DMA: PL08x: fix infinite wait when terminating transfers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / dma / amba-pl08x.c
blob8321a3997c95772c7ae9588fa75feee960a3ebaf
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
37 * The PL080 has a dual bus master, PL081 has a single master.
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
54 * ASSUMES default (little) endianness for DMA transfers
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
89 #include <asm/hardware/pl080.h>
91 #define DRIVER_NAME "pl08xdmac"
93 /**
94 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
95 * @channels: the number of channels available in this variant
96 * @dualmaster: whether this version supports dual AHB masters or not.
98 struct vendor_data {
99 u8 channels;
100 bool dualmaster;
104 * PL08X private data structures
105 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
106 * start & end do not - their bus bit info is in cctl. Also note that these
107 * are fixed 32-bit quantities.
109 struct pl08x_lli {
110 u32 src;
111 u32 dst;
112 u32 lli;
113 u32 cctl;
117 * struct pl08x_driver_data - the local state holder for the PL08x
118 * @slave: slave engine for this instance
119 * @memcpy: memcpy engine for this instance
120 * @base: virtual memory base (remapped) for the PL08x
121 * @adev: the corresponding AMBA (PrimeCell) bus entry
122 * @vd: vendor data for this PL08x variant
123 * @pd: platform data passed in from the platform/machine
124 * @phy_chans: array of data for the physical channels
125 * @pool: a pool for the LLI descriptors
126 * @pool_ctr: counter of LLIs in the pool
127 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI fetches
128 * @mem_buses: set to indicate memory transfers on AHB2.
129 * @lock: a spinlock for this struct
131 struct pl08x_driver_data {
132 struct dma_device slave;
133 struct dma_device memcpy;
134 void __iomem *base;
135 struct amba_device *adev;
136 const struct vendor_data *vd;
137 struct pl08x_platform_data *pd;
138 struct pl08x_phy_chan *phy_chans;
139 struct dma_pool *pool;
140 int pool_ctr;
141 u8 lli_buses;
142 u8 mem_buses;
143 spinlock_t lock;
147 * PL08X specific defines
151 * Memory boundaries: the manual for PL08x says that the controller
152 * cannot read past a 1KiB boundary, so these defines are used to
153 * create transfer LLIs that do not cross such boundaries.
155 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
156 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
158 /* Minimum period between work queue runs */
159 #define PL08X_WQ_PERIODMIN 20
161 /* Size (bytes) of each LLI buffer allocated for one transfer */
162 # define PL08X_LLI_TSFR_SIZE 0x2000
164 /* Maximum times we call dma_pool_alloc on this pool without freeing */
165 #define PL08X_MAX_ALLOCS 0x40
166 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
167 #define PL08X_ALIGN 8
169 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
171 return container_of(chan, struct pl08x_dma_chan, chan);
174 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
176 return container_of(tx, struct pl08x_txd, tx);
180 * Physical channel handling
183 /* Whether a certain channel is busy or not */
184 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
186 unsigned int val;
188 val = readl(ch->base + PL080_CH_CONFIG);
189 return val & PL080_CONFIG_ACTIVE;
193 * Set the initial DMA register values i.e. those for the first LLI
194 * The next LLI pointer and the configuration interrupt bit have
195 * been set when the LLIs were constructed. Poke them into the hardware
196 * and start the transfer.
198 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
199 struct pl08x_txd *txd)
201 struct pl08x_driver_data *pl08x = plchan->host;
202 struct pl08x_phy_chan *phychan = plchan->phychan;
203 struct pl08x_lli *lli = &txd->llis_va[0];
204 u32 val;
206 plchan->at = txd;
208 /* Wait for channel inactive */
209 while (pl08x_phy_channel_busy(phychan))
210 cpu_relax();
212 dev_vdbg(&pl08x->adev->dev,
213 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
214 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
215 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
216 txd->ccfg);
218 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
219 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
220 writel(lli->lli, phychan->base + PL080_CH_LLI);
221 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
222 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
224 /* Enable the DMA channel */
225 /* Do not access config register until channel shows as disabled */
226 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
227 cpu_relax();
229 /* Do not access config register until channel shows as inactive */
230 val = readl(phychan->base + PL080_CH_CONFIG);
231 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
232 val = readl(phychan->base + PL080_CH_CONFIG);
234 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
238 * Overall DMAC remains enabled always.
240 * Disabling individual channels could lose data.
242 * Disable the peripheral DMA after disabling the DMAC in order to allow
243 * the DMAC FIFO to drain, and hence allow the channel to show inactive
245 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
247 u32 val;
249 /* Set the HALT bit and wait for the FIFO to drain */
250 val = readl(ch->base + PL080_CH_CONFIG);
251 val |= PL080_CONFIG_HALT;
252 writel(val, ch->base + PL080_CH_CONFIG);
254 /* Wait for channel inactive */
255 while (pl08x_phy_channel_busy(ch))
256 cpu_relax();
259 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
261 u32 val;
263 /* Clear the HALT bit */
264 val = readl(ch->base + PL080_CH_CONFIG);
265 val &= ~PL080_CONFIG_HALT;
266 writel(val, ch->base + PL080_CH_CONFIG);
271 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
272 * clears any pending interrupt status. This should not be used for
273 * an on-going transfer, but as a method of shutting down a channel
274 * (eg, when it's no longer used) or terminating a transfer.
276 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
277 struct pl08x_phy_chan *ch)
279 u32 val = readl(ch->base + PL080_CH_CONFIG);
281 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
282 PL080_CONFIG_TC_IRQ_MASK);
284 writel(val, ch->base + PL080_CH_CONFIG);
286 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
287 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
290 static inline u32 get_bytes_in_cctl(u32 cctl)
292 /* The source width defines the number of bytes */
293 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
295 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
296 case PL080_WIDTH_8BIT:
297 break;
298 case PL080_WIDTH_16BIT:
299 bytes *= 2;
300 break;
301 case PL080_WIDTH_32BIT:
302 bytes *= 4;
303 break;
305 return bytes;
308 /* The channel should be paused when calling this */
309 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
311 struct pl08x_phy_chan *ch;
312 struct pl08x_txd *txd;
313 unsigned long flags;
314 size_t bytes = 0;
316 spin_lock_irqsave(&plchan->lock, flags);
317 ch = plchan->phychan;
318 txd = plchan->at;
321 * Follow the LLIs to get the number of remaining
322 * bytes in the currently active transaction.
324 if (ch && txd) {
325 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
327 /* First get the remaining bytes in the active transfer */
328 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
330 if (clli) {
331 struct pl08x_lli *llis_va = txd->llis_va;
332 dma_addr_t llis_bus = txd->llis_bus;
333 int index;
335 BUG_ON(clli < llis_bus || clli >= llis_bus +
336 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
339 * Locate the next LLI - as this is an array,
340 * it's simple maths to find.
