Merge branch 'wakeup-etc-rafael' into release
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / mbcache.c
blob93444747237b98c03d5192870bd9740311da93f7
1 /*
2 * linux/fs/mbcache.c
3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4 */
6 /*
7 * Filesystem Meta Information Block Cache (mbcache)
9 * The mbcache caches blocks of block devices that need to be located
10 * by their device/block number, as well as by other criteria (such
11 * as the block's contents).
13 * There can only be one cache entry in a cache per device and block number.
14 * Additional indexes need not be unique in this sense. The number of
15 * additional indexes (=other criteria) can be hardwired at compile time
16 * or specified at cache create time.
18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19 * in the cache. A valid entry is in the main hash tables of the cache,
20 * and may also be in the lru list. An invalid entry is not in any hashes
21 * or lists.
23 * A valid cache entry is only in the lru list if no handles refer to it.
24 * Invalid cache entries will be freed when the last handle to the cache
25 * entry is released. Entries that cannot be freed immediately are put
26 * back on the lru list.
29 #include <linux/kernel.h>
30 #include <linux/module.h>
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 printk(KERN_DEBUG f); \
44 printk("\n"); \
45 } while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 printk(KERN_ERR "assertion " #c " failed\n"); \
48 } while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 printk(KERN_ERR f); \
55 printk("\n"); \
56 } while(0)
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
79 struct mb_cache {
80 struct list_head c_cache_list;
81 const char *c_name;
82 atomic_t c_entry_count;
83 int c_max_entries;
84 int c_bucket_bits;
85 struct kmem_cache *c_entry_cache;
86 struct list_head *c_block_hash;
87 struct list_head *c_index_hash;
92 * Global data: list of all mbcache's, lru list, and a spinlock for
93 * accessing cache data structures on SMP machines. The lru list is
94 * global across all mbcaches.
97 static LIST_HEAD(mb_cache_list);
98 static LIST_HEAD(mb_cache_lru_list);
99 static DEFINE_SPINLOCK(mb_cache_spinlock);
102 * What the mbcache registers as to get shrunk dynamically.
105 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask);
107 static struct shrinker mb_cache_shrinker = {
108 .shrink = mb_cache_shrink_fn,
109 .seeks = DEFAULT_SEEKS,
112 static inline int
113 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
115 return !list_empty(&ce->e_block_list);
119 static void
120 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
122 if (__mb_cache_entry_is_hashed(ce)) {
123 list_del_init(&ce->e_block_list);
124 list_del(&ce->e_index.o_list);
129 static void
130 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
132 struct mb_cache *cache = ce->e_cache;
134 mb_assert(!(ce->e_used || ce->e_queued));
135 kmem_cache_free(cache->c_entry_cache, ce);
136 atomic_dec(&cache->c_entry_count);
140 static void
141 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
142 __releases(mb_cache_spinlock)
144 /* Wake up all processes queuing for this cache entry. */
145 if (ce->e_queued)
146 wake_up_all(&mb_cache_queue);
147 if (ce->e_used >= MB_CACHE_WRITER)
148 ce->e_used -= MB_CACHE_WRITER;
149 ce->e_used--;
150 if (!(ce->e_used || ce->e_queued)) {
151 if (!__mb_cache_entry_is_hashed(ce))
152 goto forget;
153 mb_assert(list_empty(&ce->e_lru_list));
154 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
156 spin_unlock(&mb_cache_spinlock);
157 return;
158 forget:
159 spin_unlock(&mb_cache_spinlock);
160 __mb_cache_entry_forget(ce, GFP_KERNEL);
165 * mb_cache_shrink_fn() memory pressure callback
167 * This function is called by the kernel memory management when memory
168 * gets low.
170 * @shrink: (ignored)
171 * @nr_to_scan: Number of objects to scan
172 * @gfp_mask: (ignored)
174 * Returns the number of objects which are present in the cache.
