USB: misc: iowarrior: clean up urb->status usage
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob43cb3b3e1679ca4d9574f4a9d333f92b913bfb63
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 32,
84 #endif
85 32,
88 EXPORT_SYMBOL(totalram_pages);
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 "DMA32",
96 #endif
97 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 "HighMem",
100 #endif
101 "Movable",
104 int min_free_kbytes = 1024;
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121 #else
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125 #else
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
128 #endif
129 #endif
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore;
140 unsigned long __initdata required_movablecore;
141 unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144 int movable_zone;
145 EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
148 #if MAX_NUMNODES > 1
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
151 #endif
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
156 int ret = 0;
157 unsigned seq;
158 unsigned long pfn = page_to_pfn(page);
160 do {
161 seq = zone_span_seqbegin(zone);
162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 ret = 1;
164 else if (pfn < zone->zone_start_pfn)
165 ret = 1;
166 } while (zone_span_seqretry(zone, seq));
168 return ret;
171 static int page_is_consistent(struct zone *zone, struct page *page)
173 if (!pfn_valid_within(page_to_pfn(page)))
174 return 0;
175 if (zone != page_zone(page))
176 return 0;
178 return 1;
181 * Temporary debugging check for pages not lying within a given zone.
183 static int bad_range(struct zone *zone, struct page *page)
185 if (page_outside_zone_boundaries(zone, page))
186 return 1;
187 if (!page_is_consistent(zone, page))
188 return 1;
190 return 0;
192 #else
193 static inline int bad_range(struct zone *zone, struct page *page)
195 return 0;
197 #endif
199 static void bad_page(struct page *page)
201 printk(KERN_EMERG "Bad page state in process '%s'\n"
202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG "Backtrace:\n",
205 current->comm, page, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page->flags, page->mapping,
207 page_mapcount(page), page_count(page));
208 dump_stack();
209 page->flags &= ~(1 << PG_lru |
210 1 << PG_private |
211 1 << PG_locked |
212 1 << PG_active |
213 1 << PG_dirty |
214 1 << PG_reclaim |
215 1 << PG_slab |
216 1 << PG_swapcache |
217 1 << PG_writeback |
218 1 << PG_buddy );
219 set_page_count(page, 0);
220 reset_page_mapcount(page);
221 page->mapping = NULL;
222 add_taint(TAINT_BAD_PAGE);
226 * Higher-order pages are called "compound pages". They are structured thusly:
228 * The first PAGE_SIZE page is called the "head page".
230 * The remaining PAGE_SIZE pages are called "tail pages".
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
240 static void free_compound_page(struct page *page)
242 __free_pages_ok(page, compound_order(page));
245 static void prep_compound_page(struct page *page, unsigned long order)
247 int i;
248 int nr_pages = 1 << order;
250 set_compound_page_dtor(page, free_compound_page);
251 set_compound_order(page, order);
252 __SetPageHead(page);
253 for (i = 1; i < nr_pages; i++) {
254 struct page *p = page + i;
256 __SetPageTail(p);
257 p->first_page = page;
261 static void destroy_compound_page(struct page *page, unsigned long order)
263 int i;
264 int nr_pages = 1 << order;
266 if (unlikely(compound_order(page) != order))
267 bad_page(page);
269 if (unlikely(!PageHead(page)))
270 bad_page(page);
271 __ClearPageHead(page);
272 for (i = 1; i < nr_pages; i++) {
273 struct page *p = page + i;
275 if (unlikely(!PageTail(p) |
276 (p->first_page != page)))
277 bad_page(page);
278 __ClearPageTail(p);
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
284 int i;
286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 for (i = 0; i < (1 << order); i++)
293 clear_highpage(page + i);
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
301 static inline unsigned long page_order(struct page *page)
303 return page_private(page);
306 static inline void set_page_order(struct page *page, int order)
308 set_page_private(page, order);
309 __SetPageBuddy(page);
312 static inline void rmv_page_order(struct page *page)
314 __ClearPageBuddy(page);
315 set_page_private(page, 0);
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
324 * B2 = B1 ^ (1 << O)
325 * For example, if the starting buddy (buddy2) is #8 its order
326 * 1 buddy is #10:
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
331 * P = B & ~(1 << O)
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
338 unsigned long buddy_idx = page_idx ^ (1 << order);
340 return page + (buddy_idx - page_idx);
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
346 return (page_idx & ~(1 << order));
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
360 * For recording page's order, we use page_private(page).
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
363 int order)
365 if (!pfn_valid_within(page_to_pfn(buddy)))
366 return 0;
368 if (page_zone_id(page) != page_zone_id(buddy))
369 return 0;
371 if (PageBuddy(buddy) && page_order(buddy) == order) {
372 BUG_ON(page_count(buddy) != 0);
373 return 1;
375 return 0;
379 * Freeing function for a buddy system allocator.
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
399 * -- wli
402 static inline void __free_one_page(struct page *page,
403 struct zone *zone, unsigned int order)
405 unsigned long page_idx;
406 int order_size = 1 << order;
408 if (unlikely(PageCompound(page)))
409 destroy_compound_page(page, order);
411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
413 VM_BUG_ON(page_idx & (order_size - 1));
414 VM_BUG_ON(bad_range(zone, page));
416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 while (order < MAX_ORDER-1) {
418 unsigned long combined_idx;
419 struct free_area *area;
420 struct page *buddy;
422 buddy = __page_find_buddy(page, page_idx, order);
423 if (!page_is_buddy(page, buddy, order))
424 break; /* Move the buddy up one level. */
426 list_del(&buddy->lru);
427 area = zone->free_area + order;
428 area->nr_free--;
429 rmv_page_order(buddy);
430 combined_idx = __find_combined_index(page_idx, order);
431 page = page + (combined_idx - page_idx);
432 page_idx = combined_idx;
433 order++;
435 set_page_order(page, order);
436 list_add(&page->lru, &zone->free_area[order].free_list);
437 zone->free_area[order].nr_free++;
440 static inline int free_pages_check(struct page *page)
442 if (unlikely(page_mapcount(page) |
443 (page->mapping != NULL) |
444 (page_count(page) != 0) |
445 (page->flags & (
446 1 << PG_lru |
447 1 << PG_private |
448 1 << PG_locked |
449 1 << PG_active |
450 1 << PG_slab |
451 1 << PG_swapcache |
452 1 << PG_writeback |
453 1 << PG_reserved |
454 1 << PG_buddy ))))
455 bad_page(page);
456 if (PageDirty(page))
457 __ClearPageDirty(page);
459 * For now, we report if PG_reserved was found set, but do not
460 * clear it, and do not free the page. But we shall soon need
461 * to do more, for when the ZERO_PAGE count wraps negative.
463 return PageReserved(page);
467 * Frees a list of pages.
468 * Assumes all pages on list are in same zone, and of same order.
469 * count is the number of pages to free.
471 * If the zone was previously in an "all pages pinned" state then look to
472 * see if this freeing clears that state.
474 * And clear the zone's pages_scanned counter, to hold off the "all pages are
475 * pinned" detection logic.
477 static void free_pages_bulk(struct zone *zone, int count,
478 struct list_head *list, int order)
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 while (count--) {
484 struct page *page;
486 VM_BUG_ON(list_empty(list));
487 page = list_entry(list->prev, struct page, lru);
488 /* have to delete it as __free_one_page list manipulates */
489 list_del(&page->lru);
490 __free_one_page(page, zone, order);
492 spin_unlock(&zone->lock);
495 static void free_one_page(struct zone *zone, struct page *page, int order)
497 spin_lock(&zone->lock);
498 zone->all_unreclaimable = 0;
499 zone->pages_scanned = 0;
500 __free_one_page(page, zone, order);
501 spin_unlock(&zone->lock);
504 static void __free_pages_ok(struct page *page, unsigned int order)
506 unsigned long flags;
507 int i;
508 int reserved = 0;
510 for (i = 0 ; i < (1 << order) ; ++i)
511 reserved += free_pages_check(page + i);
512 if (reserved)
513 return;
515 if (!PageHighMem(page))
516 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
517 arch_free_page(page, order);
518 kernel_map_pages(page, 1 << order, 0);
520 local_irq_save(flags);
521 __count_vm_events(PGFREE, 1 << order);
522 free_one_page(page_zone(page), page, order);
523 local_irq_restore(flags);
527 * permit the bootmem allocator to evade page validation on high-order frees
529 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
531 if (order == 0) {
532 __ClearPageReserved(page);
533 set_page_count(page, 0);
534 set_page_refcounted(page);
535 __free_page(page);
536 } else {
537 int loop;
539 prefetchw(page);
540 for (loop = 0; loop < BITS_PER_LONG; loop++) {
541 struct page *p = &page[loop];
543 if (loop + 1 < BITS_PER_LONG)
544 prefetchw(p + 1);
545 __ClearPageReserved(p);
546 set_page_count(p, 0);
549 set_page_refcounted(page);
550 __free_pages(page, order);
556 * The order of subdivision here is critical for the IO subsystem.
557 * Please do not alter this order without good reasons and regression
558 * testing. Specifically, as large blocks of memory are subdivided,
559 * the order in which smaller blocks are delivered depends on the order
560 * they're subdivided in this function. This is the primary factor
561 * influencing the order in which pages are delivered to the IO
562 * subsystem according to empirical testing, and this is also justified
563 * by considering the behavior of a buddy system containing a single
564 * large block of memory acted on by a series of small allocations.
565 * This behavior is a critical factor in sglist merging's success.