342 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
344 for (; index < MAX_NUM_TSFR_LLIS; index++) {
345 bytes += get_bytes_in_cctl(llis_va[index].cctl);
348 * A LLI pointer of 0 terminates the LLI list
350 if (!llis_va[index].lli)
351 break;
356 /* Sum up all queued transactions */
357 if (!list_empty(&plchan->pend_list)) {
358 struct pl08x_txd *txdi;
359 list_for_each_entry(txdi, &plchan->pend_list, node) {
360 bytes += txdi->len;
364 spin_unlock_irqrestore(&plchan->lock, flags);
366 return bytes;
370 * Allocate a physical channel for a virtual channel
372 * Try to locate a physical channel to be used for this transfer. If all
373 * are taken return NULL and the requester will have to cope by using
374 * some fallback PIO mode or retrying later.
376 static struct pl08x_phy_chan *
377 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
378 struct pl08x_dma_chan *virt_chan)
380 struct pl08x_phy_chan *ch = NULL;
381 unsigned long flags;
382 int i;
384 for (i = 0; i < pl08x->vd->channels; i++) {
385 ch = &pl08x->phy_chans[i];
387 spin_lock_irqsave(&ch->lock, flags);
389 if (!ch->serving) {
390 ch->serving = virt_chan;
391 ch->signal = -1;
392 spin_unlock_irqrestore(&ch->lock, flags);
393 break;
396 spin_unlock_irqrestore(&ch->lock, flags);
399 if (i == pl08x->vd->channels) {
400 /* No physical channel available, cope with it */
401 return NULL;
404 return ch;
407 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
408 struct pl08x_phy_chan *ch)
410 unsigned long flags;
412 spin_lock_irqsave(&ch->lock, flags);
414 /* Stop the channel and clear its interrupts */
415 pl08x_terminate_phy_chan(pl08x, ch);
417 /* Mark it as free */
418 ch->serving = NULL;
419 spin_unlock_irqrestore(&ch->lock, flags);
423 * LLI handling
426 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
428 switch (coded) {
429 case PL080_WIDTH_8BIT:
430 return 1;
431 case PL080_WIDTH_16BIT:
432 return 2;
433 case PL080_WIDTH_32BIT:
434 return 4;
435 default:
436 break;
438 BUG();
439 return 0;
442 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443 size_t tsize)
445 u32 retbits = cctl;
447 /* Remove all src, dst and transfer size bits */
448 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
449 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
450 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
452 /* Then set the bits according to the parameters */
453 switch (srcwidth) {
454 case 1:
455 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 break;
457 case 2:
458 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 break;
460 case 4:
461 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 break;
463 default:
464 BUG();
465 break;
468 switch (dstwidth) {
469 case 1:
470 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 break;
472 case 2:
473 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 break;
475 case 4:
476 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 break;
478 default:
479 BUG();
480 break;
483 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
484 return retbits;
487 struct pl08x_lli_build_data {
488 struct pl08x_txd *txd;
489 struct pl08x_driver_data *pl08x;
490 struct pl08x_bus_data srcbus;
491 struct pl08x_bus_data dstbus;
492 size_t remainder;
496 * Autoselect a master bus to use for the transfer this prefers the
497 * destination bus if both available if fixed address on one bus the
498 * other will be chosen
500 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
501 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
503 if (!(cctl & PL080_CONTROL_DST_INCR)) {
504 *mbus = &bd->srcbus;
505 *sbus = &bd->dstbus;
506 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
507 *mbus = &bd->dstbus;
508 *sbus = &bd->srcbus;
509 } else {
510 if (bd->dstbus.buswidth == 4) {
511 *mbus = &bd->dstbus;
512 *sbus = &bd->srcbus;
513 } else if (bd->srcbus.buswidth == 4) {
514 *mbus = &bd->srcbus;
515 *sbus = &bd->dstbus;
516 } else if (bd->dstbus.buswidth == 2) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else if (bd->srcbus.buswidth == 2) {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 } else {
523 /* bd->srcbus.buswidth == 1 */
524 *mbus = &bd->dstbus;
525 *sbus = &bd->srcbus;
531 * Fills in one LLI for a certain transfer descriptor and advance the counter
533 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
534 int num_llis, int len, u32 cctl)
536 struct pl08x_lli *llis_va = bd->txd->llis_va;
537 dma_addr_t llis_bus = bd->txd->llis_bus;
539 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
541 llis_va[num_llis].cctl = cctl;
542 llis_va[num_llis].src = bd->srcbus.addr;
543 llis_va[num_llis].dst = bd->dstbus.addr;
544 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
545 if (bd->pl08x->lli_buses & PL08X_AHB2)
546 llis_va[num_llis].lli |= PL080_LLI_LM_AHB2;
548 if (cctl & PL080_CONTROL_SRC_INCR)
549 bd->srcbus.addr += len;
550 if (cctl & PL080_CONTROL_DST_INCR)
551 bd->dstbus.addr += len;
553 BUG_ON(bd->remainder < len);
555 bd->remainder -= len;
559 * Return number of bytes to fill to boundary, or len.
560 * This calculation works for any value of addr.
