {
2502 case IPW_POWER_BATTERY:
2503 param = cpu_to_le32(IPW_POWER_INDEX_3);
2504 break;
2505 case IPW_POWER_AC:
2506 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2507 break;
2508 default:
2509 param = cpu_to_le32(mode);
2510 break;
2513 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2514 &param);
2517 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2519 struct ipw_retry_limit retry_limit = {
2520 .short_retry_limit = slimit,
2521 .long_retry_limit = llimit
2524 if (!priv) {
2525 IPW_ERROR("Invalid args\n");
2526 return -1;
2529 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2530 &retry_limit);
2534 * The IPW device contains a Microwire compatible EEPROM that stores
2535 * various data like the MAC address. Usually the firmware has exclusive
2536 * access to the eeprom, but during device initialization (before the
2537 * device driver has sent the HostComplete command to the firmware) the
2538 * device driver has read access to the EEPROM by way of indirect addressing
2539 * through a couple of memory mapped registers.
2541 * The following is a simplified implementation for pulling data out of the
2542 * the eeprom, along with some helper functions to find information in
2543 * the per device private data's copy of the eeprom.
2545 * NOTE: To better understand how these functions work (i.e what is a chip
2546 * select and why do have to keep driving the eeprom clock?), read
2547 * just about any data sheet for a Microwire compatible EEPROM.
2550 /* write a 32 bit value into the indirect accessor register */
2551 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2553 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2555 /* the eeprom requires some time to complete the operation */
2556 udelay(p->eeprom_delay);
2558 return;
2561 /* perform a chip select operation */
2562 static void eeprom_cs(struct ipw_priv *priv)
2564 eeprom_write_reg(priv, 0);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2567 eeprom_write_reg(priv, EEPROM_BIT_CS);
2570 /* perform a chip select operation */
2571 static void eeprom_disable_cs(struct ipw_priv *priv)
2573 eeprom_write_reg(priv, EEPROM_BIT_CS);
2574 eeprom_write_reg(priv, 0);
2575 eeprom_write_reg(priv, EEPROM_BIT_SK);
2578 /* push a single bit down to the eeprom */
2579 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2581 int d = (bit ? EEPROM_BIT_DI : 0);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2583 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2586 /* push an opcode followed by an address down to the eeprom */
2587 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2589 int i;
2591 eeprom_cs(priv);
2592 eeprom_write_bit(priv, 1);
2593 eeprom_write_bit(priv, op & 2);
2594 eeprom_write_bit(priv, op & 1);
2595 for (i = 7; i >= 0; i--) {
2596 eeprom_write_bit(priv, addr & (1 << i));
2600 /* pull 16 bits off the eeprom, one bit at a time */
2601 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2603 int i;
2604 u16 r = 0;
2606 /* Send READ Opcode */
2607 eeprom_op(priv, EEPROM_CMD_READ, addr);
2609 /* Send dummy bit */
2610 eeprom_write_reg(priv, EEPROM_BIT_CS);
2612 /* Read the byte off the eeprom one bit at a time */
2613 for (i = 0; i < 16; i++) {
2614 u32 data = 0;
2615 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2616 eeprom_write_reg(priv, EEPROM_BIT_CS);
2617 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2618 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2621 /* Send another dummy bit */
2622 eeprom_write_reg(priv, 0);
2623 eeprom_disable_cs(priv);
2625 return r;
2628 /* helper function for pulling the mac address out of the private */
2629 /* data's copy of the eeprom data */
2630 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2632 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2636 * Either the device driver (i.e. the host) or the firmware can
2637 * load eeprom data into the designated region in SRAM. If neither
2638 * happens then the FW will shutdown with a fatal error.
2640 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2641 * bit needs region of shared SRAM needs to be non-zero.
2643 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2645 int i;
2646 __le16 *eeprom = (__le16 *) priv->eeprom;
2648 IPW_DEBUG_TRACE(">>\n");
2650 /* read entire contents of eeprom into private buffer */
2651 for (i = 0; i < 128; i++)
2652 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2655 If the data looks correct, then copy it to our private
2656 copy. Otherwise let the firmware know to perform the operation
2657 on its own.
2659 if (priv->eeprom[EEPROM_VERSION] != 0) {
2660 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2662 /* write the eeprom data to sram */
2663 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2664 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2666 /* Do not load eeprom data on fatal error or suspend */
2667 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2668 } else {
2669 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2671 /* Load eeprom data on fatal error or suspend */
2672 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2675 IPW_DEBUG_TRACE("<<\n");
2678 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2680 count >>= 2;
2681 if (!count)
2682 return;
2683 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2684 while (count--)
2685 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2688 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2690 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2691 CB_NUMBER_OF_ELEMENTS_SMALL *
2692 sizeof(struct command_block));
2695 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2696 { /* start dma engine but no transfers yet */
2698 IPW_DEBUG_FW(">> : \n");
2700 /* Start the dma */
2701 ipw_fw_dma_reset_command_blocks(priv);
2703 /* Write CB base address */
2704 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2706 IPW_DEBUG_FW("<< : \n");
2707 return 0;
2710 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2712 u32 control = 0;
2714 IPW_DEBUG_FW(">> :\n");
2716 /* set the Stop and Abort bit */
2717 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2718 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2719 priv->sram_desc.last_cb_index = 0;
2721 IPW_DEBUG_FW("<< \n");
2724 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2725 struct command_block *cb)
2727 u32 address =
2728 IPW_SHARED_SRAM_DMA_CONTROL +
2729 (sizeof(struct command_block) * index);
2730 IPW_DEBUG_FW(">> :\n");
2732 ipw_write_indirect(priv, address, (u8 *) cb,
2733 (int)sizeof(struct command_block));
2735 IPW_DEBUG_FW("<< :\n");
2736 return 0;
2740 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2742 u32 control = 0;
2743 u32 index = 0;
2745 IPW_DEBUG_FW(">> :\n");
2747 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2748 ipw_fw_dma_write_command_block(priv, index,
2749 &priv->sram_desc.cb_list[index]);
2751 /* Enable the DMA in the CSR register */
2752 ipw_clear_bit(priv, IPW_RESET_REG,
2753 IPW_RESET_REG_MASTER_DISABLED |
2754 IPW_RESET_REG_STOP_MASTER);
2756 /* Set the Start bit. */
2757 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2758 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2760 IPW_DEBUG_FW("<< :\n");
2761 return 0;
2764 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2766 u32 address;
2767 u32 register_value = 0;
2768 u32 cb_fields_address = 0;
2770 IPW_DEBUG_FW(">> :\n");
2771 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2772 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2774 /* Read the DMA Controlor register */
2775 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2776 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2778 /* Print the CB values */
2779 cb_fields_address = address;
2780 register_value = ipw_read_reg32(priv, cb_fields_address);
2781 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2783 cb_fields_address += sizeof(u32);
2784 register_value = ipw_read_reg32(priv, cb_fields_address);
2785 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2787 cb_fields_address += sizeof(u32);
2788 register_value = ipw_read_reg32(priv, cb_fields_address);
2789 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2790 register_value);
2792 cb_fields_address += sizeof(u32);
2793 register_value = ipw_read_reg32(priv, cb_fields_address);
2794 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2796 IPW_DEBUG_FW(">> :\n");
2799 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2801 u32 current_cb_address = 0;
2802 u32 current_cb_index = 0;
2804 IPW_DEBUG_FW("<< :\n");
2805 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2807 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2808 sizeof(struct command_block);
2810 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2811 current_cb_index, current_cb_address);
2813 IPW_DEBUG_FW(">> :\n");
2814 return current_cb_index;
2818 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2819 u32 src_address,
2820 u32 dest_address,
2821 u32 length,
2822 int interrupt_enabled, int is_last)
2825 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2826 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2827 CB_DEST_SIZE_LONG;
2828 struct command_block *cb;
2829 u32 last_cb_element = 0;
2831 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2832 src_address, dest_address, length);
2834 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2835 return -1;
2837 last_cb_element = priv->sram_desc.last_cb_index;
2838 cb = &priv->sram_desc.cb_list[last_cb_element];
2839 priv->sram_desc.last_cb_index++;
2841 /* Calculate the new CB control word */
2842 if (interrupt_enabled)
2843 control |= CB_INT_ENABLED;
2845 if (is_last)
2846 control |= CB_LAST_VALID;
2848 control |= length;
2850 /* Calculate the CB Element's checksum value */
2851 cb->status = control ^ src_address ^ dest_address;
2853 /* Copy the Source and Destination addresses */
2854 cb->dest_addr = dest_address;
2855 cb->source_addr = src_address;
2857 /* Copy the Control Word last */
2858 cb->control = control;
2860 return 0;
2863 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2864 u32 src_phys, u32 dest_address, u32 length)
2866 u32 bytes_left = length;
2867 u32 src_offset = 0;
2868 u32 dest_offset = 0;
2869 int status = 0;
2870 IPW_DEBUG_FW(">> \n");
2871 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2872 src_phys, dest_address, length);
2873 while (bytes_left > CB_MAX_LENGTH) {
2874 status = ipw_fw_dma_add_command_block(priv,
2875 src_phys + src_offset,
2876 dest_address +
2877 dest_offset,
2878 CB_MAX_LENGTH, 0, 0);
2879 if (status) {
2880 IPW_DEBUG_FW_INFO(": Failed\n");
2881 return -1;
2882 } else
2883 IPW_DEBUG_FW_INFO(": Added new cb\n");
2885 src_offset += CB_MAX_LENGTH;
2886 dest_offset += CB_MAX_LENGTH;
2887 bytes_left -= CB_MAX_LENGTH;
2890 /* add the buffer tail */
2891 if (bytes_left > 0) {
2892 status =
2893 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2894 dest_address + dest_offset,
2895 bytes_left, 0, 0);
2896 if (status) {
2897 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2898 return -1;
2899 } else
2900 IPW_DEBUG_FW_INFO
2901 (": Adding new cb - the buffer tail\n");
2904 IPW_DEBUG_FW("<< \n");
2905 return 0;
2908 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2910 u32 current_index = 0, previous_index;
2911 u32 watchdog = 0;
2913 IPW_DEBUG_FW(">> : \n");
2915 current_index = ipw_fw_dma_command_block_index(priv);
2916 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2917 (int)priv->sram_desc.last_cb_index);
2919 while (current_index < priv->sram_desc.last_cb_index) {
2920 udelay(50);
2921 previous_index = current_index;
2922 current_index = ipw_fw_dma_command_block_index(priv);
2924 if (previous_index < current_index) {
2925 watchdog = 0;
2926 continue;
2928 if (++watchdog > 400) {
2929 IPW_DEBUG_FW_INFO("Timeout\n");
2930 ipw_fw_dma_dump_command_block(priv);
2931 ipw_fw_dma_abort(priv);
2932 return -1;
2936 ipw_fw_dma_abort(priv);
2938 /*Disable the DMA in the CSR register */
2939 ipw_set_bit(priv, IPW_RESET_REG,
2940 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2942 IPW_DEBUG_FW("<< dmaWaitSync \n");
2943 return 0;
2946 static void ipw_remove_current_network(struct ipw_priv *priv)
2948 struct list_head *element, *safe;
2949 struct ieee80211_network *network = NULL;
2950 unsigned long flags;
2952 spin_lock_irqsave(&priv->ieee->lock, flags);
2953 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2954 network = list_entry(element, struct ieee80211_network, list);
2955 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2956 list_del(element);
2957 list_add_tail(&network->list,
2958 &priv->ieee->network_free_list);
2961 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2965 * Check that card is still alive.
2966 * Reads debug register from domain0.
2967 * If card is present, pre-defined value should
2968 * be found there.
2970 * @param priv
2971 * @return 1 if card is present, 0 otherwise
2973 static inline int ipw_alive(struct ipw_priv *priv)
2975 return ipw_read32(priv, 0x90) == 0xd55555d5;
2978 /* timeout in msec, attempted in 10-msec quanta */
2979 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2980 int timeout)
2982 int i = 0;
2984 do {
2985 if ((ipw_read32(priv, addr) & mask) == mask)
2986 return i;
2987 mdelay(10);
2988 i += 10;
2989 } while (i < timeout);
2991 return -ETIME;
2994 /* These functions load the firmware and micro code for the operation of
2995 * the ipw hardware. It assumes the buffer has all the bits for the
2996 * image and the caller is handling the memory allocation and clean up.
2999 static int ipw_stop_master(struct ipw_priv *priv)
3001 int rc;
3003 IPW_DEBUG_TRACE(">> \n");
3004 /* stop master. typical delay - 0 */
3005 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3007 /* timeout is in msec, polled in 10-msec quanta */
3008 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3009 IPW_RESET_REG_MASTER_DISABLED, 100);
3010 if (rc < 0) {
3011 IPW_ERROR("wait for stop master failed after 100ms\n");
3012 return -1;
3015 IPW_DEBUG_INFO("stop master %dms\n", rc);
3017 return rc;
3020 static void ipw_arc_release(struct ipw_priv *priv)
3022 IPW_DEBUG_TRACE(">> \n");
3023 mdelay(5);
3025 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3027 /* no one knows timing, for safety add some delay */
3028 mdelay(5);
3031 struct fw_chunk {
3032 __le32 address;
3033 __le32 length;
3036 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3038 int rc = 0, i, addr;
3039 u8 cr = 0;
3040 __le16 *image;
3042 image = (__le16 *) data;
3044 IPW_DEBUG_TRACE(">> \n");
3046 rc = ipw_stop_master(priv);
3048 if (rc < 0)
3049 return rc;
3051 for (addr = IPW_SHARED_LOWER_BOUND;
3052 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3053 ipw_write32(priv, addr, 0);
3056 /* no ucode (yet) */
3057 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3058 /* destroy DMA queues */
3059 /* reset sequence */
3061 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3062 ipw_arc_release(priv);
3063 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3064 mdelay(1);
3066 /* reset PHY */
3067 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3068 mdelay(1);
3070 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3071 mdelay(1);
3073 /* enable ucode store */
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3075 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3076 mdelay(1);
3078 /* write ucode */
3080 * @bug
3081 * Do NOT set indirect address register once and then
3082 * store data to indirect data register in the loop.
3083 * It seems very reasonable, but in this case DINO do not
3084 * accept ucode. It is essential to set address each time.
3086 /* load new ipw uCode */
3087 for (i = 0; i < len / 2; i++)
3088 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3089 le16_to_cpu(image[i]));
3091 /* enable DINO */
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3093 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3095 /* this is where the igx / win driver deveates from the VAP driver. */
3097 /* wait for alive response */
3098 for (i = 0; i < 100; i++) {
3099 /* poll for incoming data */
3100 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3101 if (cr & DINO_RXFIFO_DATA)
3102 break;
3103 mdelay(1);
3106 if (cr & DINO_RXFIFO_DATA) {
3107 /* alive_command_responce size is NOT multiple of 4 */
3108 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3110 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3111 response_buffer[i] =
3112 cpu_to_le32(ipw_read_reg32(priv,
3113 IPW_BASEBAND_RX_FIFO_READ));
3114 memcpy(&priv->dino_alive, response_buffer,
3115 sizeof(priv->dino_alive));
3116 if (priv->dino_alive.alive_command == 1
3117 && priv->dino_alive.ucode_valid == 1) {
3118 rc = 0;
3119 IPW_DEBUG_INFO
3120 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3121 "of %02d/%02d/%02d %02d:%02d\n",
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.software_revision,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.device_identifier,
3126 priv->dino_alive.time_stamp[0],
3127 priv->dino_alive.time_stamp[1],
3128 priv->dino_alive.time_stamp[2],
3129 priv->dino_alive.time_stamp[3],
3130 priv->dino_alive.time_stamp[4]);
3131 } else {
3132 IPW_DEBUG_INFO("Microcode is not alive\n");
3133 rc = -EINVAL;
3135 } else {
3136 IPW_DEBUG_INFO("No alive response from DINO\n");
3137 rc = -ETIME;
3140 /* disable DINO, otherwise for some reason
3141 firmware have problem getting alive resp. */
3142 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 return rc;
3147 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3149 int rc = -1;
3150 int offset = 0;
3151 struct fw_chunk *chunk;
3152 dma_addr_t shared_phys;
3153 u8 *shared_virt;
3155 IPW_DEBUG_TRACE("<< : \n");
3156 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3158 if (!shared_virt)
3159 return -ENOMEM;
3161 memmove(shared_virt, data, len);
3163 /* Start the Dma */
3164 rc = ipw_fw_dma_enable(priv);
3166 if (priv->sram_desc.last_cb_index > 0) {
3167 /* the DMA is already ready this would be a bug. */
3168 BUG();
3169 goto out;
3172 do {
3173 chunk = (struct fw_chunk *)(data + offset);
3174 offset += sizeof(struct fw_chunk);
3175 /* build DMA packet and queue up for sending */
3176 /* dma to chunk->address, the chunk->length bytes from data +
3177 * offeset*/
3178 /* Dma loading */
3179 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3180 le32_to_cpu(chunk->address),
3181 le32_to_cpu(chunk->length));
3182 if (rc) {
3183 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3184 goto out;
3187 offset += le32_to_cpu(chunk->length);
3188 } while (offset < len);
3190 /* Run the DMA and wait for the answer */
3191 rc = ipw_fw_dma_kick(priv);
3192 if (rc) {
3193 IPW_ERROR("dmaKick Failed\n");
3194 goto out;
3197 rc = ipw_fw_dma_wait(priv);
3198 if (rc) {
3199 IPW_ERROR("dmaWaitSync Failed\n");
3200 goto out;
3202 out:
3203 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3204 return rc;
3207 /* stop nic */
3208 static int ipw_stop_nic(struct ipw_priv *priv)
3210 int rc = 0;
3212 /* stop */
3213 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3215 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3216 IPW_RESET_REG_MASTER_DISABLED, 500);
3217 if (rc < 0) {
3218 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3219 return rc;
3222 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3224 return rc;
3227 static void ipw_start_nic(struct ipw_priv *priv)
3229 IPW_DEBUG_TRACE(">>\n");
3231 /* prvHwStartNic release ARC */
3232 ipw_clear_bit(priv, IPW_RESET_REG,
3233 IPW_RESET_REG_MASTER_DISABLED |
3234 IPW_RESET_REG_STOP_MASTER |
3235 CBD_RESET_REG_PRINCETON_RESET);
3237 /* enable power management */
3238 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3239 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3241 IPW_DEBUG_TRACE("<<\n");
3244 static int ipw_init_nic(struct ipw_priv *priv)
3246 int rc;
3248 IPW_DEBUG_TRACE(">>\n");
3249 /* reset */
3250 /*prvHwInitNic */
3251 /* set "initialization complete" bit to move adapter to D0 state */
3252 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3254 /* low-level PLL activation */
3255 ipw_write32(priv, IPW_READ_INT_REGISTER,
3256 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3258 /* wait for clock stabilization */
3259 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3260 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3261 if (rc < 0)
3262 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3264 /* assert SW reset */
3265 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3267 udelay(10);
3269 /* set "initialization complete" bit to move adapter to D0 state */
3270 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3272 IPW_DEBUG_TRACE(">>\n");
3273 return 0;
3276 /* Call this function from process context, it will sleep in request_firmware.
3277 * Probe is an ok place to call this from.
3279 static int ipw_reset_nic(struct ipw_priv *priv)
3281 int rc = 0;
3282 unsigned long flags;
3284 IPW_DEBUG_TRACE(">>\n");
3286 rc = ipw_init_nic(priv);
3288 spin_lock_irqsave(&priv->lock, flags);
3289 /* Clear the 'host command active' bit... */
3290 priv->status &= ~STATUS_HCMD_ACTIVE;
3291 wake_up_interruptible(&priv->wait_command_queue);
3292 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3293 wake_up_interruptible(&priv->wait_state);
3294 spin_unlock_irqrestore(&priv->lock, flags);
3296 IPW_DEBUG_TRACE("<<\n");
3297 return rc;
3301 struct ipw_fw {
3302 __le32 ver;
3303 __le32 boot_size;
3304 __le32 ucode_size;
3305 __le32 fw_size;
3306 u8 data[0];
3309 static int ipw_get_fw(struct ipw_priv *priv,
3310 const struct firmware **raw, const char *name)
3312 struct ipw_fw *fw;
3313 int rc;
3315 /* ask firmware_class module to get the boot firmware off disk */
3316 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3317 if (rc < 0) {
3318 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3319 return rc;
3322 if ((*raw)->size < sizeof(*fw)) {
3323 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3324 return -EINVAL;
3327 fw = (void *)(*raw)->data;
3329 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3330 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3331 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3332 name, (*raw)->size);
3333 return -EINVAL;
3336 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3337 name,
3338 le32_to_cpu(fw->ver) >> 16,
3339 le32_to_cpu(fw->ver) & 0xff,
3340 (*raw)->size - sizeof(*fw));
3341 return 0;
3344 #define IPW_RX_BUF_SIZE (3000)
3346 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3347 struct ipw_rx_queue *rxq)
3349 unsigned long flags;
3350 int i;
3352 spin_lock_irqsave(&rxq->lock, flags);
3354 INIT_LIST_HEAD(&rxq->rx_free);
3355 INIT_LIST_HEAD(&rxq->rx_used);
3357 /* Fill the rx_used queue with _all_ of the Rx buffers */
3358 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3359 /* In the reset function, these buffers may have been allocated
3360 * to an SKB, so we need to unmap and free potential storage */
3361 if (rxq->pool[i].skb != NULL) {
3362 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3363 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3364 dev_kfree_skb(rxq->pool[i].skb);
3365 rxq->pool[i].skb = NULL;
3367 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3370 /* Set us so that we have processed and used all buffers, but have
3371 * not restocked the Rx queue with fresh buffers */
3372 rxq->read = rxq->write = 0;
3373 rxq->free_count = 0;
3374 spin_unlock_irqrestore(&rxq->lock, flags);
3377 #ifdef CONFIG_PM
3378 static int fw_loaded = 0;
3379 static const struct firmware *raw = NULL;
3381 static void free_firmware(void)
3383 if (fw_loaded) {
3384 release_firmware(raw);
3385 raw = NULL;
3386 fw_loaded = 0;
3389 #else
3390 #define free_firmware() do {} while (0)
3391 #endif
3393 static int ipw_load(struct ipw_priv *priv)
3395 #ifndef CONFIG_PM
3396 const struct firmware *raw = NULL;
3397 #endif
3398 struct ipw_fw *fw;
3399 u8 *boot_img, *ucode_img, *fw_img;
3400 u8 *name = NULL;
3401 int rc = 0, retries = 3;
3403 switch (priv->ieee->iw_mode) {
3404 case IW_MODE_ADHOC:
3405 name = "ipw2200-ibss.fw";
3406 break;
3407 #ifdef CONFIG_IPW2200_MONITOR
3408 case IW_MODE_MONITOR:
3409 name = "ipw2200-sniffer.fw";
3410 break;
3411 #endif
3412 case IW_MODE_INFRA:
3413 name = "ipw2200-bss.fw";
3414 break;
3417 if (!name) {
3418 rc = -EINVAL;
3419 goto error;
3422 #ifdef CONFIG_PM
3423 if (!fw_loaded) {
3424 #endif
3425 rc = ipw_get_fw(priv, &raw, name);
3426 if (rc < 0)
3427 goto error;
3428 #ifdef CONFIG_PM
3430 #endif
3432 fw = (void *)raw->data;
3433 boot_img = &fw->data[0];
3434 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3435 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3436 le32_to_cpu(fw->ucode_size)];
3438 if (rc < 0)
3439 goto error;
3441 if (!priv->rxq)
3442 priv->rxq = ipw_rx_queue_alloc(priv);
3443 else
3444 ipw_rx_queue_reset(priv, priv->rxq);
3445 if (!priv->rxq) {
3446 IPW_ERROR("Unable to initialize Rx queue\n");
3447 goto error;
3450 retry:
3451 /* Ensure interrupts are disabled */
3452 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3453 priv->status &= ~STATUS_INT_ENABLED;
3455 /* ack pending interrupts */
3456 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3458 ipw_stop_nic(priv);
3460 rc = ipw_reset_nic(priv);
3461 if (rc < 0) {
3462 IPW_ERROR("Unable to reset NIC\n");
3463 goto error;
3466 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3467 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3469 /* DMA the initial boot firmware into the device */
3470 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3471 if (rc < 0) {
3472 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3473 goto error;
3476 /* kick start the device */
3477 ipw_start_nic(priv);
3479 /* wait for the device to finish its initial startup sequence */
3480 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3481 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3482 if (rc < 0) {
3483 IPW_ERROR("device failed to boot initial fw image\n");
3484 goto error;
3486 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3488 /* ack fw init done interrupt */
3489 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3491 /* DMA the ucode into the device */
3492 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3493 if (rc < 0) {
3494 IPW_ERROR("Unable to load ucode: %d\n", rc);
3495 goto error;
3498 /* stop nic */
3499 ipw_stop_nic(priv);
3501 /* DMA bss firmware into the device */
3502 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3503 if (rc < 0) {
3504 IPW_ERROR("Unable to load firmware: %d\n", rc);
3505 goto error;
3507 #ifdef CONFIG_PM
3508 fw_loaded = 1;
3509 #endif
3511 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3513 rc = ipw_queue_reset(priv);
3514 if (rc < 0) {
3515 IPW_ERROR("Unable to initialize queues\n");
3516 goto error;
3519 /* Ensure interrupts are disabled */
3520 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3521 /* ack pending interrupts */
3522 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3524 /* kick start the device */
3525 ipw_start_nic(priv);
3527 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3528 if (retries > 0) {
3529 IPW_WARNING("Parity error. Retrying init.\n");
3530 retries--;
3531 goto retry;
3534 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3535 rc = -EIO;
3536 goto error;
3539 /* wait for the device */
3540 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3541 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3542 if (rc < 0) {
3543 IPW_ERROR("device failed to start within 500ms\n");
3544 goto error;
3546 IPW_DEBUG_INFO("device response after %dms\n", rc);
3548 /* ack fw init done interrupt */
3549 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3551 /* read eeprom data and initialize the eeprom region of sram */
3552 priv->eeprom_delay = 1;
3553 ipw_eeprom_init_sram(priv);
3555 /* enable interrupts */
3556 ipw_enable_interrupts(priv);
3558 /* Ensure our queue has valid packets */
3559 ipw_rx_queue_replenish(priv);
3561 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3563 /* ack pending interrupts */
3564 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3566 #ifndef CONFIG_PM
3567 release_firmware(raw);
3568 #endif
3569 return 0;
3571 error:
3572 if (priv->rxq) {
3573 ipw_rx_queue_free(priv, priv->rxq);
3574 priv->rxq = NULL;
3576 ipw_tx_queue_free(priv);
3577 if (raw)
3578 release_firmware(raw);
3579 #ifdef CONFIG_PM
3580 fw_loaded = 0;
3581 raw = NULL;
3582 #endif
3584 return rc;
3588 * DMA services
3590 * Theory of operation
3592 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3593 * 2 empty entries always kept in the buffer to protect from overflow.
3595 * For Tx queue, there are low mark and high mark limits. If, after queuing
3596 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3597 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3598 * Tx queue resumed.
3600 * The IPW operates with six queues, one receive queue in the device's
3601 * sram, one transmit queue for sending commands to the device firmware,
3602 * and four transmit queues for data.
3604 * The four transmit queues allow for performing quality of service (qos)
3605 * transmissions as per the 802.11 protocol. Currently Linux does not
3606 * provide a mechanism to the user for utilizing prioritized queues, so
3607 * we only utilize the first data transmit queue (queue1).
3611 * Driver allocates buffers of this size for Rx
3615 * ipw_rx_queue_space - Return number of free slots available in queue.
3617 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3619 int s = q->read - q->write;
3620 if (s <= 0)
3621 s += RX_QUEUE_SIZE;
3622 /* keep some buffer to not confuse full and empty queue */
3623 s -= 2;
3624 if (s < 0)
3625 s = 0;
3626 return s;
3629 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3631 int s = q->last_used - q->first_empty;
3632 if (s <= 0)
3633 s += q->n_bd;
3634 s -= 2; /* keep some reserve to not confuse empty and full situations */
3635 if (s < 0)
3636 s = 0;
3637 return s;
3640 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3642 return (++index == n_bd) ? 0 : index;
3646 * Initialize common DMA queue structure
3648 * @param q queue to init
3649 * @param count Number of BD's to allocate. Should be power of 2
3650 * @param read_register Address for 'read' register
3651 * (not offset within BAR, full address)
3652 * @param write_register Address for 'write' register
3653 * (not offset within BAR, full address)
3654 * @param base_register Address for 'base' register
3655 * (not offset within BAR, full address)
3656 * @param size Address for 'size' register
3657 * (not offset within BAR, full address)
3659 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3660 int count, u32 read, u32 write, u32 base, u32 size)
3662 q->n_bd = count;
3664 q->low_mark = q->n_bd / 4;
3665 if (q->low_mark < 4)
3666 q->low_mark = 4;
3668 q->high_mark = q->n_bd / 8;
3669 if (q->high_mark < 2)
3670 q->high_mark = 2;
3672 q->first_empty = q->last_used = 0;
3673 q->reg_r = read;
3674 q->reg_w = write;
3676 ipw_write32(priv, base, q->dma_addr);
3677 ipw_write32(priv, size, count);
3678 ipw_write32(priv, read, 0);
3679 ipw_write32(priv, write, 0);
3681 _ipw_read32(priv, 0x90);
3684 static int ipw_queue_tx_init(struct ipw_priv *priv,
3685 struct clx2_tx_queue *q,
3686 int count, u32 read, u32 write, u32 base, u32 size)
3688 struct pci_dev *dev = priv->pci_dev;
3690 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3691 if (!q->txb) {
3692 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3693 return -ENOMEM;
3696 q->bd =
3697 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3698 if (!q->bd) {
3699 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3700 sizeof(q->bd[0]) * count);
3701 kfree(q->txb);
3702 q->txb = NULL;
3703 return -ENOMEM;
3706 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3707 return 0;
3711 * Free one TFD, those at index [txq->q.last_used].
3712 * Do NOT advance any indexes
3714 * @param dev
3715 * @param txq
3717 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3718 struct clx2_tx_queue *txq)
3720 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3721 struct pci_dev *dev = priv->pci_dev;
3722 int i;
3724 /* classify bd */
3725 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3726 /* nothing to cleanup after for host commands */
3727 return;
3729 /* sanity check */
3730 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3731 IPW_ERROR("Too many chunks: %i\n",
3732 le32_to_cpu(bd->u.data.num_chunks));
3733 /** @todo issue fatal error, it is quite serious situation */
3734 return;
3737 /* unmap chunks if any */
3738 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3739 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3740 le16_to_cpu(bd->u.data.chunk_len[i]),
3741 PCI_DMA_TODEVICE);
3742 if (txq->txb[txq->q.last_used]) {
3743 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3744 txq->txb[txq->q.last_used] = NULL;
3750 * Deallocate DMA queue.
3752 * Empty queue by removing and destroying all BD's.
3753 * Free all buffers.