567 * -- wli
569 static inline void expand(struct zone *zone, struct page *page,
570 int low, int high, struct free_area *area)
572 unsigned long size = 1 << high;
574 while (high > low) {
575 area--;
576 high--;
577 size >>= 1;
578 VM_BUG_ON(bad_range(zone, &page[size]));
579 list_add(&page[size].lru, &area->free_list);
580 area->nr_free++;
581 set_page_order(&page[size], high);
586 * This page is about to be returned from the page allocator
588 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
590 if (unlikely(page_mapcount(page) |
591 (page->mapping != NULL) |
592 (page_count(page) != 0) |
593 (page->flags & (
594 1 << PG_lru |
595 1 << PG_private |
596 1 << PG_locked |
597 1 << PG_active |
598 1 << PG_dirty |
599 1 << PG_slab |
600 1 << PG_swapcache |
601 1 << PG_writeback |
602 1 << PG_reserved |
603 1 << PG_buddy ))))
604 bad_page(page);
607 * For now, we report if PG_reserved was found set, but do not
608 * clear it, and do not allocate the page: as a safety net.
610 if (PageReserved(page))
611 return 1;
613 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
614 1 << PG_referenced | 1 << PG_arch_1 |
615 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
616 set_page_private(page, 0);
617 set_page_refcounted(page);
619 arch_alloc_page(page, order);
620 kernel_map_pages(page, 1 << order, 1);
622 if (gfp_flags & __GFP_ZERO)
623 prep_zero_page(page, order, gfp_flags);
625 if (order && (gfp_flags & __GFP_COMP))
626 prep_compound_page(page, order);
628 return 0;
632 * Do the hard work of removing an element from the buddy allocator.
633 * Call me with the zone->lock already held.
635 static struct page *__rmqueue(struct zone *zone, unsigned int order)
637 struct free_area * area;
638 unsigned int current_order;
639 struct page *page;
641 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 area = zone->free_area + current_order;
643 if (list_empty(&area->free_list))
644 continue;
646 page = list_entry(area->free_list.next, struct page, lru);
647 list_del(&page->lru);
648 rmv_page_order(page);
649 area->nr_free--;
650 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
651 expand(zone, page, order, current_order, area);
652 return page;
655 return NULL;
659 * Obtain a specified number of elements from the buddy allocator, all under
660 * a single hold of the lock, for efficiency. Add them to the supplied list.
661 * Returns the number of new pages which were placed at *list.
663 static int rmqueue_bulk(struct zone *zone, unsigned int order,
664 unsigned long count, struct list_head *list)
666 int i;
668 spin_lock(&zone->lock);
669 for (i = 0; i < count; ++i) {
670 struct page *page = __rmqueue(zone, order);
671 if (unlikely(page == NULL))
672 break;
673 list_add_tail(&page->lru, list);
675 spin_unlock(&zone->lock);
676 return i;
679 #ifdef CONFIG_NUMA
681 * Called from the vmstat counter updater to drain pagesets of this
682 * currently executing processor on remote nodes after they have
683 * expired.
685 * Note that this function must be called with the thread pinned to
686 * a single processor.
688 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
690 unsigned long flags;
691 int to_drain;
693 local_irq_save(flags);
694 if (pcp->count >= pcp->batch)
695 to_drain = pcp->batch;
696 else
697 to_drain = pcp->count;
698 free_pages_bulk(zone, to_drain, &pcp->list, 0);
699 pcp->count -= to_drain;
700 local_irq_restore(flags);
702 #endif
704 static void __drain_pages(unsigned int cpu)
706 unsigned long flags;
707 struct zone *zone;
708 int i;
710 for_each_zone(zone) {
711 struct per_cpu_pageset *pset;
713 if (!populated_zone(zone))
714 continue;
716 pset = zone_pcp(zone, cpu);
717 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
718 struct per_cpu_pages *pcp;
720 pcp = &pset->pcp[i];
721 local_irq_save(flags);
722 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
723 pcp->count = 0;
724 local_irq_restore(flags);
729 #ifdef CONFIG_PM
731 void mark_free_pages(struct zone *zone)
733 unsigned long pfn, max_zone_pfn;
734 unsigned long flags;
735 int order;
736 struct list_head *curr;
738 if (!zone->spanned_pages)
739 return;
741 spin_lock_irqsave(&zone->lock, flags);
743 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
744 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
745 if (pfn_valid(pfn)) {
746 struct page *page = pfn_to_page(pfn);
748 if (!swsusp_page_is_forbidden(page))
749 swsusp_unset_page_free(page);
752 for (order = MAX_ORDER - 1; order >= 0; --order)
753 list_for_each(curr, &zone->free_area[order].free_list) {
754 unsigned long i;
756 pfn = page_to_pfn(list_entry(curr, struct page, lru));
757 for (i = 0; i < (1UL << order); i++)
758 swsusp_set_page_free(pfn_to_page(pfn + i));
761 spin_unlock_irqrestore(&zone->lock, flags);
765 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
767 void drain_local_pages(void)
769 unsigned long flags;
771 local_irq_save(flags);
772 __drain_pages(smp_processor_id());
773 local_irq_restore(flags);
775 #endif /* CONFIG_PM */
778 * Free a 0-order page
780 static void fastcall free_hot_cold_page(struct page *page, int cold)
782 struct zone *zone = page_zone(page);
783 struct per_cpu_pages *pcp;
784 unsigned long flags;
786 if (PageAnon(page))
787 page->mapping = NULL;
788 if (free_pages_check(page))
789 return;
791 if (!PageHighMem(page))
792 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
793 arch_free_page(page, 0);
794 kernel_map_pages(page, 1, 0);
796 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
797 local_irq_save(flags);
798 __count_vm_event(PGFREE);
799 list_add(&page->lru, &pcp->list);
800 pcp->count++;
801 if (pcp->count >= pcp->high) {
802 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
803 pcp->count -= pcp->batch;
805 local_irq_restore(flags);
806 put_cpu();
809 void fastcall free_hot_page(struct page *page)
811 free_hot_cold_page(page, 0);
814 void fastcall free_cold_page(struct page *page)
816 free_hot_cold_page(page, 1);
820 * split_page takes a non-compound higher-order page, and splits it into
821 * n (1<<order) sub-pages: page[0..n]
822 * Each sub-page must be freed individually.
824 * Note: this is probably too low level an operation for use in drivers.
825 * Please consult with lkml before using this in your driver.
827 void split_page(struct page *page, unsigned int order)
829 int i;
831 VM_BUG_ON(PageCompound(page));
832 VM_BUG_ON(!page_count(page));
833 for (i = 1; i < (1 << order); i++)
834 set_page_refcounted(page + i);
838 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
839 * we cheat by calling it from here, in the order > 0 path. Saves a branch
840 * or two.
842 static struct page *buffered_rmqueue(struct zonelist *zonelist,
843 struct zone *zone, int order, gfp_t gfp_flags)
845 unsigned long flags;
846 struct page *page;
847 int cold = !!(gfp_flags & __GFP_COLD);
848 int cpu;
850 again:
851 cpu = get_cpu();
852 if (likely(order == 0)) {
853 struct per_cpu_pages *pcp;
855 pcp = &zone_pcp(zone, cpu)->pcp[cold];
856 local_irq_save(flags);
857 if (!pcp->count) {
858 pcp->count = rmqueue_bulk(zone, 0,
859 pcp->batch, &pcp->list);
860 if (unlikely(!pcp->count))
861 goto failed;
863 page = list_entry(pcp->list.next, struct page, lru);
864 list_del(&page->lru);
865 pcp->count--;
866 } else {
867 spin_lock_irqsave(&zone->lock, flags);
868 page = __rmqueue(zone, order);
869 spin_unlock(&zone->lock);
870 if (!page)
871 goto failed;
874 __count_zone_vm_events(PGALLOC, zone, 1 << order);
875 zone_statistics(zonelist, zone);
876 local_irq_restore(flags);
877 put_cpu();
879 VM_BUG_ON(bad_range(zone, page));
880 if (prep_new_page(page, order, gfp_flags))
881 goto again;
882 return page;
884 failed:
885 local_irq_restore(flags);
886 put_cpu();
887 return NULL;
890 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
891 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
892 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
893 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
894 #define ALLOC_HARDER 0x10 /* try to alloc harder */
895 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
896 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
898 #ifdef CONFIG_FAIL_PAGE_ALLOC
900 static struct fail_page_alloc_attr {
901 struct fault_attr attr;
903 u32 ignore_gfp_highmem;
904 u32 ignore_gfp_wait;
905 u32 min_order;
907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
911 struct dentry *min_order_file;
913 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
915 } fail_page_alloc = {
916 .attr = FAULT_ATTR_INITIALIZER,
917 .ignore_gfp_wait = 1,
918 .ignore_gfp_highmem = 1,
919 .min_order = 1,
922 static int __init setup_fail_page_alloc(char *str)
924 return setup_fault_attr(&fail_page_alloc.attr, str);
926 __setup("fail_page_alloc=", setup_fail_page_alloc);
928 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
930 if (order < fail_page_alloc.min_order)
931 return 0;
932 if (gfp_mask & __GFP_NOFAIL)
933 return 0;
934 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
935 return 0;
936 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
937 return 0;
939 return should_fail(&fail_page_alloc.attr, 1 << order);
942 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
944 static int __init fail_page_alloc_debugfs(void)
946 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
947 struct dentry *dir;
948 int err;
950 err = init_fault_attr_dentries(&fail_page_alloc.attr,
951 "fail_page_alloc");
952 if (err)
953 return err;
954 dir = fail_page_alloc.attr.dentries.dir;
956 fail_page_alloc.ignore_gfp_wait_file =
957 debugfs_create_bool("ignore-gfp-wait", mode, dir,
958 &fail_page_alloc.ignore_gfp_wait);
960 fail_page_alloc.ignore_gfp_highmem_file =
961 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
962 &fail_page_alloc.ignore_gfp_highmem);
963 fail_page_alloc.min_order_file =
964 debugfs_create_u32("min-order", mode, dir,
965 &fail_page_alloc.min_order);
967 if (!fail_page_alloc.ignore_gfp_wait_file ||
968 !fail_page_alloc.ignore_gfp_highmem_file ||
969 !fail_page_alloc.min_order_file) {
970 err = -ENOMEM;
971 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
972 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
973 debugfs_remove(fail_page_alloc.min_order_file);
974 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
977 return err;
980 late_initcall(fail_page_alloc_debugfs);
982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
984 #else /* CONFIG_FAIL_PAGE_ALLOC */
986 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
988 return 0;
991 #endif /* CONFIG_FAIL_PAGE_ALLOC */
994 * Return 1 if free pages are above 'mark'. This takes into account the order
995 * of the allocation.