562 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
564 size_t boundary_len = PL08X_BOUNDARY_SIZE -
565 (addr & (PL08X_BOUNDARY_SIZE - 1));
567 return min(boundary_len, len);
571 * This fills in the table of LLIs for the transfer descriptor
572 * Note that we assume we never have to change the burst sizes
573 * Return 0 for error
575 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
576 struct pl08x_txd *txd)
578 struct pl08x_bus_data *mbus, *sbus;
579 struct pl08x_lli_build_data bd;
580 int num_llis = 0;
581 u32 cctl;
582 size_t max_bytes_per_lli;
583 size_t total_bytes = 0;
584 struct pl08x_lli *llis_va;
586 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
587 &txd->llis_bus);
588 if (!txd->llis_va) {
589 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
590 return 0;
593 pl08x->pool_ctr++;
595 /* Get the default CCTL */
596 cctl = txd->cctl;
598 bd.txd = txd;
599 bd.pl08x = pl08x;
600 bd.srcbus.addr = txd->src_addr;
601 bd.dstbus.addr = txd->dst_addr;
603 /* Find maximum width of the source bus */
604 bd.srcbus.maxwidth =
605 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
606 PL080_CONTROL_SWIDTH_SHIFT);
608 /* Find maximum width of the destination bus */
609 bd.dstbus.maxwidth =
610 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
611 PL080_CONTROL_DWIDTH_SHIFT);
613 /* Set up the bus widths to the maximum */
614 bd.srcbus.buswidth = bd.srcbus.maxwidth;
615 bd.dstbus.buswidth = bd.dstbus.maxwidth;
616 dev_vdbg(&pl08x->adev->dev,
617 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
618 __func__, bd.srcbus.buswidth, bd.dstbus.buswidth);
622 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
624 max_bytes_per_lli = min(bd.srcbus.buswidth, bd.dstbus.buswidth) *
625 PL080_CONTROL_TRANSFER_SIZE_MASK;
626 dev_vdbg(&pl08x->adev->dev,
627 "%s max bytes per lli = %zu\n",
628 __func__, max_bytes_per_lli);
630 /* We need to count this down to zero */
631 bd.remainder = txd->len;
632 dev_vdbg(&pl08x->adev->dev,
633 "%s remainder = %zu\n",
634 __func__, bd.remainder);
637 * Choose bus to align to
638 * - prefers destination bus if both available
639 * - if fixed address on one bus chooses other
641 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
643 if (txd->len < mbus->buswidth) {
644 /* Less than a bus width available - send as single bytes */
645 while (bd.remainder) {
646 dev_vdbg(&pl08x->adev->dev,
647 "%s single byte LLIs for a transfer of "
648 "less than a bus width (remain 0x%08x)\n",
649 __func__, bd.remainder);
650 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
651 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
652 total_bytes++;
654 } else {
655 /* Make one byte LLIs until master bus is aligned */
656 while ((mbus->addr) % (mbus->buswidth)) {
657 dev_vdbg(&pl08x->adev->dev,
658 "%s adjustment lli for less than bus width "
659 "(remain 0x%08x)\n",
660 __func__, bd.remainder);
661 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
662 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
663 total_bytes++;
667 * Master now aligned
668 * - if slave is not then we must set its width down
670 if (sbus->addr % sbus->buswidth) {
671 dev_dbg(&pl08x->adev->dev,
672 "%s set down bus width to one byte\n",
673 __func__);
675 sbus->buswidth = 1;
679 * Make largest possible LLIs until less than one bus
680 * width left
682 while (bd.remainder > (mbus->buswidth - 1)) {
683 size_t lli_len, target_len, tsize, odd_bytes;
686 * If enough left try to send max possible,
687 * otherwise try to send the remainder
689 target_len = min(bd.remainder, max_bytes_per_lli);
692 * Set bus lengths for incrementing buses to the
693 * number of bytes which fill to next memory boundary,
694 * limiting on the target length calculated above.
696 if (cctl & PL080_CONTROL_SRC_INCR)
697 bd.srcbus.fill_bytes =
698 pl08x_pre_boundary(bd.srcbus.addr,
699 target_len);
700 else
701 bd.srcbus.fill_bytes = target_len;
703 if (cctl & PL080_CONTROL_DST_INCR)
704 bd.dstbus.fill_bytes =
705 pl08x_pre_boundary(bd.dstbus.addr,
706 target_len);
707 else
708 bd.dstbus.fill_bytes = target_len;
710 /* Find the nearest */
711 lli_len = min(bd.srcbus.fill_bytes,
712 bd.dstbus.fill_bytes);
714 BUG_ON(lli_len > bd.remainder);
716 if (lli_len <= 0) {
717 dev_err(&pl08x->adev->dev,
718 "%s lli_len is %zu, <= 0\n",
719 __func__, lli_len);
720 return 0;
723 if (lli_len == target_len) {
725 * Can send what we wanted.
726 * Maintain alignment
728 lli_len = (lli_len/mbus->buswidth) *
729 mbus->buswidth;
730 odd_bytes = 0;
731 } else {
733 * So now we know how many bytes to transfer
734 * to get to the nearest boundary. The next
735 * LLI will past the boundary. However, we
736 * may be working to a boundary on the slave
737 * bus. We need to ensure the master stays
738 * aligned, and that we are working in
739 * multiples of the bus widths.
741 odd_bytes = lli_len % mbus->buswidth;
742 lli_len -= odd_bytes;
746 if (lli_len) {
748 * Check against minimum bus alignment:
749 * Calculate actual transfer size in relation
750 * to bus width an get a maximum remainder of
751 * the smallest bus width - 1
753 /* FIXME: use round_down()? */
754 tsize = lli_len / min(mbus->buswidth,
755 sbus->buswidth);
756 lli_len = tsize * min(mbus->buswidth,
757 sbus->buswidth);
759 if (target_len != lli_len) {
760 dev_vdbg(&pl08x->adev->dev,
761 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
762 __func__, target_len, lli_len, txd->len);
765 cctl = pl08x_cctl_bits(cctl,
766 bd.srcbus.buswidth,
767 bd.dstbus.buswidth,
768 tsize);
770 dev_vdbg(&pl08x->adev->dev,
771 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
772 __func__, lli_len, bd.remainder);
773 pl08x_fill_lli_for_desc(&bd, num_llis++,
774 lli_len, cctl);
775 total_bytes += lli_len;
779 if (odd_bytes) {
781 * Creep past the boundary, maintaining
782 * master alignment
784 int j;
785 for (j = 0; (j < mbus->buswidth)
786 && (bd.remainder); j++) {
787 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
788 dev_vdbg(&pl08x->adev->dev,
789 "%s align with boundary, single byte (remain 0x%08zx)\n",
790 __func__, bd.remainder);
791 pl08x_fill_lli_for_desc(&bd,
792 num_llis++, 1, cctl);
793 total_bytes++;
799 * Send any odd bytes
801 while (bd.remainder) {
802 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
803 dev_vdbg(&pl08x->adev->dev,
804 "%s align with boundary, single odd byte (remain %zu)\n",
805 __func__, bd.remainder);
806 pl08x_fill_lli_for_desc(&bd, num_llis++, 1, cctl);
807 total_bytes++;
810 if (total_bytes != txd->len) {
811 dev_err(&pl08x->adev->dev,
812 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
813 __func__, total_bytes, txd->len);
814 return 0;
817 if (num_llis >= MAX_NUM_TSFR_LLIS) {
818 dev_err(&pl08x->adev->dev,
819 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
820 __func__, (u32) MAX_NUM_TSFR_LLIS);
821 return 0;
824 llis_va = txd->llis_va;
825 /* The final LLI terminates the LLI. */
826 llis_va[num_llis - 1].lli = 0;
827 /* The final LLI element shall also fire an interrupt. */
828 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
830 #ifdef VERBOSE_DEBUG
832 int i;
834 for (i = 0; i < num_llis; i++) {
835 dev_vdbg(&pl08x->adev->dev,
836 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
838 &llis_va[i],
839 llis_va[i].src,
840 llis_va[i].dst,
841 llis_va[i].cctl,
842 llis_va[i].lli
846 #endif
848 return num_llis;
851 /* You should call this with the struct pl08x lock held */
852 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
853 struct pl08x_txd *txd)
855 /* Free the LLI */
856 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
858 pl08x->pool_ctr--;
860 kfree(txd);
863 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
864 struct pl08x_dma_chan *plchan)
866 struct pl08x_txd *txdi = NULL;
867 struct pl08x_txd *next;
869 if (!list_empty(&plchan->pend_list)) {
870 list_for_each_entry_safe(txdi,
871 next, &plchan->pend_list, node) {
872 list_del(&txdi->node);
873 pl08x_free_txd(pl08x, txdi);
879 * The DMA ENGINE API
881 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
883 return 0;
886 static void pl08x_free_chan_resources(struct dma_chan *chan)
891 * This should be called with the channel plchan->lock held
893 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
894 struct pl08x_txd *txd)
896 struct pl08x_driver_data *pl08x = plchan->host;
897 struct pl08x_phy_chan *ch;
898 int ret;
900 /* Check if we already have a channel */
901 if (plchan->phychan)
902 return 0;
904 ch = pl08x_get_phy_channel(pl08x, plchan);
905 if (!ch) {
906 /* No physical channel available, cope with it */
907 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
908 return -EBUSY;
912 * OK we have a physical channel: for memcpy() this is all we
913 * need, but for slaves the physical signals may be muxed!