3755 * @param dev
3756 * @param q
3758 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3760 struct clx2_queue *q = &txq->q;
3761 struct pci_dev *dev = priv->pci_dev;
3763 if (q->n_bd == 0)
3764 return;
3766 /* first, empty all BD's */
3767 for (; q->first_empty != q->last_used;
3768 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3769 ipw_queue_tx_free_tfd(priv, txq);
3772 /* free buffers belonging to queue itself */
3773 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3774 q->dma_addr);
3775 kfree(txq->txb);
3777 /* 0 fill whole structure */
3778 memset(txq, 0, sizeof(*txq));
3782 * Destroy all DMA queues and structures
3784 * @param priv
3786 static void ipw_tx_queue_free(struct ipw_priv *priv)
3788 /* Tx CMD queue */
3789 ipw_queue_tx_free(priv, &priv->txq_cmd);
3791 /* Tx queues */
3792 ipw_queue_tx_free(priv, &priv->txq[0]);
3793 ipw_queue_tx_free(priv, &priv->txq[1]);
3794 ipw_queue_tx_free(priv, &priv->txq[2]);
3795 ipw_queue_tx_free(priv, &priv->txq[3]);
3798 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3800 /* First 3 bytes are manufacturer */
3801 bssid[0] = priv->mac_addr[0];
3802 bssid[1] = priv->mac_addr[1];
3803 bssid[2] = priv->mac_addr[2];
3805 /* Last bytes are random */
3806 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3808 bssid[0] &= 0xfe; /* clear multicast bit */
3809 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3812 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3814 struct ipw_station_entry entry;
3815 int i;
3816 DECLARE_MAC_BUF(mac);
3818 for (i = 0; i < priv->num_stations; i++) {
3819 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3820 /* Another node is active in network */
3821 priv->missed_adhoc_beacons = 0;
3822 if (!(priv->config & CFG_STATIC_CHANNEL))
3823 /* when other nodes drop out, we drop out */
3824 priv->config &= ~CFG_ADHOC_PERSIST;
3826 return i;
3830 if (i == MAX_STATIONS)
3831 return IPW_INVALID_STATION;
3833 IPW_DEBUG_SCAN("Adding AdHoc station: %s\n", print_mac(mac, bssid));
3835 entry.reserved = 0;
3836 entry.support_mode = 0;
3837 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3838 memcpy(priv->stations[i], bssid, ETH_ALEN);
3839 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3840 &entry, sizeof(entry));
3841 priv->num_stations++;
3843 return i;
3846 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3848 int i;
3850 for (i = 0; i < priv->num_stations; i++)
3851 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3852 return i;
3854 return IPW_INVALID_STATION;
3857 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3859 int err;
3860 DECLARE_MAC_BUF(mac);
3862 if (priv->status & STATUS_ASSOCIATING) {
3863 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3864 queue_work(priv->workqueue, &priv->disassociate);
3865 return;
3868 if (!(priv->status & STATUS_ASSOCIATED)) {
3869 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3870 return;
3873 IPW_DEBUG_ASSOC("Disassocation attempt from %s "
3874 "on channel %d.\n",
3875 print_mac(mac, priv->assoc_request.bssid),
3876 priv->assoc_request.channel);
3878 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3879 priv->status |= STATUS_DISASSOCIATING;
3881 if (quiet)
3882 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3883 else
3884 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3886 err = ipw_send_associate(priv, &priv->assoc_request);
3887 if (err) {
3888 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3889 "failed.\n");
3890 return;
3895 static int ipw_disassociate(void *data)
3897 struct ipw_priv *priv = data;
3898 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3899 return 0;
3900 ipw_send_disassociate(data, 0);
3901 return 1;
3904 static void ipw_bg_disassociate(struct work_struct *work)
3906 struct ipw_priv *priv =
3907 container_of(work, struct ipw_priv, disassociate);
3908 mutex_lock(&priv->mutex);
3909 ipw_disassociate(priv);
3910 mutex_unlock(&priv->mutex);
3913 static void ipw_system_config(struct work_struct *work)
3915 struct ipw_priv *priv =
3916 container_of(work, struct ipw_priv, system_config);
3918 #ifdef CONFIG_IPW2200_PROMISCUOUS
3919 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3920 priv->sys_config.accept_all_data_frames = 1;
3921 priv->sys_config.accept_non_directed_frames = 1;
3922 priv->sys_config.accept_all_mgmt_bcpr = 1;
3923 priv->sys_config.accept_all_mgmt_frames = 1;
3925 #endif
3927 ipw_send_system_config(priv);
3930 struct ipw_status_code {
3931 u16 status;
3932 const char *reason;
3935 static const struct ipw_status_code ipw_status_codes[] = {
3936 {0x00, "Successful"},
3937 {0x01, "Unspecified failure"},
3938 {0x0A, "Cannot support all requested capabilities in the "
3939 "Capability information field"},
3940 {0x0B, "Reassociation denied due to inability to confirm that "
3941 "association exists"},
3942 {0x0C, "Association denied due to reason outside the scope of this "
3943 "standard"},
3944 {0x0D,
3945 "Responding station does not support the specified authentication "
3946 "algorithm"},
3947 {0x0E,
3948 "Received an Authentication frame with authentication sequence "
3949 "transaction sequence number out of expected sequence"},
3950 {0x0F, "Authentication rejected because of challenge failure"},
3951 {0x10, "Authentication rejected due to timeout waiting for next "
3952 "frame in sequence"},
3953 {0x11, "Association denied because AP is unable to handle additional "
3954 "associated stations"},
3955 {0x12,
3956 "Association denied due to requesting station not supporting all "
3957 "of the datarates in the BSSBasicServiceSet Parameter"},
3958 {0x13,
3959 "Association denied due to requesting station not supporting "
3960 "short preamble operation"},
3961 {0x14,
3962 "Association denied due to requesting station not supporting "
3963 "PBCC encoding"},
3964 {0x15,
3965 "Association denied due to requesting station not supporting "
3966 "channel agility"},
3967 {0x19,
3968 "Association denied due to requesting station not supporting "
3969 "short slot operation"},
3970 {0x1A,
3971 "Association denied due to requesting station not supporting "
3972 "DSSS-OFDM operation"},
3973 {0x28, "Invalid Information Element"},
3974 {0x29, "Group Cipher is not valid"},
3975 {0x2A, "Pairwise Cipher is not valid"},
3976 {0x2B, "AKMP is not valid"},
3977 {0x2C, "Unsupported RSN IE version"},
3978 {0x2D, "Invalid RSN IE Capabilities"},
3979 {0x2E, "Cipher suite is rejected per security policy"},
3982 static const char *ipw_get_status_code(u16 status)
3984 int i;
3985 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3986 if (ipw_status_codes[i].status == (status & 0xff))
3987 return ipw_status_codes[i].reason;
3988 return "Unknown status value.";
3991 static void inline average_init(struct average *avg)
3993 memset(avg, 0, sizeof(*avg));
3996 #define DEPTH_RSSI 8
3997 #define DEPTH_NOISE 16
3998 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4000 return ((depth-1)*prev_avg + val)/depth;
4003 static void average_add(struct average *avg, s16 val)
4005 avg->sum -= avg->entries[avg->pos];
4006 avg->sum += val;
4007 avg->entries[avg->pos++] = val;
4008 if (unlikely(avg->pos == AVG_ENTRIES)) {
4009 avg->init = 1;
4010 avg->pos = 0;
4014 static s16 average_value(struct average *avg)
4016 if (!unlikely(avg->init)) {
4017 if (avg->pos)
4018 return avg->sum / avg->pos;
4019 return 0;
4022 return avg->sum / AVG_ENTRIES;
4025 static void ipw_reset_stats(struct ipw_priv *priv)
4027 u32 len = sizeof(u32);
4029 priv->quality = 0;
4031 average_init(&priv->average_missed_beacons);
4032 priv->exp_avg_rssi = -60;
4033 priv->exp_avg_noise = -85 + 0x100;
4035 priv->last_rate = 0;
4036 priv->last_missed_beacons = 0;
4037 priv->last_rx_packets = 0;
4038 priv->last_tx_packets = 0;
4039 priv->last_tx_failures = 0;
4041 /* Firmware managed, reset only when NIC is restarted, so we have to
4042 * normalize on the current value */
4043 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4044 &priv->last_rx_err, &len);
4045 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4046 &priv->last_tx_failures, &len);
4048 /* Driver managed, reset with each association */
4049 priv->missed_adhoc_beacons = 0;
4050 priv->missed_beacons = 0;
4051 priv->tx_packets = 0;
4052 priv->rx_packets = 0;
4056 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4058 u32 i = 0x80000000;
4059 u32 mask = priv->rates_mask;
4060 /* If currently associated in B mode, restrict the maximum
4061 * rate match to B rates */
4062 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4063 mask &= IEEE80211_CCK_RATES_MASK;
4065 /* TODO: Verify that the rate is supported by the current rates
4066 * list. */
4068 while (i && !(mask & i))
4069 i >>= 1;
4070 switch (i) {
4071 case IEEE80211_CCK_RATE_1MB_MASK:
4072 return 1000000;
4073 case IEEE80211_CCK_RATE_2MB_MASK:
4074 return 2000000;
4075 case IEEE80211_CCK_RATE_5MB_MASK:
4076 return 5500000;
4077 case IEEE80211_OFDM_RATE_6MB_MASK:
4078 return 6000000;
4079 case IEEE80211_OFDM_RATE_9MB_MASK:
4080 return 9000000;
4081 case IEEE80211_CCK_RATE_11MB_MASK:
4082 return 11000000;
4083 case IEEE80211_OFDM_RATE_12MB_MASK:
4084 return 12000000;
4085 case IEEE80211_OFDM_RATE_18MB_MASK:
4086 return 18000000;
4087 case IEEE80211_OFDM_RATE_24MB_MASK:
4088 return 24000000;
4089 case IEEE80211_OFDM_RATE_36MB_MASK:
4090 return 36000000;
4091 case IEEE80211_OFDM_RATE_48MB_MASK:
4092 return 48000000;
4093 case IEEE80211_OFDM_RATE_54MB_MASK:
4094 return 54000000;
4097 if (priv->ieee->mode == IEEE_B)
4098 return 11000000;
4099 else
4100 return 54000000;
4103 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4105 u32 rate, len = sizeof(rate);
4106 int err;
4108 if (!(priv->status & STATUS_ASSOCIATED))
4109 return 0;
4111 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4112 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4113 &len);
4114 if (err) {
4115 IPW_DEBUG_INFO("failed querying ordinals.\n");
4116 return 0;
4118 } else
4119 return ipw_get_max_rate(priv);
4121 switch (rate) {
4122 case IPW_TX_RATE_1MB:
4123 return 1000000;
4124 case IPW_TX_RATE_2MB:
4125 return 2000000;
4126 case IPW_TX_RATE_5MB:
4127 return 5500000;
4128 case IPW_TX_RATE_6MB:
4129 return 6000000;
4130 case IPW_TX_RATE_9MB:
4131 return 9000000;
4132 case IPW_TX_RATE_11MB:
4133 return 11000000;
4134 case IPW_TX_RATE_12MB:
4135 return 12000000;
4136 case IPW_TX_RATE_18MB:
4137 return 18000000;
4138 case IPW_TX_RATE_24MB:
4139 return 24000000;
4140 case IPW_TX_RATE_36MB:
4141 return 36000000;
4142 case IPW_TX_RATE_48MB:
4143 return 48000000;
4144 case IPW_TX_RATE_54MB:
4145 return 54000000;
4148 return 0;
4151 #define IPW_STATS_INTERVAL (2 * HZ)
4152 static void ipw_gather_stats(struct ipw_priv *priv)
4154 u32 rx_err, rx_err_delta, rx_packets_delta;
4155 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4156 u32 missed_beacons_percent, missed_beacons_delta;
4157 u32 quality = 0;
4158 u32 len = sizeof(u32);
4159 s16 rssi;
4160 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4161 rate_quality;
4162 u32 max_rate;
4164 if (!(priv->status & STATUS_ASSOCIATED)) {
4165 priv->quality = 0;
4166 return;
4169 /* Update the statistics */
4170 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4171 &priv->missed_beacons, &len);
4172 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4173 priv->last_missed_beacons = priv->missed_beacons;
4174 if (priv->assoc_request.beacon_interval) {
4175 missed_beacons_percent = missed_beacons_delta *
4176 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4177 (IPW_STATS_INTERVAL * 10);
4178 } else {
4179 missed_beacons_percent = 0;
4181 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4183 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4184 rx_err_delta = rx_err - priv->last_rx_err;
4185 priv->last_rx_err = rx_err;
4187 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4188 tx_failures_delta = tx_failures - priv->last_tx_failures;
4189 priv->last_tx_failures = tx_failures;
4191 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4192 priv->last_rx_packets = priv->rx_packets;
4194 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4195 priv->last_tx_packets = priv->tx_packets;
4197 /* Calculate quality based on the following:
4199 * Missed beacon: 100% = 0, 0% = 70% missed
4200 * Rate: 60% = 1Mbs, 100% = Max
4201 * Rx and Tx errors represent a straight % of total Rx/Tx
4202 * RSSI: 100% = > -50, 0% = < -80
4203 * Rx errors: 100% = 0, 0% = 50% missed
4205 * The lowest computed quality is used.
4208 #define BEACON_THRESHOLD 5
4209 beacon_quality = 100 - missed_beacons_percent;
4210 if (beacon_quality < BEACON_THRESHOLD)
4211 beacon_quality = 0;
4212 else
4213 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4214 (100 - BEACON_THRESHOLD);
4215 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4216 beacon_quality, missed_beacons_percent);
4218 priv->last_rate = ipw_get_current_rate(priv);
4219 max_rate = ipw_get_max_rate(priv);
4220 rate_quality = priv->last_rate * 40 / max_rate + 60;
4221 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4222 rate_quality, priv->last_rate / 1000000);
4224 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4225 rx_quality = 100 - (rx_err_delta * 100) /
4226 (rx_packets_delta + rx_err_delta);
4227 else
4228 rx_quality = 100;
4229 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4230 rx_quality, rx_err_delta, rx_packets_delta);
4232 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4233 tx_quality = 100 - (tx_failures_delta * 100) /
4234 (tx_packets_delta + tx_failures_delta);
4235 else
4236 tx_quality = 100;
4237 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4238 tx_quality, tx_failures_delta, tx_packets_delta);
4240 rssi = priv->exp_avg_rssi;
4241 signal_quality =
4242 (100 *
4243 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4244 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4245 (priv->ieee->perfect_rssi - rssi) *
4246 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4247 62 * (priv->ieee->perfect_rssi - rssi))) /
4248 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4249 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4250 if (signal_quality > 100)
4251 signal_quality = 100;
4252 else if (signal_quality < 1)
4253 signal_quality = 0;
4255 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4256 signal_quality, rssi);
4258 quality = min(beacon_quality,
4259 min(rate_quality,
4260 min(tx_quality, min(rx_quality, signal_quality))));
4261 if (quality == beacon_quality)
4262 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4263 quality);
4264 if (quality == rate_quality)
4265 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4266 quality);
4267 if (quality == tx_quality)
4268 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4269 quality);
4270 if (quality == rx_quality)
4271 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4272 quality);
4273 if (quality == signal_quality)
4274 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4275 quality);
4277 priv->quality = quality;
4279 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4280 IPW_STATS_INTERVAL);
4283 static void ipw_bg_gather_stats(struct work_struct *work)
4285 struct ipw_priv *priv =
4286 container_of(work, struct ipw_priv, gather_stats.work);
4287 mutex_lock(&priv->mutex);
4288 ipw_gather_stats(priv);
4289 mutex_unlock(&priv->mutex);
4292 /* Missed beacon behavior:
4293 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4294 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4295 * Above disassociate threshold, give up and stop scanning.
4296 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4297 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4298 int missed_count)
4300 priv->notif_missed_beacons = missed_count;
4302 if (missed_count > priv->disassociate_threshold &&
4303 priv->status & STATUS_ASSOCIATED) {
4304 /* If associated and we've hit the missed
4305 * beacon threshold, disassociate, turn
4306 * off roaming, and abort any active scans */
4307 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4308 IPW_DL_STATE | IPW_DL_ASSOC,
4309 "Missed beacon: %d - disassociate\n", missed_count);
4310 priv->status &= ~STATUS_ROAMING;
4311 if (priv->status & STATUS_SCANNING) {
4312 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4313 IPW_DL_STATE,
4314 "Aborting scan with missed beacon.\n");
4315 queue_work(priv->workqueue, &priv->abort_scan);
4318 queue_work(priv->workqueue, &priv->disassociate);
4319 return;
4322 if (priv->status & STATUS_ROAMING) {
4323 /* If we are currently roaming, then just
4324 * print a debug statement... */
4325 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4326 "Missed beacon: %d - roam in progress\n",
4327 missed_count);
4328 return;
4331 if (roaming &&
4332 (missed_count > priv->roaming_threshold &&
4333 missed_count <= priv->disassociate_threshold)) {
4334 /* If we are not already roaming, set the ROAM
4335 * bit in the status and kick off a scan.
4336 * This can happen several times before we reach
4337 * disassociate_threshold. */
4338 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4339 "Missed beacon: %d - initiate "
4340 "roaming\n", missed_count);
4341 if (!(priv->status & STATUS_ROAMING)) {
4342 priv->status |= STATUS_ROAMING;
4343 if (!(priv->status & STATUS_SCANNING))
4344 queue_delayed_work(priv->workqueue,
4345 &priv->request_scan, 0);
4347 return;
4350 if (priv->status & STATUS_SCANNING) {
4351 /* Stop scan to keep fw from getting
4352 * stuck (only if we aren't roaming --
4353 * otherwise we'll never scan more than 2 or 3
4354 * channels..) */
4355 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4356 "Aborting scan with missed beacon.\n");
4357 queue_work(priv->workqueue, &priv->abort_scan);
4360 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4363 static void ipw_scan_event(struct work_struct *work)
4365 union iwreq_data wrqu;
4367 struct ipw_priv *priv =
4368 container_of(work, struct ipw_priv, scan_event.work);
4370 wrqu.data.length = 0;
4371 wrqu.data.flags = 0;
4372 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4375 static void handle_scan_event(struct ipw_priv *priv)
4377 /* Only userspace-requested scan completion events go out immediately */
4378 if (!priv->user_requested_scan) {
4379 if (!delayed_work_pending(&priv->scan_event))
4380 queue_delayed_work(priv->workqueue, &priv->scan_event,
4381 round_jiffies_relative(msecs_to_jiffies(4000)));
4382 } else {
4383 union iwreq_data wrqu;
4385 priv->user_requested_scan = 0;
4386 cancel_delayed_work(&priv->scan_event);
4388 wrqu.data.length = 0;
4389 wrqu.data.flags = 0;
4390 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4395 * Handle host notification packet.
4396 * Called from interrupt routine
4398 static void ipw_rx_notification(struct ipw_priv *priv,
4399 struct ipw_rx_notification *notif)
4401 DECLARE_MAC_BUF(mac);
4402 u16 size = le16_to_cpu(notif->size);
4403 notif->size = le16_to_cpu(notif->size);
4405 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4407 switch (notif->subtype) {
4408 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4409 struct notif_association *assoc = &notif->u.assoc;
4411 switch (assoc->state) {
4412 case CMAS_ASSOCIATED:{
4413 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4414 IPW_DL_ASSOC,
4415 "associated: '%s' %s"
4416 " \n",
4417 escape_essid(priv->essid,
4418 priv->essid_len),
4419 print_mac(mac, priv->bssid));
4421 switch (priv->ieee->iw_mode) {
4422 case IW_MODE_INFRA:
4423 memcpy(priv->ieee->bssid,
4424 priv->bssid, ETH_ALEN);
4425 break;
4427 case IW_MODE_ADHOC:
4428 memcpy(priv->ieee->bssid,
4429 priv->bssid, ETH_ALEN);
4431 /* clear out the station table */
4432 priv->num_stations = 0;
4434 IPW_DEBUG_ASSOC
4435 ("queueing adhoc check\n");
4436 queue_delayed_work(priv->
4437 workqueue,
4438 &priv->
4439 adhoc_check,
4440 le16_to_cpu(priv->
4441 assoc_request.
4442 beacon_interval));
4443 break;
4446 priv->status &= ~STATUS_ASSOCIATING;
4447 priv->status |= STATUS_ASSOCIATED;
4448 queue_work(priv->workqueue,
4449 &priv->system_config);
4451 #ifdef CONFIG_IPW2200_QOS
4452 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4453 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4454 if ((priv->status & STATUS_AUTH) &&
4455 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4456 == IEEE80211_STYPE_ASSOC_RESP)) {
4457 if ((sizeof
4458 (struct
4459 ieee80211_assoc_response)
4460 <= size)
4461 && (size <= 2314)) {
4462 struct
4463 ieee80211_rx_stats
4464 stats = {
4465 .len = size - 1,
4468 IPW_DEBUG_QOS
4469 ("QoS Associate "
4470 "size %d\n", size);
4471 ieee80211_rx_mgt(priv->
4472 ieee,
4473 (struct
4474 ieee80211_hdr_4addr
4476 &notif->u.raw, &stats);
4479 #endif
4481 schedule_work(&priv->link_up);
4483 break;
4486 case CMAS_AUTHENTICATED:{
4487 if (priv->
4488 status & (STATUS_ASSOCIATED |
4489 STATUS_AUTH)) {
4490 struct notif_authenticate *auth
4491 = &notif->u.auth;
4492 IPW_DEBUG(IPW_DL_NOTIF |
4493 IPW_DL_STATE |
4494 IPW_DL_ASSOC,
4495 "deauthenticated: '%s' "
4496 "%s"
4497 ": (0x%04X) - %s \n",
4498 escape_essid(priv->
4499 essid,
4500 priv->
4501 essid_len),
4502 print_mac(mac, priv->bssid),
4503 le16_to_cpu(auth->status),
4504 ipw_get_status_code
4505 (le16_to_cpu
4506 (auth->status)));
4508 priv->status &=
4509 ~(STATUS_ASSOCIATING |
4510 STATUS_AUTH |
4511 STATUS_ASSOCIATED);
4513 schedule_work(&priv->link_down);
4514 break;
4517 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4518 IPW_DL_ASSOC,
4519 "authenticated: '%s' %s"
4520 "\n",
4521 escape_essid(priv->essid,
4522 priv->essid_len),
4523 print_mac(mac, priv->bssid));
4524 break;
4527 case CMAS_INIT:{
4528 if (priv->status & STATUS_AUTH) {
4529 struct
4530 ieee80211_assoc_response
4531 *resp;
4532 resp =
4533 (struct
4534 ieee80211_assoc_response
4535 *)&notif->u.raw;
4536 IPW_DEBUG(IPW_DL_NOTIF |
4537 IPW_DL_STATE |
4538 IPW_DL_ASSOC,
4539 "association failed (0x%04X): %s\n",
4540 le16_to_cpu(resp->status),
4541 ipw_get_status_code
4542 (le16_to_cpu
4543 (resp->status)));
4546 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547 IPW_DL_ASSOC,
4548 "disassociated: '%s' %s"
4549 " \n",
4550 escape_essid(priv->essid,
4551 priv->essid_len),
4552 print_mac(mac, priv->bssid));
4554 priv->status &=
4555 ~(STATUS_DISASSOCIATING |
4556 STATUS_ASSOCIATING |
4557 STATUS_ASSOCIATED | STATUS_AUTH);
4558 if (priv->assoc_network
4559 && (priv->assoc_network->
4560 capability &
4561 WLAN_CAPABILITY_IBSS))
4562 ipw_remove_current_network
4563 (priv);
4565 schedule_work(&priv->link_down);
4567 break;
4570 case CMAS_RX_ASSOC_RESP:
4571 break;
4573 default:
4574 IPW_ERROR("assoc: unknown (%d)\n",
4575 assoc->state);
4576 break;
4579 break;
4582 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4583 struct notif_authenticate *auth = &notif->u.auth;
4584 switch (auth->state) {
4585 case CMAS_AUTHENTICATED:
4586 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4587 "authenticated: '%s' %s \n",
4588 escape_essid(priv->essid,
4589 priv->essid_len),
4590 print_mac(mac, priv->bssid));
4591 priv->status |= STATUS_AUTH;
4592 break;
4594 case CMAS_INIT:
4595 if (priv->status & STATUS_AUTH) {
4596 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4597 IPW_DL_ASSOC,
4598 "authentication failed (0x%04X): %s\n",
4599 le16_to_cpu(auth->status),
4600 ipw_get_status_code(le16_to_cpu
4601 (auth->
4602 status)));
4604 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4605 IPW_DL_ASSOC,
4606 "deauthenticated: '%s' %s\n",
4607 escape_essid(priv->essid,
4608 priv->essid_len),
4609 print_mac(mac, priv->bssid));
4611 priv->status &= ~(STATUS_ASSOCIATING |
4612 STATUS_AUTH |
4613 STATUS_ASSOCIATED);
4615 schedule_work(&priv->link_down);
4616 break;
4618 case CMAS_TX_AUTH_SEQ_1:
4619 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4620 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4621 break;
4622 case CMAS_RX_AUTH_SEQ_2:
4623 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4624 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4625 break;
4626 case CMAS_AUTH_SEQ_1_PASS:
4627 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4628 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4629 break;
4630 case CMAS_AUTH_SEQ_1_FAIL:
4631 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4632 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4633 break;
4634 case CMAS_TX_AUTH_SEQ_3:
4635 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4637 break;
4638 case CMAS_RX_AUTH_SEQ_4:
4639 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4641 break;
4642 case CMAS_AUTH_SEQ_2_PASS:
4643 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4644 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4645 break;
4646 case CMAS_AUTH_SEQ_2_FAIL:
4647 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4648 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4649 break;
4650 case CMAS_TX_ASSOC:
4651 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4652 IPW_DL_ASSOC, "TX_ASSOC\n");
4653 break;
4654 case CMAS_RX_ASSOC_RESP:
4655 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4656 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4658 break;
4659 case CMAS_ASSOCIATED:
4660 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4661 IPW_DL_ASSOC, "ASSOCIATED\n");
4662 break;
4663 default:
4664 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4665 auth->state);
4666 break;
4668 break;
4671 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4672 struct notif_channel_result *x =
4673 &notif->u.channel_result;
4675 if (size == sizeof(*x)) {
4676 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4677 x->channel_num);
4678 } else {
4679 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4680 "(should be %zd)\n",
4681 size, sizeof(*x));
4683 break;
4686 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4687 struct notif_scan_complete *x = &notif->u.scan_complete;
4688 if (size == sizeof(*x)) {
4689 IPW_DEBUG_SCAN
4690 ("Scan completed: type %d, %d channels, "
4691 "%d status\n", x->scan_type,
4692 x->num_channels, x->status);
4693 } else {
4694 IPW_ERROR("Scan completed of wrong size %d "
4695 "(should be %zd)\n",
4696 size, sizeof(*x));
4699 priv->status &=
4700 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4702 wake_up_interruptible(&priv->wait_state);
4703 cancel_delayed_work(&priv->scan_check);
4705 if (priv->status & STATUS_EXIT_PENDING)
4706 break;
4708 priv->ieee->scans++;
4710 #ifdef CONFIG_IPW2200_MONITOR
4711 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4712 priv->status |= STATUS_SCAN_FORCED;
4713 queue_delayed_work(priv->workqueue,
4714 &priv->request_scan, 0);
4715 break;
4717 priv->status &= ~STATUS_SCAN_FORCED;
4718 #endif /* CONFIG_IPW2200_MONITOR */
4720 /* Do queued direct scans first */
4721 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4722 queue_delayed_work(priv->workqueue,
4723 &priv->request_direct_scan, 0);
4726 if (!(priv->status & (STATUS_ASSOCIATED |
4727 STATUS_ASSOCIATING |
4728 STATUS_ROAMING |
4729 STATUS_DISASSOCIATING)))
4730 queue_work(priv->workqueue, &priv->associate);
4731 else if (priv->status & STATUS_ROAMING) {
4732 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4733 /* If a scan completed and we are in roam mode, then
4734 * the scan that completed was the one requested as a
4735 * result of entering roam... so, schedule the
4736 * roam work */
4737 queue_work(priv->workqueue,
4738 &priv->roam);
4739 else
4740 /* Don't schedule if we aborted the scan */
4741 priv->status &= ~STATUS_ROAMING;
4742 } else if (priv->status & STATUS_SCAN_PENDING)
4743 queue_delayed_work(priv->workqueue,
4744 &priv->request_scan, 0);
4745 else if (priv->config & CFG_BACKGROUND_SCAN
4746 && priv->status & STATUS_ASSOCIATED)
4747 queue_delayed_work(priv->workqueue,
4748 &priv->request_scan,
4749 round_jiffies_relative(HZ));
4751 /* Send an empty event to user space.
4752 * We don't send the received data on the event because
4753 * it would require us to do complex transcoding, and
4754 * we want to minimise the work done in the irq handler
4755 * Use a request to extract the data.
4756 * Also, we generate this even for any scan, regardless
4757 * on how the scan was initiated. User space can just
4758 * sync on periodic scan to get fresh data...
4759 * Jean II */
4760 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4761 handle_scan_event(priv);
4762 break;
4765 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4766 struct notif_frag_length *x = &notif->u.frag_len;
4768 if (size == sizeof(*x))
4769 IPW_ERROR("Frag length: %d\n",
4770 le16_to_cpu(x->frag_length));
4771 else
4772 IPW_ERROR("Frag length of wrong size %d "
4773 "(should be %zd)\n",
4774 size, sizeof(*x));
4775 break;
4778 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4779 struct notif_link_deterioration *x =
4780 &notif->u.link_deterioration;
4782 if (size == sizeof(*x)) {
4783 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4784 "link deterioration: type %d, cnt %d\n",
4785 x->silence_notification_type,
4786 x->silence_count);
4787 memcpy(&priv->last_link_deterioration, x,
4788 sizeof(*x));
4789 } else {
4790 IPW_ERROR("Link Deterioration of wrong size %d "
4791 "(should be %zd)\n",
4792 size, sizeof(*x));
4794 break;
4797 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4798 IPW_ERROR("Dino config\n");
4799 if (priv->hcmd
4800 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4801 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4803 break;
4806 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4807 struct notif_beacon_state *x = &notif->u.beacon_state;
4808 if (size != sizeof(*x)) {
4809 IPW_ERROR
4810 ("Beacon state of wrong size %d (should "
4811 "be %zd)\n", size, sizeof(*x));
4812 break;
4815 if (le32_to_cpu(x->state) ==
4816 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4817 ipw_handle_missed_beacon(priv,
4818 le32_to_cpu(x->
4819 number));
4821 break;
4824 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4825 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4826 if (size == sizeof(*x)) {
4827 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4828 "0x%02x station %d\n",
4829 x->key_state, x->security_type,
4830 x->station_index);
4831 break;
4834 IPW_ERROR
4835 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4836 size, sizeof(*x));
4837 break;
4840 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4841 struct notif_calibration *x = &notif->u.calibration;
4843 if (size == sizeof(*x)) {
4844 memcpy(&priv->calib, x, sizeof(*x));
4845 IPW_DEBUG_INFO("TODO: Calibration\n");
4846 break;
4849 IPW_ERROR
4850 ("Calibration of wrong size %d (should be %zd)\n",
4851 size, sizeof(*x));
4852 break;
4855 case HOST_NOTIFICATION_NOISE_STATS:{
4856 if (size == sizeof(u32)) {
4857 priv->exp_avg_noise =
4858 exponential_average(priv->exp_avg_noise,
4859 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4860 DEPTH_NOISE);
4861 break;
4864 IPW_ERROR
4865 ("Noise stat is wrong size %d (should be %zd)\n",
4866 size, sizeof(u32));
4867 break;
4870 default:
4871 IPW_DEBUG_NOTIF("Unknown notification: "
4872 "subtype=%d,flags=0x%2x,size=%d\n",
4873 notif->subtype, notif->flags, size);
4878 * Destroys all DMA structures and initialise them again
4880 * @param priv
4881 * @return error code
4883 static int ipw_queue_reset(struct ipw_priv *priv)
4885 int rc = 0;
4886 /** @todo customize queue sizes */
4887 int nTx = 64, nTxCmd = 8;
4888 ipw_tx_queue_free(priv);
4889 /* Tx CMD queue */
4890 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4891 IPW_TX_CMD_QUEUE_READ_INDEX,
4892 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4893 IPW_TX_CMD_QUEUE_BD_BASE,
4894 IPW_TX_CMD_QUEUE_BD_SIZE);
4895 if (rc) {
4896 IPW_ERROR("Tx Cmd queue init failed\n");
4897 goto error;
4899 /* Tx queue(s) */
4900 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4901 IPW_TX_QUEUE_0_READ_INDEX,
4902 IPW_TX_QUEUE_0_WRITE_INDEX,
4903 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4904 if (rc) {
4905 IPW_ERROR("Tx 0 queue init failed\n");
4906 goto error;
4908 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4909 IPW_TX_QUEUE_1_READ_INDEX,
4910 IPW_TX_QUEUE_1_WRITE_INDEX,
4911 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4912 if (rc) {
4913 IPW_ERROR("Tx 1 queue init failed\n");
4914 goto error;
4916 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4917 IPW_TX_QUEUE_2_READ_INDEX,
4918 IPW_TX_QUEUE_2_WRITE_INDEX,
4919 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4920 if (rc) {
4921 IPW_ERROR("Tx 2 queue init failed\n");
4922 goto error;
4924 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4925 IPW_TX_QUEUE_3_READ_INDEX,
4926 IPW_TX_QUEUE_3_WRITE_INDEX,
4927 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4928 if (rc) {
4929 IPW_ERROR("Tx 3 queue init failed\n");
4930 goto error;
4932 /* statistics */
4933 priv->rx_bufs_min = 0;
4934 priv->rx_pend_max = 0;
4935 return rc;
4937 error:
4938 ipw_tx_queue_free(priv);
4939 return rc;
4943 * Reclaim Tx queue entries no more used by NIC.
4945 * When FW advances 'R' index, all entries between old and
4946 * new 'R' index need to be reclaimed. As result, some free space
4947 * forms. If there is enough free space (> low mark), wake Tx queue.