176 static int
177 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
179 LIST_HEAD(free_list);
180 struct mb_cache *cache;
181 struct mb_cache_entry *entry, *tmp;
182 int count = 0;
184 mb_debug("trying to free %d entries", nr_to_scan);
185 spin_lock(&mb_cache_spinlock);
186 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
187 struct mb_cache_entry *ce =
188 list_entry(mb_cache_lru_list.next,
189 struct mb_cache_entry, e_lru_list);
190 list_move_tail(&ce->e_lru_list, &free_list);
191 __mb_cache_entry_unhash(ce);
193 list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
194 mb_debug("cache %s (%d)", cache->c_name,
195 atomic_read(&cache->c_entry_count));
196 count += atomic_read(&cache->c_entry_count);
198 spin_unlock(&mb_cache_spinlock);
199 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
200 __mb_cache_entry_forget(entry, gfp_mask);
202 return (count / 100) * sysctl_vfs_cache_pressure;
207 * mb_cache_create() create a new cache
209 * All entries in one cache are equal size. Cache entries may be from
210 * multiple devices. If this is the first mbcache created, registers
211 * the cache with kernel memory management. Returns NULL if no more
212 * memory was available.
214 * @name: name of the cache (informal)
215 * @bucket_bits: log2(number of hash buckets)
217 struct mb_cache *
218 mb_cache_create(const char *name, int bucket_bits)
220 int n, bucket_count = 1 << bucket_bits;
221 struct mb_cache *cache = NULL;
223 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
224 if (!cache)
225 return NULL;
226 cache->c_name = name;
227 atomic_set(&cache->c_entry_count, 0);
228 cache->c_bucket_bits = bucket_bits;
229 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
230 GFP_KERNEL);
231 if (!cache->c_block_hash)
232 goto fail;
233 for (n=0; n<bucket_count; n++)
234 INIT_LIST_HEAD(&cache->c_block_hash[n]);
235 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
236 GFP_KERNEL);
237 if (!cache->c_index_hash)
238 goto fail;
239 for (n=0; n<bucket_count; n++)
240 INIT_LIST_HEAD(&cache->c_index_hash[n]);
241 cache->c_entry_cache = kmem_cache_create(name,
242 sizeof(struct mb_cache_entry), 0,
243 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
244 if (!cache->c_entry_cache)
245 goto fail2;
248 * Set an upper limit on the number of cache entries so that the hash
249 * chains won't grow too long.
251 cache->c_max_entries = bucket_count << 4;
253 spin_lock(&mb_cache_spinlock);
254 list_add(&cache->c_cache_list, &mb_cache_list);
255 spin_unlock(&mb_cache_spinlock);
256 return cache;
258 fail2:
259 kfree(cache->c_index_hash);
261 fail:
262 kfree(cache->c_block_hash);
263 kfree(cache);
264 return NULL;
269 * mb_cache_shrink()
271 * Removes all cache entries of a device from the cache. All cache entries
272 * currently in use cannot be freed, and thus remain in the cache. All others
273 * are freed.
275 * @bdev: which device's cache entries to shrink
277 void
278 mb_cache_shrink(struct block_device *bdev)
280 LIST_HEAD(free_list);
281 struct list_head *l, *ltmp;
283 spin_lock(&mb_cache_spinlock);
284 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
285 struct mb_cache_entry *ce =
286 list_entry(l, struct mb_cache_entry, e_lru_list);
287 if (ce->e_bdev == bdev) {
288 list_move_tail(&ce->e_lru_list, &free_list);
289 __mb_cache_entry_unhash(ce);
292 spin_unlock(&mb_cache_spinlock);
293 list_for_each_safe(l, ltmp, &free_list) {
294 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
295 e_lru_list), GFP_KERNEL);
301 * mb_cache_destroy()
303 * Shrinks the cache to its minimum possible size (hopefully 0 entries),
304 * and then destroys it. If this was the last mbcache, un-registers the
305 * mbcache from kernel memory management.
307 void
308 mb_cache_destroy(struct mb_cache *cache)
310 LIST_HEAD(free_list);
311 struct list_head *l, *ltmp;
313 spin_lock(&mb_cache_spinlock);
314 list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
315 struct mb_cache_entry *ce =
316 list_entry(l, struct mb_cache_entry, e_lru_list);
317 if (ce->e_cache == cache) {
318 list_move_tail(&ce->e_lru_list, &free_list);
319 __mb_cache_entry_unhash(ce);
322 list_del(&cache->c_cache_list);
323 spin_unlock(&mb_cache_spinlock);
325 list_for_each_safe(l, ltmp, &free_list) {
326 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
327 e_lru_list), GFP_KERNEL);
330 if (atomic_read(&cache->c_entry_count) > 0) {
331 mb_error("cache %s: %d orphaned entries",
332 cache->c_name,
333 atomic_read(&cache->c_entry_count));
336 kmem_cache_destroy(cache->c_entry_cache);
338 kfree(cache->c_index_hash);
339 kfree(cache->c_block_hash);
340 kfree(cache);
344 * mb_cache_entry_alloc()
346 * Allocates a new cache entry. The new entry will not be valid initially,
347 * and thus cannot be looked up yet. It should be filled with data, and
348 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
349 * if no more memory was available.