914 * Can the platform allow us to use this channel?
916 if (plchan->slave &&
917 ch->signal < 0 &&
918 pl08x->pd->get_signal) {
919 ret = pl08x->pd->get_signal(plchan);
920 if (ret < 0) {
921 dev_dbg(&pl08x->adev->dev,
922 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
923 ch->id, plchan->name);
924 /* Release physical channel & return */
925 pl08x_put_phy_channel(pl08x, ch);
926 return -EBUSY;
928 ch->signal = ret;
930 /* Assign the flow control signal to this channel */
931 if (txd->direction == DMA_TO_DEVICE)
932 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
933 else if (txd->direction == DMA_FROM_DEVICE)
934 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
937 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
938 ch->id,
939 ch->signal,
940 plchan->name);
942 plchan->phychan_hold++;
943 plchan->phychan = ch;
945 return 0;
948 static void release_phy_channel(struct pl08x_dma_chan *plchan)
950 struct pl08x_driver_data *pl08x = plchan->host;
952 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
953 pl08x->pd->put_signal(plchan);
954 plchan->phychan->signal = -1;
956 pl08x_put_phy_channel(pl08x, plchan->phychan);
957 plchan->phychan = NULL;
960 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
962 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
963 struct pl08x_txd *txd = to_pl08x_txd(tx);
964 unsigned long flags;
966 spin_lock_irqsave(&plchan->lock, flags);
968 plchan->chan.cookie += 1;
969 if (plchan->chan.cookie < 0)
970 plchan->chan.cookie = 1;
971 tx->cookie = plchan->chan.cookie;
973 /* Put this onto the pending list */
974 list_add_tail(&txd->node, &plchan->pend_list);
977 * If there was no physical channel available for this memcpy,
978 * stack the request up and indicate that the channel is waiting
979 * for a free physical channel.
981 if (!plchan->slave && !plchan->phychan) {
982 /* Do this memcpy whenever there is a channel ready */
983 plchan->state = PL08X_CHAN_WAITING;
984 plchan->waiting = txd;
985 } else {
986 plchan->phychan_hold--;
989 spin_unlock_irqrestore(&plchan->lock, flags);
991 return tx->cookie;
994 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
995 struct dma_chan *chan, unsigned long flags)
997 struct dma_async_tx_descriptor *retval = NULL;
999 return retval;
1003 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1004 * If slaves are relying on interrupts to signal completion this function
1005 * must not be called with interrupts disabled.
1007 static enum dma_status
1008 pl08x_dma_tx_status(struct dma_chan *chan,
1009 dma_cookie_t cookie,
1010 struct dma_tx_state *txstate)
1012 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1013 dma_cookie_t last_used;
1014 dma_cookie_t last_complete;
1015 enum dma_status ret;
1016 u32 bytesleft = 0;
1018 last_used = plchan->chan.cookie;
1019 last_complete = plchan->lc;
1021 ret = dma_async_is_complete(cookie, last_complete, last_used);
1022 if (ret == DMA_SUCCESS) {
1023 dma_set_tx_state(txstate, last_complete, last_used, 0);
1024 return ret;
1028 * This cookie not complete yet
1030 last_used = plchan->chan.cookie;
1031 last_complete = plchan->lc;
1033 /* Get number of bytes left in the active transactions and queue */
1034 bytesleft = pl08x_getbytes_chan(plchan);
1036 dma_set_tx_state(txstate, last_complete, last_used,
1037 bytesleft);
1039 if (plchan->state == PL08X_CHAN_PAUSED)
1040 return DMA_PAUSED;
1042 /* Whether waiting or running, we're in progress */
1043 return DMA_IN_PROGRESS;
1046 /* PrimeCell DMA extension */
1047 struct burst_table {
1048 int burstwords;
1049 u32 reg;
1052 static const struct burst_table burst_sizes[] = {
1054 .burstwords = 256,
1055 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1056 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1059 .burstwords = 128,
1060 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1061 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1064 .burstwords = 64,
1065 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1066 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1069 .burstwords = 32,
1070 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1071 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1074 .burstwords = 16,
1075 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1076 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1079 .burstwords = 8,
1080 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1081 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1084 .burstwords = 4,
1085 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1086 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1089 .burstwords = 1,
1090 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1091 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1095 static int dma_set_runtime_config(struct dma_chan *chan,
1096 struct dma_slave_config *config)
1098 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1099 struct pl08x_driver_data *pl08x = plchan->host;
1100 struct pl08x_channel_data *cd = plchan->cd;
1101 enum dma_slave_buswidth addr_width;
1102 dma_addr_t addr;
1103 u32 maxburst;
1104 u32 cctl = 0;
1105 int i;
1107 if (!plchan->slave)
1108 return -EINVAL;
1110 /* Transfer direction */
1111 plchan->runtime_direction = config->direction;
1112 if (config->direction == DMA_TO_DEVICE) {
1113 addr = config->dst_addr;
1114 addr_width = config->dst_addr_width;
1115 maxburst = config->dst_maxburst;
1116 } else if (config->direction == DMA_FROM_DEVICE) {
1117 addr = config->src_addr;
1118 addr_width = config->src_addr_width;
1119 maxburst = config->src_maxburst;
1120 } else {
1121 dev_err(&pl08x->adev->dev,
1122 "bad runtime_config: alien transfer direction\n");
1123 return -EINVAL;
1126 switch (addr_width) {
1127 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1128 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1129 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1130 break;
1131 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1132 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1133 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1134 break;
1135 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1136 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1137 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1138 break;
1139 default:
1140 dev_err(&pl08x->adev->dev,
1141 "bad runtime_config: alien address width\n");
1142 return -EINVAL;
1146 * Now decide on a maxburst:
1147 * If this channel will only request single transfers, set this
1148 * down to ONE element. Also select one element if no maxburst
1149 * is specified.