997 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
998 int classzone_idx, int alloc_flags)
1000 /* free_pages my go negative - that's OK */
1001 long min = mark;
1002 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1003 int o;
1005 if (alloc_flags & ALLOC_HIGH)
1006 min -= min / 2;
1007 if (alloc_flags & ALLOC_HARDER)
1008 min -= min / 4;
1010 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1011 return 0;
1012 for (o = 0; o < order; o++) {
1013 /* At the next order, this order's pages become unavailable */
1014 free_pages -= z->free_area[o].nr_free << o;
1016 /* Require fewer higher order pages to be free */
1017 min >>= 1;
1019 if (free_pages <= min)
1020 return 0;
1022 return 1;
1025 #ifdef CONFIG_NUMA
1027 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1028 * skip over zones that are not allowed by the cpuset, or that have
1029 * been recently (in last second) found to be nearly full. See further
1030 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1031 * that have to skip over alot of full or unallowed zones.
1033 * If the zonelist cache is present in the passed in zonelist, then
1034 * returns a pointer to the allowed node mask (either the current
1035 * tasks mems_allowed, or node_online_map.)
1037 * If the zonelist cache is not available for this zonelist, does
1038 * nothing and returns NULL.
1040 * If the fullzones BITMAP in the zonelist cache is stale (more than
1041 * a second since last zap'd) then we zap it out (clear its bits.)
1043 * We hold off even calling zlc_setup, until after we've checked the
1044 * first zone in the zonelist, on the theory that most allocations will
1045 * be satisfied from that first zone, so best to examine that zone as
1046 * quickly as we can.
1048 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1050 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1051 nodemask_t *allowednodes; /* zonelist_cache approximation */
1053 zlc = zonelist->zlcache_ptr;
1054 if (!zlc)
1055 return NULL;
1057 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1058 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1059 zlc->last_full_zap = jiffies;
1062 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1063 &cpuset_current_mems_allowed :
1064 &node_online_map;
1065 return allowednodes;
1069 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1070 * if it is worth looking at further for free memory:
1071 * 1) Check that the zone isn't thought to be full (doesn't have its
1072 * bit set in the zonelist_cache fullzones BITMAP).
1073 * 2) Check that the zones node (obtained from the zonelist_cache
1074 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1075 * Return true (non-zero) if zone is worth looking at further, or
1076 * else return false (zero) if it is not.
1078 * This check -ignores- the distinction between various watermarks,
1079 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1080 * found to be full for any variation of these watermarks, it will
1081 * be considered full for up to one second by all requests, unless
1082 * we are so low on memory on all allowed nodes that we are forced
1083 * into the second scan of the zonelist.
1085 * In the second scan we ignore this zonelist cache and exactly
1086 * apply the watermarks to all zones, even it is slower to do so.
1087 * We are low on memory in the second scan, and should leave no stone
1088 * unturned looking for a free page.
1090 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1091 nodemask_t *allowednodes)
1093 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1094 int i; /* index of *z in zonelist zones */
1095 int n; /* node that zone *z is on */
1097 zlc = zonelist->zlcache_ptr;
1098 if (!zlc)
1099 return 1;
1101 i = z - zonelist->zones;
1102 n = zlc->z_to_n[i];
1104 /* This zone is worth trying if it is allowed but not full */
1105 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1109 * Given 'z' scanning a zonelist, set the corresponding bit in
1110 * zlc->fullzones, so that subsequent attempts to allocate a page
1111 * from that zone don't waste time re-examining it.
1113 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1115 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1116 int i; /* index of *z in zonelist zones */
1118 zlc = zonelist->zlcache_ptr;
1119 if (!zlc)
1120 return;
1122 i = z - zonelist->zones;
1124 set_bit(i, zlc->fullzones);
1127 #else /* CONFIG_NUMA */
1129 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1131 return NULL;
1134 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1135 nodemask_t *allowednodes)
1137 return 1;
1140 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1143 #endif /* CONFIG_NUMA */
1146 * get_page_from_freelist goes through the zonelist trying to allocate
1147 * a page.
1149 static struct page *
1150 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1151 struct zonelist *zonelist, int alloc_flags)
1153 struct zone **z;
1154 struct page *page = NULL;
1155 int classzone_idx = zone_idx(zonelist->zones[0]);
1156 struct zone *zone;
1157 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1158 int zlc_active = 0; /* set if using zonelist_cache */
1159 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1161 zonelist_scan:
1163 * Scan zonelist, looking for a zone with enough free.
1164 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1166 z = zonelist->zones;
1168 do {
1169 if (NUMA_BUILD && zlc_active &&
1170 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1171 continue;
1172 zone = *z;
1173 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1174 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1175 break;
1176 if ((alloc_flags & ALLOC_CPUSET) &&
1177 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1178 goto try_next_zone;
1180 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1181 unsigned long mark;
1182 if (alloc_flags & ALLOC_WMARK_MIN)
1183 mark = zone->pages_min;
1184 else if (alloc_flags & ALLOC_WMARK_LOW)
1185 mark = zone->pages_low;
1186 else
1187 mark = zone->pages_high;
1188 if (!zone_watermark_ok(zone, order, mark,
1189 classzone_idx, alloc_flags)) {
1190 if (!zone_reclaim_mode ||
1191 !zone_reclaim(zone, gfp_mask, order))
1192 goto this_zone_full;
1196 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1197 if (page)
1198 break;
1199 this_zone_full:
1200 if (NUMA_BUILD)
1201 zlc_mark_zone_full(zonelist, z);
1202 try_next_zone:
1203 if (NUMA_BUILD && !did_zlc_setup) {
1204 /* we do zlc_setup after the first zone is tried */
1205 allowednodes = zlc_setup(zonelist, alloc_flags);
1206 zlc_active = 1;
1207 did_zlc_setup = 1;
1209 } while (*(++z) != NULL);
1211 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1212 /* Disable zlc cache for second zonelist scan */
1213 zlc_active = 0;
1214 goto zonelist_scan;
1216 return page;
1220 * This is the 'heart' of the zoned buddy allocator.
1222 struct page * fastcall
1223 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1224 struct zonelist *zonelist)
1226 const gfp_t wait = gfp_mask & __GFP_WAIT;
1227 struct zone **z;
1228 struct page *page;
1229 struct reclaim_state reclaim_state;
1230 struct task_struct *p = current;
1231 int do_retry;
1232 int alloc_flags;
1233 int did_some_progress;
1235 might_sleep_if(wait);
1237 if (should_fail_alloc_page(gfp_mask, order))
1238 return NULL;
1240 restart:
1241 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1243 if (unlikely(*z == NULL)) {
1244 /* Should this ever happen?? */
1245 return NULL;
1248 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1249 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1250 if (page)
1251 goto got_pg;
1254 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1255 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1256 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1257 * using a larger set of nodes after it has established that the
1258 * allowed per node queues are empty and that nodes are
1259 * over allocated.
1261 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1262 goto nopage;
1264 for (z = zonelist->zones; *z; z++)
1265 wakeup_kswapd(*z, order);
1268 * OK, we're below the kswapd watermark and have kicked background
1269 * reclaim. Now things get more complex, so set up alloc_flags according
1270 * to how we want to proceed.
1272 * The caller may dip into page reserves a bit more if the caller
1273 * cannot run direct reclaim, or if the caller has realtime scheduling
1274 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1275 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1277 alloc_flags = ALLOC_WMARK_MIN;
1278 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1279 alloc_flags |= ALLOC_HARDER;
1280 if (gfp_mask & __GFP_HIGH)
1281 alloc_flags |= ALLOC_HIGH;
1282 if (wait)
1283 alloc_flags |= ALLOC_CPUSET;
1286 * Go through the zonelist again. Let __GFP_HIGH and allocations
1287 * coming from realtime tasks go deeper into reserves.
1289 * This is the last chance, in general, before the goto nopage.
1290 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1291 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1293 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1294 if (page)
1295 goto got_pg;
1297 /* This allocation should allow future memory freeing. */
1299 rebalance:
1300 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1301 && !in_interrupt()) {
1302 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1303 nofail_alloc:
1304 /* go through the zonelist yet again, ignoring mins */
1305 page = get_page_from_freelist(gfp_mask, order,
1306 zonelist, ALLOC_NO_WATERMARKS);
1307 if (page)
1308 goto got_pg;
1309 if (gfp_mask & __GFP_NOFAIL) {
1310 congestion_wait(WRITE, HZ/50);
1311 goto nofail_alloc;
1314 goto nopage;
1317 /* Atomic allocations - we can't balance anything */
1318 if (!wait)
1319 goto nopage;
1321 cond_resched();
1323 /* We now go into synchronous reclaim */
1324 cpuset_memory_pressure_bump();
1325 p->flags |= PF_MEMALLOC;
1326 reclaim_state.reclaimed_slab = 0;
1327 p->reclaim_state = &reclaim_state;
1329 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1331 p->reclaim_state = NULL;
1332 p->flags &= ~PF_MEMALLOC;
1334 cond_resched();
1336 if (likely(did_some_progress)) {
1337 page = get_page_from_freelist(gfp_mask, order,
1338 zonelist, alloc_flags);
1339 if (page)
1340 goto got_pg;
1341 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1343 * Go through the zonelist yet one more time, keep
1344 * very high watermark here, this is only to catch
1345 * a parallel oom killing, we must fail if we're still
1346 * under heavy pressure.