4949 * @note Need to protect against garbage in 'R' index
4950 * @param priv
4951 * @param txq
4952 * @param qindex
4953 * @return Number of used entries remains in the queue
4955 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4956 struct clx2_tx_queue *txq, int qindex)
4958 u32 hw_tail;
4959 int used;
4960 struct clx2_queue *q = &txq->q;
4962 hw_tail = ipw_read32(priv, q->reg_r);
4963 if (hw_tail >= q->n_bd) {
4964 IPW_ERROR
4965 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4966 hw_tail, q->n_bd);
4967 goto done;
4969 for (; q->last_used != hw_tail;
4970 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4971 ipw_queue_tx_free_tfd(priv, txq);
4972 priv->tx_packets++;
4974 done:
4975 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4976 (qindex >= 0))
4977 netif_wake_queue(priv->net_dev);
4978 used = q->first_empty - q->last_used;
4979 if (used < 0)
4980 used += q->n_bd;
4982 return used;
4985 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4986 int len, int sync)
4988 struct clx2_tx_queue *txq = &priv->txq_cmd;
4989 struct clx2_queue *q = &txq->q;
4990 struct tfd_frame *tfd;
4992 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4993 IPW_ERROR("No space for Tx\n");
4994 return -EBUSY;
4997 tfd = &txq->bd[q->first_empty];
4998 txq->txb[q->first_empty] = NULL;
5000 memset(tfd, 0, sizeof(*tfd));
5001 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5002 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5003 priv->hcmd_seq++;
5004 tfd->u.cmd.index = hcmd;
5005 tfd->u.cmd.length = len;
5006 memcpy(tfd->u.cmd.payload, buf, len);
5007 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5008 ipw_write32(priv, q->reg_w, q->first_empty);
5009 _ipw_read32(priv, 0x90);
5011 return 0;
5015 * Rx theory of operation
5017 * The host allocates 32 DMA target addresses and passes the host address
5018 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5019 * 0 to 31
5021 * Rx Queue Indexes
5022 * The host/firmware share two index registers for managing the Rx buffers.
5024 * The READ index maps to the first position that the firmware may be writing
5025 * to -- the driver can read up to (but not including) this position and get
5026 * good data.
5027 * The READ index is managed by the firmware once the card is enabled.
5029 * The WRITE index maps to the last position the driver has read from -- the
5030 * position preceding WRITE is the last slot the firmware can place a packet.
5032 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5033 * WRITE = READ.
5035 * During initialization the host sets up the READ queue position to the first
5036 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5038 * When the firmware places a packet in a buffer it will advance the READ index
5039 * and fire the RX interrupt. The driver can then query the READ index and
5040 * process as many packets as possible, moving the WRITE index forward as it
5041 * resets the Rx queue buffers with new memory.
5043 * The management in the driver is as follows:
5044 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5045 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5046 * to replensish the ipw->rxq->rx_free.
5047 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5048 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5049 * 'processed' and 'read' driver indexes as well)
5050 * + A received packet is processed and handed to the kernel network stack,
5051 * detached from the ipw->rxq. The driver 'processed' index is updated.
5052 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5053 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5054 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5055 * were enough free buffers and RX_STALLED is set it is cleared.
5058 * Driver sequence:
5060 * ipw_rx_queue_alloc() Allocates rx_free
5061 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5062 * ipw_rx_queue_restock
5063 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5064 * queue, updates firmware pointers, and updates
5065 * the WRITE index. If insufficient rx_free buffers
5066 * are available, schedules ipw_rx_queue_replenish
5068 * -- enable interrupts --
5069 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5070 * READ INDEX, detaching the SKB from the pool.
5071 * Moves the packet buffer from queue to rx_used.
5072 * Calls ipw_rx_queue_restock to refill any empty
5073 * slots.
5074 * ...
5079 * If there are slots in the RX queue that need to be restocked,
5080 * and we have free pre-allocated buffers, fill the ranks as much
5081 * as we can pulling from rx_free.
5083 * This moves the 'write' index forward to catch up with 'processed', and
5084 * also updates the memory address in the firmware to reference the new
5085 * target buffer.
5087 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5089 struct ipw_rx_queue *rxq = priv->rxq;
5090 struct list_head *element;
5091 struct ipw_rx_mem_buffer *rxb;
5092 unsigned long flags;
5093 int write;
5095 spin_lock_irqsave(&rxq->lock, flags);
5096 write = rxq->write;
5097 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5098 element = rxq->rx_free.next;
5099 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5100 list_del(element);
5102 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5103 rxb->dma_addr);
5104 rxq->queue[rxq->write] = rxb;
5105 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5106 rxq->free_count--;
5108 spin_unlock_irqrestore(&rxq->lock, flags);
5110 /* If the pre-allocated buffer pool is dropping low, schedule to
5111 * refill it */
5112 if (rxq->free_count <= RX_LOW_WATERMARK)
5113 queue_work(priv->workqueue, &priv->rx_replenish);
5115 /* If we've added more space for the firmware to place data, tell it */
5116 if (write != rxq->write)
5117 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5121 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5122 * Also restock the Rx queue via ipw_rx_queue_restock.
5124 * This is called as a scheduled work item (except for during intialization)
5126 static void ipw_rx_queue_replenish(void *data)
5128 struct ipw_priv *priv = data;
5129 struct ipw_rx_queue *rxq = priv->rxq;
5130 struct list_head *element;
5131 struct ipw_rx_mem_buffer *rxb;
5132 unsigned long flags;
5134 spin_lock_irqsave(&rxq->lock, flags);
5135 while (!list_empty(&rxq->rx_used)) {
5136 element = rxq->rx_used.next;
5137 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5138 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5139 if (!rxb->skb) {
5140 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5141 priv->net_dev->name);
5142 /* We don't reschedule replenish work here -- we will
5143 * call the restock method and if it still needs
5144 * more buffers it will schedule replenish */
5145 break;
5147 list_del(element);
5149 rxb->dma_addr =
5150 pci_map_single(priv->pci_dev, rxb->skb->data,
5151 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5153 list_add_tail(&rxb->list, &rxq->rx_free);
5154 rxq->free_count++;
5156 spin_unlock_irqrestore(&rxq->lock, flags);
5158 ipw_rx_queue_restock(priv);
5161 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5163 struct ipw_priv *priv =
5164 container_of(work, struct ipw_priv, rx_replenish);
5165 mutex_lock(&priv->mutex);
5166 ipw_rx_queue_replenish(priv);
5167 mutex_unlock(&priv->mutex);
5170 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5171 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5172 * This free routine walks the list of POOL entries and if SKB is set to
5173 * non NULL it is unmapped and freed
5175 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5177 int i;
5179 if (!rxq)
5180 return;
5182 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5183 if (rxq->pool[i].skb != NULL) {
5184 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5185 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5186 dev_kfree_skb(rxq->pool[i].skb);
5190 kfree(rxq);
5193 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5195 struct ipw_rx_queue *rxq;
5196 int i;
5198 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5199 if (unlikely(!rxq)) {
5200 IPW_ERROR("memory allocation failed\n");
5201 return NULL;
5203 spin_lock_init(&rxq->lock);
5204 INIT_LIST_HEAD(&rxq->rx_free);
5205 INIT_LIST_HEAD(&rxq->rx_used);
5207 /* Fill the rx_used queue with _all_ of the Rx buffers */
5208 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5209 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5211 /* Set us so that we have processed and used all buffers, but have
5212 * not restocked the Rx queue with fresh buffers */
5213 rxq->read = rxq->write = 0;
5214 rxq->free_count = 0;
5216 return rxq;
5219 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5221 rate &= ~IEEE80211_BASIC_RATE_MASK;
5222 if (ieee_mode == IEEE_A) {
5223 switch (rate) {
5224 case IEEE80211_OFDM_RATE_6MB:
5225 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5226 1 : 0;
5227 case IEEE80211_OFDM_RATE_9MB:
5228 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5229 1 : 0;
5230 case IEEE80211_OFDM_RATE_12MB:
5231 return priv->
5232 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5233 case IEEE80211_OFDM_RATE_18MB:
5234 return priv->
5235 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5236 case IEEE80211_OFDM_RATE_24MB:
5237 return priv->
5238 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5239 case IEEE80211_OFDM_RATE_36MB:
5240 return priv->
5241 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5242 case IEEE80211_OFDM_RATE_48MB:
5243 return priv->
5244 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5245 case IEEE80211_OFDM_RATE_54MB:
5246 return priv->
5247 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5248 default:
5249 return 0;
5253 /* B and G mixed */
5254 switch (rate) {
5255 case IEEE80211_CCK_RATE_1MB:
5256 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5257 case IEEE80211_CCK_RATE_2MB:
5258 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5259 case IEEE80211_CCK_RATE_5MB:
5260 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5261 case IEEE80211_CCK_RATE_11MB:
5262 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5265 /* If we are limited to B modulations, bail at this point */
5266 if (ieee_mode == IEEE_B)
5267 return 0;
5269 /* G */
5270 switch (rate) {
5271 case IEEE80211_OFDM_RATE_6MB:
5272 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5273 case IEEE80211_OFDM_RATE_9MB:
5274 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5275 case IEEE80211_OFDM_RATE_12MB:
5276 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5277 case IEEE80211_OFDM_RATE_18MB:
5278 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5279 case IEEE80211_OFDM_RATE_24MB:
5280 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5281 case IEEE80211_OFDM_RATE_36MB:
5282 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5283 case IEEE80211_OFDM_RATE_48MB:
5284 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5285 case IEEE80211_OFDM_RATE_54MB:
5286 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5289 return 0;
5292 static int ipw_compatible_rates(struct ipw_priv *priv,
5293 const struct ieee80211_network *network,
5294 struct ipw_supported_rates *rates)
5296 int num_rates, i;
5298 memset(rates, 0, sizeof(*rates));
5299 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5300 rates->num_rates = 0;
5301 for (i = 0; i < num_rates; i++) {
5302 if (!ipw_is_rate_in_mask(priv, network->mode,
5303 network->rates[i])) {
5305 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5306 IPW_DEBUG_SCAN("Adding masked mandatory "
5307 "rate %02X\n",
5308 network->rates[i]);
5309 rates->supported_rates[rates->num_rates++] =
5310 network->rates[i];
5311 continue;
5314 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5315 network->rates[i], priv->rates_mask);
5316 continue;
5319 rates->supported_rates[rates->num_rates++] = network->rates[i];
5322 num_rates = min(network->rates_ex_len,
5323 (u8) (IPW_MAX_RATES - num_rates));
5324 for (i = 0; i < num_rates; i++) {
5325 if (!ipw_is_rate_in_mask(priv, network->mode,
5326 network->rates_ex[i])) {
5327 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5328 IPW_DEBUG_SCAN("Adding masked mandatory "
5329 "rate %02X\n",
5330 network->rates_ex[i]);
5331 rates->supported_rates[rates->num_rates++] =
5332 network->rates[i];
5333 continue;
5336 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5337 network->rates_ex[i], priv->rates_mask);
5338 continue;
5341 rates->supported_rates[rates->num_rates++] =
5342 network->rates_ex[i];
5345 return 1;
5348 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5349 const struct ipw_supported_rates *src)
5351 u8 i;
5352 for (i = 0; i < src->num_rates; i++)
5353 dest->supported_rates[i] = src->supported_rates[i];
5354 dest->num_rates = src->num_rates;
5357 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5358 * mask should ever be used -- right now all callers to add the scan rates are
5359 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5360 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5361 u8 modulation, u32 rate_mask)
5363 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5364 IEEE80211_BASIC_RATE_MASK : 0;
5366 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5367 rates->supported_rates[rates->num_rates++] =
5368 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5370 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5371 rates->supported_rates[rates->num_rates++] =
5372 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5374 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5375 rates->supported_rates[rates->num_rates++] = basic_mask |
5376 IEEE80211_CCK_RATE_5MB;
5378 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5379 rates->supported_rates[rates->num_rates++] = basic_mask |
5380 IEEE80211_CCK_RATE_11MB;
5383 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5384 u8 modulation, u32 rate_mask)
5386 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5387 IEEE80211_BASIC_RATE_MASK : 0;
5389 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5390 rates->supported_rates[rates->num_rates++] = basic_mask |
5391 IEEE80211_OFDM_RATE_6MB;
5393 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5394 rates->supported_rates[rates->num_rates++] =
5395 IEEE80211_OFDM_RATE_9MB;
5397 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5398 rates->supported_rates[rates->num_rates++] = basic_mask |
5399 IEEE80211_OFDM_RATE_12MB;
5401 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5402 rates->supported_rates[rates->num_rates++] =
5403 IEEE80211_OFDM_RATE_18MB;
5405 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5406 rates->supported_rates[rates->num_rates++] = basic_mask |
5407 IEEE80211_OFDM_RATE_24MB;
5409 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5410 rates->supported_rates[rates->num_rates++] =
5411 IEEE80211_OFDM_RATE_36MB;
5413 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5414 rates->supported_rates[rates->num_rates++] =
5415 IEEE80211_OFDM_RATE_48MB;
5417 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5418 rates->supported_rates[rates->num_rates++] =
5419 IEEE80211_OFDM_RATE_54MB;
5422 struct ipw_network_match {
5423 struct ieee80211_network *network;
5424 struct ipw_supported_rates rates;
5427 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5428 struct ipw_network_match *match,
5429 struct ieee80211_network *network,
5430 int roaming)
5432 struct ipw_supported_rates rates;
5433 DECLARE_MAC_BUF(mac);
5434 DECLARE_MAC_BUF(mac2);
5436 /* Verify that this network's capability is compatible with the
5437 * current mode (AdHoc or Infrastructure) */
5438 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5439 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5440 IPW_DEBUG_MERGE("Network '%s (%s)' excluded due to "
5441 "capability mismatch.\n",
5442 escape_essid(network->ssid, network->ssid_len),
5443 print_mac(mac, network->bssid));
5444 return 0;
5447 /* If we do not have an ESSID for this AP, we can not associate with
5448 * it */
5449 if (network->flags & NETWORK_EMPTY_ESSID) {
5450 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5451 "because of hidden ESSID.\n",
5452 escape_essid(network->ssid, network->ssid_len),
5453 print_mac(mac, network->bssid));
5454 return 0;
5457 if (unlikely(roaming)) {
5458 /* If we are roaming, then ensure check if this is a valid
5459 * network to try and roam to */
5460 if ((network->ssid_len != match->network->ssid_len) ||
5461 memcmp(network->ssid, match->network->ssid,
5462 network->ssid_len)) {
5463 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5464 "because of non-network ESSID.\n",
5465 escape_essid(network->ssid,
5466 network->ssid_len),
5467 print_mac(mac, network->bssid));
5468 return 0;
5470 } else {
5471 /* If an ESSID has been configured then compare the broadcast
5472 * ESSID to ours */
5473 if ((priv->config & CFG_STATIC_ESSID) &&
5474 ((network->ssid_len != priv->essid_len) ||
5475 memcmp(network->ssid, priv->essid,
5476 min(network->ssid_len, priv->essid_len)))) {
5477 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5479 strncpy(escaped,
5480 escape_essid(network->ssid, network->ssid_len),
5481 sizeof(escaped));
5482 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5483 "because of ESSID mismatch: '%s'.\n",
5484 escaped, print_mac(mac, network->bssid),
5485 escape_essid(priv->essid,
5486 priv->essid_len));
5487 return 0;
5491 /* If the old network rate is better than this one, don't bother
5492 * testing everything else. */
5494 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5495 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5496 "current network.\n",
5497 escape_essid(match->network->ssid,
5498 match->network->ssid_len));
5499 return 0;
5500 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5501 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5502 "current network.\n",
5503 escape_essid(match->network->ssid,
5504 match->network->ssid_len));
5505 return 0;
5508 /* Now go through and see if the requested network is valid... */
5509 if (priv->ieee->scan_age != 0 &&
5510 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5511 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5512 "because of age: %ums.\n",
5513 escape_essid(network->ssid, network->ssid_len),
5514 print_mac(mac, network->bssid),
5515 jiffies_to_msecs(jiffies -
5516 network->last_scanned));
5517 return 0;
5520 if ((priv->config & CFG_STATIC_CHANNEL) &&
5521 (network->channel != priv->channel)) {
5522 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5523 "because of channel mismatch: %d != %d.\n",
5524 escape_essid(network->ssid, network->ssid_len),
5525 print_mac(mac, network->bssid),
5526 network->channel, priv->channel);
5527 return 0;
5530 /* Verify privacy compatability */
5531 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5532 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5533 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5534 "because of privacy mismatch: %s != %s.\n",
5535 escape_essid(network->ssid, network->ssid_len),
5536 print_mac(mac, network->bssid),
5537 priv->
5538 capability & CAP_PRIVACY_ON ? "on" : "off",
5539 network->
5540 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5541 "off");
5542 return 0;
5545 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5546 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5547 "because of the same BSSID match: %s"
5548 ".\n", escape_essid(network->ssid,
5549 network->ssid_len),
5550 print_mac(mac, network->bssid),
5551 print_mac(mac2, priv->bssid));
5552 return 0;
5555 /* Filter out any incompatible freq / mode combinations */
5556 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5557 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5558 "because of invalid frequency/mode "
5559 "combination.\n",
5560 escape_essid(network->ssid, network->ssid_len),
5561 print_mac(mac, network->bssid));
5562 return 0;
5565 /* Ensure that the rates supported by the driver are compatible with
5566 * this AP, including verification of basic rates (mandatory) */
5567 if (!ipw_compatible_rates(priv, network, &rates)) {
5568 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5569 "because configured rate mask excludes "
5570 "AP mandatory rate.\n",
5571 escape_essid(network->ssid, network->ssid_len),
5572 print_mac(mac, network->bssid));
5573 return 0;
5576 if (rates.num_rates == 0) {
5577 IPW_DEBUG_MERGE("Network '%s (%s)' excluded "
5578 "because of no compatible rates.\n",
5579 escape_essid(network->ssid, network->ssid_len),
5580 print_mac(mac, network->bssid));
5581 return 0;
5584 /* TODO: Perform any further minimal comparititive tests. We do not
5585 * want to put too much policy logic here; intelligent scan selection
5586 * should occur within a generic IEEE 802.11 user space tool. */
5588 /* Set up 'new' AP to this network */
5589 ipw_copy_rates(&match->rates, &rates);
5590 match->network = network;
5591 IPW_DEBUG_MERGE("Network '%s (%s)' is a viable match.\n",
5592 escape_essid(network->ssid, network->ssid_len),
5593 print_mac(mac, network->bssid));
5595 return 1;
5598 static void ipw_merge_adhoc_network(struct work_struct *work)
5600 struct ipw_priv *priv =
5601 container_of(work, struct ipw_priv, merge_networks);
5602 struct ieee80211_network *network = NULL;
5603 struct ipw_network_match match = {
5604 .network = priv->assoc_network
5607 if ((priv->status & STATUS_ASSOCIATED) &&
5608 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5609 /* First pass through ROAM process -- look for a better
5610 * network */
5611 unsigned long flags;
5613 spin_lock_irqsave(&priv->ieee->lock, flags);
5614 list_for_each_entry(network, &priv->ieee->network_list, list) {
5615 if (network != priv->assoc_network)
5616 ipw_find_adhoc_network(priv, &match, network,
5619 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5621 if (match.network == priv->assoc_network) {
5622 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5623 "merge to.\n");
5624 return;
5627 mutex_lock(&priv->mutex);
5628 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5629 IPW_DEBUG_MERGE("remove network %s\n",
5630 escape_essid(priv->essid,
5631 priv->essid_len));
5632 ipw_remove_current_network(priv);
5635 ipw_disassociate(priv);
5636 priv->assoc_network = match.network;
5637 mutex_unlock(&priv->mutex);
5638 return;
5642 static int ipw_best_network(struct ipw_priv *priv,
5643 struct ipw_network_match *match,
5644 struct ieee80211_network *network, int roaming)
5646 struct ipw_supported_rates rates;
5647 DECLARE_MAC_BUF(mac);
5649 /* Verify that this network's capability is compatible with the
5650 * current mode (AdHoc or Infrastructure) */
5651 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5652 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5653 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5654 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5655 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded due to "
5656 "capability mismatch.\n",
5657 escape_essid(network->ssid, network->ssid_len),
5658 print_mac(mac, network->bssid));
5659 return 0;
5662 /* If we do not have an ESSID for this AP, we can not associate with
5663 * it */
5664 if (network->flags & NETWORK_EMPTY_ESSID) {
5665 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5666 "because of hidden ESSID.\n",
5667 escape_essid(network->ssid, network->ssid_len),
5668 print_mac(mac, network->bssid));
5669 return 0;
5672 if (unlikely(roaming)) {
5673 /* If we are roaming, then ensure check if this is a valid
5674 * network to try and roam to */
5675 if ((network->ssid_len != match->network->ssid_len) ||
5676 memcmp(network->ssid, match->network->ssid,
5677 network->ssid_len)) {
5678 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5679 "because of non-network ESSID.\n",
5680 escape_essid(network->ssid,
5681 network->ssid_len),
5682 print_mac(mac, network->bssid));
5683 return 0;
5685 } else {
5686 /* If an ESSID has been configured then compare the broadcast
5687 * ESSID to ours */
5688 if ((priv->config & CFG_STATIC_ESSID) &&
5689 ((network->ssid_len != priv->essid_len) ||
5690 memcmp(network->ssid, priv->essid,
5691 min(network->ssid_len, priv->essid_len)))) {
5692 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5693 strncpy(escaped,
5694 escape_essid(network->ssid, network->ssid_len),
5695 sizeof(escaped));
5696 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5697 "because of ESSID mismatch: '%s'.\n",
5698 escaped, print_mac(mac, network->bssid),
5699 escape_essid(priv->essid,
5700 priv->essid_len));
5701 return 0;
5705 /* If the old network rate is better than this one, don't bother
5706 * testing everything else. */
5707 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5708 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5709 strncpy(escaped,
5710 escape_essid(network->ssid, network->ssid_len),
5711 sizeof(escaped));
5712 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded because "
5713 "'%s (%s)' has a stronger signal.\n",
5714 escaped, print_mac(mac, network->bssid),
5715 escape_essid(match->network->ssid,
5716 match->network->ssid_len),
5717 print_mac(mac, match->network->bssid));
5718 return 0;
5721 /* If this network has already had an association attempt within the
5722 * last 3 seconds, do not try and associate again... */
5723 if (network->last_associate &&
5724 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5725 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5726 "because of storming (%ums since last "
5727 "assoc attempt).\n",
5728 escape_essid(network->ssid, network->ssid_len),
5729 print_mac(mac, network->bssid),
5730 jiffies_to_msecs(jiffies -
5731 network->last_associate));
5732 return 0;
5735 /* Now go through and see if the requested network is valid... */
5736 if (priv->ieee->scan_age != 0 &&
5737 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5738 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5739 "because of age: %ums.\n",
5740 escape_essid(network->ssid, network->ssid_len),
5741 print_mac(mac, network->bssid),
5742 jiffies_to_msecs(jiffies -
5743 network->last_scanned));
5744 return 0;
5747 if ((priv->config & CFG_STATIC_CHANNEL) &&
5748 (network->channel != priv->channel)) {
5749 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5750 "because of channel mismatch: %d != %d.\n",
5751 escape_essid(network->ssid, network->ssid_len),
5752 print_mac(mac, network->bssid),
5753 network->channel, priv->channel);
5754 return 0;
5757 /* Verify privacy compatability */
5758 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5759 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5760 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5761 "because of privacy mismatch: %s != %s.\n",
5762 escape_essid(network->ssid, network->ssid_len),
5763 print_mac(mac, network->bssid),
5764 priv->capability & CAP_PRIVACY_ON ? "on" :
5765 "off",
5766 network->capability &
5767 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5768 return 0;
5771 if ((priv->config & CFG_STATIC_BSSID) &&
5772 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5773 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5774 "because of BSSID mismatch: %s.\n",
5775 escape_essid(network->ssid, network->ssid_len),
5776 print_mac(mac, network->bssid), print_mac(mac, priv->bssid));
5777 return 0;
5780 /* Filter out any incompatible freq / mode combinations */
5781 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5782 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5783 "because of invalid frequency/mode "
5784 "combination.\n",
5785 escape_essid(network->ssid, network->ssid_len),
5786 print_mac(mac, network->bssid));
5787 return 0;
5790 /* Filter out invalid channel in current GEO */
5791 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5792 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5793 "because of invalid channel in current GEO\n",
5794 escape_essid(network->ssid, network->ssid_len),
5795 print_mac(mac, network->bssid));
5796 return 0;
5799 /* Ensure that the rates supported by the driver are compatible with
5800 * this AP, including verification of basic rates (mandatory) */
5801 if (!ipw_compatible_rates(priv, network, &rates)) {
5802 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5803 "because configured rate mask excludes "
5804 "AP mandatory rate.\n",
5805 escape_essid(network->ssid, network->ssid_len),
5806 print_mac(mac, network->bssid));
5807 return 0;
5810 if (rates.num_rates == 0) {
5811 IPW_DEBUG_ASSOC("Network '%s (%s)' excluded "
5812 "because of no compatible rates.\n",
5813 escape_essid(network->ssid, network->ssid_len),
5814 print_mac(mac, network->bssid));
5815 return 0;
5818 /* TODO: Perform any further minimal comparititive tests. We do not
5819 * want to put too much policy logic here; intelligent scan selection
5820 * should occur within a generic IEEE 802.11 user space tool. */
5822 /* Set up 'new' AP to this network */
5823 ipw_copy_rates(&match->rates, &rates);
5824 match->network = network;
5826 IPW_DEBUG_ASSOC("Network '%s (%s)' is a viable match.\n",
5827 escape_essid(network->ssid, network->ssid_len),
5828 print_mac(mac, network->bssid));
5830 return 1;
5833 static void ipw_adhoc_create(struct ipw_priv *priv,
5834 struct ieee80211_network *network)
5836 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5837 int i;
5840 * For the purposes of scanning, we can set our wireless mode
5841 * to trigger scans across combinations of bands, but when it
5842 * comes to creating a new ad-hoc network, we have tell the FW
5843 * exactly which band to use.
5845 * We also have the possibility of an invalid channel for the
5846 * chossen band. Attempting to create a new ad-hoc network
5847 * with an invalid channel for wireless mode will trigger a
5848 * FW fatal error.
5851 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5852 case IEEE80211_52GHZ_BAND:
5853 network->mode = IEEE_A;
5854 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5855 BUG_ON(i == -1);
5856 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5857 IPW_WARNING("Overriding invalid channel\n");
5858 priv->channel = geo->a[0].channel;
5860 break;
5862 case IEEE80211_24GHZ_BAND:
5863 if (priv->ieee->mode & IEEE_G)
5864 network->mode = IEEE_G;
5865 else
5866 network->mode = IEEE_B;
5867 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5868 BUG_ON(i == -1);
5869 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5870 IPW_WARNING("Overriding invalid channel\n");
5871 priv->channel = geo->bg[0].channel;
5873 break;
5875 default:
5876 IPW_WARNING("Overriding invalid channel\n");
5877 if (priv->ieee->mode & IEEE_A) {
5878 network->mode = IEEE_A;
5879 priv->channel = geo->a[0].channel;
5880 } else if (priv->ieee->mode & IEEE_G) {
5881 network->mode = IEEE_G;
5882 priv->channel = geo->bg[0].channel;
5883 } else {
5884 network->mode = IEEE_B;
5885 priv->channel = geo->bg[0].channel;
5887 break;
5890 network->channel = priv->channel;
5891 priv->config |= CFG_ADHOC_PERSIST;
5892 ipw_create_bssid(priv, network->bssid);
5893 network->ssid_len = priv->essid_len;
5894 memcpy(network->ssid, priv->essid, priv->essid_len);
5895 memset(&network->stats, 0, sizeof(network->stats));
5896 network->capability = WLAN_CAPABILITY_IBSS;
5897 if (!(priv->config & CFG_PREAMBLE_LONG))
5898 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5899 if (priv->capability & CAP_PRIVACY_ON)
5900 network->capability |= WLAN_CAPABILITY_PRIVACY;
5901 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5902 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5903 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5904 memcpy(network->rates_ex,
5905 &priv->rates.supported_rates[network->rates_len],
5906 network->rates_ex_len);
5907 network->last_scanned = 0;
5908 network->flags = 0;
5909 network->last_associate = 0;
5910 network->time_stamp[0] = 0;
5911 network->time_stamp[1] = 0;
5912 network->beacon_interval = 100; /* Default */
5913 network->listen_interval = 10; /* Default */
5914 network->atim_window = 0; /* Default */
5915 network->wpa_ie_len = 0;
5916 network->rsn_ie_len = 0;
5919 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5921 struct ipw_tgi_tx_key key;
5923 if (!(priv->ieee->sec.flags & (1 << index)))
5924 return;
5926 key.key_id = index;
5927 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5928 key.security_type = type;
5929 key.station_index = 0; /* always 0 for BSS */
5930 key.flags = 0;
5931 /* 0 for new key; previous value of counter (after fatal error) */
5932 key.tx_counter[0] = cpu_to_le32(0);
5933 key.tx_counter[1] = cpu_to_le32(0);
5935 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5938 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5940 struct ipw_wep_key key;
5941 int i;
5943 key.cmd_id = DINO_CMD_WEP_KEY;
5944 key.seq_num = 0;
5946 /* Note: AES keys cannot be set for multiple times.
5947 * Only set it at the first time. */
5948 for (i = 0; i < 4; i++) {
5949 key.key_index = i | type;
5950 if (!(priv->ieee->sec.flags & (1 << i))) {
5951 key.key_size = 0;
5952 continue;
5955 key.key_size = priv->ieee->sec.key_sizes[i];
5956 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5958 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5962 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5964 if (priv->ieee->host_encrypt)
5965 return;
5967 switch (level) {
5968 case SEC_LEVEL_3:
5969 priv->sys_config.disable_unicast_decryption = 0;
5970 priv->ieee->host_decrypt = 0;
5971 break;
5972 case SEC_LEVEL_2:
5973 priv->sys_config.disable_unicast_decryption = 1;
5974 priv->ieee->host_decrypt = 1;
5975 break;
5976 case SEC_LEVEL_1:
5977 priv->sys_config.disable_unicast_decryption = 0;
5978 priv->ieee->host_decrypt = 0;
5979 break;
5980 case SEC_LEVEL_0:
5981 priv->sys_config.disable_unicast_decryption = 1;
5982 break;
5983 default:
5984 break;
5988 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5990 if (priv->ieee->host_encrypt)
5991 return;
5993 switch (level) {
5994 case SEC_LEVEL_3:
5995 priv->sys_config.disable_multicast_decryption = 0;
5996 break;
5997 case SEC_LEVEL_2:
5998 priv->sys_config.disable_multicast_decryption = 1;
5999 break;
6000 case SEC_LEVEL_1:
6001 priv->sys_config.disable_multicast_decryption = 0;
6002 break;
6003 case SEC_LEVEL_0:
6004 priv->sys_config.disable_multicast_decryption = 1;
6005 break;
6006 default:
6007 break;
6011 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6013 switch (priv->ieee->sec.level) {
6014 case SEC_LEVEL_3:
6015 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6016 ipw_send_tgi_tx_key(priv,
6017 DCT_FLAG_EXT_SECURITY_CCM,
6018 priv->ieee->sec.active_key);
6020 if (!priv->ieee->host_mc_decrypt)
6021 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6022 break;
6023 case SEC_LEVEL_2:
6024 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6025 ipw_send_tgi_tx_key(priv,
6026 DCT_FLAG_EXT_SECURITY_TKIP,
6027 priv->ieee->sec.active_key);
6028 break;
6029 case SEC_LEVEL_1:
6030 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6031 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6032 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6033 break;
6034 case SEC_LEVEL_0:
6035 default:
6036 break;
6040 static void ipw_adhoc_check(void *data)
6042 struct ipw_priv *priv = data;
6044 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6045 !(priv->config & CFG_ADHOC_PERSIST)) {
6046 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6047 IPW_DL_STATE | IPW_DL_ASSOC,
6048 "Missed beacon: %d - disassociate\n",
6049 priv->missed_adhoc_beacons);
6050 ipw_remove_current_network(priv);
6051 ipw_disassociate(priv);
6052 return;
6055 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6056 le16_to_cpu(priv->assoc_request.beacon_interval));
6059 static void ipw_bg_adhoc_check(struct work_struct *work)
6061 struct ipw_priv *priv =
6062 container_of(work, struct ipw_priv, adhoc_check.work);
6063 mutex_lock(&priv->mutex);
6064 ipw_adhoc_check(priv);
6065 mutex_unlock(&priv->mutex);
6068 static void ipw_debug_config(struct ipw_priv *priv)
6070 DECLARE_MAC_BUF(mac);
6071 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6072 "[CFG 0x%08X]\n", priv->config);
6073 if (priv->config & CFG_STATIC_CHANNEL)
6074 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6075 else
6076 IPW_DEBUG_INFO("Channel unlocked.\n");
6077 if (priv->config & CFG_STATIC_ESSID)
6078 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6079 escape_essid(priv->essid, priv->essid_len));
6080 else
6081 IPW_DEBUG_INFO("ESSID unlocked.\n");
6082 if (priv->config & CFG_STATIC_BSSID)
6083 IPW_DEBUG_INFO("BSSID locked to %s\n",
6084 print_mac(mac, priv->bssid));
6085 else
6086 IPW_DEBUG_INFO("BSSID unlocked.\n");
6087 if (priv->capability & CAP_PRIVACY_ON)
6088 IPW_DEBUG_INFO("PRIVACY on\n");
6089 else
6090 IPW_DEBUG_INFO("PRIVACY off\n");
6091 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6094 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6096 /* TODO: Verify that this works... */
6097 struct ipw_fixed_rate fr = {
6098 .tx_rates = priv->rates_mask
6100 u32 reg;
6101 u16 mask = 0;
6103 /* Identify 'current FW band' and match it with the fixed
6104 * Tx rates */
6106 switch (priv->ieee->freq_band) {
6107 case IEEE80211_52GHZ_BAND: /* A only */
6108 /* IEEE_A */
6109 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6110 /* Invalid fixed rate mask */
6111 IPW_DEBUG_WX
6112 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6113 fr.tx_rates = 0;
6114 break;
6117 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6118 break;
6120 default: /* 2.4Ghz or Mixed */
6121 /* IEEE_B */
6122 if (mode == IEEE_B) {
6123 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6124 /* Invalid fixed rate mask */
6125 IPW_DEBUG_WX
6126 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6127 fr.tx_rates = 0;
6129 break;
6132 /* IEEE_G */
6133 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6134 IEEE80211_OFDM_RATES_MASK)) {
6135 /* Invalid fixed rate mask */
6136 IPW_DEBUG_WX
6137 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6138 fr.tx_rates = 0;
6139 break;
6142 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6147 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6148 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6149 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6152 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6153 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6154 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6157 fr.tx_rates |= mask;
6158 break;
6161 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6162 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6165 static void ipw_abort_scan(struct ipw_priv *priv)
6167 int err;
6169 if (priv->status & STATUS_SCAN_ABORTING) {
6170 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6171 return;
6173 priv->status |= STATUS_SCAN_ABORTING;
6175 err = ipw_send_scan_abort(priv);
6176 if (err)
6177 IPW_DEBUG_HC("Request to abort scan failed.\n");
6180 static void ipw_add_scan_channels(struct ipw_priv *priv,
6181 struct ipw_scan_request_ext *scan,
6182 int scan_type)
6184 int channel_index = 0;
6185 const struct ieee80211_geo *geo;
6186 int i;
6188 geo = ieee80211_get_geo(priv->ieee);
6190 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6191 int start = channel_index;
6192 for (i = 0; i < geo->a_channels; i++) {
6193 if ((priv->status & STATUS_ASSOCIATED) &&
6194 geo->a[i].channel == priv->channel)
6195 continue;
6196 channel_index++;
6197 scan->channels_list[channel_index] = geo->a[i].channel;
6198 ipw_set_scan_type(scan, channel_index,
6199 geo->a[i].