351 struct mb_cache_entry *
352 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
354 struct mb_cache_entry *ce = NULL;
356 if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
357 spin_lock(&mb_cache_spinlock);
358 if (!list_empty(&mb_cache_lru_list)) {
359 ce = list_entry(mb_cache_lru_list.next,
360 struct mb_cache_entry, e_lru_list);
361 list_del_init(&ce->e_lru_list);
362 __mb_cache_entry_unhash(ce);
364 spin_unlock(&mb_cache_spinlock);
366 if (!ce) {
367 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
368 if (!ce)
369 return NULL;
370 atomic_inc(&cache->c_entry_count);
371 INIT_LIST_HEAD(&ce->e_lru_list);
372 INIT_LIST_HEAD(&ce->e_block_list);
373 ce->e_cache = cache;
374 ce->e_queued = 0;
376 ce->e_used = 1 + MB_CACHE_WRITER;
377 return ce;
382 * mb_cache_entry_insert()
384 * Inserts an entry that was allocated using mb_cache_entry_alloc() into
385 * the cache. After this, the cache entry can be looked up, but is not yet
386 * in the lru list as the caller still holds a handle to it. Returns 0 on
387 * success, or -EBUSY if a cache entry for that device + inode exists
388 * already (this may happen after a failed lookup, but when another process
389 * has inserted the same cache entry in the meantime).
391 * @bdev: device the cache entry belongs to
392 * @block: block number
393 * @key: lookup key
396 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
397 sector_t block, unsigned int key)
399 struct mb_cache *cache = ce->e_cache;
400 unsigned int bucket;
401 struct list_head *l;
402 int error = -EBUSY;
404 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
405 cache->c_bucket_bits);
406 spin_lock(&mb_cache_spinlock);
407 list_for_each_prev(l, &cache->c_block_hash[bucket]) {
408 struct mb_cache_entry *ce =
409 list_entry(l, struct mb_cache_entry, e_block_list);
410 if (ce->e_bdev == bdev && ce->e_block == block)
411 goto out;
413 __mb_cache_entry_unhash(ce);
414 ce->e_bdev = bdev;
415 ce->e_block = block;
416 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
417 ce->e_index.o_key = key;
418 bucket = hash_long(key, cache->c_bucket_bits);
419 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
420 error = 0;
421 out:
422 spin_unlock(&mb_cache_spinlock);
423 return error;
428 * mb_cache_entry_release()
430 * Release a handle to a cache entry. When the last handle to a cache entry
431 * is released it is either freed (if it is invalid) or otherwise inserted
432 * in to the lru list.
434 void
435 mb_cache_entry_release(struct mb_cache_entry *ce)
437 spin_lock(&mb_cache_spinlock);
438 __mb_cache_entry_release_unlock(ce);
443 * mb_cache_entry_free()
445 * This is equivalent to the sequence mb_cache_entry_takeout() --
446 * mb_cache_entry_release().
448 void
449 mb_cache_entry_free(struct mb_cache_entry *ce)
451 spin_lock(&mb_cache_spinlock);
452 mb_assert(list_empty(&ce->e_lru_list));
453 __mb_cache_entry_unhash(ce);
454 __mb_cache_entry_release_unlock(ce);
459 * mb_cache_entry_get()
461 * Get a cache entry by device / block number. (There can only be one entry
462 * in the cache per device and block.) Returns NULL if no such cache entry
463 * exists. The returned cache entry is locked for exclusive access ("single
464 * writer").