1348 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1349 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1350 if (page)
1351 goto got_pg;
1353 out_of_memory(zonelist, gfp_mask, order);
1354 goto restart;
1358 * Don't let big-order allocations loop unless the caller explicitly
1359 * requests that. Wait for some write requests to complete then retry.
1361 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1362 * <= 3, but that may not be true in other implementations.
1364 do_retry = 0;
1365 if (!(gfp_mask & __GFP_NORETRY)) {
1366 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1367 (gfp_mask & __GFP_REPEAT))
1368 do_retry = 1;
1369 if (gfp_mask & __GFP_NOFAIL)
1370 do_retry = 1;
1372 if (do_retry) {
1373 congestion_wait(WRITE, HZ/50);
1374 goto rebalance;
1377 nopage:
1378 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1379 printk(KERN_WARNING "%s: page allocation failure."
1380 " order:%d, mode:0x%x\n",
1381 p->comm, order, gfp_mask);
1382 dump_stack();
1383 show_mem();
1385 got_pg:
1386 return page;
1389 EXPORT_SYMBOL(__alloc_pages);
1392 * Common helper functions.
1394 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1396 struct page * page;
1397 page = alloc_pages(gfp_mask, order);
1398 if (!page)
1399 return 0;
1400 return (unsigned long) page_address(page);
1403 EXPORT_SYMBOL(__get_free_pages);
1405 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1407 struct page * page;
1410 * get_zeroed_page() returns a 32-bit address, which cannot represent
1411 * a highmem page
1413 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1415 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1416 if (page)
1417 return (unsigned long) page_address(page);
1418 return 0;
1421 EXPORT_SYMBOL(get_zeroed_page);
1423 void __pagevec_free(struct pagevec *pvec)
1425 int i = pagevec_count(pvec);
1427 while (--i >= 0)
1428 free_hot_cold_page(pvec->pages[i], pvec->cold);
1431 fastcall void __free_pages(struct page *page, unsigned int order)
1433 if (put_page_testzero(page)) {
1434 if (order == 0)
1435 free_hot_page(page);
1436 else
1437 __free_pages_ok(page, order);
1441 EXPORT_SYMBOL(__free_pages);
1443 fastcall void free_pages(unsigned long addr, unsigned int order)
1445 if (addr != 0) {
1446 VM_BUG_ON(!virt_addr_valid((void *)addr));
1447 __free_pages(virt_to_page((void *)addr), order);
1451 EXPORT_SYMBOL(free_pages);
1453 static unsigned int nr_free_zone_pages(int offset)
1455 /* Just pick one node, since fallback list is circular */
1456 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1457 unsigned int sum = 0;
1459 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1460 struct zone **zonep = zonelist->zones;
1461 struct zone *zone;
1463 for (zone = *zonep++; zone; zone = *zonep++) {
1464 unsigned long size = zone->present_pages;
1465 unsigned long high = zone->pages_high;
1466 if (size > high)
1467 sum += size - high;
1470 return sum;
1474 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1476 unsigned int nr_free_buffer_pages(void)
1478 return nr_free_zone_pages(gfp_zone(GFP_USER));
1480 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1483 * Amount of free RAM allocatable within all zones
1485 unsigned int nr_free_pagecache_pages(void)
1487 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1490 static inline void show_node(struct zone *zone)
1492 if (NUMA_BUILD)
1493 printk("Node %d ", zone_to_nid(zone));
1496 void si_meminfo(struct sysinfo *val)
1498 val->totalram = totalram_pages;
1499 val->sharedram = 0;
1500 val->freeram = global_page_state(NR_FREE_PAGES);
1501 val->bufferram = nr_blockdev_pages();
1502 val->totalhigh = totalhigh_pages;
1503 val->freehigh = nr_free_highpages();
1504 val->mem_unit = PAGE_SIZE;
1507 EXPORT_SYMBOL(si_meminfo);
1509 #ifdef CONFIG_NUMA
1510 void si_meminfo_node(struct sysinfo *val, int nid)
1512 pg_data_t *pgdat = NODE_DATA(nid);
1514 val->totalram = pgdat->node_present_pages;
1515 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1516 #ifdef CONFIG_HIGHMEM
1517 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1518 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1519 NR_FREE_PAGES);
1520 #else
1521 val->totalhigh = 0;
1522 val->freehigh = 0;
1523 #endif
1524 val->mem_unit = PAGE_SIZE;
1526 #endif
1528 #define K(x) ((x) << (PAGE_SHIFT-10))
1531 * Show free area list (used inside shift_scroll-lock stuff)
1532 * We also calculate the percentage fragmentation. We do this by counting the
1533 * memory on each free list with the exception of the first item on the list.
1535 void show_free_areas(void)
1537 int cpu;
1538 struct zone *zone;
1540 for_each_zone(zone) {
1541 if (!populated_zone(zone))
1542 continue;
1544 show_node(zone);
1545 printk("%s per-cpu:\n", zone->name);
1547 for_each_online_cpu(cpu) {
1548 struct per_cpu_pageset *pageset;
1550 pageset = zone_pcp(zone, cpu);
1552 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1553 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1554 cpu, pageset->pcp[0].high,
1555 pageset->pcp[0].batch, pageset->pcp[0].count,
1556 pageset->pcp[1].high, pageset->pcp[1].batch,
1557 pageset->pcp[1].count);
1561 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1562 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1563 global_page_state(NR_ACTIVE),
1564 global_page_state(NR_INACTIVE),
1565 global_page_state(NR_FILE_DIRTY),
1566 global_page_state(NR_WRITEBACK),
1567 global_page_state(NR_UNSTABLE_NFS),
1568 global_page_state(NR_FREE_PAGES),
1569 global_page_state(NR_SLAB_RECLAIMABLE) +
1570 global_page_state(NR_SLAB_UNRECLAIMABLE),
1571 global_page_state(NR_FILE_MAPPED),
1572 global_page_state(NR_PAGETABLE),
1573 global_page_state(NR_BOUNCE));
1575 for_each_zone(zone) {
1576 int i;
1578 if (!populated_zone(zone))
1579 continue;
1581 show_node(zone);
1582 printk("%s"
1583 " free:%lukB"
1584 " min:%lukB"
1585 " low:%lukB"
1586 " high:%lukB"
1587 " active:%lukB"
1588 " inactive:%lukB"
1589 " present:%lukB"
1590 " pages_scanned:%lu"
1591 " all_unreclaimable? %s"
1592 "\n",
1593 zone->name,
1594 K(zone_page_state(zone, NR_FREE_PAGES)),
1595 K(zone->pages_min),
1596 K(zone->pages_low),
1597 K(zone->pages_high),
1598 K(zone_page_state(zone, NR_ACTIVE)),
1599 K(zone_page_state(zone, NR_INACTIVE)),
1600 K(zone->present_pages),
1601 zone->pages_scanned,
1602 (zone->all_unreclaimable ? "yes" : "no")
1604 printk("lowmem_reserve[]:");
1605 for (i = 0; i < MAX_NR_ZONES; i++)
1606 printk(" %lu", zone->lowmem_reserve[i]);
1607 printk("\n");
1610 for_each_zone(zone) {
1611 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1613 if (!populated_zone(zone))
1614 continue;
1616 show_node(zone);
1617 printk("%s: ", zone->name);
1619 spin_lock_irqsave(&zone->lock, flags);
1620 for (order = 0; order < MAX_ORDER; order++) {
1621 nr[order] = zone->free_area[order].nr_free;
1622 total += nr[order] << order;
1624 spin_unlock_irqrestore(&zone->lock, flags);
1625 for (order = 0; order < MAX_ORDER; order++)
1626 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1627 printk("= %lukB\n", K(total));
1630 show_swap_cache_info();
1634 * Builds allocation fallback zone lists.
1636 * Add all populated zones of a node to the zonelist.
1638 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1639 int nr_zones, enum zone_type zone_type)
1641 struct zone *zone;
1643 BUG_ON(zone_type >= MAX_NR_ZONES);
1644 zone_type++;
1646 do {
1647 zone_type--;
1648 zone = pgdat->node_zones + zone_type;
1649 if (populated_zone(zone)) {
1650 zonelist->zones[nr_zones++] = zone;
1651 check_highest_zone(zone_type);
1654 } while (zone_type);
1655 return nr_zones;
1660 * zonelist_order:
1661 * 0 = automatic detection of better ordering.
1662 * 1 = order by ([node] distance, -zonetype)
1663 * 2 = order by (-zonetype, [node] distance)
1665 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1666 * the same zonelist. So only NUMA can configure this param.
1668 #define ZONELIST_ORDER_DEFAULT 0
1669 #define ZONELIST_ORDER_NODE 1
1670 #define ZONELIST_ORDER_ZONE 2
1672 /* zonelist order in the kernel.
1673 * set_zonelist_order() will set this to NODE or ZONE.
1675 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1676 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1679 #ifdef CONFIG_NUMA
1680 /* The value user specified ....changed by config */
1681 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1682 /* string for sysctl */
1683 #define NUMA_ZONELIST_ORDER_LEN 16
1684 char numa_zonelist_order[16] = "default";
1687 * interface for configure zonelist ordering.
1688 * command line option "numa_zonelist_order"
1689 * = "[dD]efault - default, automatic configuration.