1151 if (plchan->cd->single || maxburst == 0) {
1152 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1153 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1154 } else {
1155 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1156 if (burst_sizes[i].burstwords <= maxburst)
1157 break;
1158 cctl |= burst_sizes[i].reg;
1161 plchan->runtime_addr = addr;
1163 /* Modify the default channel data to fit PrimeCell request */
1164 cd->cctl = cctl;
1166 dev_dbg(&pl08x->adev->dev,
1167 "configured channel %s (%s) for %s, data width %d, "
1168 "maxburst %d words, LE, CCTL=0x%08x\n",
1169 dma_chan_name(chan), plchan->name,
1170 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1171 addr_width,
1172 maxburst,
1173 cctl);
1175 return 0;
1179 * Slave transactions callback to the slave device to allow
1180 * synchronization of slave DMA signals with the DMAC enable
1182 static void pl08x_issue_pending(struct dma_chan *chan)
1184 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1185 unsigned long flags;
1187 spin_lock_irqsave(&plchan->lock, flags);
1188 /* Something is already active, or we're waiting for a channel... */
1189 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1190 spin_unlock_irqrestore(&plchan->lock, flags);
1191 return;
1194 /* Take the first element in the queue and execute it */
1195 if (!list_empty(&plchan->pend_list)) {
1196 struct pl08x_txd *next;
1198 next = list_first_entry(&plchan->pend_list,
1199 struct pl08x_txd,
1200 node);
1201 list_del(&next->node);
1202 plchan->state = PL08X_CHAN_RUNNING;
1204 pl08x_start_txd(plchan, next);
1207 spin_unlock_irqrestore(&plchan->lock, flags);
1210 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1211 struct pl08x_txd *txd)
1213 struct pl08x_driver_data *pl08x = plchan->host;
1214 unsigned long flags;
1215 int num_llis, ret;
1217 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1218 if (!num_llis) {
1219 kfree(txd);
1220 return -EINVAL;
1223 spin_lock_irqsave(&plchan->lock, flags);
1226 * See if we already have a physical channel allocated,
1227 * else this is the time to try to get one.
1229 ret = prep_phy_channel(plchan, txd);
1230 if (ret) {
1232 * No physical channel was available.
1234 * memcpy transfers can be sorted out at submission time.
1236 * Slave transfers may have been denied due to platform
1237 * channel muxing restrictions. Since there is no guarantee
1238 * that this will ever be resolved, and the signal must be
1239 * acquired AFTER acquiring the physical channel, we will let
1240 * them be NACK:ed with -EBUSY here. The drivers can retry
1241 * the prep() call if they are eager on doing this using DMA.
1243 if (plchan->slave) {
1244 pl08x_free_txd_list(pl08x, plchan);
1245 pl08x_free_txd(pl08x, txd);
1246 spin_unlock_irqrestore(&plchan->lock, flags);
1247 return -EBUSY;
1249 } else
1251 * Else we're all set, paused and ready to roll, status
1252 * will switch to PL08X_CHAN_RUNNING when we call
1253 * issue_pending(). If there is something running on the
1254 * channel already we don't change its state.
1256 if (plchan->state == PL08X_CHAN_IDLE)
1257 plchan->state = PL08X_CHAN_PAUSED;
1259 spin_unlock_irqrestore(&plchan->lock, flags);
1261 return 0;
1265 * Given the source and destination available bus masks, select which
1266 * will be routed to each port. We try to have source and destination
1267 * on separate ports, but always respect the allowable settings.
1269 static u32 pl08x_select_bus(struct pl08x_driver_data *pl08x, u8 src, u8 dst)
1271 u32 cctl = 0;
1273 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1274 cctl |= PL080_CONTROL_DST_AHB2;
1275 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1276 cctl |= PL080_CONTROL_SRC_AHB2;
1278 return cctl;
1281 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1282 unsigned long flags)
1284 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1286 if (txd) {
1287 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1288 txd->tx.flags = flags;
1289 txd->tx.tx_submit = pl08x_tx_submit;
1290 INIT_LIST_HEAD(&txd->node);
1292 /* Always enable error and terminal interrupts */
1293 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1294 PL080_CONFIG_TC_IRQ_MASK;
1296 return txd;
1300 * Initialize a descriptor to be used by memcpy submit
1302 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1303 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1304 size_t len, unsigned long flags)
1306 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1307 struct pl08x_driver_data *pl08x = plchan->host;
1308 struct pl08x_txd *txd;
1309 int ret;
1311 txd = pl08x_get_txd(plchan, flags);
1312 if (!txd) {
1313 dev_err(&pl08x->adev->dev,
1314 "%s no memory for descriptor\n", __func__);
1315 return NULL;
1318 txd->direction = DMA_NONE;
1319 txd->src_addr = src;
1320 txd->dst_addr = dest;
1321 txd->len = len;
1323 /* Set platform data for m2m */
1324 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1325 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1326 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1328 /* Both to be incremented or the code will break */
1329 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1331 if (pl08x->vd->dualmaster)
1332 txd->cctl |= pl08x_select_bus(pl08x,
1333 pl08x->mem_buses, pl08x->mem_buses);
1335 ret = pl08x_prep_channel_resources(plchan, txd);
1336 if (ret)
1337 return NULL;
1339 return &txd->tx;
1342 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1343 struct dma_chan *chan, struct scatterlist *sgl,
1344 unsigned int sg_len, enum dma_data_direction direction,
1345 unsigned long flags)
1347 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1348 struct pl08x_driver_data *pl08x = plchan->host;
1349 struct pl08x_txd *txd;
1350 u8 src_buses, dst_buses;
1351 int ret;
1354 * Current implementation ASSUMES only one sg
1356 if (sg_len != 1) {
1357 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1358 __func__);
1359 BUG();
1362 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1363 __func__, sgl->length, plchan->name);
1365 txd = pl08x_get_txd(plchan, flags);
1366 if (!txd) {
1367 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1368 return NULL;
1371 if (direction != plchan->runtime_direction)
1372 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1373 "the direction configured for the PrimeCell\n",
1374 __func__);
1377 * Set up addresses, the PrimeCell configured address
1378 * will take precedence since this may configure the
1379 * channel target address dynamically at runtime.