6200 flags & IEEE80211_CH_PASSIVE_ONLY ?
6201 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6202 scan_type);
6205 if (start != channel_index) {
6206 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6207 (channel_index - start);
6208 channel_index++;
6212 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6213 int start = channel_index;
6214 if (priv->config & CFG_SPEED_SCAN) {
6215 int index;
6216 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6217 /* nop out the list */
6218 [0] = 0
6221 u8 channel;
6222 while (channel_index < IPW_SCAN_CHANNELS) {
6223 channel =
6224 priv->speed_scan[priv->speed_scan_pos];
6225 if (channel == 0) {
6226 priv->speed_scan_pos = 0;
6227 channel = priv->speed_scan[0];
6229 if ((priv->status & STATUS_ASSOCIATED) &&
6230 channel == priv->channel) {
6231 priv->speed_scan_pos++;
6232 continue;
6235 /* If this channel has already been
6236 * added in scan, break from loop
6237 * and this will be the first channel
6238 * in the next scan.
6240 if (channels[channel - 1] != 0)
6241 break;
6243 channels[channel - 1] = 1;
6244 priv->speed_scan_pos++;
6245 channel_index++;
6246 scan->channels_list[channel_index] = channel;
6247 index =
6248 ieee80211_channel_to_index(priv->ieee, channel);
6249 ipw_set_scan_type(scan, channel_index,
6250 geo->bg[index].
6251 flags &
6252 IEEE80211_CH_PASSIVE_ONLY ?
6253 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6254 : scan_type);
6256 } else {
6257 for (i = 0; i < geo->bg_channels; i++) {
6258 if ((priv->status & STATUS_ASSOCIATED) &&
6259 geo->bg[i].channel == priv->channel)
6260 continue;
6261 channel_index++;
6262 scan->channels_list[channel_index] =
6263 geo->bg[i].channel;
6264 ipw_set_scan_type(scan, channel_index,
6265 geo->bg[i].
6266 flags &
6267 IEEE80211_CH_PASSIVE_ONLY ?
6268 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6269 : scan_type);
6273 if (start != channel_index) {
6274 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6275 (channel_index - start);
6280 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6282 struct ipw_scan_request_ext scan;
6283 int err = 0, scan_type;
6285 if (!(priv->status & STATUS_INIT) ||
6286 (priv->status & STATUS_EXIT_PENDING))
6287 return 0;
6289 mutex_lock(&priv->mutex);
6291 if (direct && (priv->direct_scan_ssid_len == 0)) {
6292 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6293 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6294 goto done;
6297 if (priv->status & STATUS_SCANNING) {
6298 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6299 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6300 STATUS_SCAN_PENDING;
6301 goto done;
6304 if (!(priv->status & STATUS_SCAN_FORCED) &&
6305 priv->status & STATUS_SCAN_ABORTING) {
6306 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6307 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6308 STATUS_SCAN_PENDING;
6309 goto done;
6312 if (priv->status & STATUS_RF_KILL_MASK) {
6313 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6314 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6315 STATUS_SCAN_PENDING;
6316 goto done;
6319 memset(&scan, 0, sizeof(scan));
6320 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6322 if (type == IW_SCAN_TYPE_PASSIVE) {
6323 IPW_DEBUG_WX("use passive scanning\n");
6324 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6325 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6326 cpu_to_le16(120);
6327 ipw_add_scan_channels(priv, &scan, scan_type);
6328 goto send_request;
6331 /* Use active scan by default. */
6332 if (priv->config & CFG_SPEED_SCAN)
6333 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6334 cpu_to_le16(30);
6335 else
6336 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6337 cpu_to_le16(20);
6339 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6340 cpu_to_le16(20);
6342 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6343 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6345 #ifdef CONFIG_IPW2200_MONITOR
6346 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6347 u8 channel;
6348 u8 band = 0;
6350 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6351 case IEEE80211_52GHZ_BAND:
6352 band = (u8) (IPW_A_MODE << 6) | 1;
6353 channel = priv->channel;
6354 break;
6356 case IEEE80211_24GHZ_BAND:
6357 band = (u8) (IPW_B_MODE << 6) | 1;
6358 channel = priv->channel;
6359 break;
6361 default:
6362 band = (u8) (IPW_B_MODE << 6) | 1;
6363 channel = 9;
6364 break;
6367 scan.channels_list[0] = band;
6368 scan.channels_list[1] = channel;
6369 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6371 /* NOTE: The card will sit on this channel for this time
6372 * period. Scan aborts are timing sensitive and frequently
6373 * result in firmware restarts. As such, it is best to
6374 * set a small dwell_time here and just keep re-issuing
6375 * scans. Otherwise fast channel hopping will not actually
6376 * hop channels.
6378 * TODO: Move SPEED SCAN support to all modes and bands */
6379 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6380 cpu_to_le16(2000);
6381 } else {
6382 #endif /* CONFIG_IPW2200_MONITOR */
6383 /* Honor direct scans first, otherwise if we are roaming make
6384 * this a direct scan for the current network. Finally,
6385 * ensure that every other scan is a fast channel hop scan */
6386 if (direct) {
6387 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6388 priv->direct_scan_ssid_len);
6389 if (err) {
6390 IPW_DEBUG_HC("Attempt to send SSID command "
6391 "failed\n");
6392 goto done;
6395 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6396 } else if ((priv->status & STATUS_ROAMING)
6397 || (!(priv->status & STATUS_ASSOCIATED)
6398 && (priv->config & CFG_STATIC_ESSID)
6399 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6400 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6401 if (err) {
6402 IPW_DEBUG_HC("Attempt to send SSID command "
6403 "failed.\n");
6404 goto done;
6407 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6408 } else
6409 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6411 ipw_add_scan_channels(priv, &scan, scan_type);
6412 #ifdef CONFIG_IPW2200_MONITOR
6414 #endif
6416 send_request:
6417 err = ipw_send_scan_request_ext(priv, &scan);
6418 if (err) {
6419 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6420 goto done;
6423 priv->status |= STATUS_SCANNING;
6424 if (direct) {
6425 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6426 priv->direct_scan_ssid_len = 0;
6427 } else
6428 priv->status &= ~STATUS_SCAN_PENDING;
6430 queue_delayed_work(priv->workqueue, &priv->scan_check,
6431 IPW_SCAN_CHECK_WATCHDOG);
6432 done:
6433 mutex_unlock(&priv->mutex);
6434 return err;
6437 static void ipw_request_passive_scan(struct work_struct *work)
6439 struct ipw_priv *priv =
6440 container_of(work, struct ipw_priv, request_passive_scan.work);
6441 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6444 static void ipw_request_scan(struct work_struct *work)
6446 struct ipw_priv *priv =
6447 container_of(work, struct ipw_priv, request_scan.work);
6448 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6451 static void ipw_request_direct_scan(struct work_struct *work)
6453 struct ipw_priv *priv =
6454 container_of(work, struct ipw_priv, request_direct_scan.work);
6455 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6458 static void ipw_bg_abort_scan(struct work_struct *work)
6460 struct ipw_priv *priv =
6461 container_of(work, struct ipw_priv, abort_scan);
6462 mutex_lock(&priv->mutex);
6463 ipw_abort_scan(priv);
6464 mutex_unlock(&priv->mutex);
6467 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6469 /* This is called when wpa_supplicant loads and closes the driver
6470 * interface. */
6471 priv->ieee->wpa_enabled = value;
6472 return 0;
6475 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6477 struct ieee80211_device *ieee = priv->ieee;
6478 struct ieee80211_security sec = {
6479 .flags = SEC_AUTH_MODE,
6481 int ret = 0;
6483 if (value & IW_AUTH_ALG_SHARED_KEY) {
6484 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6485 ieee->open_wep = 0;
6486 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6487 sec.auth_mode = WLAN_AUTH_OPEN;
6488 ieee->open_wep = 1;
6489 } else if (value & IW_AUTH_ALG_LEAP) {
6490 sec.auth_mode = WLAN_AUTH_LEAP;
6491 ieee->open_wep = 1;
6492 } else
6493 return -EINVAL;
6495 if (ieee->set_security)
6496 ieee->set_security(ieee->dev, &sec);
6497 else
6498 ret = -EOPNOTSUPP;
6500 return ret;
6503 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6504 int wpa_ie_len)
6506 /* make sure WPA is enabled */
6507 ipw_wpa_enable(priv, 1);
6510 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6511 char *capabilities, int length)
6513 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6515 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6516 capabilities);
6520 * WE-18 support
6523 /* SIOCSIWGENIE */
6524 static int ipw_wx_set_genie(struct net_device *dev,
6525 struct iw_request_info *info,
6526 union iwreq_data *wrqu, char *extra)
6528 struct ipw_priv *priv = ieee80211_priv(dev);
6529 struct ieee80211_device *ieee = priv->ieee;
6530 u8 *buf;
6531 int err = 0;
6533 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6534 (wrqu->data.length && extra == NULL))
6535 return -EINVAL;
6537 if (wrqu->data.length) {
6538 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6539 if (buf == NULL) {
6540 err = -ENOMEM;
6541 goto out;
6544 memcpy(buf, extra, wrqu->data.length);
6545 kfree(ieee->wpa_ie);
6546 ieee->wpa_ie = buf;
6547 ieee->wpa_ie_len = wrqu->data.length;
6548 } else {
6549 kfree(ieee->wpa_ie);
6550 ieee->wpa_ie = NULL;
6551 ieee->wpa_ie_len = 0;
6554 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6555 out:
6556 return err;
6559 /* SIOCGIWGENIE */
6560 static int ipw_wx_get_genie(struct net_device *dev,
6561 struct iw_request_info *info,
6562 union iwreq_data *wrqu, char *extra)
6564 struct ipw_priv *priv = ieee80211_priv(dev);
6565 struct ieee80211_device *ieee = priv->ieee;
6566 int err = 0;
6568 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6569 wrqu->data.length = 0;
6570 goto out;
6573 if (wrqu->data.length < ieee->wpa_ie_len) {
6574 err = -E2BIG;
6575 goto out;
6578 wrqu->data.length = ieee->wpa_ie_len;
6579 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6581 out:
6582 return err;
6585 static int wext_cipher2level(int cipher)
6587 switch (cipher) {
6588 case IW_AUTH_CIPHER_NONE:
6589 return SEC_LEVEL_0;
6590 case IW_AUTH_CIPHER_WEP40:
6591 case IW_AUTH_CIPHER_WEP104:
6592 return SEC_LEVEL_1;
6593 case IW_AUTH_CIPHER_TKIP:
6594 return SEC_LEVEL_2;
6595 case IW_AUTH_CIPHER_CCMP:
6596 return SEC_LEVEL_3;
6597 default:
6598 return -1;
6602 /* SIOCSIWAUTH */
6603 static int ipw_wx_set_auth(struct net_device *dev,
6604 struct iw_request_info *info,
6605 union iwreq_data *wrqu, char *extra)
6607 struct ipw_priv *priv = ieee80211_priv(dev);
6608 struct ieee80211_device *ieee = priv->ieee;
6609 struct iw_param *param = &wrqu->param;
6610 struct ieee80211_crypt_data *crypt;
6611 unsigned long flags;
6612 int ret = 0;
6614 switch (param->flags & IW_AUTH_INDEX) {
6615 case IW_AUTH_WPA_VERSION:
6616 break;
6617 case IW_AUTH_CIPHER_PAIRWISE:
6618 ipw_set_hw_decrypt_unicast(priv,
6619 wext_cipher2level(param->value));
6620 break;
6621 case IW_AUTH_CIPHER_GROUP:
6622 ipw_set_hw_decrypt_multicast(priv,
6623 wext_cipher2level(param->value));
6624 break;
6625 case IW_AUTH_KEY_MGMT:
6627 * ipw2200 does not use these parameters
6629 break;
6631 case IW_AUTH_TKIP_COUNTERMEASURES:
6632 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6633 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6634 break;
6636 flags = crypt->ops->get_flags(crypt->priv);
6638 if (param->value)
6639 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640 else
6641 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6643 crypt->ops->set_flags(flags, crypt->priv);
6645 break;
6647 case IW_AUTH_DROP_UNENCRYPTED:{
6648 /* HACK:
6650 * wpa_supplicant calls set_wpa_enabled when the driver
6651 * is loaded and unloaded, regardless of if WPA is being
6652 * used. No other calls are made which can be used to
6653 * determine if encryption will be used or not prior to
6654 * association being expected. If encryption is not being
6655 * used, drop_unencrypted is set to false, else true -- we
6656 * can use this to determine if the CAP_PRIVACY_ON bit should
6657 * be set.
6659 struct ieee80211_security sec = {
6660 .flags = SEC_ENABLED,
6661 .enabled = param->value,
6663 priv->ieee->drop_unencrypted = param->value;
6664 /* We only change SEC_LEVEL for open mode. Others
6665 * are set by ipw_wpa_set_encryption.
6667 if (!param->value) {
6668 sec.flags |= SEC_LEVEL;
6669 sec.level = SEC_LEVEL_0;
6670 } else {
6671 sec.flags |= SEC_LEVEL;
6672 sec.level = SEC_LEVEL_1;
6674 if (priv->ieee->set_security)
6675 priv->ieee->set_security(priv->ieee->dev, &sec);
6676 break;
6679 case IW_AUTH_80211_AUTH_ALG:
6680 ret = ipw_wpa_set_auth_algs(priv, param->value);
6681 break;
6683 case IW_AUTH_WPA_ENABLED:
6684 ret = ipw_wpa_enable(priv, param->value);
6685 ipw_disassociate(priv);
6686 break;
6688 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6689 ieee->ieee802_1x = param->value;
6690 break;
6692 case IW_AUTH_PRIVACY_INVOKED:
6693 ieee->privacy_invoked = param->value;
6694 break;
6696 default:
6697 return -EOPNOTSUPP;
6699 return ret;
6702 /* SIOCGIWAUTH */
6703 static int ipw_wx_get_auth(struct net_device *dev,
6704 struct iw_request_info *info,
6705 union iwreq_data *wrqu, char *extra)
6707 struct ipw_priv *priv = ieee80211_priv(dev);
6708 struct ieee80211_device *ieee = priv->ieee;
6709 struct ieee80211_crypt_data *crypt;
6710 struct iw_param *param = &wrqu->param;
6711 int ret = 0;
6713 switch (param->flags & IW_AUTH_INDEX) {
6714 case IW_AUTH_WPA_VERSION:
6715 case IW_AUTH_CIPHER_PAIRWISE:
6716 case IW_AUTH_CIPHER_GROUP:
6717 case IW_AUTH_KEY_MGMT:
6719 * wpa_supplicant will control these internally
6721 ret = -EOPNOTSUPP;
6722 break;
6724 case IW_AUTH_TKIP_COUNTERMEASURES:
6725 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6726 if (!crypt || !crypt->ops->get_flags)
6727 break;
6729 param->value = (crypt->ops->get_flags(crypt->priv) &
6730 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6732 break;
6734 case IW_AUTH_DROP_UNENCRYPTED:
6735 param->value = ieee->drop_unencrypted;
6736 break;
6738 case IW_AUTH_80211_AUTH_ALG:
6739 param->value = ieee->sec.auth_mode;
6740 break;
6742 case IW_AUTH_WPA_ENABLED:
6743 param->value = ieee->wpa_enabled;
6744 break;
6746 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6747 param->value = ieee->ieee802_1x;
6748 break;
6750 case IW_AUTH_ROAMING_CONTROL:
6751 case IW_AUTH_PRIVACY_INVOKED:
6752 param->value = ieee->privacy_invoked;
6753 break;
6755 default:
6756 return -EOPNOTSUPP;
6758 return 0;
6761 /* SIOCSIWENCODEEXT */
6762 static int ipw_wx_set_encodeext(struct net_device *dev,
6763 struct iw_request_info *info,
6764 union iwreq_data *wrqu, char *extra)
6766 struct ipw_priv *priv = ieee80211_priv(dev);
6767 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6769 if (hwcrypto) {
6770 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6771 /* IPW HW can't build TKIP MIC,
6772 host decryption still needed */
6773 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6774 priv->ieee->host_mc_decrypt = 1;
6775 else {
6776 priv->ieee->host_encrypt = 0;
6777 priv->ieee->host_encrypt_msdu = 1;
6778 priv->ieee->host_decrypt = 1;
6780 } else {
6781 priv->ieee->host_encrypt = 0;
6782 priv->ieee->host_encrypt_msdu = 0;
6783 priv->ieee->host_decrypt = 0;
6784 priv->ieee->host_mc_decrypt = 0;
6788 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6791 /* SIOCGIWENCODEEXT */
6792 static int ipw_wx_get_encodeext(struct net_device *dev,
6793 struct iw_request_info *info,
6794 union iwreq_data *wrqu, char *extra)
6796 struct ipw_priv *priv = ieee80211_priv(dev);
6797 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6800 /* SIOCSIWMLME */
6801 static int ipw_wx_set_mlme(struct net_device *dev,
6802 struct iw_request_info *info,
6803 union iwreq_data *wrqu, char *extra)
6805 struct ipw_priv *priv = ieee80211_priv(dev);
6806 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6807 __le16 reason;
6809 reason = cpu_to_le16(mlme->reason_code);
6811 switch (mlme->cmd) {
6812 case IW_MLME_DEAUTH:
6813 /* silently ignore */
6814 break;
6816 case IW_MLME_DISASSOC:
6817 ipw_disassociate(priv);
6818 break;
6820 default:
6821 return -EOPNOTSUPP;
6823 return 0;
6826 #ifdef CONFIG_IPW2200_QOS
6828 /* QoS */
6830 * get the modulation type of the current network or
6831 * the card current mode
6833 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6835 u8 mode = 0;
6837 if (priv->status & STATUS_ASSOCIATED) {
6838 unsigned long flags;
6840 spin_lock_irqsave(&priv->ieee->lock, flags);
6841 mode = priv->assoc_network->mode;
6842 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6843 } else {
6844 mode = priv->ieee->mode;
6846 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6847 return mode;
6851 * Handle management frame beacon and probe response
6853 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6854 int active_network,
6855 struct ieee80211_network *network)
6857 u32 size = sizeof(struct ieee80211_qos_parameters);
6859 if (network->capability & WLAN_CAPABILITY_IBSS)
6860 network->qos_data.active = network->qos_data.supported;
6862 if (network->flags & NETWORK_HAS_QOS_MASK) {
6863 if (active_network &&
6864 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6865 network->qos_data.active = network->qos_data.supported;
6867 if ((network->qos_data.active == 1) && (active_network == 1) &&
6868 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6869 (network->qos_data.old_param_count !=
6870 network->qos_data.param_count)) {
6871 network->qos_data.old_param_count =
6872 network->qos_data.param_count;
6873 schedule_work(&priv->qos_activate);
6874 IPW_DEBUG_QOS("QoS parameters change call "
6875 "qos_activate\n");
6877 } else {
6878 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6879 memcpy(&network->qos_data.parameters,
6880 &def_parameters_CCK, size);
6881 else
6882 memcpy(&network->qos_data.parameters,
6883 &def_parameters_OFDM, size);
6885 if ((network->qos_data.active == 1) && (active_network == 1)) {
6886 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6887 schedule_work(&priv->qos_activate);
6890 network->qos_data.active = 0;
6891 network->qos_data.supported = 0;
6893 if ((priv->status & STATUS_ASSOCIATED) &&
6894 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6895 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6896 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6897 !(network->flags & NETWORK_EMPTY_ESSID))
6898 if ((network->ssid_len ==
6899 priv->assoc_network->ssid_len) &&
6900 !memcmp(network->ssid,
6901 priv->assoc_network->ssid,
6902 network->ssid_len)) {
6903 queue_work(priv->workqueue,
6904 &priv->merge_networks);
6908 return 0;
6912 * This function set up the firmware to support QoS. It sends
6913 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6915 static int ipw_qos_activate(struct ipw_priv *priv,
6916 struct ieee80211_qos_data *qos_network_data)
6918 int err;
6919 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6920 struct ieee80211_qos_parameters *active_one = NULL;
6921 u32 size = sizeof(struct ieee80211_qos_parameters);
6922 u32 burst_duration;
6923 int i;
6924 u8 type;
6926 type = ipw_qos_current_mode(priv);
6928 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6929 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6930 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6931 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6933 if (qos_network_data == NULL) {
6934 if (type == IEEE_B) {
6935 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6936 active_one = &def_parameters_CCK;
6937 } else
6938 active_one = &def_parameters_OFDM;
6940 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6941 burst_duration = ipw_qos_get_burst_duration(priv);
6942 for (i = 0; i < QOS_QUEUE_NUM; i++)
6943 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6944 cpu_to_le16(burst_duration);
6945 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6946 if (type == IEEE_B) {
6947 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6948 type);
6949 if (priv->qos_data.qos_enable == 0)
6950 active_one = &def_parameters_CCK;
6951 else
6952 active_one = priv->qos_data.def_qos_parm_CCK;
6953 } else {
6954 if (priv->qos_data.qos_enable == 0)
6955 active_one = &def_parameters_OFDM;
6956 else
6957 active_one = priv->qos_data.def_qos_parm_OFDM;
6959 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6960 } else {
6961 unsigned long flags;
6962 int active;
6964 spin_lock_irqsave(&priv->ieee->lock, flags);
6965 active_one = &(qos_network_data->parameters);
6966 qos_network_data->old_param_count =
6967 qos_network_data->param_count;
6968 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6969 active = qos_network_data->supported;
6970 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6972 if (active == 0) {
6973 burst_duration = ipw_qos_get_burst_duration(priv);
6974 for (i = 0; i < QOS_QUEUE_NUM; i++)
6975 qos_parameters[QOS_PARAM_SET_ACTIVE].
6976 tx_op_limit[i] = cpu_to_le16(burst_duration);
6980 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6981 err = ipw_send_qos_params_command(priv,
6982 (struct ieee80211_qos_parameters *)
6983 &(qos_parameters[0]));
6984 if (err)
6985 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6987 return err;
6991 * send IPW_CMD_WME_INFO to the firmware
6993 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6995 int ret = 0;
6996 struct ieee80211_qos_information_element qos_info;
6998 if (priv == NULL)
6999 return -1;
7001 qos_info.elementID = QOS_ELEMENT_ID;
7002 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7004 qos_info.version = QOS_VERSION_1;
7005 qos_info.ac_info = 0;
7007 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7008 qos_info.qui_type = QOS_OUI_TYPE;
7009 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7011 ret = ipw_send_qos_info_command(priv, &qos_info);
7012 if (ret != 0) {
7013 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7015 return ret;
7019 * Set the QoS parameter with the association request structure
7021 static int ipw_qos_association(struct ipw_priv *priv,
7022 struct ieee80211_network *network)
7024 int err = 0;
7025 struct ieee80211_qos_data *qos_data = NULL;
7026 struct ieee80211_qos_data ibss_data = {
7027 .supported = 1,
7028 .active = 1,
7031 switch (priv->ieee->iw_mode) {
7032 case IW_MODE_ADHOC:
7033 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7035 qos_data = &ibss_data;
7036 break;
7038 case IW_MODE_INFRA:
7039 qos_data = &network->qos_data;
7040 break;
7042 default:
7043 BUG();
7044 break;
7047 err = ipw_qos_activate(priv, qos_data);
7048 if (err) {
7049 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7050 return err;
7053 if (priv->qos_data.qos_enable && qos_data->supported) {
7054 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7055 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7056 return ipw_qos_set_info_element(priv);
7059 return 0;
7063 * handling the beaconing responses. if we get different QoS setting
7064 * off the network from the associated setting, adjust the QoS
7065 * setting
7067 static int ipw_qos_association_resp(struct ipw_priv *priv,
7068 struct ieee80211_network *network)
7070 int ret = 0;
7071 unsigned long flags;
7072 u32 size = sizeof(struct ieee80211_qos_parameters);
7073 int set_qos_param = 0;
7075 if ((priv == NULL) || (network == NULL) ||
7076 (priv->assoc_network == NULL))
7077 return ret;
7079 if (!(priv->status & STATUS_ASSOCIATED))
7080 return ret;
7082 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7083 return ret;
7085 spin_lock_irqsave(&priv->ieee->lock, flags);
7086 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7087 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7088 sizeof(struct ieee80211_qos_data));
7089 priv->assoc_network->qos_data.active = 1;
7090 if ((network->qos_data.old_param_count !=
7091 network->qos_data.param_count)) {
7092 set_qos_param = 1;
7093 network->qos_data.old_param_count =
7094 network->qos_data.param_count;
7097 } else {
7098 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7099 memcpy(&priv->assoc_network->qos_data.parameters,
7100 &def_parameters_CCK, size);
7101 else
7102 memcpy(&priv->assoc_network->qos_data.parameters,
7103 &def_parameters_OFDM, size);
7104 priv->assoc_network->qos_data.active = 0;
7105 priv->assoc_network->qos_data.supported = 0;
7106 set_qos_param = 1;
7109 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7111 if (set_qos_param == 1)
7112 schedule_work(&priv->qos_activate);
7114 return ret;
7117 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7119 u32 ret = 0;
7121 if ((priv == NULL))
7122 return 0;
7124 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7125 ret = priv->qos_data.burst_duration_CCK;
7126 else
7127 ret = priv->qos_data.burst_duration_OFDM;
7129 return ret;
7133 * Initialize the setting of QoS global
7135 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7136 int burst_enable, u32 burst_duration_CCK,
7137 u32 burst_duration_OFDM)
7139 priv->qos_data.qos_enable = enable;
7141 if (priv->qos_data.qos_enable) {
7142 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7143 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7144 IPW_DEBUG_QOS("QoS is enabled\n");
7145 } else {
7146 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7147 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7148 IPW_DEBUG_QOS("QoS is not enabled\n");
7151 priv->qos_data.burst_enable = burst_enable;
7153 if (burst_enable) {
7154 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7155 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7156 } else {
7157 priv->qos_data.burst_duration_CCK = 0;
7158 priv->qos_data.burst_duration_OFDM = 0;
7163 * map the packet priority to the right TX Queue
7165 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7167 if (priority > 7 || !priv->qos_data.qos_enable)
7168 priority = 0;
7170 return from_priority_to_tx_queue[priority] - 1;
7173 static int ipw_is_qos_active(struct net_device *dev,
7174 struct sk_buff *skb)
7176 struct ipw_priv *priv = ieee80211_priv(dev);
7177 struct ieee80211_qos_data *qos_data = NULL;
7178 int active, supported;
7179 u8 *daddr = skb->data + ETH_ALEN;
7180 int unicast = !is_multicast_ether_addr(daddr);
7182 if (!(priv->status & STATUS_ASSOCIATED))
7183 return 0;
7185 qos_data = &priv->assoc_network->qos_data;
7187 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7188 if (unicast == 0)
7189 qos_data->active = 0;
7190 else
7191 qos_data->active = qos_data->supported;
7193 active = qos_data->active;
7194 supported = qos_data->supported;
7195 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7196 "unicast %d\n",
7197 priv->qos_data.qos_enable, active, supported, unicast);
7198 if (active && priv->qos_data.qos_enable)
7199 return 1;
7201 return 0;
7205 * add QoS parameter to the TX command
7207 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7208 u16 priority,
7209 struct tfd_data *tfd)
7211 int tx_queue_id = 0;
7214 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7215 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7217 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7218 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7219 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7221 return 0;
7225 * background support to run QoS activate functionality
7227 static void ipw_bg_qos_activate(struct work_struct *work)
7229 struct ipw_priv *priv =
7230 container_of(work, struct ipw_priv, qos_activate);
7232 if (priv == NULL)
7233 return;
7235 mutex_lock(&priv->mutex);
7237 if (priv->status & STATUS_ASSOCIATED)
7238 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7240 mutex_unlock(&priv->mutex);
7243 static int ipw_handle_probe_response(struct net_device *dev,
7244 struct ieee80211_probe_response *resp,
7245 struct ieee80211_network *network)
7247 struct ipw_priv *priv = ieee80211_priv(dev);
7248 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7249 (network == priv->assoc_network));
7251 ipw_qos_handle_probe_response(priv, active_network, network);
7253 return 0;
7256 static int ipw_handle_beacon(struct net_device *dev,
7257 struct ieee80211_beacon *resp,
7258 struct ieee80211_network *network)
7260 struct ipw_priv *priv = ieee80211_priv(dev);
7261 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7262 (network == priv->assoc_network));
7264 ipw_qos_handle_probe_response(priv, active_network, network);
7266 return 0;
7269 static int ipw_handle_assoc_response(struct net_device *dev,
7270 struct ieee80211_assoc_response *resp,
7271 struct ieee80211_network *network)
7273 struct ipw_priv *priv = ieee80211_priv(dev);
7274 ipw_qos_association_resp(priv, network);
7275 return 0;
7278 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7279 *qos_param)
7281 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7282 sizeof(*qos_param) * 3, qos_param);
7285 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7286 *qos_param)
7288 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7289 qos_param);
7292 #endif /* CONFIG_IPW2200_QOS */
7294 static int ipw_associate_network(struct ipw_priv *priv,
7295 struct ieee80211_network *network,
7296 struct ipw_supported_rates *rates, int roaming)
7298 int err;
7299 DECLARE_MAC_BUF(mac);
7301 if (priv->config & CFG_FIXED_RATE)
7302 ipw_set_fixed_rate(priv, network->mode);
7304 if (!(priv->config & CFG_STATIC_ESSID)) {
7305 priv->essid_len = min(network->ssid_len,
7306 (u8) IW_ESSID_MAX_SIZE);
7307 memcpy(priv->essid, network->ssid, priv->essid_len);
7310 network->last_associate = jiffies;
7312 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7313 priv->assoc_request.channel = network->channel;
7314 priv->assoc_request.auth_key = 0;
7316 if ((priv->capability & CAP_PRIVACY_ON) &&
7317 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7318 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7319 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7321 if (priv->ieee->sec.level == SEC_LEVEL_1)
7322 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7324 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7325 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7326 priv->assoc_request.auth_type = AUTH_LEAP;
7327 else
7328 priv->assoc_request.auth_type = AUTH_OPEN;
7330 if (priv->ieee->wpa_ie_len) {
7331 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7332 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7333 priv->ieee->wpa_ie_len);
7337 * It is valid for our ieee device to support multiple modes, but
7338 * when it comes to associating to a given network we have to choose
7339 * just one mode.