1690 * = "[nN]ode - order by node locality, then by zone within node
1691 * = "[zZ]one - order by zone, then by locality within zone
1694 static int __parse_numa_zonelist_order(char *s)
1696 if (*s == 'd' || *s == 'D') {
1697 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1698 } else if (*s == 'n' || *s == 'N') {
1699 user_zonelist_order = ZONELIST_ORDER_NODE;
1700 } else if (*s == 'z' || *s == 'Z') {
1701 user_zonelist_order = ZONELIST_ORDER_ZONE;
1702 } else {
1703 printk(KERN_WARNING
1704 "Ignoring invalid numa_zonelist_order value: "
1705 "%s\n", s);
1706 return -EINVAL;
1708 return 0;
1711 static __init int setup_numa_zonelist_order(char *s)
1713 if (s)
1714 return __parse_numa_zonelist_order(s);
1715 return 0;
1717 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1720 * sysctl handler for numa_zonelist_order
1722 int numa_zonelist_order_handler(ctl_table *table, int write,
1723 struct file *file, void __user *buffer, size_t *length,
1724 loff_t *ppos)
1726 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1727 int ret;
1729 if (write)
1730 strncpy(saved_string, (char*)table->data,
1731 NUMA_ZONELIST_ORDER_LEN);
1732 ret = proc_dostring(table, write, file, buffer, length, ppos);
1733 if (ret)
1734 return ret;
1735 if (write) {
1736 int oldval = user_zonelist_order;
1737 if (__parse_numa_zonelist_order((char*)table->data)) {
1739 * bogus value. restore saved string
1741 strncpy((char*)table->data, saved_string,
1742 NUMA_ZONELIST_ORDER_LEN);
1743 user_zonelist_order = oldval;
1744 } else if (oldval != user_zonelist_order)
1745 build_all_zonelists();
1747 return 0;
1751 #define MAX_NODE_LOAD (num_online_nodes())
1752 static int node_load[MAX_NUMNODES];
1755 * find_next_best_node - find the next node that should appear in a given node's fallback list
1756 * @node: node whose fallback list we're appending
1757 * @used_node_mask: nodemask_t of already used nodes
1759 * We use a number of factors to determine which is the next node that should
1760 * appear on a given node's fallback list. The node should not have appeared
1761 * already in @node's fallback list, and it should be the next closest node
1762 * according to the distance array (which contains arbitrary distance values
1763 * from each node to each node in the system), and should also prefer nodes
1764 * with no CPUs, since presumably they'll have very little allocation pressure
1765 * on them otherwise.
1766 * It returns -1 if no node is found.
1768 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1770 int n, val;
1771 int min_val = INT_MAX;
1772 int best_node = -1;
1774 /* Use the local node if we haven't already */
1775 if (!node_isset(node, *used_node_mask)) {
1776 node_set(node, *used_node_mask);
1777 return node;
1780 for_each_online_node(n) {
1781 cpumask_t tmp;
1783 /* Don't want a node to appear more than once */
1784 if (node_isset(n, *used_node_mask))
1785 continue;
1787 /* Use the distance array to find the distance */
1788 val = node_distance(node, n);
1790 /* Penalize nodes under us ("prefer the next node") */
1791 val += (n < node);
1793 /* Give preference to headless and unused nodes */
1794 tmp = node_to_cpumask(n);
1795 if (!cpus_empty(tmp))
1796 val += PENALTY_FOR_NODE_WITH_CPUS;
1798 /* Slight preference for less loaded node */
1799 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1800 val += node_load[n];
1802 if (val < min_val) {
1803 min_val = val;
1804 best_node = n;
1808 if (best_node >= 0)
1809 node_set(best_node, *used_node_mask);
1811 return best_node;
1816 * Build zonelists ordered by node and zones within node.
1817 * This results in maximum locality--normal zone overflows into local
1818 * DMA zone, if any--but risks exhausting DMA zone.
1820 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1822 enum zone_type i;
1823 int j;
1824 struct zonelist *zonelist;
1826 for (i = 0; i < MAX_NR_ZONES; i++) {
1827 zonelist = pgdat->node_zonelists + i;
1828 for (j = 0; zonelist->zones[j] != NULL; j++)
1830 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1831 zonelist->zones[j] = NULL;
1836 * Build zonelists ordered by zone and nodes within zones.
1837 * This results in conserving DMA zone[s] until all Normal memory is
1838 * exhausted, but results in overflowing to remote node while memory
1839 * may still exist in local DMA zone.
1841 static int node_order[MAX_NUMNODES];
1843 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1845 enum zone_type i;
1846 int pos, j, node;
1847 int zone_type; /* needs to be signed */
1848 struct zone *z;
1849 struct zonelist *zonelist;
1851 for (i = 0; i < MAX_NR_ZONES; i++) {
1852 zonelist = pgdat->node_zonelists + i;
1853 pos = 0;
1854 for (zone_type = i; zone_type >= 0; zone_type--) {
1855 for (j = 0; j < nr_nodes; j++) {
1856 node = node_order[j];
1857 z = &NODE_DATA(node)->node_zones[zone_type];
1858 if (populated_zone(z)) {
1859 zonelist->zones[pos++] = z;
1860 check_highest_zone(zone_type);
1864 zonelist->zones[pos] = NULL;
1868 static int default_zonelist_order(void)
1870 int nid, zone_type;
1871 unsigned long low_kmem_size,total_size;
1872 struct zone *z;
1873 int average_size;
1875 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1876 * If they are really small and used heavily, the system can fall
1877 * into OOM very easily.
1878 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1880 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1881 low_kmem_size = 0;
1882 total_size = 0;
1883 for_each_online_node(nid) {
1884 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1885 z = &NODE_DATA(nid)->node_zones[zone_type];
1886 if (populated_zone(z)) {
1887 if (zone_type < ZONE_NORMAL)
1888 low_kmem_size += z->present_pages;
1889 total_size += z->present_pages;
1893 if (!low_kmem_size || /* there are no DMA area. */
1894 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1895 return ZONELIST_ORDER_NODE;
1897 * look into each node's config.
1898 * If there is a node whose DMA/DMA32 memory is very big area on
1899 * local memory, NODE_ORDER may be suitable.
1901 average_size = total_size / (num_online_nodes() + 1);
1902 for_each_online_node(nid) {
1903 low_kmem_size = 0;
1904 total_size = 0;
1905 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1906 z = &NODE_DATA(nid)->node_zones[zone_type];
1907 if (populated_zone(z)) {
1908 if (zone_type < ZONE_NORMAL)
1909 low_kmem_size += z->present_pages;
1910 total_size += z->present_pages;
1913 if (low_kmem_size &&
1914 total_size > average_size && /* ignore small node */
1915 low_kmem_size > total_size * 70/100)
1916 return ZONELIST_ORDER_NODE;
1918 return ZONELIST_ORDER_ZONE;
1921 static void set_zonelist_order(void)
1923 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1924 current_zonelist_order = default_zonelist_order();
1925 else
1926 current_zonelist_order = user_zonelist_order;
1929 static void build_zonelists(pg_data_t *pgdat)
1931 int j, node, load;
1932 enum zone_type i;
1933 nodemask_t used_mask;
1934 int local_node, prev_node;
1935 struct zonelist *zonelist;
1936 int order = current_zonelist_order;
1938 /* initialize zonelists */
1939 for (i = 0; i < MAX_NR_ZONES; i++) {
1940 zonelist = pgdat->node_zonelists + i;
1941 zonelist->zones[0] = NULL;
1944 /* NUMA-aware ordering of nodes */
1945 local_node = pgdat->node_id;
1946 load = num_online_nodes();
1947 prev_node = local_node;
1948 nodes_clear(used_mask);
1950 memset(node_load, 0, sizeof(node_load));
1951 memset(node_order, 0, sizeof(node_order));
1952 j = 0;
1954 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1955 int distance = node_distance(local_node, node);
1958 * If another node is sufficiently far away then it is better
1959 * to reclaim pages in a zone before going off node.
1961 if (distance > RECLAIM_DISTANCE)
1962 zone_reclaim_mode = 1;
1965 * We don't want to pressure a particular node.
1966 * So adding penalty to the first node in same
1967 * distance group to make it round-robin.
1969 if (distance != node_distance(local_node, prev_node))
1970 node_load[node] = load;
1972 prev_node = node;
1973 load--;
1974 if (order == ZONELIST_ORDER_NODE)
1975 build_zonelists_in_node_order(pgdat, node);
1976 else
1977 node_order[j++] = node; /* remember order */
1980 if (order == ZONELIST_ORDER_ZONE) {
1981 /* calculate node order -- i.e., DMA last! */
1982 build_zonelists_in_zone_order(pgdat, j);
1986 /* Construct the zonelist performance cache - see further mmzone.h */
1987 static void build_zonelist_cache(pg_data_t *pgdat)
1989 int i;
1991 for (i = 0; i < MAX_NR_ZONES; i++) {
1992 struct zonelist *zonelist;
1993 struct zonelist_cache *zlc;
1994 struct zone **z;
1996 zonelist = pgdat->node_zonelists + i;
1997 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1998 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1999 for (z = zonelist->zones; *z; z++)
2000 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2005 #else /* CONFIG_NUMA */
2007 static void set_zonelist_order(void)
2009 current_zonelist_order = ZONELIST_ORDER_ZONE;
2012 static void build_zonelists(pg_data_t *pgdat)
2014 int node, local_node;
2015 enum zone_type i,j;
2017 local_node = pgdat->node_id;
2018 for (i = 0; i < MAX_NR_ZONES; i++) {
2019 struct zonelist *zonelist;
2021 zonelist = pgdat->node_zonelists + i;
2023 j = build_zonelists_node(pgdat, zonelist, 0, i);
2025 * Now we build the zonelist so that it contains the zones
2026 * of all the other nodes.