1381 txd->direction = direction;
1382 txd->len = sgl->length;
1384 txd->cctl = plchan->cd->cctl &
1385 ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1386 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1387 PL080_CONTROL_PROT_MASK);
1389 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1390 txd->cctl |= PL080_CONTROL_PROT_SYS;
1392 if (direction == DMA_TO_DEVICE) {
1393 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1394 txd->cctl |= PL080_CONTROL_SRC_INCR;
1395 txd->src_addr = sgl->dma_address;
1396 if (plchan->runtime_addr)
1397 txd->dst_addr = plchan->runtime_addr;
1398 else
1399 txd->dst_addr = plchan->cd->addr;
1400 src_buses = pl08x->mem_buses;
1401 dst_buses = plchan->cd->periph_buses;
1402 } else if (direction == DMA_FROM_DEVICE) {
1403 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1404 txd->cctl |= PL080_CONTROL_DST_INCR;
1405 if (plchan->runtime_addr)
1406 txd->src_addr = plchan->runtime_addr;
1407 else
1408 txd->src_addr = plchan->cd->addr;
1409 txd->dst_addr = sgl->dma_address;
1410 src_buses = plchan->cd->periph_buses;
1411 dst_buses = pl08x->mem_buses;
1412 } else {
1413 dev_err(&pl08x->adev->dev,
1414 "%s direction unsupported\n", __func__);
1415 return NULL;
1418 txd->cctl |= pl08x_select_bus(pl08x, src_buses, dst_buses);
1420 ret = pl08x_prep_channel_resources(plchan, txd);
1421 if (ret)
1422 return NULL;
1424 return &txd->tx;
1427 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1428 unsigned long arg)
1430 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431 struct pl08x_driver_data *pl08x = plchan->host;
1432 unsigned long flags;
1433 int ret = 0;
1435 /* Controls applicable to inactive channels */
1436 if (cmd == DMA_SLAVE_CONFIG) {
1437 return dma_set_runtime_config(chan,
1438 (struct dma_slave_config *)arg);
1442 * Anything succeeds on channels with no physical allocation and
1443 * no queued transfers.
1445 spin_lock_irqsave(&plchan->lock, flags);
1446 if (!plchan->phychan && !plchan->at) {
1447 spin_unlock_irqrestore(&plchan->lock, flags);
1448 return 0;
1451 switch (cmd) {
1452 case DMA_TERMINATE_ALL:
1453 plchan->state = PL08X_CHAN_IDLE;
1455 if (plchan->phychan) {
1456 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1459 * Mark physical channel as free and free any slave
1460 * signal
1462 release_phy_channel(plchan);
1464 /* Dequeue jobs and free LLIs */
1465 if (plchan->at) {
1466 pl08x_free_txd(pl08x, plchan->at);
1467 plchan->at = NULL;
1469 /* Dequeue jobs not yet fired as well */
1470 pl08x_free_txd_list(pl08x, plchan);
1471 break;
1472 case DMA_PAUSE:
1473 pl08x_pause_phy_chan(plchan->phychan);
1474 plchan->state = PL08X_CHAN_PAUSED;
1475 break;
1476 case DMA_RESUME:
1477 pl08x_resume_phy_chan(plchan->phychan);
1478 plchan->state = PL08X_CHAN_RUNNING;
1479 break;
1480 default:
1481 /* Unknown command */
1482 ret = -ENXIO;
1483 break;
1486 spin_unlock_irqrestore(&plchan->lock, flags);
1488 return ret;
1491 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1493 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1494 char *name = chan_id;
1496 /* Check that the channel is not taken! */
1497 if (!strcmp(plchan->name, name))
1498 return true;
1500 return false;
1504 * Just check that the device is there and active
1505 * TODO: turn this bit on/off depending on the number of physical channels
1506 * actually used, if it is zero... well shut it off. That will save some
1507 * power. Cut the clock at the same time.
1509 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1511 u32 val;
1513 val = readl(pl08x->base + PL080_CONFIG);
1514 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1515 /* We implicitly clear bit 1 and that means little-endian mode */
1516 val |= PL080_CONFIG_ENABLE;
1517 writel(val, pl08x->base + PL080_CONFIG);
1520 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1522 struct device *dev = txd->tx.chan->device->dev;
1524 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1525 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1526 dma_unmap_single(dev, txd->src_addr, txd->len,
1527 DMA_TO_DEVICE);
1528 else
1529 dma_unmap_page(dev, txd->src_addr, txd->len,
1530 DMA_TO_DEVICE);
1532 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1533 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1534 dma_unmap_single(dev, txd->dst_addr, txd->len,
1535 DMA_FROM_DEVICE);
1536 else
1537 dma_unmap_page(dev, txd->dst_addr, txd->len,
1538 DMA_FROM_DEVICE);
1542 static void pl08x_tasklet(unsigned long data)
1544 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1545 struct pl08x_driver_data *pl08x = plchan->host;
1546 struct pl08x_txd *txd;
1547 unsigned long flags;
1549 spin_lock_irqsave(&plchan->lock, flags);
1551 txd = plchan->at;
1552 plchan->at = NULL;
1554 if (txd) {
1555 /* Update last completed */
1556 plchan->lc = txd->tx.cookie;
1559 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1560 if (!list_empty(&plchan->pend_list)) {
1561 struct pl08x_txd *next;
1563 next = list_first_entry(&plchan->pend_list,
1564 struct pl08x_txd,
1565 node);
1566 list_del(&next->node);
1568 pl08x_start_txd(plchan, next);
1569 } else if (plchan->phychan_hold) {
1571 * This channel is still in use - we have a new txd being
1572 * prepared and will soon be queued. Don't give up the
1573 * physical channel.
1575 } else {
1576 struct pl08x_dma_chan *waiting = NULL;
1579 * No more jobs, so free up the physical channel
1580 * Free any allocated signal on slave transfers too
1582 release_phy_channel(plchan);
1583 plchan->state = PL08X_CHAN_IDLE;
1586 * And NOW before anyone else can grab that free:d up
1587 * physical channel, see if there is some memcpy pending
1588 * that seriously needs to start because of being stacked
1589 * up while we were choking the physical channels with data.