7341 if (network->mode & priv->ieee->mode & IEEE_A)
7342 priv->assoc_request.ieee_mode = IPW_A_MODE;
7343 else if (network->mode & priv->ieee->mode & IEEE_G)
7344 priv->assoc_request.ieee_mode = IPW_G_MODE;
7345 else if (network->mode & priv->ieee->mode & IEEE_B)
7346 priv->assoc_request.ieee_mode = IPW_B_MODE;
7348 priv->assoc_request.capability = cpu_to_le16(network->capability);
7349 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7350 && !(priv->config & CFG_PREAMBLE_LONG)) {
7351 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7352 } else {
7353 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7355 /* Clear the short preamble if we won't be supporting it */
7356 priv->assoc_request.capability &=
7357 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7360 /* Clear capability bits that aren't used in Ad Hoc */
7361 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7362 priv->assoc_request.capability &=
7363 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7365 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7366 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7367 roaming ? "Rea" : "A",
7368 escape_essid(priv->essid, priv->essid_len),
7369 network->channel,
7370 ipw_modes[priv->assoc_request.ieee_mode],
7371 rates->num_rates,
7372 (priv->assoc_request.preamble_length ==
7373 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7374 network->capability &
7375 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7376 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7377 priv->capability & CAP_PRIVACY_ON ?
7378 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7379 "(open)") : "",
7380 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7381 priv->capability & CAP_PRIVACY_ON ?
7382 '1' + priv->ieee->sec.active_key : '.',
7383 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7385 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7386 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7387 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7388 priv->assoc_request.assoc_type = HC_IBSS_START;
7389 priv->assoc_request.assoc_tsf_msw = 0;
7390 priv->assoc_request.assoc_tsf_lsw = 0;
7391 } else {
7392 if (unlikely(roaming))
7393 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7394 else
7395 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7396 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7397 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7400 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7402 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7403 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7404 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7405 } else {
7406 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7407 priv->assoc_request.atim_window = 0;
7410 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7412 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7413 if (err) {
7414 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7415 return err;
7418 rates->ieee_mode = priv->assoc_request.ieee_mode;
7419 rates->purpose = IPW_RATE_CONNECT;
7420 ipw_send_supported_rates(priv, rates);
7422 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7423 priv->sys_config.dot11g_auto_detection = 1;
7424 else
7425 priv->sys_config.dot11g_auto_detection = 0;
7427 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7428 priv->sys_config.answer_broadcast_ssid_probe = 1;
7429 else
7430 priv->sys_config.answer_broadcast_ssid_probe = 0;
7432 err = ipw_send_system_config(priv);
7433 if (err) {
7434 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7435 return err;
7438 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7439 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7440 if (err) {
7441 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7442 return err;
7446 * If preemption is enabled, it is possible for the association
7447 * to complete before we return from ipw_send_associate. Therefore
7448 * we have to be sure and update our priviate data first.
7450 priv->channel = network->channel;
7451 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7452 priv->status |= STATUS_ASSOCIATING;
7453 priv->status &= ~STATUS_SECURITY_UPDATED;
7455 priv->assoc_network = network;
7457 #ifdef CONFIG_IPW2200_QOS
7458 ipw_qos_association(priv, network);
7459 #endif
7461 err = ipw_send_associate(priv, &priv->assoc_request);
7462 if (err) {
7463 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7464 return err;
7467 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %s \n",
7468 escape_essid(priv->essid, priv->essid_len),
7469 print_mac(mac, priv->bssid));
7471 return 0;
7474 static void ipw_roam(void *data)
7476 struct ipw_priv *priv = data;
7477 struct ieee80211_network *network = NULL;
7478 struct ipw_network_match match = {
7479 .network = priv->assoc_network
7482 /* The roaming process is as follows:
7484 * 1. Missed beacon threshold triggers the roaming process by
7485 * setting the status ROAM bit and requesting a scan.
7486 * 2. When the scan completes, it schedules the ROAM work
7487 * 3. The ROAM work looks at all of the known networks for one that
7488 * is a better network than the currently associated. If none
7489 * found, the ROAM process is over (ROAM bit cleared)
7490 * 4. If a better network is found, a disassociation request is
7491 * sent.
7492 * 5. When the disassociation completes, the roam work is again
7493 * scheduled. The second time through, the driver is no longer
7494 * associated, and the newly selected network is sent an
7495 * association request.
7496 * 6. At this point ,the roaming process is complete and the ROAM
7497 * status bit is cleared.
7500 /* If we are no longer associated, and the roaming bit is no longer
7501 * set, then we are not actively roaming, so just return */
7502 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7503 return;
7505 if (priv->status & STATUS_ASSOCIATED) {
7506 /* First pass through ROAM process -- look for a better
7507 * network */
7508 unsigned long flags;
7509 u8 rssi = priv->assoc_network->stats.rssi;
7510 priv->assoc_network->stats.rssi = -128;
7511 spin_lock_irqsave(&priv->ieee->lock, flags);
7512 list_for_each_entry(network, &priv->ieee->network_list, list) {
7513 if (network != priv->assoc_network)
7514 ipw_best_network(priv, &match, network, 1);
7516 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7517 priv->assoc_network->stats.rssi = rssi;
7519 if (match.network == priv->assoc_network) {
7520 IPW_DEBUG_ASSOC("No better APs in this network to "
7521 "roam to.\n");
7522 priv->status &= ~STATUS_ROAMING;
7523 ipw_debug_config(priv);
7524 return;
7527 ipw_send_disassociate(priv, 1);
7528 priv->assoc_network = match.network;
7530 return;
7533 /* Second pass through ROAM process -- request association */
7534 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7535 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7536 priv->status &= ~STATUS_ROAMING;
7539 static void ipw_bg_roam(struct work_struct *work)
7541 struct ipw_priv *priv =
7542 container_of(work, struct ipw_priv, roam);
7543 mutex_lock(&priv->mutex);
7544 ipw_roam(priv);
7545 mutex_unlock(&priv->mutex);
7548 static int ipw_associate(void *data)
7550 struct ipw_priv *priv = data;
7552 struct ieee80211_network *network = NULL;
7553 struct ipw_network_match match = {
7554 .network = NULL
7556 struct ipw_supported_rates *rates;
7557 struct list_head *element;
7558 unsigned long flags;
7560 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7561 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7562 return 0;
7565 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7566 IPW_DEBUG_ASSOC("Not attempting association (already in "
7567 "progress)\n");
7568 return 0;
7571 if (priv->status & STATUS_DISASSOCIATING) {
7572 IPW_DEBUG_ASSOC("Not attempting association (in "
7573 "disassociating)\n ");
7574 queue_work(priv->workqueue, &priv->associate);
7575 return 0;
7578 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7579 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7580 "initialized)\n");
7581 return 0;
7584 if (!(priv->config & CFG_ASSOCIATE) &&
7585 !(priv->config & (CFG_STATIC_ESSID |
7586 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7587 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7588 return 0;
7591 /* Protect our use of the network_list */
7592 spin_lock_irqsave(&priv->ieee->lock, flags);
7593 list_for_each_entry(network, &priv->ieee->network_list, list)
7594 ipw_best_network(priv, &match, network, 0);
7596 network = match.network;
7597 rates = &match.rates;
7599 if (network == NULL &&
7600 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7601 priv->config & CFG_ADHOC_CREATE &&
7602 priv->config & CFG_STATIC_ESSID &&
7603 priv->config & CFG_STATIC_CHANNEL) {
7604 /* Use oldest network if the free list is empty */
7605 if (list_empty(&priv->ieee->network_free_list)) {
7606 struct ieee80211_network *oldest = NULL;
7607 struct ieee80211_network *target;
7608 DECLARE_MAC_BUF(mac);
7610 list_for_each_entry(target, &priv->ieee->network_list, list) {
7611 if ((oldest == NULL) ||
7612 (target->last_scanned < oldest->last_scanned))
7613 oldest = target;
7616 /* If there are no more slots, expire the oldest */
7617 list_del(&oldest->list);
7618 target = oldest;
7619 IPW_DEBUG_ASSOC("Expired '%s' (%s) from "
7620 "network list.\n",
7621 escape_essid(target->ssid,
7622 target->ssid_len),
7623 print_mac(mac, target->bssid));
7624 list_add_tail(&target->list,
7625 &priv->ieee->network_free_list);
7628 element = priv->ieee->network_free_list.next;
7629 network = list_entry(element, struct ieee80211_network, list);
7630 ipw_adhoc_create(priv, network);
7631 rates = &priv->rates;
7632 list_del(element);
7633 list_add_tail(&network->list, &priv->ieee->network_list);
7635 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7637 /* If we reached the end of the list, then we don't have any valid
7638 * matching APs */
7639 if (!network) {
7640 ipw_debug_config(priv);
7642 if (!(priv->status & STATUS_SCANNING)) {
7643 if (!(priv->config & CFG_SPEED_SCAN))
7644 queue_delayed_work(priv->workqueue,
7645 &priv->request_scan,
7646 SCAN_INTERVAL);
7647 else
7648 queue_delayed_work(priv->workqueue,
7649 &priv->request_scan, 0);
7652 return 0;
7655 ipw_associate_network(priv, network, rates, 0);
7657 return 1;
7660 static void ipw_bg_associate(struct work_struct *work)
7662 struct ipw_priv *priv =
7663 container_of(work, struct ipw_priv, associate);
7664 mutex_lock(&priv->mutex);
7665 ipw_associate(priv);
7666 mutex_unlock(&priv->mutex);
7669 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7670 struct sk_buff *skb)
7672 struct ieee80211_hdr *hdr;
7673 u16 fc;
7675 hdr = (struct ieee80211_hdr *)skb->data;
7676 fc = le16_to_cpu(hdr->frame_ctl);
7677 if (!(fc & IEEE80211_FCTL_PROTECTED))
7678 return;
7680 fc &= ~IEEE80211_FCTL_PROTECTED;
7681 hdr->frame_ctl = cpu_to_le16(fc);
7682 switch (priv->ieee->sec.level) {
7683 case SEC_LEVEL_3:
7684 /* Remove CCMP HDR */
7685 memmove(skb->data + IEEE80211_3ADDR_LEN,
7686 skb->data + IEEE80211_3ADDR_LEN + 8,
7687 skb->len - IEEE80211_3ADDR_LEN - 8);
7688 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7689 break;
7690 case SEC_LEVEL_2:
7691 break;
7692 case SEC_LEVEL_1:
7693 /* Remove IV */
7694 memmove(skb->data + IEEE80211_3ADDR_LEN,
7695 skb->data + IEEE80211_3ADDR_LEN + 4,
7696 skb->len - IEEE80211_3ADDR_LEN - 4);
7697 skb_trim(skb, skb->len - 8); /* IV + ICV */
7698 break;
7699 case SEC_LEVEL_0:
7700 break;
7701 default:
7702 printk(KERN_ERR "Unknow security level %d\n",
7703 priv->ieee->sec.level);
7704 break;
7708 static void ipw_handle_data_packet(struct ipw_priv *priv,
7709 struct ipw_rx_mem_buffer *rxb,
7710 struct ieee80211_rx_stats *stats)
7712 struct ieee80211_hdr_4addr *hdr;
7713 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7715 /* We received data from the HW, so stop the watchdog */
7716 priv->net_dev->trans_start = jiffies;
7718 /* We only process data packets if the
7719 * interface is open */
7720 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7721 skb_tailroom(rxb->skb))) {
7722 priv->ieee->stats.rx_errors++;
7723 priv->wstats.discard.misc++;
7724 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7725 return;
7726 } else if (unlikely(!netif_running(priv->net_dev))) {
7727 priv->ieee->stats.rx_dropped++;
7728 priv->wstats.discard.misc++;
7729 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7730 return;
7733 /* Advance skb->data to the start of the actual payload */
7734 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7736 /* Set the size of the skb to the size of the frame */
7737 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7739 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7741 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7742 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7743 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7744 (is_multicast_ether_addr(hdr->addr1) ?
7745 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7746 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7748 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7749 priv->ieee->stats.rx_errors++;
7750 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7751 rxb->skb = NULL;
7752 __ipw_led_activity_on(priv);
7756 #ifdef CONFIG_IPW2200_RADIOTAP
7757 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7758 struct ipw_rx_mem_buffer *rxb,
7759 struct ieee80211_rx_stats *stats)
7761 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7762 struct ipw_rx_frame *frame = &pkt->u.frame;
7764 /* initial pull of some data */
7765 u16 received_channel = frame->received_channel;
7766 u8 antennaAndPhy = frame->antennaAndPhy;
7767 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7768 u16 pktrate = frame->rate;
7770 /* Magic struct that slots into the radiotap header -- no reason
7771 * to build this manually element by element, we can write it much
7772 * more efficiently than we can parse it. ORDER MATTERS HERE */
7773 struct ipw_rt_hdr *ipw_rt;
7775 short len = le16_to_cpu(pkt->u.frame.length);
7777 /* We received data from the HW, so stop the watchdog */
7778 priv->net_dev->trans_start = jiffies;
7780 /* We only process data packets if the
7781 * interface is open */
7782 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7783 skb_tailroom(rxb->skb))) {
7784 priv->ieee->stats.rx_errors++;
7785 priv->wstats.discard.misc++;
7786 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7787 return;
7788 } else if (unlikely(!netif_running(priv->net_dev))) {
7789 priv->ieee->stats.rx_dropped++;
7790 priv->wstats.discard.misc++;
7791 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7792 return;
7795 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7796 * that now */
7797 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7798 /* FIXME: Should alloc bigger skb instead */
7799 priv->ieee->stats.rx_dropped++;
7800 priv->wstats.discard.misc++;
7801 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7802 return;
7805 /* copy the frame itself */
7806 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7807 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7809 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7810 * part of our real header, saves a little time.
7812 * No longer necessary since we fill in all our data. Purge before merging
7813 * patch officially.
7814 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7815 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7818 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7820 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7821 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7822 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7824 /* Big bitfield of all the fields we provide in radiotap */
7825 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7826 (1 << IEEE80211_RADIOTAP_TSFT) |
7827 (1 << IEEE80211_RADIOTAP_FLAGS) |
7828 (1 << IEEE80211_RADIOTAP_RATE) |
7829 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7830 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7831 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7832 (1 << IEEE80211_RADIOTAP_ANTENNA));
7834 /* Zero the flags, we'll add to them as we go */
7835 ipw_rt->rt_flags = 0;
7836 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7837 frame->parent_tsf[2] << 16 |
7838 frame->parent_tsf[1] << 8 |
7839 frame->parent_tsf[0]);
7841 /* Convert signal to DBM */
7842 ipw_rt->rt_dbmsignal = antsignal;
7843 ipw_rt->rt_dbmnoise = frame->noise;
7845 /* Convert the channel data and set the flags */
7846 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7847 if (received_channel > 14) { /* 802.11a */
7848 ipw_rt->rt_chbitmask =
7849 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7850 } else if (antennaAndPhy & 32) { /* 802.11b */
7851 ipw_rt->rt_chbitmask =
7852 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7853 } else { /* 802.11g */
7854 ipw_rt->rt_chbitmask =
7855 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7858 /* set the rate in multiples of 500k/s */
7859 switch (pktrate) {
7860 case IPW_TX_RATE_1MB:
7861 ipw_rt->rt_rate = 2;
7862 break;
7863 case IPW_TX_RATE_2MB:
7864 ipw_rt->rt_rate = 4;
7865 break;
7866 case IPW_TX_RATE_5MB:
7867 ipw_rt->rt_rate = 10;
7868 break;
7869 case IPW_TX_RATE_6MB:
7870 ipw_rt->rt_rate = 12;
7871 break;
7872 case IPW_TX_RATE_9MB:
7873 ipw_rt->rt_rate = 18;
7874 break;
7875 case IPW_TX_RATE_11MB:
7876 ipw_rt->rt_rate = 22;
7877 break;
7878 case IPW_TX_RATE_12MB:
7879 ipw_rt->rt_rate = 24;
7880 break;
7881 case IPW_TX_RATE_18MB:
7882 ipw_rt->rt_rate = 36;
7883 break;
7884 case IPW_TX_RATE_24MB:
7885 ipw_rt->rt_rate = 48;
7886 break;
7887 case IPW_TX_RATE_36MB:
7888 ipw_rt->rt_rate = 72;
7889 break;
7890 case IPW_TX_RATE_48MB:
7891 ipw_rt->rt_rate = 96;
7892 break;
7893 case IPW_TX_RATE_54MB:
7894 ipw_rt->rt_rate = 108;
7895 break;
7896 default:
7897 ipw_rt->rt_rate = 0;
7898 break;
7901 /* antenna number */
7902 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7904 /* set the preamble flag if we have it */
7905 if ((antennaAndPhy & 64))
7906 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7908 /* Set the size of the skb to the size of the frame */
7909 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7911 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7913 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7914 priv->ieee->stats.rx_errors++;
7915 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7916 rxb->skb = NULL;
7917 /* no LED during capture */
7920 #endif
7922 #ifdef CONFIG_IPW2200_PROMISCUOUS
7923 #define ieee80211_is_probe_response(fc) \
7924 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7925 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7927 #define ieee80211_is_management(fc) \
7928 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7930 #define ieee80211_is_control(fc) \
7931 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7933 #define ieee80211_is_data(fc) \
7934 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7936 #define ieee80211_is_assoc_request(fc) \
7937 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7939 #define ieee80211_is_reassoc_request(fc) \
7940 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7942 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7943 struct ipw_rx_mem_buffer *rxb,
7944 struct ieee80211_rx_stats *stats)
7946 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7947 struct ipw_rx_frame *frame = &pkt->u.frame;
7948 struct ipw_rt_hdr *ipw_rt;
7950 /* First cache any information we need before we overwrite
7951 * the information provided in the skb from the hardware */
7952 struct ieee80211_hdr *hdr;
7953 u16 channel = frame->received_channel;
7954 u8 phy_flags = frame->antennaAndPhy;
7955 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7956 s8 noise = frame->noise;
7957 u8 rate = frame->rate;
7958 short len = le16_to_cpu(pkt->u.frame.length);
7959 struct sk_buff *skb;
7960 int hdr_only = 0;
7961 u16 filter = priv->prom_priv->filter;
7963 /* If the filter is set to not include Rx frames then return */
7964 if (filter & IPW_PROM_NO_RX)
7965 return;
7967 /* We received data from the HW, so stop the watchdog */
7968 priv->prom_net_dev->trans_start = jiffies;
7970 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7971 priv->prom_priv->ieee->stats.rx_errors++;
7972 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7973 return;
7976 /* We only process data packets if the interface is open */
7977 if (unlikely(!netif_running(priv->prom_net_dev))) {
7978 priv->prom_priv->ieee->stats.rx_dropped++;
7979 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7980 return;
7983 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7984 * that now */
7985 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7986 /* FIXME: Should alloc bigger skb instead */
7987 priv->prom_priv->ieee->stats.rx_dropped++;
7988 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7989 return;
7992 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7993 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7994 if (filter & IPW_PROM_NO_MGMT)
7995 return;
7996 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7997 hdr_only = 1;
7998 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7999 if (filter & IPW_PROM_NO_CTL)
8000 return;
8001 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8002 hdr_only = 1;
8003 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
8004 if (filter & IPW_PROM_NO_DATA)
8005 return;
8006 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8007 hdr_only = 1;
8010 /* Copy the SKB since this is for the promiscuous side */
8011 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8012 if (skb == NULL) {
8013 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8014 return;
8017 /* copy the frame data to write after where the radiotap header goes */
8018 ipw_rt = (void *)skb->data;
8020 if (hdr_only)
8021 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
8023 memcpy(ipw_rt->payload, hdr, len);
8025 /* Zero the radiotap static buffer ... We only need to zero the bytes
8026 * NOT part of our real header, saves a little time.
8028 * No longer necessary since we fill in all our data. Purge before
8029 * merging patch officially.
8030 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
8031 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
8034 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8035 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8036 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8038 /* Set the size of the skb to the size of the frame */
8039 skb_put(skb, sizeof(*ipw_rt) + len);
8041 /* Big bitfield of all the fields we provide in radiotap */
8042 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8043 (1 << IEEE80211_RADIOTAP_TSFT) |
8044 (1 << IEEE80211_RADIOTAP_FLAGS) |
8045 (1 << IEEE80211_RADIOTAP_RATE) |
8046 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8047 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8048 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8049 (1 << IEEE80211_RADIOTAP_ANTENNA));
8051 /* Zero the flags, we'll add to them as we go */
8052 ipw_rt->rt_flags = 0;
8053 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8054 frame->parent_tsf[2] << 16 |
8055 frame->parent_tsf[1] << 8 |
8056 frame->parent_tsf[0]);
8058 /* Convert to DBM */
8059 ipw_rt->rt_dbmsignal = signal;
8060 ipw_rt->rt_dbmnoise = noise;
8062 /* Convert the channel data and set the flags */
8063 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8064 if (channel > 14) { /* 802.11a */
8065 ipw_rt->rt_chbitmask =
8066 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8067 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8068 ipw_rt->rt_chbitmask =
8069 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8070 } else { /* 802.11g */
8071 ipw_rt->rt_chbitmask =
8072 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8075 /* set the rate in multiples of 500k/s */
8076 switch (rate) {
8077 case IPW_TX_RATE_1MB:
8078 ipw_rt->rt_rate = 2;
8079 break;
8080 case IPW_TX_RATE_2MB:
8081 ipw_rt->rt_rate = 4;
8082 break;
8083 case IPW_TX_RATE_5MB:
8084 ipw_rt->rt_rate = 10;
8085 break;
8086 case IPW_TX_RATE_6MB:
8087 ipw_rt->rt_rate = 12;
8088 break;
8089 case IPW_TX_RATE_9MB:
8090 ipw_rt->rt_rate = 18;
8091 break;
8092 case IPW_TX_RATE_11MB:
8093 ipw_rt->rt_rate = 22;
8094 break;
8095 case IPW_TX_RATE_12MB:
8096 ipw_rt->rt_rate = 24;
8097 break;
8098 case IPW_TX_RATE_18MB:
8099 ipw_rt->rt_rate = 36;
8100 break;
8101 case IPW_TX_RATE_24MB:
8102 ipw_rt->rt_rate = 48;
8103 break;
8104 case IPW_TX_RATE_36MB:
8105 ipw_rt->rt_rate = 72;
8106 break;
8107 case IPW_TX_RATE_48MB:
8108 ipw_rt->rt_rate = 96;
8109 break;
8110 case IPW_TX_RATE_54MB:
8111 ipw_rt->rt_rate = 108;
8112 break;
8113 default:
8114 ipw_rt->rt_rate = 0;
8115 break;
8118 /* antenna number */
8119 ipw_rt->rt_antenna = (phy_flags & 3);
8121 /* set the preamble flag if we have it */
8122 if (phy_flags & (1 << 6))
8123 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8125 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8127 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8128 priv->prom_priv->ieee->stats.rx_errors++;
8129 dev_kfree_skb_any(skb);
8132 #endif
8134 static int is_network_packet(struct ipw_priv *priv,
8135 struct ieee80211_hdr_4addr *header)
8137 /* Filter incoming packets to determine if they are targetted toward
8138 * this network, discarding packets coming from ourselves */
8139 switch (priv->ieee->iw_mode) {
8140 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8141 /* packets from our adapter are dropped (echo) */
8142 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8143 return 0;
8145 /* {broad,multi}cast packets to our BSSID go through */
8146 if (is_multicast_ether_addr(header->addr1))
8147 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8149 /* packets to our adapter go through */
8150 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8151 ETH_ALEN);
8153 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8154 /* packets from our adapter are dropped (echo) */
8155 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8156 return 0;
8158 /* {broad,multi}cast packets to our BSS go through */
8159 if (is_multicast_ether_addr(header->addr1))
8160 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8162 /* packets to our adapter go through */
8163 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8164 ETH_ALEN);
8167 return 1;
8170 #define IPW_PACKET_RETRY_TIME HZ
8172 static int is_duplicate_packet(struct ipw_priv *priv,
8173 struct ieee80211_hdr_4addr *header)
8175 u16 sc = le16_to_cpu(header->seq_ctl);
8176 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8177 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8178 u16 *last_seq, *last_frag;
8179 unsigned long *last_time;
8181 switch (priv->ieee->iw_mode) {
8182 case IW_MODE_ADHOC:
8184 struct list_head *p;
8185 struct ipw_ibss_seq *entry = NULL;
8186 u8 *mac = header->addr2;
8187 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8189 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8190 entry =
8191 list_entry(p, struct ipw_ibss_seq, list);
8192 if (!memcmp(entry->mac, mac, ETH_ALEN))
8193 break;
8195 if (p == &priv->ibss_mac_hash[index]) {
8196 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8197 if (!entry) {
8198 IPW_ERROR
8199 ("Cannot malloc new mac entry\n");
8200 return 0;
8202 memcpy(entry->mac, mac, ETH_ALEN);
8203 entry->seq_num = seq;
8204 entry->frag_num = frag;
8205 entry->packet_time = jiffies;
8206 list_add(&entry->list,
8207 &priv->ibss_mac_hash[index]);
8208 return 0;
8210 last_seq = &entry->seq_num;
8211 last_frag = &entry->frag_num;
8212 last_time = &entry->packet_time;
8213 break;
8215 case IW_MODE_INFRA:
8216 last_seq = &priv->last_seq_num;
8217 last_frag = &priv->last_frag_num;
8218 last_time = &priv->last_packet_time;
8219 break;
8220 default:
8221 return 0;
8223 if ((*last_seq == seq) &&
8224 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8225 if (*last_frag == frag)
8226 goto drop;
8227 if (*last_frag + 1 != frag)
8228 /* out-of-order fragment */
8229 goto drop;
8230 } else
8231 *last_seq = seq;
8233 *last_frag = frag;
8234 *last_time = jiffies;
8235 return 0;
8237 drop:
8238 /* Comment this line now since we observed the card receives
8239 * duplicate packets but the FCTL_RETRY bit is not set in the
8240 * IBSS mode with fragmentation enabled.
8241 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8242 return 1;
8245 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8246 struct ipw_rx_mem_buffer *rxb,
8247 struct ieee80211_rx_stats *stats)
8249 struct sk_buff *skb = rxb->skb;
8250 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8251 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8252 (skb->data + IPW_RX_FRAME_SIZE);
8254 ieee80211_rx_mgt(priv->ieee, header, stats);
8256 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8257 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8258 IEEE80211_STYPE_PROBE_RESP) ||
8259 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8260 IEEE80211_STYPE_BEACON))) {
8261 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8262 ipw_add_station(priv, header->addr2);
8265 if (priv->config & CFG_NET_STATS) {
8266 IPW_DEBUG_HC("sending stat packet\n");
8268 /* Set the size of the skb to the size of the full
8269 * ipw header and 802.11 frame */
8270 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8271 IPW_RX_FRAME_SIZE);
8273 /* Advance past the ipw packet header to the 802.11 frame */
8274 skb_pull(skb, IPW_RX_FRAME_SIZE);
8276 /* Push the ieee80211_rx_stats before the 802.11 frame */
8277 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8279 skb->dev = priv->ieee->dev;
8281 /* Point raw at the ieee80211_stats */
8282 skb_reset_mac_header(skb);
8284 skb->pkt_type = PACKET_OTHERHOST;
8285 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8286 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8287 netif_rx(skb);
8288 rxb->skb = NULL;
8293 * Main entry function for recieving a packet with 80211 headers. This
8294 * should be called when ever the FW has notified us that there is a new
8295 * skb in the recieve queue.
8297 static void ipw_rx(struct ipw_priv *priv)
8299 struct ipw_rx_mem_buffer *rxb;
8300 struct ipw_rx_packet *pkt;
8301 struct ieee80211_hdr_4addr *header;
8302 u32 r, w, i;
8303 u8 network_packet;
8304 u8 fill_rx = 0;
8305 DECLARE_MAC_BUF(mac);
8306 DECLARE_MAC_BUF(mac2);
8307 DECLARE_MAC_BUF(mac3);
8309 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8310 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8311 i = priv->rxq->read;
8313 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8314 fill_rx = 1;
8316 while (i != r) {
8317 rxb = priv->rxq->queue[i];
8318 if (unlikely(rxb == NULL)) {
8319 printk(KERN_CRIT "Queue not allocated!\n");
8320 break;
8322 priv->rxq->queue[i] = NULL;
8324 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8325 IPW_RX_BUF_SIZE,
8326 PCI_DMA_FROMDEVICE);
8328 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8329 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8330 pkt->header.message_type,
8331 pkt->header.rx_seq_num, pkt->header.control_bits);
8333 switch (pkt->header.message_type) {
8334 case RX_FRAME_TYPE: /* 802.11 frame */ {
8335 struct ieee80211_rx_stats stats = {
8336 .rssi = pkt->u.frame.rssi_dbm -
8337 IPW_RSSI_TO_DBM,
8338 .signal =
8339 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8340 IPW_RSSI_TO_DBM + 0x100,
8341 .noise =
8342 le16_to_cpu(pkt->u.frame.noise),
8343 .rate = pkt->u.frame.rate,
8344 .mac_time = jiffies,
8345 .received_channel =
8346 pkt->u.frame.received_channel,
8347 .freq =
8348 (pkt->u.frame.
8349 control & (1 << 0)) ?