466 struct mb_cache_entry *
467 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
468 sector_t block)
470 unsigned int bucket;
471 struct list_head *l;
472 struct mb_cache_entry *ce;
474 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
475 cache->c_bucket_bits);
476 spin_lock(&mb_cache_spinlock);
477 list_for_each(l, &cache->c_block_hash[bucket]) {
478 ce = list_entry(l, struct mb_cache_entry, e_block_list);
479 if (ce->e_bdev == bdev && ce->e_block == block) {
480 DEFINE_WAIT(wait);
482 if (!list_empty(&ce->e_lru_list))
483 list_del_init(&ce->e_lru_list);
485 while (ce->e_used > 0) {
486 ce->e_queued++;
487 prepare_to_wait(&mb_cache_queue, &wait,
488 TASK_UNINTERRUPTIBLE);
489 spin_unlock(&mb_cache_spinlock);
490 schedule();
491 spin_lock(&mb_cache_spinlock);
492 ce->e_queued--;
494 finish_wait(&mb_cache_queue, &wait);
495 ce->e_used += 1 + MB_CACHE_WRITER;
497 if (!__mb_cache_entry_is_hashed(ce)) {
498 __mb_cache_entry_release_unlock(ce);
499 return NULL;
501 goto cleanup;
504 ce = NULL;
506 cleanup:
507 spin_unlock(&mb_cache_spinlock);
508 return ce;
511 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
513 static struct mb_cache_entry *
514 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
515 struct block_device *bdev, unsigned int key)
517 while (l != head) {
518 struct mb_cache_entry *ce =
519 list_entry(l, struct mb_cache_entry, e_index.o_list);
520 if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
521 DEFINE_WAIT(wait);
523 if (!list_empty(&ce->e_lru_list))
524 list_del_init(&ce->e_lru_list);
526 /* Incrementing before holding the lock gives readers
527 priority over writers. */
528 ce->e_used++;
529 while (ce->e_used >= MB_CACHE_WRITER) {
530 ce->e_queued++;
531 prepare_to_wait(&mb_cache_queue, &wait,
532 TASK_UNINTERRUPTIBLE);
533 spin_unlock(&mb_cache_spinlock);
534 schedule();
535 spin_lock(&mb_cache_spinlock);
536 ce->e_queued--;
538 finish_wait(&mb_cache_queue, &wait);
540 if (!__mb_cache_entry_is_hashed(ce)) {
541 __mb_cache_entry_release_unlock(ce);
542 spin_lock(&mb_cache_spinlock);
543 return ERR_PTR(-EAGAIN);
545 return ce;
547 l = l->next;
549 return NULL;
554 * mb_cache_entry_find_first()
556 * Find the first cache entry on a given device with a certain key in
557 * an additional index. Additonal matches can be found with
558 * mb_cache_entry_find_next(). Returns NULL if no match was found. The
559 * returned cache entry is locked for shared access ("multiple readers").
561 * @cache: the cache to search
562 * @bdev: the device the cache entry should belong to
563 * @key: the key in the index
565 struct mb_cache_entry *
566 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
567 unsigned int key)
569 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
570 struct list_head *l;
571 struct mb_cache_entry *ce;
573 spin_lock(&mb_cache_spinlock);
574 l = cache->c_index_hash[bucket].next;
575 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
576 spin_unlock(&mb_cache_spinlock);
577 return ce;
582 * mb_cache_entry_find_next()
584 * Find the next cache entry on a given device with a certain key in an
585 * additional index. Returns NULL if no match could be found. The previous
586 * entry is atomatically released, so that mb_cache_entry_find_next() can
587 * be called like this:
589 * entry = mb_cache_entry_find_first();
590 * while (entry) {
591 * ...
592 * entry = mb_cache_entry_find_next(entry, ...);
595 * @prev: The previous match
596 * @bdev: the device the cache entry should belong to
597 * @key: the key in the index
599 struct mb_cache_entry *
600 mb_cache_entry_find_next(struct mb_cache_entry *prev,
601 struct block_device *bdev, unsigned int key)
603 struct mb_cache *cache = prev->e_cache;
604 unsigned int bucket = hash_long(key, cache->c_bucket_bits);
605 struct list_head *l;
606 struct mb_cache_entry *ce;
608 spin_lock(&mb_cache_spinlock);
609 l = prev->e_index.o_list.next;
610 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
611 __mb_cache_entry_release_unlock(prev);
612 return ce;
615 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
617 static int __init init_mbcache(void)
619 register_shrinker(&mb_cache_shrinker);
620 return 0;
623 static void __exit exit_mbcache(void)
625 unregister_shrinker(&mb_cache_shrinker);
628 module_init(init_mbcache)
629 module_exit(exit_mbcache)