1591 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1592 chan.device_node) {
1593 if (waiting->state == PL08X_CHAN_WAITING &&
1594 waiting->waiting != NULL) {
1595 int ret;
1597 /* This should REALLY not fail now */
1598 ret = prep_phy_channel(waiting,
1599 waiting->waiting);
1600 BUG_ON(ret);
1601 waiting->phychan_hold--;
1602 waiting->state = PL08X_CHAN_RUNNING;
1603 waiting->waiting = NULL;
1604 pl08x_issue_pending(&waiting->chan);
1605 break;
1610 spin_unlock_irqrestore(&plchan->lock, flags);
1612 if (txd) {
1613 dma_async_tx_callback callback = txd->tx.callback;
1614 void *callback_param = txd->tx.callback_param;
1616 /* Don't try to unmap buffers on slave channels */
1617 if (!plchan->slave)
1618 pl08x_unmap_buffers(txd);
1620 /* Free the descriptor */
1621 spin_lock_irqsave(&plchan->lock, flags);
1622 pl08x_free_txd(pl08x, txd);
1623 spin_unlock_irqrestore(&plchan->lock, flags);
1625 /* Callback to signal completion */
1626 if (callback)
1627 callback(callback_param);
1631 static irqreturn_t pl08x_irq(int irq, void *dev)
1633 struct pl08x_driver_data *pl08x = dev;
1634 u32 mask = 0;
1635 u32 val;
1636 int i;
1638 val = readl(pl08x->base + PL080_ERR_STATUS);
1639 if (val) {
1640 /* An error interrupt (on one or more channels) */
1641 dev_err(&pl08x->adev->dev,
1642 "%s error interrupt, register value 0x%08x\n",
1643 __func__, val);
1645 * Simply clear ALL PL08X error interrupts,
1646 * regardless of channel and cause
1647 * FIXME: should be 0x00000003 on PL081 really.
1649 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1651 val = readl(pl08x->base + PL080_INT_STATUS);
1652 for (i = 0; i < pl08x->vd->channels; i++) {
1653 if ((1 << i) & val) {
1654 /* Locate physical channel */
1655 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1656 struct pl08x_dma_chan *plchan = phychan->serving;
1658 /* Schedule tasklet on this channel */
1659 tasklet_schedule(&plchan->tasklet);
1661 mask |= (1 << i);
1664 /* Clear only the terminal interrupts on channels we processed */
1665 writel(mask, pl08x->base + PL080_TC_CLEAR);
1667 return mask ? IRQ_HANDLED : IRQ_NONE;
1671 * Initialise the DMAC memcpy/slave channels.
1672 * Make a local wrapper to hold required data
1674 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1675 struct dma_device *dmadev,
1676 unsigned int channels,
1677 bool slave)
1679 struct pl08x_dma_chan *chan;
1680 int i;
1682 INIT_LIST_HEAD(&dmadev->channels);
1685 * Register as many many memcpy as we have physical channels,
1686 * we won't always be able to use all but the code will have
1687 * to cope with that situation.
1689 for (i = 0; i < channels; i++) {
1690 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1691 if (!chan) {
1692 dev_err(&pl08x->adev->dev,
1693 "%s no memory for channel\n", __func__);
1694 return -ENOMEM;
1697 chan->host = pl08x;
1698 chan->state = PL08X_CHAN_IDLE;
1700 if (slave) {
1701 chan->slave = true;
1702 chan->name = pl08x->pd->slave_channels[i].bus_id;
1703 chan->cd = &pl08x->pd->slave_channels[i];
1704 } else {
1705 chan->cd = &pl08x->pd->memcpy_channel;
1706 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1707 if (!chan->name) {
1708 kfree(chan);
1709 return -ENOMEM;
1712 if (chan->cd->circular_buffer) {
1713 dev_err(&pl08x->adev->dev,
1714 "channel %s: circular buffers not supported\n",
1715 chan->name);
1716 kfree(chan);
1717 continue;
1719 dev_info(&pl08x->adev->dev,
1720 "initialize virtual channel \"%s\"\n",
1721 chan->name);
1723 chan->chan.device = dmadev;
1724 chan->chan.cookie = 0;
1725 chan->lc = 0;
1727 spin_lock_init(&chan->lock);
1728 INIT_LIST_HEAD(&chan->pend_list);
1729 tasklet_init(&chan->tasklet, pl08x_tasklet,
1730 (unsigned long) chan);
1732 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1734 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1735 i, slave ? "slave" : "memcpy");
1736 return i;
1739 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1741 struct pl08x_dma_chan *chan = NULL;
1742 struct pl08x_dma_chan *next;
1744 list_for_each_entry_safe(chan,
1745 next, &dmadev->channels, chan.device_node) {
1746 list_del(&chan->chan.device_node);
1747 kfree(chan);
1751 #ifdef CONFIG_DEBUG_FS
1752 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1754 switch (state) {
1755 case PL08X_CHAN_IDLE:
1756 return "idle";
1757 case PL08X_CHAN_RUNNING:
1758 return "running";
1759 case PL08X_CHAN_PAUSED:
1760 return "paused";
1761 case PL08X_CHAN_WAITING:
1762 return "waiting";
1763 default:
1764 break;
1766 return "UNKNOWN STATE";
1769 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1771 struct pl08x_driver_data *pl08x = s->private;
1772 struct pl08x_dma_chan *chan;
1773 struct pl08x_phy_chan *ch;
1774 unsigned long flags;
1775 int i;
1777 seq_printf(s, "PL08x physical channels:\n");
1778 seq_printf(s, "CHANNEL:\tUSER:\n");
1779 seq_printf(s, "--------\t-----\n");
1780 for (i = 0; i < pl08x->vd->channels; i++) {
1781 struct pl08x_dma_chan *virt_chan;
1783 ch = &pl08x->phy_chans[i];
1785 spin_lock_irqsave(&ch->lock, flags);
1786 virt_chan = ch->serving;
1788 seq_printf(s, "%d\t\t%s\n",
1789 ch->id, virt_chan ? virt_chan->name : "(none)");
1791 spin_unlock_irqrestore(&ch->lock, flags);
1794 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1795 seq_printf(s, "CHANNEL:\tSTATE:\n");
1796 seq_printf(s, "--------\t------\n");
1797 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1798 seq_printf(s, "%s\t\t%s\n", chan->name,
1799 pl08x_state_str(chan->state));
1802 seq_printf(s, "\nPL08x virtual slave channels:\n");
1803 seq_printf(s, "CHANNEL:\tSTATE:\n");
1804 seq_printf(s, "--------\t------\n");
1805 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1806 seq_printf(s, "%s\t\t%s\n", chan->name,
1807 pl08x_state_str(chan->state));
1810 return 0;
1813 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1815 return single_open(file, pl08x_debugfs_show, inode->i_private);
1818 static const struct file_operations pl08x_debugfs_operations = {
1819 .open = pl08x_debugfs_open,
1820 .read = seq_read,
1821 .llseek = seq_lseek,
1822 .release = single_release,
1825 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1827 /* Expose a simple debugfs interface to view all clocks */
1828 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1829 NULL, pl08x,
1830 &pl08x_debugfs_operations);
1833 #else
1834 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1837 #endif