8350 IEEE80211_24GHZ_BAND :
8351 IEEE80211_52GHZ_BAND,
8352 .len = le16_to_cpu(pkt->u.frame.length),
8355 if (stats.rssi != 0)
8356 stats.mask |= IEEE80211_STATMASK_RSSI;
8357 if (stats.signal != 0)
8358 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8359 if (stats.noise != 0)
8360 stats.mask |= IEEE80211_STATMASK_NOISE;
8361 if (stats.rate != 0)
8362 stats.mask |= IEEE80211_STATMASK_RATE;
8364 priv->rx_packets++;
8366 #ifdef CONFIG_IPW2200_PROMISCUOUS
8367 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8368 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8369 #endif
8371 #ifdef CONFIG_IPW2200_MONITOR
8372 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8373 #ifdef CONFIG_IPW2200_RADIOTAP
8375 ipw_handle_data_packet_monitor(priv,
8376 rxb,
8377 &stats);
8378 #else
8379 ipw_handle_data_packet(priv, rxb,
8380 &stats);
8381 #endif
8382 break;
8384 #endif
8386 header =
8387 (struct ieee80211_hdr_4addr *)(rxb->skb->
8388 data +
8389 IPW_RX_FRAME_SIZE);
8390 /* TODO: Check Ad-Hoc dest/source and make sure
8391 * that we are actually parsing these packets
8392 * correctly -- we should probably use the
8393 * frame control of the packet and disregard
8394 * the current iw_mode */
8396 network_packet =
8397 is_network_packet(priv, header);
8398 if (network_packet && priv->assoc_network) {
8399 priv->assoc_network->stats.rssi =
8400 stats.rssi;
8401 priv->exp_avg_rssi =
8402 exponential_average(priv->exp_avg_rssi,
8403 stats.rssi, DEPTH_RSSI);
8406 IPW_DEBUG_RX("Frame: len=%u\n",
8407 le16_to_cpu(pkt->u.frame.length));
8409 if (le16_to_cpu(pkt->u.frame.length) <
8410 ieee80211_get_hdrlen(le16_to_cpu(
8411 header->frame_ctl))) {
8412 IPW_DEBUG_DROP
8413 ("Received packet is too small. "
8414 "Dropping.\n");
8415 priv->ieee->stats.rx_errors++;
8416 priv->wstats.discard.misc++;
8417 break;
8420 switch (WLAN_FC_GET_TYPE
8421 (le16_to_cpu(header->frame_ctl))) {
8423 case IEEE80211_FTYPE_MGMT:
8424 ipw_handle_mgmt_packet(priv, rxb,
8425 &stats);
8426 break;
8428 case IEEE80211_FTYPE_CTL:
8429 break;
8431 case IEEE80211_FTYPE_DATA:
8432 if (unlikely(!network_packet ||
8433 is_duplicate_packet(priv,
8434 header)))
8436 IPW_DEBUG_DROP("Dropping: "
8437 "%s, "
8438 "%s, "
8439 "%s\n",
8440 print_mac(mac,
8441 header->
8442 addr1),
8443 print_mac(mac2,
8444 header->
8445 addr2),
8446 print_mac(mac3,
8447 header->
8448 addr3));
8449 break;
8452 ipw_handle_data_packet(priv, rxb,
8453 &stats);
8455 break;
8457 break;
8460 case RX_HOST_NOTIFICATION_TYPE:{
8461 IPW_DEBUG_RX
8462 ("Notification: subtype=%02X flags=%02X size=%d\n",
8463 pkt->u.notification.subtype,
8464 pkt->u.notification.flags,
8465 le16_to_cpu(pkt->u.notification.size));
8466 ipw_rx_notification(priv, &pkt->u.notification);
8467 break;
8470 default:
8471 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8472 pkt->header.message_type);
8473 break;
8476 /* For now we just don't re-use anything. We can tweak this
8477 * later to try and re-use notification packets and SKBs that
8478 * fail to Rx correctly */
8479 if (rxb->skb != NULL) {
8480 dev_kfree_skb_any(rxb->skb);
8481 rxb->skb = NULL;
8484 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8485 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8486 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8488 i = (i + 1) % RX_QUEUE_SIZE;
8490 /* If there are a lot of unsued frames, restock the Rx queue
8491 * so the ucode won't assert */
8492 if (fill_rx) {
8493 priv->rxq->read = i;
8494 ipw_rx_queue_replenish(priv);
8498 /* Backtrack one entry */
8499 priv->rxq->read = i;
8500 ipw_rx_queue_restock(priv);
8503 #define DEFAULT_RTS_THRESHOLD 2304U
8504 #define MIN_RTS_THRESHOLD 1U
8505 #define MAX_RTS_THRESHOLD 2304U
8506 #define DEFAULT_BEACON_INTERVAL 100U
8507 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8508 #define DEFAULT_LONG_RETRY_LIMIT 4U
8511 * ipw_sw_reset
8512 * @option: options to control different reset behaviour
8513 * 0 = reset everything except the 'disable' module_param
8514 * 1 = reset everything and print out driver info (for probe only)
8515 * 2 = reset everything
8517 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8519 int band, modulation;
8520 int old_mode = priv->ieee->iw_mode;
8522 /* Initialize module parameter values here */
8523 priv->config = 0;
8525 /* We default to disabling the LED code as right now it causes
8526 * too many systems to lock up... */
8527 if (!led)
8528 priv->config |= CFG_NO_LED;
8530 if (associate)
8531 priv->config |= CFG_ASSOCIATE;
8532 else
8533 IPW_DEBUG_INFO("Auto associate disabled.\n");
8535 if (auto_create)
8536 priv->config |= CFG_ADHOC_CREATE;
8537 else
8538 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8540 priv->config &= ~CFG_STATIC_ESSID;
8541 priv->essid_len = 0;
8542 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8544 if (disable && option) {
8545 priv->status |= STATUS_RF_KILL_SW;
8546 IPW_DEBUG_INFO("Radio disabled.\n");
8549 if (channel != 0) {
8550 priv->config |= CFG_STATIC_CHANNEL;
8551 priv->channel = channel;
8552 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8553 /* TODO: Validate that provided channel is in range */
8555 #ifdef CONFIG_IPW2200_QOS
8556 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8557 burst_duration_CCK, burst_duration_OFDM);
8558 #endif /* CONFIG_IPW2200_QOS */
8560 switch (mode) {
8561 case 1:
8562 priv->ieee->iw_mode = IW_MODE_ADHOC;
8563 priv->net_dev->type = ARPHRD_ETHER;
8565 break;
8566 #ifdef CONFIG_IPW2200_MONITOR
8567 case 2:
8568 priv->ieee->iw_mode = IW_MODE_MONITOR;
8569 #ifdef CONFIG_IPW2200_RADIOTAP
8570 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8571 #else
8572 priv->net_dev->type = ARPHRD_IEEE80211;
8573 #endif
8574 break;
8575 #endif
8576 default:
8577 case 0:
8578 priv->net_dev->type = ARPHRD_ETHER;
8579 priv->ieee->iw_mode = IW_MODE_INFRA;
8580 break;
8583 if (hwcrypto) {
8584 priv->ieee->host_encrypt = 0;
8585 priv->ieee->host_encrypt_msdu = 0;
8586 priv->ieee->host_decrypt = 0;
8587 priv->ieee->host_mc_decrypt = 0;
8589 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8591 /* IPW2200/2915 is abled to do hardware fragmentation. */
8592 priv->ieee->host_open_frag = 0;
8594 if ((priv->pci_dev->device == 0x4223) ||
8595 (priv->pci_dev->device == 0x4224)) {
8596 if (option == 1)
8597 printk(KERN_INFO DRV_NAME
8598 ": Detected Intel PRO/Wireless 2915ABG Network "
8599 "Connection\n");
8600 priv->ieee->abg_true = 1;
8601 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8602 modulation = IEEE80211_OFDM_MODULATION |
8603 IEEE80211_CCK_MODULATION;
8604 priv->adapter = IPW_2915ABG;
8605 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8606 } else {
8607 if (option == 1)
8608 printk(KERN_INFO DRV_NAME
8609 ": Detected Intel PRO/Wireless 2200BG Network "
8610 "Connection\n");
8612 priv->ieee->abg_true = 0;
8613 band = IEEE80211_24GHZ_BAND;
8614 modulation = IEEE80211_OFDM_MODULATION |
8615 IEEE80211_CCK_MODULATION;
8616 priv->adapter = IPW_2200BG;
8617 priv->ieee->mode = IEEE_G | IEEE_B;
8620 priv->ieee->freq_band = band;
8621 priv->ieee->modulation = modulation;
8623 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8625 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8626 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8628 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8629 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8630 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8632 /* If power management is turned on, default to AC mode */
8633 priv->power_mode = IPW_POWER_AC;
8634 priv->tx_power = IPW_TX_POWER_DEFAULT;
8636 return old_mode == priv->ieee->iw_mode;
8640 * This file defines the Wireless Extension handlers. It does not
8641 * define any methods of hardware manipulation and relies on the
8642 * functions defined in ipw_main to provide the HW interaction.
8644 * The exception to this is the use of the ipw_get_ordinal()
8645 * function used to poll the hardware vs. making unecessary calls.
8649 static int ipw_wx_get_name(struct net_device *dev,
8650 struct iw_request_info *info,
8651 union iwreq_data *wrqu, char *extra)
8653 struct ipw_priv *priv = ieee80211_priv(dev);
8654 mutex_lock(&priv->mutex);
8655 if (priv->status & STATUS_RF_KILL_MASK)
8656 strcpy(wrqu->name, "radio off");
8657 else if (!(priv->status & STATUS_ASSOCIATED))
8658 strcpy(wrqu->name, "unassociated");
8659 else
8660 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8661 ipw_modes[priv->assoc_request.ieee_mode]);
8662 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8663 mutex_unlock(&priv->mutex);
8664 return 0;
8667 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8669 if (channel == 0) {
8670 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8671 priv->config &= ~CFG_STATIC_CHANNEL;
8672 IPW_DEBUG_ASSOC("Attempting to associate with new "
8673 "parameters.\n");
8674 ipw_associate(priv);
8675 return 0;
8678 priv->config |= CFG_STATIC_CHANNEL;
8680 if (priv->channel == channel) {
8681 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8682 channel);
8683 return 0;
8686 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8687 priv->channel = channel;
8689 #ifdef CONFIG_IPW2200_MONITOR
8690 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8691 int i;
8692 if (priv->status & STATUS_SCANNING) {
8693 IPW_DEBUG_SCAN("Scan abort triggered due to "
8694 "channel change.\n");
8695 ipw_abort_scan(priv);
8698 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8699 udelay(10);
8701 if (priv->status & STATUS_SCANNING)
8702 IPW_DEBUG_SCAN("Still scanning...\n");
8703 else
8704 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8705 1000 - i);
8707 return 0;
8709 #endif /* CONFIG_IPW2200_MONITOR */
8711 /* Network configuration changed -- force [re]association */
8712 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8713 if (!ipw_disassociate(priv))
8714 ipw_associate(priv);
8716 return 0;
8719 static int ipw_wx_set_freq(struct net_device *dev,
8720 struct iw_request_info *info,
8721 union iwreq_data *wrqu, char *extra)
8723 struct ipw_priv *priv = ieee80211_priv(dev);
8724 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8725 struct iw_freq *fwrq = &wrqu->freq;
8726 int ret = 0, i;
8727 u8 channel, flags;
8728 int band;
8730 if (fwrq->m == 0) {
8731 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8732 mutex_lock(&priv->mutex);
8733 ret = ipw_set_channel(priv, 0);
8734 mutex_unlock(&priv->mutex);
8735 return ret;
8737 /* if setting by freq convert to channel */
8738 if (fwrq->e == 1) {
8739 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8740 if (channel == 0)
8741 return -EINVAL;
8742 } else
8743 channel = fwrq->m;
8745 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8746 return -EINVAL;
8748 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8749 i = ieee80211_channel_to_index(priv->ieee, channel);
8750 if (i == -1)
8751 return -EINVAL;
8753 flags = (band == IEEE80211_24GHZ_BAND) ?
8754 geo->bg[i].flags : geo->a[i].flags;
8755 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8756 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8757 return -EINVAL;
8761 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8762 mutex_lock(&priv->mutex);
8763 ret = ipw_set_channel(priv, channel);
8764 mutex_unlock(&priv->mutex);
8765 return ret;
8768 static int ipw_wx_get_freq(struct net_device *dev,
8769 struct iw_request_info *info,
8770 union iwreq_data *wrqu, char *extra)
8772 struct ipw_priv *priv = ieee80211_priv(dev);
8774 wrqu->freq.e = 0;
8776 /* If we are associated, trying to associate, or have a statically
8777 * configured CHANNEL then return that; otherwise return ANY */
8778 mutex_lock(&priv->mutex);
8779 if (priv->config & CFG_STATIC_CHANNEL ||
8780 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8781 int i;
8783 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8784 BUG_ON(i == -1);
8785 wrqu->freq.e = 1;
8787 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8788 case IEEE80211_52GHZ_BAND:
8789 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8790 break;
8792 case IEEE80211_24GHZ_BAND:
8793 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8794 break;
8796 default:
8797 BUG();
8799 } else
8800 wrqu->freq.m = 0;
8802 mutex_unlock(&priv->mutex);
8803 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8804 return 0;
8807 static int ipw_wx_set_mode(struct net_device *dev,
8808 struct iw_request_info *info,
8809 union iwreq_data *wrqu, char *extra)
8811 struct ipw_priv *priv = ieee80211_priv(dev);
8812 int err = 0;
8814 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8816 switch (wrqu->mode) {
8817 #ifdef CONFIG_IPW2200_MONITOR
8818 case IW_MODE_MONITOR:
8819 #endif
8820 case IW_MODE_ADHOC:
8821 case IW_MODE_INFRA:
8822 break;
8823 case IW_MODE_AUTO:
8824 wrqu->mode = IW_MODE_INFRA;
8825 break;
8826 default:
8827 return -EINVAL;
8829 if (wrqu->mode == priv->ieee->iw_mode)
8830 return 0;
8832 mutex_lock(&priv->mutex);
8834 ipw_sw_reset(priv, 0);
8836 #ifdef CONFIG_IPW2200_MONITOR
8837 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8838 priv->net_dev->type = ARPHRD_ETHER;
8840 if (wrqu->mode == IW_MODE_MONITOR)
8841 #ifdef CONFIG_IPW2200_RADIOTAP
8842 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8843 #else
8844 priv->net_dev->type = ARPHRD_IEEE80211;
8845 #endif
8846 #endif /* CONFIG_IPW2200_MONITOR */
8848 /* Free the existing firmware and reset the fw_loaded
8849 * flag so ipw_load() will bring in the new firmawre */
8850 free_firmware();
8852 priv->ieee->iw_mode = wrqu->mode;
8854 queue_work(priv->workqueue, &priv->adapter_restart);
8855 mutex_unlock(&priv->mutex);
8856 return err;
8859 static int ipw_wx_get_mode(struct net_device *dev,
8860 struct iw_request_info *info,
8861 union iwreq_data *wrqu, char *extra)
8863 struct ipw_priv *priv = ieee80211_priv(dev);
8864 mutex_lock(&priv->mutex);
8865 wrqu->mode = priv->ieee->iw_mode;
8866 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8867 mutex_unlock(&priv->mutex);
8868 return 0;
8871 /* Values are in microsecond */
8872 static const s32 timeout_duration[] = {
8873 350000,
8874 250000,
8875 75000,
8876 37000,
8877 25000,
8880 static const s32 period_duration[] = {
8881 400000,
8882 700000,
8883 1000000,
8884 1000000,
8885 1000000
8888 static int ipw_wx_get_range(struct net_device *dev,
8889 struct iw_request_info *info,
8890 union iwreq_data *wrqu, char *extra)
8892 struct ipw_priv *priv = ieee80211_priv(dev);
8893 struct iw_range *range = (struct iw_range *)extra;
8894 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8895 int i = 0, j;
8897 wrqu->data.length = sizeof(*range);
8898 memset(range, 0, sizeof(*range));
8900 /* 54Mbs == ~27 Mb/s real (802.11g) */
8901 range->throughput = 27 * 1000 * 1000;
8903 range->max_qual.qual = 100;
8904 /* TODO: Find real max RSSI and stick here */
8905 range->max_qual.level = 0;
8906 range->max_qual.noise = 0;
8907 range->max_qual.updated = 7; /* Updated all three */
8909 range->avg_qual.qual = 70;
8910 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8911 range->avg_qual.level = 0; /* FIXME to real average level */
8912 range->avg_qual.noise = 0;
8913 range->avg_qual.updated = 7; /* Updated all three */
8914 mutex_lock(&priv->mutex);
8915 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8917 for (i = 0; i < range->num_bitrates; i++)
8918 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8919 500000;
8921 range->max_rts = DEFAULT_RTS_THRESHOLD;
8922 range->min_frag = MIN_FRAG_THRESHOLD;
8923 range->max_frag = MAX_FRAG_THRESHOLD;
8925 range->encoding_size[0] = 5;
8926 range->encoding_size[1] = 13;
8927 range->num_encoding_sizes = 2;
8928 range->max_encoding_tokens = WEP_KEYS;
8930 /* Set the Wireless Extension versions */
8931 range->we_version_compiled = WIRELESS_EXT;
8932 range->we_version_source = 18;
8934 i = 0;
8935 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8936 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8937 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8938 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8939 continue;
8941 range->freq[i].i = geo->bg[j].channel;
8942 range->freq[i].m = geo->bg[j].freq * 100000;
8943 range->freq[i].e = 1;
8944 i++;
8948 if (priv->ieee->mode & IEEE_A) {
8949 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8950 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8951 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8952 continue;
8954 range->freq[i].i = geo->a[j].channel;
8955 range->freq[i].m = geo->a[j].freq * 100000;
8956 range->freq[i].e = 1;
8957 i++;
8961 range->num_channels = i;
8962 range->num_frequency = i;
8964 mutex_unlock(&priv->mutex);
8966 /* Event capability (kernel + driver) */
8967 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8968 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8969 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8970 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8971 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8973 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8974 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8976 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8978 IPW_DEBUG_WX("GET Range\n");
8979 return 0;
8982 static int ipw_wx_set_wap(struct net_device *dev,
8983 struct iw_request_info *info,
8984 union iwreq_data *wrqu, char *extra)
8986 struct ipw_priv *priv = ieee80211_priv(dev);
8987 DECLARE_MAC_BUF(mac);
8989 static const unsigned char any[] = {
8990 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8992 static const unsigned char off[] = {
8993 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8996 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8997 return -EINVAL;
8998 mutex_lock(&priv->mutex);
8999 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9000 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9001 /* we disable mandatory BSSID association */
9002 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9003 priv->config &= ~CFG_STATIC_BSSID;
9004 IPW_DEBUG_ASSOC("Attempting to associate with new "
9005 "parameters.\n");
9006 ipw_associate(priv);
9007 mutex_unlock(&priv->mutex);
9008 return 0;
9011 priv->config |= CFG_STATIC_BSSID;
9012 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9013 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9014 mutex_unlock(&priv->mutex);
9015 return 0;
9018 IPW_DEBUG_WX("Setting mandatory BSSID to %s\n",
9019 print_mac(mac, wrqu->ap_addr.sa_data));
9021 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9023 /* Network configuration changed -- force [re]association */
9024 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9025 if (!ipw_disassociate(priv))
9026 ipw_associate(priv);
9028 mutex_unlock(&priv->mutex);
9029 return 0;
9032 static int ipw_wx_get_wap(struct net_device *dev,
9033 struct iw_request_info *info,
9034 union iwreq_data *wrqu, char *extra)
9036 struct ipw_priv *priv = ieee80211_priv(dev);
9037 DECLARE_MAC_BUF(mac);
9039 /* If we are associated, trying to associate, or have a statically
9040 * configured BSSID then return that; otherwise return ANY */
9041 mutex_lock(&priv->mutex);
9042 if (priv->config & CFG_STATIC_BSSID ||
9043 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9044 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9045 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9046 } else
9047 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9049 IPW_DEBUG_WX("Getting WAP BSSID: %s\n",
9050 print_mac(mac, wrqu->ap_addr.sa_data));
9051 mutex_unlock(&priv->mutex);
9052 return 0;
9055 static int ipw_wx_set_essid(struct net_device *dev,
9056 struct iw_request_info *info,
9057 union iwreq_data *wrqu, char *extra)
9059 struct ipw_priv *priv = ieee80211_priv(dev);
9060 int length;
9062 mutex_lock(&priv->mutex);
9064 if (!wrqu->essid.flags)
9066 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9067 ipw_disassociate(priv);
9068 priv->config &= ~CFG_STATIC_ESSID;
9069 ipw_associate(priv);
9070 mutex_unlock(&priv->mutex);
9071 return 0;
9074 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9076 priv->config |= CFG_STATIC_ESSID;
9078 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9079 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9080 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9081 mutex_unlock(&priv->mutex);
9082 return 0;
9085 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
9086 length);
9088 priv->essid_len = length;
9089 memcpy(priv->essid, extra, priv->essid_len);
9091 /* Network configuration changed -- force [re]association */
9092 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9093 if (!ipw_disassociate(priv))
9094 ipw_associate(priv);
9096 mutex_unlock(&priv->mutex);
9097 return 0;
9100 static int ipw_wx_get_essid(struct net_device *dev,
9101 struct iw_request_info *info,
9102 union iwreq_data *wrqu, char *extra)
9104 struct ipw_priv *priv = ieee80211_priv(dev);
9106 /* If we are associated, trying to associate, or have a statically
9107 * configured ESSID then return that; otherwise return ANY */
9108 mutex_lock(&priv->mutex);
9109 if (priv->config & CFG_STATIC_ESSID ||
9110 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9111 IPW_DEBUG_WX("Getting essid: '%s'\n",
9112 escape_essid(priv->essid, priv->essid_len));
9113 memcpy(extra, priv->essid, priv->essid_len);
9114 wrqu->essid.length = priv->essid_len;
9115 wrqu->essid.flags = 1; /* active */
9116 } else {
9117 IPW_DEBUG_WX("Getting essid: ANY\n");
9118 wrqu->essid.length = 0;
9119 wrqu->essid.flags = 0; /* active */
9121 mutex_unlock(&priv->mutex);
9122 return 0;
9125 static int ipw_wx_set_nick(struct net_device *dev,
9126 struct iw_request_info *info,
9127 union iwreq_data *wrqu, char *extra)
9129 struct ipw_priv *priv = ieee80211_priv(dev);
9131 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9132 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9133 return -E2BIG;
9134 mutex_lock(&priv->mutex);
9135 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9136 memset(priv->nick, 0, sizeof(priv->nick));
9137 memcpy(priv->nick, extra, wrqu->data.length);
9138 IPW_DEBUG_TRACE("<<\n");
9139 mutex_unlock(&priv->mutex);
9140 return 0;
9144 static int ipw_wx_get_nick(struct net_device *dev,
9145 struct iw_request_info *info,
9146 union iwreq_data *wrqu, char *extra)
9148 struct ipw_priv *priv = ieee80211_priv(dev);
9149 IPW_DEBUG_WX("Getting nick\n");
9150 mutex_lock(&priv->mutex);
9151 wrqu->data.length = strlen(priv->nick);
9152 memcpy(extra, priv->nick, wrqu->data.length);
9153 wrqu->data.flags = 1; /* active */
9154 mutex_unlock(&priv->mutex);
9155 return 0;
9158 static int ipw_wx_set_sens(struct net_device *dev,
9159 struct iw_request_info *info,
9160 union iwreq_data *wrqu, char *extra)
9162 struct ipw_priv *priv = ieee80211_priv(dev);
9163 int err = 0;
9165 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9166 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9167 mutex_lock(&priv->mutex);
9169 if (wrqu->sens.fixed == 0)
9171 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9172 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9173 goto out;
9175 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9176 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9177 err = -EINVAL;
9178 goto out;
9181 priv->roaming_threshold = wrqu->sens.value;
9182 priv->disassociate_threshold = 3*wrqu->sens.value;
9183 out:
9184 mutex_unlock(&priv->mutex);
9185 return err;
9188 static int ipw_wx_get_sens(struct net_device *dev,
9189 struct iw_request_info *info,
9190 union iwreq_data *wrqu, char *extra)
9192 struct ipw_priv *priv = ieee80211_priv(dev);
9193 mutex_lock(&priv->mutex);
9194 wrqu->sens.fixed = 1;
9195 wrqu->sens.value = priv->roaming_threshold;
9196 mutex_unlock(&priv->mutex);
9198 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9199 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9201 return 0;
9204 static int ipw_wx_set_rate(struct net_device *dev,
9205 struct iw_request_info *info,
9206 union iwreq_data *wrqu, char *extra)
9208 /* TODO: We should use semaphores or locks for access to priv */
9209 struct ipw_priv *priv = ieee80211_priv(dev);
9210 u32 target_rate = wrqu->bitrate.value;
9211 u32 fixed, mask;
9213 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9214 /* value = X, fixed = 1 means only rate X */
9215 /* value = X, fixed = 0 means all rates lower equal X */
9217 if (target_rate == -1) {
9218 fixed = 0;
9219 mask = IEEE80211_DEFAULT_RATES_MASK;
9220 /* Now we should reassociate */
9221 goto apply;
9224 mask = 0;
9225 fixed = wrqu->bitrate.fixed;
9227 if (target_rate == 1000000 || !fixed)
9228 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9229 if (target_rate == 1000000)
9230 goto apply;
9232 if (target_rate == 2000000 || !fixed)
9233 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9234 if (target_rate == 2000000)
9235 goto apply;
9237 if (target_rate == 5500000 || !fixed)
9238 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9239 if (target_rate == 5500000)
9240 goto apply;
9242 if (target_rate == 6000000 || !fixed)
9243 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9244 if (target_rate == 6000000)
9245 goto apply;
9247 if (target_rate == 9000000 || !fixed)
9248 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9249 if (target_rate == 9000000)
9250 goto apply;
9252 if (target_rate == 11000000 || !fixed)
9253 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9254 if (target_rate == 11000000)
9255 goto apply;
9257 if (target_rate == 12000000 || !fixed)
9258 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9259 if (target_rate == 12000000)
9260 goto apply;
9262 if (target_rate == 18000000 || !fixed)
9263 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9264 if (target_rate == 18000000)
9265 goto apply;
9267 if (target_rate == 24000000 || !fixed)
9268 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9269 if (target_rate == 24000000)
9270 goto apply;
9272 if (target_rate == 36000000 || !fixed)
9273 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9274 if (target_rate == 36000000)
9275 goto apply;
9277 if (target_rate == 48000000 || !fixed)
9278 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9279 if (target_rate == 48000000)
9280 goto apply;
9282 if (target_rate == 54000000 || !fixed)
9283 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9284 if (target_rate == 54000000)
9285 goto apply;
9287 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9288 return -EINVAL;
9290 apply:
9291 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9292 mask, fixed ? "fixed" : "sub-rates");
9293 mutex_lock(&priv->mutex);
9294 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9295 priv->config &= ~CFG_FIXED_RATE;
9296 ipw_set_fixed_rate(priv, priv->ieee->mode);
9297 } else
9298 priv->config |= CFG_FIXED_RATE;
9300 if (priv->rates_mask == mask) {
9301 IPW_DEBUG_WX("Mask set to current mask.\n");
9302 mutex_unlock(&priv->mutex);
9303 return 0;
9306 priv->rates_mask = mask;
9308 /* Network configuration changed -- force [re]association */
9309 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9310 if (!ipw_disassociate(priv))
9311 ipw_associate(priv);
9313 mutex_unlock(&priv->mutex);
9314 return 0;
9317 static int ipw_wx_get_rate(struct net_device *dev,
9318 struct iw_request_info *info,
9319 union iwreq_data *wrqu, char *extra)
9321 struct ipw_priv *priv = ieee80211_priv(dev);
9322 mutex_lock(&priv->mutex);
9323 wrqu->bitrate.value = priv->last_rate;
9324 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9325 mutex_unlock(&priv->mutex);
9326 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9327 return 0;
9330 static int ipw_wx_set_rts(struct net_device *dev,
9331 struct iw_request_info *info,
9332 union iwreq_data *wrqu, char *extra)
9334 struct ipw_priv *priv = ieee80211_priv(dev);
9335 mutex_lock(&priv->mutex);
9336 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9337 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9338 else {
9339 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9340 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9341 mutex_unlock(&priv->mutex);
9342 return -EINVAL;
9344 priv->rts_threshold = wrqu->rts.value;
9347 ipw_send_rts_threshold(priv, priv->rts_threshold);
9348 mutex_unlock(&priv->mutex);
9349 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9350 return 0;
9353 static int ipw_wx_get_rts(struct net_device *dev,
9354 struct iw_request_info *info,
9355 union iwreq_data *wrqu, char *extra)
9357 struct ipw_priv *priv = ieee80211_priv(dev);
9358 mutex_lock(&priv->mutex);
9359 wrqu->rts.value = priv->rts_threshold;
9360 wrqu->rts.fixed = 0; /* no auto select */
9361 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9362 mutex_unlock(&priv->mutex);
9363 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9364 return 0;
9367 static int ipw_wx_set_txpow(struct net_device *dev,
9368 struct iw_request_info *info,
9369 union iwreq_data *wrqu, char *extra)
9371 struct ipw_priv *priv = ieee80211_priv(dev);
9372 int err = 0;
9374 mutex_lock(&priv->mutex);
9375 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9376 err = -EINPROGRESS;
9377 goto out;
9380 if (!wrqu->power.fixed)
9381 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9383 if (wrqu->power.flags != IW_TXPOW_DBM) {
9384 err = -EINVAL;
9385 goto out;
9388 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9389 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9390 err = -EINVAL;
9391 goto out;
9394 priv->tx_power = wrqu->power.value;
9395 err = ipw_set_tx_power(priv);
9396 out:
9397 mutex_unlock(&priv->mutex);
9398 return err;
9401 static int ipw_wx_get_txpow(struct net_device *dev,
9402 struct iw_request_info *info,
9403 union iwreq_data *wrqu, char *extra)
9405 struct ipw_priv *priv = ieee80211_priv(dev);
9406 mutex_lock(&priv->mutex);
9407 wrqu->power.value = priv->tx_power;
9408 wrqu->power.fixed = 1;
9409 wrqu->power.flags = IW_TXPOW_DBM;
9410 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9411 mutex_unlock(&priv->mutex);
9413 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9414 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9416 return 0;
9419 static int ipw_wx_set_frag(struct net_device *dev,
9420 struct iw_request_info *info,
9421 union iwreq_data *wrqu, char *extra)
9423 struct ipw_priv *priv = ieee80211_priv(dev);
9424 mutex_lock(&priv->mutex);
9425 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9426 priv->ieee->fts = DEFAULT_FTS;
9427 else {
9428 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9429 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9430 mutex_unlock(&priv->mutex);
9431 return -EINVAL;
9434 priv->ieee->fts = wrqu->frag.value & ~0x1;
9437 ipw_send_frag_threshold(priv, wrqu->frag.value);
9438 mutex_unlock(&priv->mutex);
9439 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9440 return 0;
9443 static int ipw_wx_get_frag(struct net_device *dev,
9444 struct iw_request_info *info,
9445 union iwreq_data *wrqu, char *extra)
9447 struct ipw_priv *priv = ieee80211_priv(dev);
9448 mutex_lock(&priv->mutex);
9449 wrqu->frag.value = priv->ieee->fts;
9450 wrqu->frag.fixed = 0; /* no auto select */
9451 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9452 mutex_unlock(&priv->mutex);
9453 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9455 return 0;
9458 static int ipw_wx_set_retry(struct net_device *dev,
9459 struct iw_request_info *info,
9460 union iwreq_data *wrqu, char *extra)
9462 struct ipw_priv *priv = ieee80211_priv(dev);
9464 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9465 return -EINVAL;
9467 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9468 return 0;
9470 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9471 return -EINVAL;
9473 mutex_lock(&priv->mutex);
9474 if (wrqu->retry.flags & IW_RETRY_SHORT)
9475 priv->short_retry_limit = (u8) wrqu->retry.value;
9476 else if (wrqu->retry.flags & IW_RETRY_LONG)
9477 priv->long_retry_limit = (u8) wrqu->retry.value;
9478 else {
9479 priv->short_retry_limit = (u8) wrqu->retry.value;
9480 priv->long_retry_limit = (u8) wrqu->retry.value;
9483 ipw_send_retry_limit(priv, priv->short_retry_limit,
9484 priv->long_retry_limit);
9485 mutex_unlock(&priv->mutex);
9486 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9487 priv->short_retry_limit, priv->long_retry_limit);
9488 return 0;
9491 static int ipw_wx_get_retry(struct net_device *dev,
9492 struct iw_request_info *info,
9493 union iwreq_data *wrqu, char *extra)
9495 struct ipw_priv *priv = ieee80211_priv(dev);
9497 mutex_lock(&priv->mutex);
9498 wrqu->retry.disabled = 0;
9500 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9501 mutex_unlock(&priv->mutex);
9502 return -EINVAL;
9505 if (wrqu->retry.flags & IW_RETRY_LONG) {
9506 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9507 wrqu->retry.value = priv->long_retry_limit;
9508 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9509 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9510 wrqu->retry.value = priv->short_retry_limit;
9511 } else {
9512 wrqu->retry.flags = IW_RETRY_LIMIT;
9513 wrqu->retry.value = priv->short_retry_limit;
9515 mutex_unlock(&priv->mutex);
9517 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9519 return 0;
9522 static int ipw_wx_set_scan(struct net_device *dev,
9523 struct iw_request_info *info,
9524 union iwreq_data *wrqu, char *extra)
9526 struct ipw_priv *priv = ieee80211_priv(dev);
9527 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9528 struct delayed_work *work = NULL;
9530 mutex_lock(&priv->mutex);
9532 priv->user_requested_scan = 1;
9534 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9535 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9536 int len = min((int)req->essid_len,
9537 (int)sizeof(priv->direct_scan_ssid));
9538 memcpy(priv->direct_scan_ssid, req->essid, len);
9539 priv->direct_scan_ssid_len = len;
9540 work = &priv->request_direct_scan;
9541 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9542 work = &priv->request_passive_scan;
9544 } else {
9545 /* Normal active broadcast scan */
9546 work = &priv->request_scan;
9549 mutex_unlock(&priv->mutex);
9551 IPW_DEBUG_WX("Start scan\n");
9553 queue_delayed_work(priv->workqueue, work, 0);
9555 return 0;
9558 static int ipw_wx_get_scan(struct net_device *dev,
9559 struct iw_request_info *info,
9560 union iwreq_data *wrqu, char *extra)
9562 struct ipw_priv *priv = ieee80211_priv(dev);
9563 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9566 static int ipw_wx_set_encode(struct net_device *dev,
9567 struct iw_request_info *info,
9568 union iwreq_data *wrqu, char *key)
9570 struct ipw_priv *priv = ieee80211_priv(dev);
9571 int ret;
9572 u32 cap = priv->capability;
9574 mutex_lock(&priv->mutex);
9575 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9577 /* In IBSS mode, we need to notify the firmware to update
9578 * the beacon info after we changed the capability. */
9579 if (cap != priv->capability &&
9580 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9581 priv->status & STATUS_ASSOCIATED)
9582 ipw_disassociate(priv);
9584 mutex_unlock(&priv->mutex);
9585 return ret;
9588 static int ipw_wx_get_encode(struct net_device *dev,
9589 struct iw_request_info *info,
9590 union iwreq_data *wrqu, char *key)
9592 struct ipw_priv *priv = ieee80211_priv(dev);
9593 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9596 static int ipw_wx_set_power(struct net_device *dev,
9597 struct iw_request_info *info,
9598 union iwreq_data *wrqu, char *extra)
9600 struct ipw_priv *priv = ieee80211_priv(dev);
9601 int err;
9602 mutex_lock(&priv->mutex);
9603 if (wrqu->power.disabled) {
9604 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9605 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9606 if (err) {
9607 IPW_DEBUG_WX("failed setting power mode.\n");
9608 mutex_unlock(&priv->mutex);
9609 return err;
9611 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9612 mutex_unlock(&priv->mutex);
9613 return 0;
9616 switch (wrqu->power.flags & IW_POWER_MODE) {
9617 case IW_POWER_ON: /* If not specified */
9618 case IW_POWER_MODE: /* If set all mask */
9619 case IW_POWER_ALL_R: /* If explicitly state all */
9620 break;
9621 default: /* Otherwise we don't support it */
9622 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9623 wrqu->power.flags);
9624 mutex_unlock(&priv->mutex);
9625 return -EOPNOTSUPP;
9628 /* If the user hasn't specified a power management mode yet, default
9629 * to BATTERY */
9630 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9631 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9632 else
9633 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9635 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9636 if (err) {
9637 IPW_DEBUG_WX("failed setting power mode.\n");
9638 mutex_unlock(&priv->mutex);
9639 return err;
9642 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9643 mutex_unlock(&priv->mutex);
9644 return 0;
9647 static int ipw_wx_get_power(struct net_device *dev,
9648 struct iw_request_info *info,
9649 union iwreq_data *wrqu, char *extra)
9651 struct ipw_priv *priv = ieee80211_priv(dev);
9652 mutex_lock(&priv->mutex);
9653 if (!(priv->power_mode & IPW_POWER_ENABLED))
9654 wrqu->power.disabled = 1;
9655 else
9656 wrqu->power.disabled = 0;
9658 mutex_unlock(&priv->mutex);
9659 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9661 return 0;
9664 static int ipw_wx_set_powermode(struct net_device *dev,
9665 struct iw_request_info *info,
9666 union iwreq_data *wrqu, char *extra)
9668 struct ipw_priv *priv = ieee80211_priv(dev);
9669 int mode = *(int *)extra;
9670 int err;
9672 mutex_lock(&priv->mutex);
9673 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9674 mode = IPW_POWER_AC;
9676 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9677 err = ipw_send_power_mode(priv, mode);
9678 if (err) {
9679 IPW_DEBUG_WX("failed setting power mode.\n");
9680 mutex_unlock(&priv->mutex);
9681 return err;
9683 priv->power_mode = IPW_POWER_ENABLED | mode;
9685 mutex_unlock(&priv->mutex);
9686 return 0;
9689 #define MAX_WX_STRING 80
9690 static int ipw_wx_get_powermode(struct net_device *dev,
9691 struct iw_request_info *info,
9692 union iwreq_data *wrqu, char *extra)
9694 struct ipw_priv *priv = ieee80211_priv(dev);
9695 int level = IPW_POWER_LEVEL(priv->power_mode);
9696 char *p = extra;
9698 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9700 switch (level) {
9701 case IPW_POWER_AC:
9702 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9703 break;
9704 case IPW_POWER_BATTERY:
9705 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9706 break;
9707 default:
9708 p += snprintf(p, MAX_WX_STRING - (p - extra),
9709 "(Timeout %dms, Period %dms)",
9710 timeout_duration[level - 1] / 1000,
9711 period_duration[level - 1] / 1000);
9714 if (!(priv->power_mode & IPW_POWER_ENABLED))
9715 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9717 wrqu->data.length = p - extra + 1;
9719 return 0;
9722 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9723 struct iw_request_info *info,
9724 union iwreq_data *wrqu, char *extra)
9726 struct ipw_priv *priv = ieee80211_priv(dev);
9727 int mode = *(int *)extra;
9728 u8 band = 0, modulation = 0;
9730 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9731 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9732 return -EINVAL;