2027 * We don't want to pressure a particular node, so when
2028 * building the zones for node N, we make sure that the
2029 * zones coming right after the local ones are those from
2030 * node N+1 (modulo N)
2032 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2033 if (!node_online(node))
2034 continue;
2035 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2037 for (node = 0; node < local_node; node++) {
2038 if (!node_online(node))
2039 continue;
2040 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2043 zonelist->zones[j] = NULL;
2047 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2048 static void build_zonelist_cache(pg_data_t *pgdat)
2050 int i;
2052 for (i = 0; i < MAX_NR_ZONES; i++)
2053 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2056 #endif /* CONFIG_NUMA */
2058 /* return values int ....just for stop_machine_run() */
2059 static int __build_all_zonelists(void *dummy)
2061 int nid;
2063 for_each_online_node(nid) {
2064 build_zonelists(NODE_DATA(nid));
2065 build_zonelist_cache(NODE_DATA(nid));
2067 return 0;
2070 void build_all_zonelists(void)
2072 set_zonelist_order();
2074 if (system_state == SYSTEM_BOOTING) {
2075 __build_all_zonelists(NULL);
2076 cpuset_init_current_mems_allowed();
2077 } else {
2078 /* we have to stop all cpus to guaranntee there is no user
2079 of zonelist */
2080 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2081 /* cpuset refresh routine should be here */
2083 vm_total_pages = nr_free_pagecache_pages();
2084 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2085 num_online_nodes(),
2086 zonelist_order_name[current_zonelist_order],
2087 vm_total_pages);
2088 #ifdef CONFIG_NUMA
2089 printk("Policy zone: %s\n", zone_names[policy_zone]);
2090 #endif
2094 * Helper functions to size the waitqueue hash table.
2095 * Essentially these want to choose hash table sizes sufficiently
2096 * large so that collisions trying to wait on pages are rare.
2097 * But in fact, the number of active page waitqueues on typical
2098 * systems is ridiculously low, less than 200. So this is even
2099 * conservative, even though it seems large.
2101 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2102 * waitqueues, i.e. the size of the waitq table given the number of pages.
2104 #define PAGES_PER_WAITQUEUE 256
2106 #ifndef CONFIG_MEMORY_HOTPLUG
2107 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2109 unsigned long size = 1;
2111 pages /= PAGES_PER_WAITQUEUE;
2113 while (size < pages)
2114 size <<= 1;
2117 * Once we have dozens or even hundreds of threads sleeping
2118 * on IO we've got bigger problems than wait queue collision.
2119 * Limit the size of the wait table to a reasonable size.
2121 size = min(size, 4096UL);
2123 return max(size, 4UL);
2125 #else
2127 * A zone's size might be changed by hot-add, so it is not possible to determine
2128 * a suitable size for its wait_table. So we use the maximum size now.
2130 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2132 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2133 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2134 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2136 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2137 * or more by the traditional way. (See above). It equals:
2139 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2140 * ia64(16K page size) : = ( 8G + 4M)byte.
2141 * powerpc (64K page size) : = (32G +16M)byte.
2143 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2145 return 4096UL;
2147 #endif
2150 * This is an integer logarithm so that shifts can be used later
2151 * to extract the more random high bits from the multiplicative
2152 * hash function before the remainder is taken.
2154 static inline unsigned long wait_table_bits(unsigned long size)
2156 return ffz(~size);
2159 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2162 * Initially all pages are reserved - free ones are freed
2163 * up by free_all_bootmem() once the early boot process is
2164 * done. Non-atomic initialization, single-pass.
2166 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2167 unsigned long start_pfn, enum memmap_context context)
2169 struct page *page;
2170 unsigned long end_pfn = start_pfn + size;
2171 unsigned long pfn;
2173 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2175 * There can be holes in boot-time mem_map[]s
2176 * handed to this function. They do not
2177 * exist on hotplugged memory.
2179 if (context == MEMMAP_EARLY) {
2180 if (!early_pfn_valid(pfn))
2181 continue;
2182 if (!early_pfn_in_nid(pfn, nid))
2183 continue;
2185 page = pfn_to_page(pfn);
2186 set_page_links(page, zone, nid, pfn);
2187 init_page_count(page);
2188 reset_page_mapcount(page);
2189 SetPageReserved(page);
2190 INIT_LIST_HEAD(&page->lru);
2191 #ifdef WANT_PAGE_VIRTUAL
2192 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2193 if (!is_highmem_idx(zone))
2194 set_page_address(page, __va(pfn << PAGE_SHIFT));
2195 #endif
2199 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2200 struct zone *zone, unsigned long size)
2202 int order;
2203 for (order = 0; order < MAX_ORDER ; order++) {
2204 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2205 zone->free_area[order].nr_free = 0;
2209 #ifndef __HAVE_ARCH_MEMMAP_INIT
2210 #define memmap_init(size, nid, zone, start_pfn) \
2211 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2212 #endif
2214 static int __devinit zone_batchsize(struct zone *zone)
2216 int batch;
2219 * The per-cpu-pages pools are set to around 1000th of the
2220 * size of the zone. But no more than 1/2 of a meg.
2222 * OK, so we don't know how big the cache is. So guess.
2224 batch = zone->present_pages / 1024;
2225 if (batch * PAGE_SIZE > 512 * 1024)
2226 batch = (512 * 1024) / PAGE_SIZE;
2227 batch /= 4; /* We effectively *= 4 below */
2228 if (batch < 1)
2229 batch = 1;
2232 * Clamp the batch to a 2^n - 1 value. Having a power
2233 * of 2 value was found to be more likely to have
2234 * suboptimal cache aliasing properties in some cases.
2236 * For example if 2 tasks are alternately allocating
2237 * batches of pages, one task can end up with a lot
2238 * of pages of one half of the possible page colors
2239 * and the other with pages of the other colors.
2241 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2243 return batch;
2246 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2248 struct per_cpu_pages *pcp;
2250 memset(p, 0, sizeof(*p));
2252 pcp = &p->pcp[0]; /* hot */
2253 pcp->count = 0;
2254 pcp->high = 6 * batch;
2255 pcp->batch = max(1UL, 1 * batch);
2256 INIT_LIST_HEAD(&pcp->list);
2258 pcp = &p->pcp[1]; /* cold*/
2259 pcp->count = 0;
2260 pcp->high = 2 * batch;
2261 pcp->batch = max(1UL, batch/2);
2262 INIT_LIST_HEAD(&pcp->list);
2266 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2267 * to the value high for the pageset p.
2270 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2271 unsigned long high)
2273 struct per_cpu_pages *pcp;
2275 pcp = &p->pcp[0]; /* hot list */
2276 pcp->high = high;
2277 pcp->batch = max(1UL, high/4);
2278 if ((high/4) > (PAGE_SHIFT * 8))
2279 pcp->batch = PAGE_SHIFT * 8;
2283 #ifdef CONFIG_NUMA
2285 * Boot pageset table. One per cpu which is going to be used for all
2286 * zones and all nodes. The parameters will be set in such a way
2287 * that an item put on a list will immediately be handed over to
2288 * the buddy list. This is safe since pageset manipulation is done
2289 * with interrupts disabled.
2291 * Some NUMA counter updates may also be caught by the boot pagesets.
2293 * The boot_pagesets must be kept even after bootup is complete for
2294 * unused processors and/or zones. They do play a role for bootstrapping
2295 * hotplugged processors.
2297 * zoneinfo_show() and maybe other functions do
2298 * not check if the processor is online before following the pageset pointer.
2299 * Other parts of the kernel may not check if the zone is available.
2301 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2304 * Dynamically allocate memory for the
2305 * per cpu pageset array in struct zone.
2307 static int __cpuinit process_zones(int cpu)
2309 struct zone *zone, *dzone;
2311 for_each_zone(zone) {
2313 if (!populated_zone(zone))
2314 continue;
2316 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2317 GFP_KERNEL, cpu_to_node(cpu));
2318 if (!zone_pcp(zone, cpu))
2319 goto bad;
2321 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2323 if (percpu_pagelist_fraction)
2324 setup_pagelist_highmark(zone_pcp(zone, cpu),
2325 (zone->present_pages / percpu_pagelist_fraction));
2328 return 0;
2329 bad:
2330 for_each_zone(dzone) {
2331 if (dzone == zone)
2332 break;
2333 kfree(zone_pcp(dzone, cpu));
2334 zone_pcp(dzone, cpu) = NULL;
2336 return -ENOMEM;
2339 static inline void free_zone_pagesets(int cpu)
2341 struct zone *zone;
2343 for_each_zone(zone) {
2344 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2346 /* Free per_cpu_pageset if it is slab allocated */
2347 if (pset != &boot_pageset[cpu])
2348 kfree(pset);
2349 zone_pcp(zone, cpu) = NULL;
2353 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2354 unsigned long action,
2355 void *hcpu)
2357 int cpu = (long)hcpu;
2358 int ret = NOTIFY_OK;
2360 switch (action) {
2361 case CPU_UP_PREPARE:
2362 case CPU_UP_PREPARE_FROZEN:
2363 if (process_zones(cpu))
2364 ret = NOTIFY_BAD;
2365 break;
2366 case CPU_UP_CANCELED:
2367 case CPU_UP_CANCELED_FROZEN:
2368 case CPU_DEAD:
2369 case CPU_DEAD_FROZEN:
2370 free_zone_pagesets(cpu);
2371 break;
2372 default:
2373 break;
2375 return ret;
2378 static struct notifier_block __cpuinitdata pageset_notifier =
2379 { &pageset_cpuup_callback, NULL, 0 };
2381 void __init setup_per_cpu_pageset(void)
2383 int err;
2385 /* Initialize per_cpu_pageset for cpu 0.
2386 * A cpuup callback will do this for every cpu
2387 * as it comes online
2389 err = process_zones(smp_processor_id());
2390 BUG_ON(err);
2391 register_cpu_notifier(&pageset_notifier);
2394 #endif
2396 static noinline __init_refok
2397 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2399 int i;
2400 struct pglist_data *pgdat = zone->zone_pgdat;
2401 size_t alloc_size;
2404 * The per-page waitqueue mechanism uses hashed waitqueues
2405 * per zone.
2407 zone->wait_table_hash_nr_entries =
2408 wait_table_hash_nr_entries(zone_size_pages);
2409 zone->wait_table_bits =
2410 wait_table_bits(zone->wait_table_hash_nr_entries);
2411 alloc_size = zone->wait_table_hash_nr_entries
2412 * sizeof(wait_queue_head_t);
2414 if (system_state == SYSTEM_BOOTING) {
2415 zone->wait_table = (wait_queue_head_t *)
2416 alloc_bootmem_node(pgdat, alloc_size);
2417 } else {
2419 * This case means that a zone whose size was 0 gets new memory
2420 * via memory hot-add.