1839 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1841 struct pl08x_driver_data *pl08x;
1842 const struct vendor_data *vd = id->data;
1843 int ret = 0;
1844 int i;
1846 ret = amba_request_regions(adev, NULL);
1847 if (ret)
1848 return ret;
1850 /* Create the driver state holder */
1851 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1852 if (!pl08x) {
1853 ret = -ENOMEM;
1854 goto out_no_pl08x;
1857 /* Initialize memcpy engine */
1858 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1859 pl08x->memcpy.dev = &adev->dev;
1860 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1861 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1862 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1863 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1864 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1865 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1866 pl08x->memcpy.device_control = pl08x_control;
1868 /* Initialize slave engine */
1869 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1870 pl08x->slave.dev = &adev->dev;
1871 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1873 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1874 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1875 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1876 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1877 pl08x->slave.device_control = pl08x_control;
1879 /* Get the platform data */
1880 pl08x->pd = dev_get_platdata(&adev->dev);
1881 if (!pl08x->pd) {
1882 dev_err(&adev->dev, "no platform data supplied\n");
1883 goto out_no_platdata;
1886 /* Assign useful pointers to the driver state */
1887 pl08x->adev = adev;
1888 pl08x->vd = vd;
1890 /* By default, AHB1 only. If dualmaster, from platform */
1891 pl08x->lli_buses = PL08X_AHB1;
1892 pl08x->mem_buses = PL08X_AHB1;
1893 if (pl08x->vd->dualmaster) {
1894 pl08x->lli_buses = pl08x->pd->lli_buses;
1895 pl08x->mem_buses = pl08x->pd->mem_buses;
1898 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1899 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1900 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1901 if (!pl08x->pool) {
1902 ret = -ENOMEM;
1903 goto out_no_lli_pool;
1906 spin_lock_init(&pl08x->lock);
1908 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1909 if (!pl08x->base) {
1910 ret = -ENOMEM;
1911 goto out_no_ioremap;
1914 /* Turn on the PL08x */
1915 pl08x_ensure_on(pl08x);
1917 /* Attach the interrupt handler */
1918 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1919 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1921 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1922 DRIVER_NAME, pl08x);
1923 if (ret) {
1924 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1925 __func__, adev->irq[0]);
1926 goto out_no_irq;
1929 /* Initialize physical channels */
1930 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1931 GFP_KERNEL);
1932 if (!pl08x->phy_chans) {
1933 dev_err(&adev->dev, "%s failed to allocate "
1934 "physical channel holders\n",
1935 __func__);
1936 goto out_no_phychans;
1939 for (i = 0; i < vd->channels; i++) {
1940 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1942 ch->id = i;
1943 ch->base = pl08x->base + PL080_Cx_BASE(i);
1944 spin_lock_init(&ch->lock);
1945 ch->serving = NULL;
1946 ch->signal = -1;
1947 dev_info(&adev->dev,
1948 "physical channel %d is %s\n", i,
1949 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1952 /* Register as many memcpy channels as there are physical channels */
1953 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1954 pl08x->vd->channels, false);
1955 if (ret <= 0) {
1956 dev_warn(&pl08x->adev->dev,
1957 "%s failed to enumerate memcpy channels - %d\n",
1958 __func__, ret);
1959 goto out_no_memcpy;
1961 pl08x->memcpy.chancnt = ret;
1963 /* Register slave channels */
1964 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1965 pl08x->pd->num_slave_channels,
1966 true);
1967 if (ret <= 0) {
1968 dev_warn(&pl08x->adev->dev,
1969 "%s failed to enumerate slave channels - %d\n",
1970 __func__, ret);
1971 goto out_no_slave;
1973 pl08x->slave.chancnt = ret;
1975 ret = dma_async_device_register(&pl08x->memcpy);
1976 if (ret) {
1977 dev_warn(&pl08x->adev->dev,
1978 "%s failed to register memcpy as an async device - %d\n",
1979 __func__, ret);
1980 goto out_no_memcpy_reg;
1983 ret = dma_async_device_register(&pl08x->slave);
1984 if (ret) {
1985 dev_warn(&pl08x->adev->dev,
1986 "%s failed to register slave as an async device - %d\n",
1987 __func__, ret);
1988 goto out_no_slave_reg;
1991 amba_set_drvdata(adev, pl08x);
1992 init_pl08x_debugfs(pl08x);
1993 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1994 amba_part(adev), amba_rev(adev),
1995 (unsigned long long)adev->res.start, adev->irq[0]);
1996 return 0;
1998 out_no_slave_reg:
1999 dma_async_device_unregister(&pl08x->memcpy);
2000 out_no_memcpy_reg:
2001 pl08x_free_virtual_channels(&pl08x->slave);
2002 out_no_slave:
2003 pl08x_free_virtual_channels(&pl08x->memcpy);
2004 out_no_memcpy:
2005 kfree(pl08x->phy_chans);
2006 out_no_phychans:
2007 free_irq(adev->irq[0], pl08x);
2008 out_no_irq:
2009 iounmap(pl08x->base);
2010 out_no_ioremap:
2011 dma_pool_destroy(pl08x->pool);
2012 out_no_lli_pool:
2013 out_no_platdata:
2014 kfree(pl08x);
2015 out_no_pl08x:
2016 amba_release_regions(adev);
2017 return ret;
2020 /* PL080 has 8 channels and the PL080 have just 2 */
2021 static struct vendor_data vendor_pl080 = {
2022 .channels = 8,
2023 .dualmaster = true,
2026 static struct vendor_data vendor_pl081 = {
2027 .channels = 2,
2028 .dualmaster = false,
2031 static struct amba_id pl08x_ids[] = {
2032 /* PL080 */
2034 .id = 0x00041080,
2035 .mask = 0x000fffff,
2036 .data = &vendor_pl080,
2038 /* PL081 */
2040 .id = 0x00041081,
2041 .mask = 0x000fffff,
2042 .data = &vendor_pl081,
2044 /* Nomadik 8815 PL080 variant */
2046 .id = 0x00280880,
2047 .mask = 0x00ffffff,
2048 .data = &vendor_pl080,
2050 { 0, 0 },
2053 static struct amba_driver pl08x_amba_driver = {
2054 .drv.name = DRIVER_NAME,
2055 .id_table = pl08x_ids,
2056 .probe = pl08x_probe,
2059 static int __init pl08x_init(void)
2061 int retval;
2062 retval = amba_driver_register(&pl08x_amba_driver);
2063 if (retval)
2064 printk(KERN_WARNING DRIVER_NAME
2065 "failed to register as an AMBA device (%d)\n",
2066 retval);
2067 return retval;
2069 subsys_initcall(pl08x_init);