9734 mutex_lock(&priv->mutex);
9735 if (priv->adapter == IPW_2915ABG) {
9736 priv->ieee->abg_true = 1;
9737 if (mode & IEEE_A) {
9738 band |= IEEE80211_52GHZ_BAND;
9739 modulation |= IEEE80211_OFDM_MODULATION;
9740 } else
9741 priv->ieee->abg_true = 0;
9742 } else {
9743 if (mode & IEEE_A) {
9744 IPW_WARNING("Attempt to set 2200BG into "
9745 "802.11a mode\n");
9746 mutex_unlock(&priv->mutex);
9747 return -EINVAL;
9750 priv->ieee->abg_true = 0;
9753 if (mode & IEEE_B) {
9754 band |= IEEE80211_24GHZ_BAND;
9755 modulation |= IEEE80211_CCK_MODULATION;
9756 } else
9757 priv->ieee->abg_true = 0;
9759 if (mode & IEEE_G) {
9760 band |= IEEE80211_24GHZ_BAND;
9761 modulation |= IEEE80211_OFDM_MODULATION;
9762 } else
9763 priv->ieee->abg_true = 0;
9765 priv->ieee->mode = mode;
9766 priv->ieee->freq_band = band;
9767 priv->ieee->modulation = modulation;
9768 init_supported_rates(priv, &priv->rates);
9770 /* Network configuration changed -- force [re]association */
9771 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9772 if (!ipw_disassociate(priv)) {
9773 ipw_send_supported_rates(priv, &priv->rates);
9774 ipw_associate(priv);
9777 /* Update the band LEDs */
9778 ipw_led_band_on(priv);
9780 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9781 mode & IEEE_A ? 'a' : '.',
9782 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9783 mutex_unlock(&priv->mutex);
9784 return 0;
9787 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9788 struct iw_request_info *info,
9789 union iwreq_data *wrqu, char *extra)
9791 struct ipw_priv *priv = ieee80211_priv(dev);
9792 mutex_lock(&priv->mutex);
9793 switch (priv->ieee->mode) {
9794 case IEEE_A:
9795 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9796 break;
9797 case IEEE_B:
9798 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9799 break;
9800 case IEEE_A | IEEE_B:
9801 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9802 break;
9803 case IEEE_G:
9804 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9805 break;
9806 case IEEE_A | IEEE_G:
9807 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9808 break;
9809 case IEEE_B | IEEE_G:
9810 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9811 break;
9812 case IEEE_A | IEEE_B | IEEE_G:
9813 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9814 break;
9815 default:
9816 strncpy(extra, "unknown", MAX_WX_STRING);
9817 break;
9820 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9822 wrqu->data.length = strlen(extra) + 1;
9823 mutex_unlock(&priv->mutex);
9825 return 0;
9828 static int ipw_wx_set_preamble(struct net_device *dev,
9829 struct iw_request_info *info,
9830 union iwreq_data *wrqu, char *extra)
9832 struct ipw_priv *priv = ieee80211_priv(dev);
9833 int mode = *(int *)extra;
9834 mutex_lock(&priv->mutex);
9835 /* Switching from SHORT -> LONG requires a disassociation */
9836 if (mode == 1) {
9837 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9838 priv->config |= CFG_PREAMBLE_LONG;
9840 /* Network configuration changed -- force [re]association */
9841 IPW_DEBUG_ASSOC
9842 ("[re]association triggered due to preamble change.\n");
9843 if (!ipw_disassociate(priv))
9844 ipw_associate(priv);
9846 goto done;
9849 if (mode == 0) {
9850 priv->config &= ~CFG_PREAMBLE_LONG;
9851 goto done;
9853 mutex_unlock(&priv->mutex);
9854 return -EINVAL;
9856 done:
9857 mutex_unlock(&priv->mutex);
9858 return 0;
9861 static int ipw_wx_get_preamble(struct net_device *dev,
9862 struct iw_request_info *info,
9863 union iwreq_data *wrqu, char *extra)
9865 struct ipw_priv *priv = ieee80211_priv(dev);
9866 mutex_lock(&priv->mutex);
9867 if (priv->config & CFG_PREAMBLE_LONG)
9868 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9869 else
9870 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9871 mutex_unlock(&priv->mutex);
9872 return 0;
9875 #ifdef CONFIG_IPW2200_MONITOR
9876 static int ipw_wx_set_monitor(struct net_device *dev,
9877 struct iw_request_info *info,
9878 union iwreq_data *wrqu, char *extra)
9880 struct ipw_priv *priv = ieee80211_priv(dev);
9881 int *parms = (int *)extra;
9882 int enable = (parms[0] > 0);
9883 mutex_lock(&priv->mutex);
9884 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9885 if (enable) {
9886 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9887 #ifdef CONFIG_IPW2200_RADIOTAP
9888 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9889 #else
9890 priv->net_dev->type = ARPHRD_IEEE80211;
9891 #endif
9892 queue_work(priv->workqueue, &priv->adapter_restart);
9895 ipw_set_channel(priv, parms[1]);
9896 } else {
9897 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9898 mutex_unlock(&priv->mutex);
9899 return 0;
9901 priv->net_dev->type = ARPHRD_ETHER;
9902 queue_work(priv->workqueue, &priv->adapter_restart);
9904 mutex_unlock(&priv->mutex);
9905 return 0;
9908 #endif /* CONFIG_IPW2200_MONITOR */
9910 static int ipw_wx_reset(struct net_device *dev,
9911 struct iw_request_info *info,
9912 union iwreq_data *wrqu, char *extra)
9914 struct ipw_priv *priv = ieee80211_priv(dev);
9915 IPW_DEBUG_WX("RESET\n");
9916 queue_work(priv->workqueue, &priv->adapter_restart);
9917 return 0;
9920 static int ipw_wx_sw_reset(struct net_device *dev,
9921 struct iw_request_info *info,
9922 union iwreq_data *wrqu, char *extra)
9924 struct ipw_priv *priv = ieee80211_priv(dev);
9925 union iwreq_data wrqu_sec = {
9926 .encoding = {
9927 .flags = IW_ENCODE_DISABLED,
9930 int ret;
9932 IPW_DEBUG_WX("SW_RESET\n");
9934 mutex_lock(&priv->mutex);
9936 ret = ipw_sw_reset(priv, 2);
9937 if (!ret) {
9938 free_firmware();
9939 ipw_adapter_restart(priv);
9942 /* The SW reset bit might have been toggled on by the 'disable'
9943 * module parameter, so take appropriate action */
9944 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9946 mutex_unlock(&priv->mutex);
9947 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9948 mutex_lock(&priv->mutex);
9950 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9951 /* Configuration likely changed -- force [re]association */
9952 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9953 "reset.\n");
9954 if (!ipw_disassociate(priv))
9955 ipw_associate(priv);
9958 mutex_unlock(&priv->mutex);
9960 return 0;
9963 /* Rebase the WE IOCTLs to zero for the handler array */
9964 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9965 static iw_handler ipw_wx_handlers[] = {
9966 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9967 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9968 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9969 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9970 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9971 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9972 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9973 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9974 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9975 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9976 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9977 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9978 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9979 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9980 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9981 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9982 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9983 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9984 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9985 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9986 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9987 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9988 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9989 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9990 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9991 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9992 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9993 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9994 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9995 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9996 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9997 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9998 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9999 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
10000 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
10001 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
10002 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
10003 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
10004 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
10005 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
10006 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
10009 enum {
10010 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10011 IPW_PRIV_GET_POWER,
10012 IPW_PRIV_SET_MODE,
10013 IPW_PRIV_GET_MODE,
10014 IPW_PRIV_SET_PREAMBLE,
10015 IPW_PRIV_GET_PREAMBLE,
10016 IPW_PRIV_RESET,
10017 IPW_PRIV_SW_RESET,
10018 #ifdef CONFIG_IPW2200_MONITOR
10019 IPW_PRIV_SET_MONITOR,
10020 #endif
10023 static struct iw_priv_args ipw_priv_args[] = {
10025 .cmd = IPW_PRIV_SET_POWER,
10026 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10027 .name = "set_power"},
10029 .cmd = IPW_PRIV_GET_POWER,
10030 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10031 .name = "get_power"},
10033 .cmd = IPW_PRIV_SET_MODE,
10034 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10035 .name = "set_mode"},
10037 .cmd = IPW_PRIV_GET_MODE,
10038 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10039 .name = "get_mode"},
10041 .cmd = IPW_PRIV_SET_PREAMBLE,
10042 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10043 .name = "set_preamble"},
10045 .cmd = IPW_PRIV_GET_PREAMBLE,
10046 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10047 .name = "get_preamble"},
10049 IPW_PRIV_RESET,
10050 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10052 IPW_PRIV_SW_RESET,
10053 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10054 #ifdef CONFIG_IPW2200_MONITOR
10056 IPW_PRIV_SET_MONITOR,
10057 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10058 #endif /* CONFIG_IPW2200_MONITOR */
10061 static iw_handler ipw_priv_handler[] = {
10062 ipw_wx_set_powermode,
10063 ipw_wx_get_powermode,
10064 ipw_wx_set_wireless_mode,
10065 ipw_wx_get_wireless_mode,
10066 ipw_wx_set_preamble,
10067 ipw_wx_get_preamble,
10068 ipw_wx_reset,
10069 ipw_wx_sw_reset,
10070 #ifdef CONFIG_IPW2200_MONITOR
10071 ipw_wx_set_monitor,
10072 #endif
10075 static struct iw_handler_def ipw_wx_handler_def = {
10076 .standard = ipw_wx_handlers,
10077 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10078 .num_private = ARRAY_SIZE(ipw_priv_handler),
10079 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10080 .private = ipw_priv_handler,
10081 .private_args = ipw_priv_args,
10082 .get_wireless_stats = ipw_get_wireless_stats,
10086 * Get wireless statistics.
10087 * Called by /proc/net/wireless
10088 * Also called by SIOCGIWSTATS
10090 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10092 struct ipw_priv *priv = ieee80211_priv(dev);
10093 struct iw_statistics *wstats;
10095 wstats = &priv->wstats;
10097 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10098 * netdev->get_wireless_stats seems to be called before fw is
10099 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10100 * and associated; if not associcated, the values are all meaningless
10101 * anyway, so set them all to NULL and INVALID */
10102 if (!(priv->status & STATUS_ASSOCIATED)) {
10103 wstats->miss.beacon = 0;
10104 wstats->discard.retries = 0;
10105 wstats->qual.qual = 0;
10106 wstats->qual.level = 0;
10107 wstats->qual.noise = 0;
10108 wstats->qual.updated = 7;
10109 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10110 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10111 return wstats;
10114 wstats->qual.qual = priv->quality;
10115 wstats->qual.level = priv->exp_avg_rssi;
10116 wstats->qual.noise = priv->exp_avg_noise;
10117 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10118 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10120 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10121 wstats->discard.retries = priv->last_tx_failures;
10122 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10124 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10125 goto fail_get_ordinal;
10126 wstats->discard.retries += tx_retry; */
10128 return wstats;
10131 /* net device stuff */
10133 static void init_sys_config(struct ipw_sys_config *sys_config)
10135 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10136 sys_config->bt_coexistence = 0;
10137 sys_config->answer_broadcast_ssid_probe = 0;
10138 sys_config->accept_all_data_frames = 0;
10139 sys_config->accept_non_directed_frames = 1;
10140 sys_config->exclude_unicast_unencrypted = 0;
10141 sys_config->disable_unicast_decryption = 1;
10142 sys_config->exclude_multicast_unencrypted = 0;
10143 sys_config->disable_multicast_decryption = 1;
10144 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10145 antenna = CFG_SYS_ANTENNA_BOTH;
10146 sys_config->antenna_diversity = antenna;
10147 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10148 sys_config->dot11g_auto_detection = 0;
10149 sys_config->enable_cts_to_self = 0;
10150 sys_config->bt_coexist_collision_thr = 0;
10151 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10152 sys_config->silence_threshold = 0x1e;
10155 static int ipw_net_open(struct net_device *dev)
10157 IPW_DEBUG_INFO("dev->open\n");
10158 netif_start_queue(dev);
10159 return 0;
10162 static int ipw_net_stop(struct net_device *dev)
10164 IPW_DEBUG_INFO("dev->close\n");
10165 netif_stop_queue(dev);
10166 return 0;
10170 todo:
10172 modify to send one tfd per fragment instead of using chunking. otherwise
10173 we need to heavily modify the ieee80211_skb_to_txb.
10176 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10177 int pri)
10179 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10180 txb->fragments[0]->data;
10181 int i = 0;
10182 struct tfd_frame *tfd;
10183 #ifdef CONFIG_IPW2200_QOS
10184 int tx_id = ipw_get_tx_queue_number(priv, pri);
10185 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10186 #else
10187 struct clx2_tx_queue *txq = &priv->txq[0];
10188 #endif
10189 struct clx2_queue *q = &txq->q;
10190 u8 id, hdr_len, unicast;
10191 u16 remaining_bytes;
10192 int fc;
10194 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10195 switch (priv->ieee->iw_mode) {
10196 case IW_MODE_ADHOC:
10197 unicast = !is_multicast_ether_addr(hdr->addr1);
10198 id = ipw_find_station(priv, hdr->addr1);
10199 if (id == IPW_INVALID_STATION) {
10200 id = ipw_add_station(priv, hdr->addr1);
10201 if (id == IPW_INVALID_STATION) {
10202 IPW_WARNING("Attempt to send data to "
10203 "invalid cell: " MAC_FMT "\n",
10204 hdr->addr1[0], hdr->addr1[1],
10205 hdr->addr1[2], hdr->addr1[3],
10206 hdr->addr1[4], hdr->addr1[5]);
10207 goto drop;
10210 break;
10212 case IW_MODE_INFRA:
10213 default:
10214 unicast = !is_multicast_ether_addr(hdr->addr3);
10215 id = 0;
10216 break;
10219 tfd = &txq->bd[q->first_empty];
10220 txq->txb[q->first_empty] = txb;
10221 memset(tfd, 0, sizeof(*tfd));
10222 tfd->u.data.station_number = id;
10224 tfd->control_flags.message_type = TX_FRAME_TYPE;
10225 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10227 tfd->u.data.cmd_id = DINO_CMD_TX;
10228 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10229 remaining_bytes = txb->payload_size;
10231 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10232 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10233 else
10234 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10236 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10237 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10239 fc = le16_to_cpu(hdr->frame_ctl);
10240 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10242 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10244 if (likely(unicast))
10245 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10247 if (txb->encrypted && !priv->ieee->host_encrypt) {
10248 switch (priv->ieee->sec.level) {
10249 case SEC_LEVEL_3:
10250 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10251 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10252 /* XXX: ACK flag must be set for CCMP even if it
10253 * is a multicast/broadcast packet, because CCMP
10254 * group communication encrypted by GTK is
10255 * actually done by the AP. */
10256 if (!unicast)
10257 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10259 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10260 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10261 tfd->u.data.key_index = 0;
10262 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10263 break;
10264 case SEC_LEVEL_2:
10265 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10266 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10267 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10268 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10269 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10270 break;
10271 case SEC_LEVEL_1:
10272 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10273 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10274 tfd->u.data.key_index = priv->ieee->tx_keyidx;
10275 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10277 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10278 else
10279 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10280 break;
10281 case SEC_LEVEL_0:
10282 break;
10283 default:
10284 printk(KERN_ERR "Unknow security level %d\n",
10285 priv->ieee->sec.level);
10286 break;
10288 } else
10289 /* No hardware encryption */
10290 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10292 #ifdef CONFIG_IPW2200_QOS
10293 if (fc & IEEE80211_STYPE_QOS_DATA)
10294 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10295 #endif /* CONFIG_IPW2200_QOS */
10297 /* payload */
10298 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10299 txb->nr_frags));
10300 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10301 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10302 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10303 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10304 i, le32_to_cpu(tfd->u.data.num_chunks),
10305 txb->fragments[i]->len - hdr_len);
10306 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10307 i, tfd->u.data.num_chunks,
10308 txb->fragments[i]->len - hdr_len);
10309 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10310 txb->fragments[i]->len - hdr_len);
10312 tfd->u.data.chunk_ptr[i] =
10313 cpu_to_le32(pci_map_single
10314 (priv->pci_dev,
10315 txb->fragments[i]->data + hdr_len,
10316 txb->fragments[i]->len - hdr_len,
10317 PCI_DMA_TODEVICE));
10318 tfd->u.data.chunk_len[i] =
10319 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10322 if (i != txb->nr_frags) {
10323 struct sk_buff *skb;
10324 u16 remaining_bytes = 0;
10325 int j;
10327 for (j = i; j < txb->nr_frags; j++)
10328 remaining_bytes += txb->fragments[j]->len - hdr_len;
10330 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10331 remaining_bytes);
10332 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10333 if (skb != NULL) {
10334 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10335 for (j = i; j < txb->nr_frags; j++) {
10336 int size = txb->fragments[j]->len - hdr_len;
10338 printk(KERN_INFO "Adding frag %d %d...\n",
10339 j, size);
10340 memcpy(skb_put(skb, size),
10341 txb->fragments[j]->data + hdr_len, size);
10343 dev_kfree_skb_any(txb->fragments[i]);
10344 txb->fragments[i] = skb;
10345 tfd->u.data.chunk_ptr[i] =
10346 cpu_to_le32(pci_map_single
10347 (priv->pci_dev, skb->data,
10348 remaining_bytes,
10349 PCI_DMA_TODEVICE));
10351 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10355 /* kick DMA */
10356 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10357 ipw_write32(priv, q->reg_w, q->first_empty);
10359 if (ipw_tx_queue_space(q) < q->high_mark)
10360 netif_stop_queue(priv->net_dev);
10362 return NETDEV_TX_OK;
10364 drop:
10365 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10366 ieee80211_txb_free(txb);
10367 return NETDEV_TX_OK;
10370 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10372 struct ipw_priv *priv = ieee80211_priv(dev);
10373 #ifdef CONFIG_IPW2200_QOS
10374 int tx_id = ipw_get_tx_queue_number(priv, pri);
10375 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10376 #else
10377 struct clx2_tx_queue *txq = &priv->txq[0];
10378 #endif /* CONFIG_IPW2200_QOS */
10380 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10381 return 1;
10383 return 0;
10386 #ifdef CONFIG_IPW2200_PROMISCUOUS
10387 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10388 struct ieee80211_txb *txb)
10390 struct ieee80211_rx_stats dummystats;
10391 struct ieee80211_hdr *hdr;
10392 u8 n;
10393 u16 filter = priv->prom_priv->filter;
10394 int hdr_only = 0;
10396 if (filter & IPW_PROM_NO_TX)
10397 return;
10399 memset(&dummystats, 0, sizeof(dummystats));
10401 /* Filtering of fragment chains is done agains the first fragment */
10402 hdr = (void *)txb->fragments[0]->data;
10403 if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10404 if (filter & IPW_PROM_NO_MGMT)
10405 return;
10406 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10407 hdr_only = 1;
10408 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10409 if (filter & IPW_PROM_NO_CTL)
10410 return;
10411 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10412 hdr_only = 1;
10413 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10414 if (filter & IPW_PROM_NO_DATA)
10415 return;
10416 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10417 hdr_only = 1;
10420 for(n=0; n<txb->nr_frags; ++n) {
10421 struct sk_buff *src = txb->fragments[n];
10422 struct sk_buff *dst;
10423 struct ieee80211_radiotap_header *rt_hdr;
10424 int len;
10426 if (hdr_only) {
10427 hdr = (void *)src->data;
10428 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10429 } else
10430 len = src->len;
10432 dst = alloc_skb(
10433 len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10434 if (!dst) continue;
10436 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10438 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10439 rt_hdr->it_pad = 0;
10440 rt_hdr->it_present = 0; /* after all, it's just an idea */
10441 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10443 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10444 ieee80211chan2mhz(priv->channel));
10445 if (priv->channel > 14) /* 802.11a */
10446 *(__le16*)skb_put(dst, sizeof(u16)) =
10447 cpu_to_le16(IEEE80211_CHAN_OFDM |
10448 IEEE80211_CHAN_5GHZ);
10449 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10450 *(__le16*)skb_put(dst, sizeof(u16)) =
10451 cpu_to_le16(IEEE80211_CHAN_CCK |
10452 IEEE80211_CHAN_2GHZ);
10453 else /* 802.11g */
10454 *(__le16*)skb_put(dst, sizeof(u16)) =
10455 cpu_to_le16(IEEE80211_CHAN_OFDM |
10456 IEEE80211_CHAN_2GHZ);
10458 rt_hdr->it_len = cpu_to_le16(dst->len);
10460 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10462 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10463 dev_kfree_skb_any(dst);
10466 #endif
10468 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10469 struct net_device *dev, int pri)
10471 struct ipw_priv *priv = ieee80211_priv(dev);
10472 unsigned long flags;
10473 int ret;
10475 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10476 spin_lock_irqsave(&priv->lock, flags);
10478 #ifdef CONFIG_IPW2200_PROMISCUOUS
10479 if (rtap_iface && netif_running(priv->prom_net_dev))
10480 ipw_handle_promiscuous_tx(priv, txb);
10481 #endif
10483 ret = ipw_tx_skb(priv, txb, pri);
10484 if (ret == NETDEV_TX_OK)
10485 __ipw_led_activity_on(priv);
10486 spin_unlock_irqrestore(&priv->lock, flags);
10488 return ret;
10491 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10493 struct ipw_priv *priv = ieee80211_priv(dev);
10495 priv->ieee->stats.tx_packets = priv->tx_packets;
10496 priv->ieee->stats.rx_packets = priv->rx_packets;
10497 return &priv->ieee->stats;
10500 static void ipw_net_set_multicast_list(struct net_device *dev)
10505 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10507 struct ipw_priv *priv = ieee80211_priv(dev);
10508 struct sockaddr *addr = p;
10509 DECLARE_MAC_BUF(mac);
10511 if (!is_valid_ether_addr(addr->sa_data))
10512 return -EADDRNOTAVAIL;
10513 mutex_lock(&priv->mutex);
10514 priv->config |= CFG_CUSTOM_MAC;
10515 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10516 printk(KERN_INFO "%s: Setting MAC to %s\n",
10517 priv->net_dev->name, print_mac(mac, priv->mac_addr));
10518 queue_work(priv->workqueue, &priv->adapter_restart);
10519 mutex_unlock(&priv->mutex);
10520 return 0;
10523 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10524 struct ethtool_drvinfo *info)
10526 struct ipw_priv *p = ieee80211_priv(dev);
10527 char vers[64];
10528 char date[32];
10529 u32 len;
10531 strcpy(info->driver, DRV_NAME);
10532 strcpy(info->version, DRV_VERSION);
10534 len = sizeof(vers);
10535 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10536 len = sizeof(date);
10537 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10539 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10540 vers, date);
10541 strcpy(info->bus_info, pci_name(p->pci_dev));
10542 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10545 static u32 ipw_ethtool_get_link(struct net_device *dev)
10547 struct ipw_priv *priv = ieee80211_priv(dev);
10548 return (priv->status & STATUS_ASSOCIATED) != 0;
10551 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10553 return IPW_EEPROM_IMAGE_SIZE;
10556 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10557 struct ethtool_eeprom *eeprom, u8 * bytes)
10559 struct ipw_priv *p = ieee80211_priv(dev);
10561 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10562 return -EINVAL;
10563 mutex_lock(&p->mutex);
10564 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10565 mutex_unlock(&p->mutex);
10566 return 0;
10569 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10570 struct ethtool_eeprom *eeprom, u8 * bytes)
10572 struct ipw_priv *p = ieee80211_priv(dev);
10573 int i;
10575 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10576 return -EINVAL;
10577 mutex_lock(&p->mutex);
10578 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10579 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10580 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10581 mutex_unlock(&p->mutex);
10582 return 0;
10585 static const struct ethtool_ops ipw_ethtool_ops = {
10586 .get_link = ipw_ethtool_get_link,
10587 .get_drvinfo = ipw_ethtool_get_drvinfo,
10588 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10589 .get_eeprom = ipw_ethtool_get_eeprom,
10590 .set_eeprom = ipw_ethtool_set_eeprom,
10593 static irqreturn_t ipw_isr(int irq, void *data)
10595 struct ipw_priv *priv = data;
10596 u32 inta, inta_mask;
10598 if (!priv)
10599 return IRQ_NONE;
10601 spin_lock(&priv->irq_lock);
10603 if (!(priv->status & STATUS_INT_ENABLED)) {
10604 /* IRQ is disabled */
10605 goto none;
10608 inta = ipw_read32(priv, IPW_INTA_RW);
10609 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10611 if (inta == 0xFFFFFFFF) {
10612 /* Hardware disappeared */
10613 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10614 goto none;
10617 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10618 /* Shared interrupt */
10619 goto none;
10622 /* tell the device to stop sending interrupts */
10623 __ipw_disable_interrupts(priv);
10625 /* ack current interrupts */
10626 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10627 ipw_write32(priv, IPW_INTA_RW, inta);
10629 /* Cache INTA value for our tasklet */
10630 priv->isr_inta = inta;
10632 tasklet_schedule(&priv->irq_tasklet);
10634 spin_unlock(&priv->irq_lock);
10636 return IRQ_HANDLED;
10637 none:
10638 spin_unlock(&priv->irq_lock);
10639 return IRQ_NONE;
10642 static void ipw_rf_kill(void *adapter)
10644 struct ipw_priv *priv = adapter;
10645 unsigned long flags;
10647 spin_lock_irqsave(&priv->lock, flags);
10649 if (rf_kill_active(priv)) {
10650 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10651 if (priv->workqueue)
10652 queue_delayed_work(priv->workqueue,
10653 &priv->rf_kill, 2 * HZ);
10654 goto exit_unlock;
10657 /* RF Kill is now disabled, so bring the device back up */
10659 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10660 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10661 "device\n");
10663 /* we can not do an adapter restart while inside an irq lock */
10664 queue_work(priv->workqueue, &priv->adapter_restart);
10665 } else
10666 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10667 "enabled\n");
10669 exit_unlock:
10670 spin_unlock_irqrestore(&priv->lock, flags);
10673 static void ipw_bg_rf_kill(struct work_struct *work)
10675 struct ipw_priv *priv =
10676 container_of(work, struct ipw_priv, rf_kill.work);
10677 mutex_lock(&priv->mutex);
10678 ipw_rf_kill(priv);
10679 mutex_unlock(&priv->mutex);
10682 static void ipw_link_up(struct ipw_priv *priv)
10684 priv->last_seq_num = -1;
10685 priv->last_frag_num = -1;
10686 priv->last_packet_time = 0;
10688 netif_carrier_on(priv->net_dev);
10690 cancel_delayed_work(&priv->request_scan);
10691 cancel_delayed_work(&priv->request_direct_scan);
10692 cancel_delayed_work(&priv->request_passive_scan);
10693 cancel_delayed_work(&priv->scan_event);
10694 ipw_reset_stats(priv);
10695 /* Ensure the rate is updated immediately */
10696 priv->last_rate = ipw_get_current_rate(priv);
10697 ipw_gather_stats(priv);
10698 ipw_led_link_up(priv);
10699 notify_wx_assoc_event(priv);
10701 if (priv->config & CFG_BACKGROUND_SCAN)
10702 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10705 static void ipw_bg_link_up(struct work_struct *work)
10707 struct ipw_priv *priv =
10708 container_of(work, struct ipw_priv, link_up);
10709 mutex_lock(&priv->mutex);
10710 ipw_link_up(priv);
10711 mutex_unlock(&priv->mutex);
10714 static void ipw_link_down(struct ipw_priv *priv)
10716 ipw_led_link_down(priv);
10717 netif_carrier_off(priv->net_dev);
10718 notify_wx_assoc_event(priv);
10720 /* Cancel any queued work ... */
10721 cancel_delayed_work(&priv->request_scan);
10722 cancel_delayed_work(&priv->request_direct_scan);
10723 cancel_delayed_work(&priv->request_passive_scan);
10724 cancel_delayed_work(&priv->adhoc_check);
10725 cancel_delayed_work(&priv->gather_stats);
10727 ipw_reset_stats(priv);
10729 if (!(priv->status & STATUS_EXIT_PENDING)) {
10730 /* Queue up another scan... */
10731 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10732 } else
10733 cancel_delayed_work(&priv->scan_event);
10736 static void ipw_bg_link_down(struct work_struct *work)
10738 struct ipw_priv *priv =
10739 container_of(work, struct ipw_priv, link_down);
10740 mutex_lock(&priv->mutex);
10741 ipw_link_down(priv);
10742 mutex_unlock(&priv->mutex);
10745 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10747 int ret = 0;
10749 priv->workqueue = create_workqueue(DRV_NAME);
10750 init_waitqueue_head(&priv->wait_command_queue);
10751 init_waitqueue_head(&priv->wait_state);
10753 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10754 INIT_WORK(&priv->associate, ipw_bg_associate);
10755 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10756 INIT_WORK(&priv->system_config, ipw_system_config);
10757 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10758 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10759 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10760 INIT_WORK(&priv->up, ipw_bg_up);
10761 INIT_WORK(&priv->down, ipw_bg_down);
10762 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10763 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10764 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10765 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10766 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10767 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10768 INIT_WORK(&priv->roam, ipw_bg_roam);
10769 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10770 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10771 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10772 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10773 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10774 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10775 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10777 #ifdef CONFIG_IPW2200_QOS
10778 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10779 #endif /* CONFIG_IPW2200_QOS */
10781 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10782 ipw_irq_tasklet, (unsigned long)priv);
10784 return ret;
10787 static void shim__set_security(struct net_device *dev,
10788 struct ieee80211_security *sec)
10790 struct ipw_priv *priv = ieee80211_priv(dev);
10791 int i;
10792 for (i = 0; i < 4; i++) {
10793 if (sec->flags & (1 << i)) {
10794 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10795 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10796 if (sec->key_sizes[i] == 0)
10797 priv->ieee->sec.flags &= ~(1 << i);
10798 else {
10799 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10800 sec->key_sizes[i]);
10801 priv->ieee->sec.flags |= (1 << i);
10803 priv->status |= STATUS_SECURITY_UPDATED;
10804 } else if (sec->level != SEC_LEVEL_1)
10805 priv->ieee->sec.flags &= ~(1 << i);
10808 if (sec->flags & SEC_ACTIVE_KEY) {
10809 if (sec->active_key <= 3) {
10810 priv->ieee->sec.active_key = sec->active_key;
10811 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10812 } else
10813 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10814 priv->status |= STATUS_SECURITY_UPDATED;
10815 } else
10816 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10818 if ((sec->flags & SEC_AUTH_MODE) &&
10819 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10820 priv->ieee->sec.auth_mode = sec->auth_mode;
10821 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10822 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10823 priv->capability |= CAP_SHARED_KEY;
10824 else
10825 priv->capability &= ~CAP_SHARED_KEY;
10826 priv->status |= STATUS_SECURITY_UPDATED;
10829 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10830 priv->ieee->sec.flags |= SEC_ENABLED;
10831 priv->ieee->sec.enabled = sec->enabled;
10832 priv->status |= STATUS_SECURITY_UPDATED;
10833 if (sec->enabled)
10834 priv->capability |= CAP_PRIVACY_ON;
10835 else
10836 priv->capability &= ~CAP_PRIVACY_ON;
10839 if (sec->flags & SEC_ENCRYPT)
10840 priv->ieee->sec.encrypt = sec->encrypt;
10842 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10843 priv->ieee->sec.level = sec->level;
10844 priv->ieee->sec.flags |= SEC_LEVEL;
10845 priv->status |= STATUS_SECURITY_UPDATED;
10848 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10849 ipw_set_hwcrypto_keys(priv);
10851 /* To match current functionality of ipw2100 (which works well w/
10852 * various supplicants, we don't force a disassociate if the
10853 * privacy capability changes ... */
10854 #if 0
10855 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10856 (((priv->assoc_request.capability &
10857 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10858 (!(priv->assoc_request.capability &
10859 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10860 IPW_DEBUG_ASSOC("Disassociating due to capability "
10861 "change.\n");
10862 ipw_disassociate(priv);
10864 #endif
10867 static int init_supported_rates(struct ipw_priv *priv,
10868 struct ipw_supported_rates *rates)
10870 /* TODO: Mask out rates based on priv->rates_mask */
10872 memset(rates, 0, sizeof(*rates));
10873 /* configure supported rates */
10874 switch (priv->ieee->freq_band) {
10875 case IEEE80211_52GHZ_BAND:
10876 rates->ieee_mode = IPW_A_MODE;
10877 rates->purpose = IPW_RATE_CAPABILITIES;
10878 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10879 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10880 break;
10882 default: /* Mixed or 2.4Ghz */
10883 rates->ieee_mode = IPW_G_MODE;
10884 rates->purpose = IPW_RATE_CAPABILITIES;
10885 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10886 IEEE80211_CCK_DEFAULT_RATES_MASK);
10887 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10888 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10889 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10891 break;
10894 return 0;
10897 static int ipw_config(struct ipw_priv *priv)
10899 /* This is only called from ipw_up, which resets/reloads the firmware
10900 so, we don't need to first disable the card before we configure
10901 it */
10902 if (ipw_set_tx_power(priv))
10903 goto error;
10905 /* initialize adapter address */
10906 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10907 goto error;
10909 /* set basic system config settings */
10910 init_sys_config(&priv->sys_config);
10912 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10913 * Does not support BT priority yet (don't abort or defer our Tx) */
10914 if (bt_coexist) {
10915 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10917 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10918 priv->sys_config.bt_coexistence
10919 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10920 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10921 priv->sys_config.bt_coexistence
10922 |= CFG_BT_COEXISTENCE_OOB;
10925 #ifdef CONFIG_IPW2200_PROMISCUOUS
10926 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10927 priv->sys_config.accept_all_data_frames = 1;
10928 priv->sys_config.accept_non_directed_frames = 1;
10929 priv->sys_config.accept_all_mgmt_bcpr = 1;
10930 priv->sys_config.accept_all_mgmt_frames = 1;
10932 #endif
10934 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10935 priv->sys_config.answer_broadcast_ssid_probe = 1;
10936 else
10937 priv->sys_config.answer_broadcast_ssid_probe = 0;
10939 if (ipw_send_system_config(priv))
10940 goto error;
10942 init_supported_rates(priv, &priv->rates);
10943 if (ipw_send_supported_rates(priv, &priv->rates))
10944 goto error;
10946 /* Set request-to-send threshold */
10947 if (priv->rts_threshold) {
10948 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10949 goto error;
10951 #ifdef CONFIG_IPW2200_QOS
10952 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10953 ipw_qos_activate(priv, NULL);
10954 #endif /* CONFIG_IPW2200_QOS */
10956 if (ipw_set_random_seed(priv))
10957 goto error;
10959 /* final state transition to the RUN state */
10960 if (ipw_send_host_complete(priv))
10961 goto error;
10963 priv->status |= STATUS_INIT;
10965 ipw_led_init(priv);
10966 ipw_led_radio_on(priv);
10967 priv->notif_missed_beacons = 0;
10969 /* Set hardware WEP key if it is configured. */
10970 if ((priv->capability & CAP_PRIVACY_ON) &&
10971 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10972 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10973 ipw_set_hwcrypto_keys(priv);
10975 return 0;
10977 error:
10978 return -EIO;
10982 * NOTE:
10984 * These tables have been tested in conjunction with the
10985 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10987 * Altering this values, using it on other hardware, or in geographies
10988 * not intended for resale of the above mentioned Intel adapters has
10989 * not been tested.