2421 * But it may be the case that a new node was hot-added. In
2422 * this case vmalloc() will not be able to use this new node's
2423 * memory - this wait_table must be initialized to use this new
2424 * node itself as well.
2425 * To use this new node's memory, further consideration will be
2426 * necessary.
2428 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2430 if (!zone->wait_table)
2431 return -ENOMEM;
2433 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2434 init_waitqueue_head(zone->wait_table + i);
2436 return 0;
2439 static __meminit void zone_pcp_init(struct zone *zone)
2441 int cpu;
2442 unsigned long batch = zone_batchsize(zone);
2444 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2445 #ifdef CONFIG_NUMA
2446 /* Early boot. Slab allocator not functional yet */
2447 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2448 setup_pageset(&boot_pageset[cpu],0);
2449 #else
2450 setup_pageset(zone_pcp(zone,cpu), batch);
2451 #endif
2453 if (zone->present_pages)
2454 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2455 zone->name, zone->present_pages, batch);
2458 __meminit int init_currently_empty_zone(struct zone *zone,
2459 unsigned long zone_start_pfn,
2460 unsigned long size,
2461 enum memmap_context context)
2463 struct pglist_data *pgdat = zone->zone_pgdat;
2464 int ret;
2465 ret = zone_wait_table_init(zone, size);
2466 if (ret)
2467 return ret;
2468 pgdat->nr_zones = zone_idx(zone) + 1;
2470 zone->zone_start_pfn = zone_start_pfn;
2472 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2474 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2476 return 0;
2479 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2481 * Basic iterator support. Return the first range of PFNs for a node
2482 * Note: nid == MAX_NUMNODES returns first region regardless of node
2484 static int __meminit first_active_region_index_in_nid(int nid)
2486 int i;
2488 for (i = 0; i < nr_nodemap_entries; i++)
2489 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2490 return i;
2492 return -1;
2496 * Basic iterator support. Return the next active range of PFNs for a node
2497 * Note: nid == MAX_NUMNODES returns next region regardles of node
2499 static int __meminit next_active_region_index_in_nid(int index, int nid)
2501 for (index = index + 1; index < nr_nodemap_entries; index++)
2502 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2503 return index;
2505 return -1;
2508 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2510 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2511 * Architectures may implement their own version but if add_active_range()
2512 * was used and there are no special requirements, this is a convenient
2513 * alternative
2515 int __meminit early_pfn_to_nid(unsigned long pfn)
2517 int i;
2519 for (i = 0; i < nr_nodemap_entries; i++) {
2520 unsigned long start_pfn = early_node_map[i].start_pfn;
2521 unsigned long end_pfn = early_node_map[i].end_pfn;
2523 if (start_pfn <= pfn && pfn < end_pfn)
2524 return early_node_map[i].nid;
2527 return 0;
2529 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2531 /* Basic iterator support to walk early_node_map[] */
2532 #define for_each_active_range_index_in_nid(i, nid) \
2533 for (i = first_active_region_index_in_nid(nid); i != -1; \
2534 i = next_active_region_index_in_nid(i, nid))
2537 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2538 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2539 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2541 * If an architecture guarantees that all ranges registered with
2542 * add_active_ranges() contain no holes and may be freed, this
2543 * this function may be used instead of calling free_bootmem() manually.
2545 void __init free_bootmem_with_active_regions(int nid,
2546 unsigned long max_low_pfn)
2548 int i;
2550 for_each_active_range_index_in_nid(i, nid) {
2551 unsigned long size_pages = 0;
2552 unsigned long end_pfn = early_node_map[i].end_pfn;
2554 if (early_node_map[i].start_pfn >= max_low_pfn)
2555 continue;
2557 if (end_pfn > max_low_pfn)
2558 end_pfn = max_low_pfn;
2560 size_pages = end_pfn - early_node_map[i].start_pfn;
2561 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2562 PFN_PHYS(early_node_map[i].start_pfn),
2563 size_pages << PAGE_SHIFT);
2568 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2569 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2571 * If an architecture guarantees that all ranges registered with
2572 * add_active_ranges() contain no holes and may be freed, this
2573 * function may be used instead of calling memory_present() manually.
2575 void __init sparse_memory_present_with_active_regions(int nid)
2577 int i;
2579 for_each_active_range_index_in_nid(i, nid)
2580 memory_present(early_node_map[i].nid,
2581 early_node_map[i].start_pfn,
2582 early_node_map[i].end_pfn);
2586 * push_node_boundaries - Push node boundaries to at least the requested boundary
2587 * @nid: The nid of the node to push the boundary for
2588 * @start_pfn: The start pfn of the node
2589 * @end_pfn: The end pfn of the node
2591 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2592 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2593 * be hotplugged even though no physical memory exists. This function allows
2594 * an arch to push out the node boundaries so mem_map is allocated that can
2595 * be used later.
2597 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2598 void __init push_node_boundaries(unsigned int nid,
2599 unsigned long start_pfn, unsigned long end_pfn)
2601 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2602 nid, start_pfn, end_pfn);
2604 /* Initialise the boundary for this node if necessary */
2605 if (node_boundary_end_pfn[nid] == 0)
2606 node_boundary_start_pfn[nid] = -1UL;
2608 /* Update the boundaries */
2609 if (node_boundary_start_pfn[nid] > start_pfn)
2610 node_boundary_start_pfn[nid] = start_pfn;
2611 if (node_boundary_end_pfn[nid] < end_pfn)
2612 node_boundary_end_pfn[nid] = end_pfn;
2615 /* If necessary, push the node boundary out for reserve hotadd */
2616 static void __meminit account_node_boundary(unsigned int nid,
2617 unsigned long *start_pfn, unsigned long *end_pfn)
2619 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2620 nid, *start_pfn, *end_pfn);
2622 /* Return if boundary information has not been provided */
2623 if (node_boundary_end_pfn[nid] == 0)
2624 return;
2626 /* Check the boundaries and update if necessary */
2627 if (node_boundary_start_pfn[nid] < *start_pfn)
2628 *start_pfn = node_boundary_start_pfn[nid];
2629 if (node_boundary_end_pfn[nid] > *end_pfn)
2630 *end_pfn = node_boundary_end_pfn[nid];
2632 #else
2633 void __init push_node_boundaries(unsigned int nid,
2634 unsigned long start_pfn, unsigned long end_pfn) {}
2636 static void __meminit account_node_boundary(unsigned int nid,
2637 unsigned long *start_pfn, unsigned long *end_pfn) {}
2638 #endif
2642 * get_pfn_range_for_nid - Return the start and end page frames for a node
2643 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2644 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2645 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2647 * It returns the start and end page frame of a node based on information
2648 * provided by an arch calling add_active_range(). If called for a node
2649 * with no available memory, a warning is printed and the start and end
2650 * PFNs will be 0.
2652 void __meminit get_pfn_range_for_nid(unsigned int nid,
2653 unsigned long *start_pfn, unsigned long *end_pfn)
2655 int i;
2656 *start_pfn = -1UL;
2657 *end_pfn = 0;
2659 for_each_active_range_index_in_nid(i, nid) {
2660 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2661 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2664 if (*start_pfn == -1UL) {
2665 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2666 *start_pfn = 0;
2669 /* Push the node boundaries out if requested */
2670 account_node_boundary(nid, start_pfn, end_pfn);
2674 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2675 * assumption is made that zones within a node are ordered in monotonic
2676 * increasing memory addresses so that the "highest" populated zone is used
2678 void __init find_usable_zone_for_movable(void)
2680 int zone_index;
2681 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2682 if (zone_index == ZONE_MOVABLE)
2683 continue;
2685 if (arch_zone_highest_possible_pfn[zone_index] >
2686 arch_zone_lowest_possible_pfn[zone_index])
2687 break;
2690 VM_BUG_ON(zone_index == -1);
2691 movable_zone = zone_index;
2695 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2696 * because it is sized independant of architecture. Unlike the other zones,
2697 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2698 * in each node depending on the size of each node and how evenly kernelcore
2699 * is distributed. This helper function adjusts the zone ranges
2700 * provided by the architecture for a given node by using the end of the
2701 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2702 * zones within a node are in order of monotonic increases memory addresses
2704 void __meminit adjust_zone_range_for_zone_movable(int nid,
2705 unsigned long zone_type,
2706 unsigned long node_start_pfn,
2707 unsigned long node_end_pfn,
2708 unsigned long *zone_start_pfn,
2709 unsigned long *zone_end_pfn)
2711 /* Only adjust if ZONE_MOVABLE is on this node */
2712 if (zone_movable_pfn[nid]) {
2713 /* Size ZONE_MOVABLE */
2714 if (zone_type == ZONE_MOVABLE) {
2715 *zone_start_pfn = zone_movable_pfn[nid];
2716 *zone_end_pfn = min(node_end_pfn,
2717 arch_zone_highest_possible_pfn[movable_zone]);
2719 /* Adjust for ZONE_MOVABLE starting within this range */
2720 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2721 *zone_end_pfn > zone_movable_pfn[nid]) {
2722 *zone_end_pfn = zone_movable_pfn[nid];
2724 /* Check if this whole range is within ZONE_MOVABLE */
2725 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2726 *zone_start_pfn = *zone_end_pfn;
2731 * Return the number of pages a zone spans in a node, including holes
2732 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2734 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2735 unsigned long zone_type,
2736 unsigned long *ignored)
2738 unsigned long node_start_pfn, node_end_pfn;
2739 unsigned long zone_start_pfn, zone_end_pfn;
2741 /* Get the start and end of the node and zone */
2742 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2743 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2744 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2745 adjust_zone_range_for_zone_movable(nid, zone_type,
2746 node_start_pfn, node_end_pfn,
2747 &zone_start_pfn, &zone_end_pfn);
2749 /* Check that this node has pages within the zone's required range */
2750 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2751 return 0;
2753 /* Move the zone boundaries inside the node if necessary */
2754 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2755 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2757 /* Return the spanned pages */
2758 return zone_end_pfn - zone_start_pfn;
2762 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2763 * then all holes in the requested range will be accounted for.