10991 * Remember to update the table in README.ipw2200 when changing this
10992 * table.
10995 static const struct ieee80211_geo ipw_geos[] = {
10996 { /* Restricted */
10997 "---",
10998 .bg_channels = 11,
10999 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000 {2427, 4}, {2432, 5}, {2437, 6},
11001 {2442, 7}, {2447, 8}, {2452, 9},
11002 {2457, 10}, {2462, 11}},
11005 { /* Custom US/Canada */
11006 "ZZF",
11007 .bg_channels = 11,
11008 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11009 {2427, 4}, {2432, 5}, {2437, 6},
11010 {2442, 7}, {2447, 8}, {2452, 9},
11011 {2457, 10}, {2462, 11}},
11012 .a_channels = 8,
11013 .a = {{5180, 36},
11014 {5200, 40},
11015 {5220, 44},
11016 {5240, 48},
11017 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11018 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11019 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11020 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11023 { /* Rest of World */
11024 "ZZD",
11025 .bg_channels = 13,
11026 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11027 {2427, 4}, {2432, 5}, {2437, 6},
11028 {2442, 7}, {2447, 8}, {2452, 9},
11029 {2457, 10}, {2462, 11}, {2467, 12},
11030 {2472, 13}},
11033 { /* Custom USA & Europe & High */
11034 "ZZA",
11035 .bg_channels = 11,
11036 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11037 {2427, 4}, {2432, 5}, {2437, 6},
11038 {2442, 7}, {2447, 8}, {2452, 9},
11039 {2457, 10}, {2462, 11}},
11040 .a_channels = 13,
11041 .a = {{5180, 36},
11042 {5200, 40},
11043 {5220, 44},
11044 {5240, 48},
11045 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11046 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11047 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11048 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11049 {5745, 149},
11050 {5765, 153},
11051 {5785, 157},
11052 {5805, 161},
11053 {5825, 165}},
11056 { /* Custom NA & Europe */
11057 "ZZB",
11058 .bg_channels = 11,
11059 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060 {2427, 4}, {2432, 5}, {2437, 6},
11061 {2442, 7}, {2447, 8}, {2452, 9},
11062 {2457, 10}, {2462, 11}},
11063 .a_channels = 13,
11064 .a = {{5180, 36},
11065 {5200, 40},
11066 {5220, 44},
11067 {5240, 48},
11068 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11069 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11070 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11071 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11072 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11073 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11074 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11075 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11076 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11079 { /* Custom Japan */
11080 "ZZC",
11081 .bg_channels = 11,
11082 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083 {2427, 4}, {2432, 5}, {2437, 6},
11084 {2442, 7}, {2447, 8}, {2452, 9},
11085 {2457, 10}, {2462, 11}},
11086 .a_channels = 4,
11087 .a = {{5170, 34}, {5190, 38},
11088 {5210, 42}, {5230, 46}},
11091 { /* Custom */
11092 "ZZM",
11093 .bg_channels = 11,
11094 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11095 {2427, 4}, {2432, 5}, {2437, 6},
11096 {2442, 7}, {2447, 8}, {2452, 9},
11097 {2457, 10}, {2462, 11}},
11100 { /* Europe */
11101 "ZZE",
11102 .bg_channels = 13,
11103 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11104 {2427, 4}, {2432, 5}, {2437, 6},
11105 {2442, 7}, {2447, 8}, {2452, 9},
11106 {2457, 10}, {2462, 11}, {2467, 12},
11107 {2472, 13}},
11108 .a_channels = 19,
11109 .a = {{5180, 36},
11110 {5200, 40},
11111 {5220, 44},
11112 {5240, 48},
11113 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11114 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11115 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11116 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11117 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11118 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11119 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11120 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11121 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11122 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11123 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11124 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11125 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11126 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11127 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11130 { /* Custom Japan */
11131 "ZZJ",
11132 .bg_channels = 14,
11133 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134 {2427, 4}, {2432, 5}, {2437, 6},
11135 {2442, 7}, {2447, 8}, {2452, 9},
11136 {2457, 10}, {2462, 11}, {2467, 12},
11137 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11138 .a_channels = 4,
11139 .a = {{5170, 34}, {5190, 38},
11140 {5210, 42}, {5230, 46}},
11143 { /* Rest of World */
11144 "ZZR",
11145 .bg_channels = 14,
11146 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11147 {2427, 4}, {2432, 5}, {2437, 6},
11148 {2442, 7}, {2447, 8}, {2452, 9},
11149 {2457, 10}, {2462, 11}, {2467, 12},
11150 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11151 IEEE80211_CH_PASSIVE_ONLY}},
11154 { /* High Band */
11155 "ZZH",
11156 .bg_channels = 13,
11157 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11158 {2427, 4}, {2432, 5}, {2437, 6},
11159 {2442, 7}, {2447, 8}, {2452, 9},
11160 {2457, 10}, {2462, 11},
11161 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11162 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11163 .a_channels = 4,
11164 .a = {{5745, 149}, {5765, 153},
11165 {5785, 157}, {5805, 161}},
11168 { /* Custom Europe */
11169 "ZZG",
11170 .bg_channels = 13,
11171 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11172 {2427, 4}, {2432, 5}, {2437, 6},
11173 {2442, 7}, {2447, 8}, {2452, 9},
11174 {2457, 10}, {2462, 11},
11175 {2467, 12}, {2472, 13}},
11176 .a_channels = 4,
11177 .a = {{5180, 36}, {5200, 40},
11178 {5220, 44}, {5240, 48}},
11181 { /* Europe */
11182 "ZZK",
11183 .bg_channels = 13,
11184 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11185 {2427, 4}, {2432, 5}, {2437, 6},
11186 {2442, 7}, {2447, 8}, {2452, 9},
11187 {2457, 10}, {2462, 11},
11188 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11189 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11190 .a_channels = 24,
11191 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11192 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11193 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11194 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11195 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11196 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11197 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11198 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11199 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11200 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11201 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11202 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11203 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11204 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11205 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11206 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11207 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11208 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11209 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11210 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11211 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11212 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11213 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11214 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11217 { /* Europe */
11218 "ZZL",
11219 .bg_channels = 11,
11220 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11221 {2427, 4}, {2432, 5}, {2437, 6},
11222 {2442, 7}, {2447, 8}, {2452, 9},
11223 {2457, 10}, {2462, 11}},
11224 .a_channels = 13,
11225 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11226 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11227 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11228 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11229 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11230 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11231 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11232 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11233 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11234 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11235 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11236 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11237 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11241 #define MAX_HW_RESTARTS 5
11242 static int ipw_up(struct ipw_priv *priv)
11244 int rc, i, j;
11246 if (priv->status & STATUS_EXIT_PENDING)
11247 return -EIO;
11249 if (cmdlog && !priv->cmdlog) {
11250 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11251 GFP_KERNEL);
11252 if (priv->cmdlog == NULL) {
11253 IPW_ERROR("Error allocating %d command log entries.\n",
11254 cmdlog);
11255 return -ENOMEM;
11256 } else {
11257 priv->cmdlog_len = cmdlog;
11261 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11262 /* Load the microcode, firmware, and eeprom.
11263 * Also start the clocks. */
11264 rc = ipw_load(priv);
11265 if (rc) {
11266 IPW_ERROR("Unable to load firmware: %d\n", rc);
11267 return rc;
11270 ipw_init_ordinals(priv);
11271 if (!(priv->config & CFG_CUSTOM_MAC))
11272 eeprom_parse_mac(priv, priv->mac_addr);
11273 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11275 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11276 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11277 ipw_geos[j].name, 3))
11278 break;
11280 if (j == ARRAY_SIZE(ipw_geos)) {
11281 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11282 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11283 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11284 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11285 j = 0;
11287 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11288 IPW_WARNING("Could not set geography.");
11289 return 0;
11292 if (priv->status & STATUS_RF_KILL_SW) {
11293 IPW_WARNING("Radio disabled by module parameter.\n");
11294 return 0;
11295 } else if (rf_kill_active(priv)) {
11296 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11297 "Kill switch must be turned off for "
11298 "wireless networking to work.\n");
11299 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11300 2 * HZ);
11301 return 0;
11304 rc = ipw_config(priv);
11305 if (!rc) {
11306 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11308 /* If configure to try and auto-associate, kick
11309 * off a scan. */
11310 queue_delayed_work(priv->workqueue,
11311 &priv->request_scan, 0);
11313 return 0;
11316 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11317 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11318 i, MAX_HW_RESTARTS);
11320 /* We had an error bringing up the hardware, so take it
11321 * all the way back down so we can try again */
11322 ipw_down(priv);
11325 /* tried to restart and config the device for as long as our
11326 * patience could withstand */
11327 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11329 return -EIO;
11332 static void ipw_bg_up(struct work_struct *work)
11334 struct ipw_priv *priv =
11335 container_of(work, struct ipw_priv, up);
11336 mutex_lock(&priv->mutex);
11337 ipw_up(priv);
11338 mutex_unlock(&priv->mutex);
11341 static void ipw_deinit(struct ipw_priv *priv)
11343 int i;
11345 if (priv->status & STATUS_SCANNING) {
11346 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11347 ipw_abort_scan(priv);
11350 if (priv->status & STATUS_ASSOCIATED) {
11351 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11352 ipw_disassociate(priv);
11355 ipw_led_shutdown(priv);
11357 /* Wait up to 1s for status to change to not scanning and not
11358 * associated (disassociation can take a while for a ful 802.11
11359 * exchange */
11360 for (i = 1000; i && (priv->status &
11361 (STATUS_DISASSOCIATING |
11362 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11363 udelay(10);
11365 if (priv->status & (STATUS_DISASSOCIATING |
11366 STATUS_ASSOCIATED | STATUS_SCANNING))
11367 IPW_DEBUG_INFO("Still associated or scanning...\n");
11368 else
11369 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11371 /* Attempt to disable the card */
11372 ipw_send_card_disable(priv, 0);
11374 priv->status &= ~STATUS_INIT;
11377 static void ipw_down(struct ipw_priv *priv)
11379 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11381 priv->status |= STATUS_EXIT_PENDING;
11383 if (ipw_is_init(priv))
11384 ipw_deinit(priv);
11386 /* Wipe out the EXIT_PENDING status bit if we are not actually
11387 * exiting the module */
11388 if (!exit_pending)
11389 priv->status &= ~STATUS_EXIT_PENDING;
11391 /* tell the device to stop sending interrupts */
11392 ipw_disable_interrupts(priv);
11394 /* Clear all bits but the RF Kill */
11395 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11396 netif_carrier_off(priv->net_dev);
11398 ipw_stop_nic(priv);
11400 ipw_led_radio_off(priv);
11403 static void ipw_bg_down(struct work_struct *work)
11405 struct ipw_priv *priv =
11406 container_of(work, struct ipw_priv, down);
11407 mutex_lock(&priv->mutex);
11408 ipw_down(priv);
11409 mutex_unlock(&priv->mutex);
11412 /* Called by register_netdev() */
11413 static int ipw_net_init(struct net_device *dev)
11415 struct ipw_priv *priv = ieee80211_priv(dev);
11416 mutex_lock(&priv->mutex);
11418 if (ipw_up(priv)) {
11419 mutex_unlock(&priv->mutex);
11420 return -EIO;
11423 mutex_unlock(&priv->mutex);
11424 return 0;
11427 /* PCI driver stuff */
11428 static struct pci_device_id card_ids[] = {
11429 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11430 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11431 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11432 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11433 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11434 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11435 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11436 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11437 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11438 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11439 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11440 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11441 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11442 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11443 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11444 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11445 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11446 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11447 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11448 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11449 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11450 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11452 /* required last entry */
11453 {0,}
11456 MODULE_DEVICE_TABLE(pci, card_ids);
11458 static struct attribute *ipw_sysfs_entries[] = {
11459 &dev_attr_rf_kill.attr,
11460 &dev_attr_direct_dword.attr,
11461 &dev_attr_indirect_byte.attr,
11462 &dev_attr_indirect_dword.attr,
11463 &dev_attr_mem_gpio_reg.attr,
11464 &dev_attr_command_event_reg.attr,
11465 &dev_attr_nic_type.attr,
11466 &dev_attr_status.attr,
11467 &dev_attr_cfg.attr,
11468 &dev_attr_error.attr,
11469 &dev_attr_event_log.attr,
11470 &dev_attr_cmd_log.attr,
11471 &dev_attr_eeprom_delay.attr,
11472 &dev_attr_ucode_version.attr,
11473 &dev_attr_rtc.attr,
11474 &dev_attr_scan_age.attr,
11475 &dev_attr_led.attr,
11476 &dev_attr_speed_scan.attr,
11477 &dev_attr_net_stats.attr,
11478 &dev_attr_channels.attr,
11479 #ifdef CONFIG_IPW2200_PROMISCUOUS
11480 &dev_attr_rtap_iface.attr,
11481 &dev_attr_rtap_filter.attr,
11482 #endif
11483 NULL
11486 static struct attribute_group ipw_attribute_group = {
11487 .name = NULL, /* put in device directory */
11488 .attrs = ipw_sysfs_entries,
11491 #ifdef CONFIG_IPW2200_PROMISCUOUS
11492 static int ipw_prom_open(struct net_device *dev)
11494 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11495 struct ipw_priv *priv = prom_priv->priv;
11497 IPW_DEBUG_INFO("prom dev->open\n");
11498 netif_carrier_off(dev);
11500 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11501 priv->sys_config.accept_all_data_frames = 1;
11502 priv->sys_config.accept_non_directed_frames = 1;
11503 priv->sys_config.accept_all_mgmt_bcpr = 1;
11504 priv->sys_config.accept_all_mgmt_frames = 1;
11506 ipw_send_system_config(priv);
11509 return 0;
11512 static int ipw_prom_stop(struct net_device *dev)
11514 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11515 struct ipw_priv *priv = prom_priv->priv;
11517 IPW_DEBUG_INFO("prom dev->stop\n");
11519 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11520 priv->sys_config.accept_all_data_frames = 0;
11521 priv->sys_config.accept_non_directed_frames = 0;
11522 priv->sys_config.accept_all_mgmt_bcpr = 0;
11523 priv->sys_config.accept_all_mgmt_frames = 0;
11525 ipw_send_system_config(priv);
11528 return 0;
11531 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11533 IPW_DEBUG_INFO("prom dev->xmit\n");
11534 return -EOPNOTSUPP;
11537 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11539 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11540 return &prom_priv->ieee->stats;
11543 static int ipw_prom_alloc(struct ipw_priv *priv)
11545 int rc = 0;
11547 if (priv->prom_net_dev)
11548 return -EPERM;
11550 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11551 if (priv->prom_net_dev == NULL)
11552 return -ENOMEM;
11554 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11555 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11556 priv->prom_priv->priv = priv;
11558 strcpy(priv->prom_net_dev->name, "rtap%d");
11559 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11561 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11562 priv->prom_net_dev->open = ipw_prom_open;
11563 priv->prom_net_dev->stop = ipw_prom_stop;
11564 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11565 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11567 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11568 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11570 rc = register_netdev(priv->prom_net_dev);
11571 if (rc) {
11572 free_ieee80211(priv->prom_net_dev);
11573 priv->prom_net_dev = NULL;
11574 return rc;
11577 return 0;
11580 static void ipw_prom_free(struct ipw_priv *priv)
11582 if (!priv->prom_net_dev)
11583 return;
11585 unregister_netdev(priv->prom_net_dev);
11586 free_ieee80211(priv->prom_net_dev);
11588 priv->prom_net_dev = NULL;
11591 #endif
11594 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11595 const struct pci_device_id *ent)
11597 int err = 0;
11598 struct net_device *net_dev;
11599 void __iomem *base;
11600 u32 length, val;
11601 struct ipw_priv *priv;
11602 int i;
11604 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11605 if (net_dev == NULL) {
11606 err = -ENOMEM;
11607 goto out;
11610 priv = ieee80211_priv(net_dev);
11611 priv->ieee = netdev_priv(net_dev);
11613 priv->net_dev = net_dev;
11614 priv->pci_dev = pdev;
11615 ipw_debug_level = debug;
11616 spin_lock_init(&priv->irq_lock);
11617 spin_lock_init(&priv->lock);
11618 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11619 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11621 mutex_init(&priv->mutex);
11622 if (pci_enable_device(pdev)) {
11623 err = -ENODEV;
11624 goto out_free_ieee80211;
11627 pci_set_master(pdev);
11629 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11630 if (!err)
11631 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11632 if (err) {
11633 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11634 goto out_pci_disable_device;
11637 pci_set_drvdata(pdev, priv);
11639 err = pci_request_regions(pdev, DRV_NAME);
11640 if (err)
11641 goto out_pci_disable_device;
11643 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11644 * PCI Tx retries from interfering with C3 CPU state */
11645 pci_read_config_dword(pdev, 0x40, &val);
11646 if ((val & 0x0000ff00) != 0)
11647 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11649 length = pci_resource_len(pdev, 0);
11650 priv->hw_len = length;
11652 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11653 if (!base) {
11654 err = -ENODEV;
11655 goto out_pci_release_regions;
11658 priv->hw_base = base;
11659 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11660 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11662 err = ipw_setup_deferred_work(priv);
11663 if (err) {
11664 IPW_ERROR("Unable to setup deferred work\n");
11665 goto out_iounmap;
11668 ipw_sw_reset(priv, 1);
11670 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11671 if (err) {
11672 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11673 goto out_destroy_workqueue;
11676 SET_NETDEV_DEV(net_dev, &pdev->dev);
11678 mutex_lock(&priv->mutex);
11680 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11681 priv->ieee->set_security = shim__set_security;
11682 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11684 #ifdef CONFIG_IPW2200_QOS
11685 priv->ieee->is_qos_active = ipw_is_qos_active;
11686 priv->ieee->handle_probe_response = ipw_handle_beacon;
11687 priv->ieee->handle_beacon = ipw_handle_probe_response;
11688 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11689 #endif /* CONFIG_IPW2200_QOS */
11691 priv->ieee->perfect_rssi = -20;
11692 priv->ieee->worst_rssi = -85;
11694 net_dev->open = ipw_net_open;
11695 net_dev->stop = ipw_net_stop;
11696 net_dev->init = ipw_net_init;
11697 net_dev->get_stats = ipw_net_get_stats;
11698 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11699 net_dev->set_mac_address = ipw_net_set_mac_address;
11700 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11701 net_dev->wireless_data = &priv->wireless_data;
11702 net_dev->wireless_handlers = &ipw_wx_handler_def;
11703 net_dev->ethtool_ops = &ipw_ethtool_ops;
11704 net_dev->irq = pdev->irq;
11705 net_dev->base_addr = (unsigned long)priv->hw_base;
11706 net_dev->mem_start = pci_resource_start(pdev, 0);
11707 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11709 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11710 if (err) {
11711 IPW_ERROR("failed to create sysfs device attributes\n");
11712 mutex_unlock(&priv->mutex);
11713 goto out_release_irq;
11716 mutex_unlock(&priv->mutex);
11717 err = register_netdev(net_dev);
11718 if (err) {
11719 IPW_ERROR("failed to register network device\n");
11720 goto out_remove_sysfs;
11723 #ifdef CONFIG_IPW2200_PROMISCUOUS
11724 if (rtap_iface) {
11725 err = ipw_prom_alloc(priv);
11726 if (err) {
11727 IPW_ERROR("Failed to register promiscuous network "
11728 "device (error %d).\n", err);
11729 unregister_netdev(priv->net_dev);
11730 goto out_remove_sysfs;
11733 #endif
11735 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11736 "channels, %d 802.11a channels)\n",
11737 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11738 priv->ieee->geo.a_channels);
11740 return 0;
11742 out_remove_sysfs:
11743 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11744 out_release_irq:
11745 free_irq(pdev->irq, priv);
11746 out_destroy_workqueue:
11747 destroy_workqueue(priv->workqueue);
11748 priv->workqueue = NULL;
11749 out_iounmap:
11750 iounmap(priv->hw_base);
11751 out_pci_release_regions:
11752 pci_release_regions(pdev);
11753 out_pci_disable_device:
11754 pci_disable_device(pdev);
11755 pci_set_drvdata(pdev, NULL);
11756 out_free_ieee80211:
11757 free_ieee80211(priv->net_dev);
11758 out:
11759 return err;
11762 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11764 struct ipw_priv *priv = pci_get_drvdata(pdev);
11765 struct list_head *p, *q;
11766 int i;
11768 if (!priv)
11769 return;
11771 mutex_lock(&priv->mutex);
11773 priv->status |= STATUS_EXIT_PENDING;
11774 ipw_down(priv);
11775 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11777 mutex_unlock(&priv->mutex);
11779 unregister_netdev(priv->net_dev);
11781 if (priv->rxq) {
11782 ipw_rx_queue_free(priv, priv->rxq);
11783 priv->rxq = NULL;
11785 ipw_tx_queue_free(priv);
11787 if (priv->cmdlog) {
11788 kfree(priv->cmdlog);
11789 priv->cmdlog = NULL;
11791 /* ipw_down will ensure that there is no more pending work
11792 * in the workqueue's, so we can safely remove them now. */
11793 cancel_delayed_work(&priv->adhoc_check);
11794 cancel_delayed_work(&priv->gather_stats);
11795 cancel_delayed_work(&priv->request_scan);
11796 cancel_delayed_work(&priv->request_direct_scan);
11797 cancel_delayed_work(&priv->request_passive_scan);
11798 cancel_delayed_work(&priv->scan_event);
11799 cancel_delayed_work(&priv->rf_kill);
11800 cancel_delayed_work(&priv->scan_check);
11801 destroy_workqueue(priv->workqueue);
11802 priv->workqueue = NULL;
11804 /* Free MAC hash list for ADHOC */
11805 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11806 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11807 list_del(p);
11808 kfree(list_entry(p, struct ipw_ibss_seq, list));
11812 kfree(priv->error);
11813 priv->error = NULL;
11815 #ifdef CONFIG_IPW2200_PROMISCUOUS
11816 ipw_prom_free(priv);
11817 #endif
11819 free_irq(pdev->irq, priv);
11820 iounmap(priv->hw_base);
11821 pci_release_regions(pdev);
11822 pci_disable_device(pdev);
11823 pci_set_drvdata(pdev, NULL);
11824 free_ieee80211(priv->net_dev);
11825 free_firmware();
11828 #ifdef CONFIG_PM
11829 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11831 struct ipw_priv *priv = pci_get_drvdata(pdev);
11832 struct net_device *dev = priv->net_dev;
11834 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11836 /* Take down the device; powers it off, etc. */
11837 ipw_down(priv);
11839 /* Remove the PRESENT state of the device */
11840 netif_device_detach(dev);
11842 pci_save_state(pdev);
11843 pci_disable_device(pdev);
11844 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11846 return 0;
11849 static int ipw_pci_resume(struct pci_dev *pdev)
11851 struct ipw_priv *priv = pci_get_drvdata(pdev);
11852 struct net_device *dev = priv->net_dev;
11853 int err;
11854 u32 val;
11856 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11858 pci_set_power_state(pdev, PCI_D0);
11859 err = pci_enable_device(pdev);
11860 if (err) {
11861 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11862 dev->name);
11863 return err;
11865 pci_restore_state(pdev);
11868 * Suspend/Resume resets the PCI configuration space, so we have to
11869 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11870 * from interfering with C3 CPU state. pci_restore_state won't help
11871 * here since it only restores the first 64 bytes pci config header.
11873 pci_read_config_dword(pdev, 0x40, &val);
11874 if ((val & 0x0000ff00) != 0)
11875 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11877 /* Set the device back into the PRESENT state; this will also wake
11878 * the queue of needed */
11879 netif_device_attach(dev);
11881 /* Bring the device back up */
11882 queue_work(priv->workqueue, &priv->up);
11884 return 0;
11886 #endif
11888 static void ipw_pci_shutdown(struct pci_dev *pdev)
11890 struct ipw_priv *priv = pci_get_drvdata(pdev);
11892 /* Take down the device; powers it off, etc. */
11893 ipw_down(priv);
11895 pci_disable_device(pdev);
11898 /* driver initialization stuff */
11899 static struct pci_driver ipw_driver = {
11900 .name = DRV_NAME,
11901 .id_table = card_ids,
11902 .probe = ipw_pci_probe,
11903 .remove = __devexit_p(ipw_pci_remove),
11904 #ifdef CONFIG_PM
11905 .suspend = ipw_pci_suspend,
11906 .resume = ipw_pci_resume,
11907 #endif
11908 .shutdown = ipw_pci_shutdown,
11911 static int __init ipw_init(void)
11913 int ret;
11915 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11916 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11918 ret = pci_register_driver(&ipw_driver);
11919 if (ret) {
11920 IPW_ERROR("Unable to initialize PCI module\n");
11921 return ret;
11924 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11925 if (ret) {
11926 IPW_ERROR("Unable to create driver sysfs file\n");
11927 pci_unregister_driver(&ipw_driver);
11928 return ret;
11931 return ret;
11934 static void __exit ipw_exit(void)
11936 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11937 pci_unregister_driver(&ipw_driver);
11940 module_param(disable, int, 0444);
11941 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11943 module_param(associate, int, 0444);
11944 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11946 module_param(auto_create, int, 0444);
11947 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11949 module_param(led, int, 0444);
11950 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11952 module_param(debug, int, 0444);
11953 MODULE_PARM_DESC(debug, "debug output mask");
11955 module_param(channel, int, 0444);
11956 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11958 #ifdef CONFIG_IPW2200_PROMISCUOUS
11959 module_param(rtap_iface, int, 0444);
11960 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11961 #endif
11963 #ifdef CONFIG_IPW2200_QOS
11964 module_param(qos_enable, int, 0444);
11965 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11967 module_param(qos_burst_enable, int, 0444);
11968 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11970 module_param(qos_no_ack_mask, int, 0444);
11971 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11973 module_param(burst_duration_CCK, int, 0444);
11974 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11976 module_param(burst_duration_OFDM, int, 0444);
11977 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11978 #endif /* CONFIG_IPW2200_QOS */
11980 #ifdef CONFIG_IPW2200_MONITOR
11981 module_param(mode, int, 0444);
11982 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11983 #else
11984 module_param(mode, int, 0444);
11985 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11986 #endif
11988 module_param(bt_coexist, int, 0444);
11989 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11991 module_param(hwcrypto, int, 0444);
11992 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11994 module_param(cmdlog, int, 0444);
11995 MODULE_PARM_DESC(cmdlog,
11996 "allocate a ring buffer for logging firmware commands");
11998 module_param(roaming, int, 0444);
11999 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12001 module_param(antenna, int, 0444);
12002 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12004 module_exit(ipw_exit);
12005 module_init(ipw_init);