2765 unsigned long __meminit __absent_pages_in_range(int nid,
2766 unsigned long range_start_pfn,
2767 unsigned long range_end_pfn)
2769 int i = 0;
2770 unsigned long prev_end_pfn = 0, hole_pages = 0;
2771 unsigned long start_pfn;
2773 /* Find the end_pfn of the first active range of pfns in the node */
2774 i = first_active_region_index_in_nid(nid);
2775 if (i == -1)
2776 return 0;
2778 /* Account for ranges before physical memory on this node */
2779 if (early_node_map[i].start_pfn > range_start_pfn)
2780 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2782 prev_end_pfn = early_node_map[i].start_pfn;
2784 /* Find all holes for the zone within the node */
2785 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2787 /* No need to continue if prev_end_pfn is outside the zone */
2788 if (prev_end_pfn >= range_end_pfn)
2789 break;
2791 /* Make sure the end of the zone is not within the hole */
2792 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2793 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2795 /* Update the hole size cound and move on */
2796 if (start_pfn > range_start_pfn) {
2797 BUG_ON(prev_end_pfn > start_pfn);
2798 hole_pages += start_pfn - prev_end_pfn;
2800 prev_end_pfn = early_node_map[i].end_pfn;
2803 /* Account for ranges past physical memory on this node */
2804 if (range_end_pfn > prev_end_pfn)
2805 hole_pages += range_end_pfn -
2806 max(range_start_pfn, prev_end_pfn);
2808 return hole_pages;
2812 * absent_pages_in_range - Return number of page frames in holes within a range
2813 * @start_pfn: The start PFN to start searching for holes
2814 * @end_pfn: The end PFN to stop searching for holes
2816 * It returns the number of pages frames in memory holes within a range.
2818 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2819 unsigned long end_pfn)
2821 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2824 /* Return the number of page frames in holes in a zone on a node */
2825 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2826 unsigned long zone_type,
2827 unsigned long *ignored)
2829 unsigned long node_start_pfn, node_end_pfn;
2830 unsigned long zone_start_pfn, zone_end_pfn;
2832 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2833 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2834 node_start_pfn);
2835 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2836 node_end_pfn);
2838 adjust_zone_range_for_zone_movable(nid, zone_type,
2839 node_start_pfn, node_end_pfn,
2840 &zone_start_pfn, &zone_end_pfn);
2841 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2844 #else
2845 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2846 unsigned long zone_type,
2847 unsigned long *zones_size)
2849 return zones_size[zone_type];
2852 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2853 unsigned long zone_type,
2854 unsigned long *zholes_size)
2856 if (!zholes_size)
2857 return 0;
2859 return zholes_size[zone_type];
2862 #endif
2864 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2865 unsigned long *zones_size, unsigned long *zholes_size)
2867 unsigned long realtotalpages, totalpages = 0;
2868 enum zone_type i;
2870 for (i = 0; i < MAX_NR_ZONES; i++)
2871 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2872 zones_size);
2873 pgdat->node_spanned_pages = totalpages;
2875 realtotalpages = totalpages;
2876 for (i = 0; i < MAX_NR_ZONES; i++)
2877 realtotalpages -=
2878 zone_absent_pages_in_node(pgdat->node_id, i,
2879 zholes_size);
2880 pgdat->node_present_pages = realtotalpages;
2881 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2882 realtotalpages);
2886 * Set up the zone data structures:
2887 * - mark all pages reserved
2888 * - mark all memory queues empty
2889 * - clear the memory bitmaps
2891 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2892 unsigned long *zones_size, unsigned long *zholes_size)
2894 enum zone_type j;
2895 int nid = pgdat->node_id;
2896 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2897 int ret;
2899 pgdat_resize_init(pgdat);
2900 pgdat->nr_zones = 0;
2901 init_waitqueue_head(&pgdat->kswapd_wait);
2902 pgdat->kswapd_max_order = 0;
2904 for (j = 0; j < MAX_NR_ZONES; j++) {
2905 struct zone *zone = pgdat->node_zones + j;
2906 unsigned long size, realsize, memmap_pages;
2908 size = zone_spanned_pages_in_node(nid, j, zones_size);
2909 realsize = size - zone_absent_pages_in_node(nid, j,
2910 zholes_size);
2913 * Adjust realsize so that it accounts for how much memory
2914 * is used by this zone for memmap. This affects the watermark
2915 * and per-cpu initialisations
2917 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2918 if (realsize >= memmap_pages) {
2919 realsize -= memmap_pages;
2920 printk(KERN_DEBUG
2921 " %s zone: %lu pages used for memmap\n",
2922 zone_names[j], memmap_pages);
2923 } else
2924 printk(KERN_WARNING
2925 " %s zone: %lu pages exceeds realsize %lu\n",
2926 zone_names[j], memmap_pages, realsize);
2928 /* Account for reserved pages */
2929 if (j == 0 && realsize > dma_reserve) {
2930 realsize -= dma_reserve;
2931 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2932 zone_names[0], dma_reserve);
2935 if (!is_highmem_idx(j))
2936 nr_kernel_pages += realsize;
2937 nr_all_pages += realsize;
2939 zone->spanned_pages = size;
2940 zone->present_pages = realsize;
2941 #ifdef CONFIG_NUMA
2942 zone->node = nid;
2943 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2944 / 100;
2945 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2946 #endif
2947 zone->name = zone_names[j];
2948 spin_lock_init(&zone->lock);
2949 spin_lock_init(&zone->lru_lock);
2950 zone_seqlock_init(zone);
2951 zone->zone_pgdat = pgdat;
2953 zone->prev_priority = DEF_PRIORITY;
2955 zone_pcp_init(zone);
2956 INIT_LIST_HEAD(&zone->active_list);
2957 INIT_LIST_HEAD(&zone->inactive_list);
2958 zone->nr_scan_active = 0;
2959 zone->nr_scan_inactive = 0;
2960 zap_zone_vm_stats(zone);
2961 atomic_set(&zone->reclaim_in_progress, 0);
2962 if (!size)
2963 continue;
2965 ret = init_currently_empty_zone(zone, zone_start_pfn,
2966 size, MEMMAP_EARLY);
2967 BUG_ON(ret);
2968 zone_start_pfn += size;
2972 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2974 /* Skip empty nodes */
2975 if (!pgdat->node_spanned_pages)
2976 return;
2978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2979 /* ia64 gets its own node_mem_map, before this, without bootmem */
2980 if (!pgdat->node_mem_map) {
2981 unsigned long size, start, end;
2982 struct page *map;
2985 * The zone's endpoints aren't required to be MAX_ORDER
2986 * aligned but the node_mem_map endpoints must be in order
2987 * for the buddy allocator to function correctly.
2989 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2990 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2991 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2992 size = (end - start) * sizeof(struct page);
2993 map = alloc_remap(pgdat->node_id, size);
2994 if (!map)
2995 map = alloc_bootmem_node(pgdat, size);
2996 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2998 #ifndef CONFIG_NEED_MULTIPLE_NODES
3000 * With no DISCONTIG, the global mem_map is just set as node 0's
3002 if (pgdat == NODE_DATA(0)) {
3003 mem_map = NODE_DATA(0)->node_mem_map;
3004 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3005 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3006 mem_map -= pgdat->node_start_pfn;
3007 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3009 #endif
3010 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3013 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3014 unsigned long *zones_size, unsigned long node_start_pfn,
3015 unsigned long *zholes_size)
3017 pgdat->node_id = nid;
3018 pgdat->node_start_pfn = node_start_pfn;
3019 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3021 alloc_node_mem_map(pgdat);
3023 free_area_init_core(pgdat, zones_size, zholes_size);
3026 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3028 #if MAX_NUMNODES > 1
3030 * Figure out the number of possible node ids.
3032 static void __init setup_nr_node_ids(void)
3034 unsigned int node;
3035 unsigned int highest = 0;
3037 for_each_node_mask(node, node_possible_map)
3038 highest = node;
3039 nr_node_ids = highest + 1;
3041 #else
3042 static inline void setup_nr_node_ids(void)
3045 #endif
3048 * add_active_range - Register a range of PFNs backed by physical memory
3049 * @nid: The node ID the range resides on
3050 * @start_pfn: The start PFN of the available physical memory
3051 * @end_pfn: The end PFN of the available physical memory
3053 * These ranges are stored in an early_node_map[] and later used by
3054 * free_area_init_nodes() to calculate zone sizes and holes. If the
3055 * range spans a memory hole, it is up to the architecture to ensure
3056 * the memory is not freed by the bootmem allocator. If possible
3057 * the range being registered will be merged with existing ranges.
3059 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3060 unsigned long end_pfn)
3062 int i;
3064 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3065 "%d entries of %d used\n",
3066 nid, start_pfn, end_pfn,
3067 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3069 /* Merge with existing active regions if possible */
3070 for (i = 0; i < nr_nodemap_entries; i++) {
3071 if (early_node_map[i].nid != nid)
3072 continue;
3074 /* Skip if an existing region covers this new one */
3075 if (start_pfn >= early_node_map[i].start_pfn &&
3076 end_pfn <= early_node_map[i].end_pfn)
3077 return;
3079 /* Merge forward if suitable */
3080 if (start_pfn <= early_node_map[i].end_pfn &&
3081 end_pfn > early_node_map[i].end_pfn) {
3082 early_node_map[i].end_pfn = end_pfn;
3083 return;
3086 /* Merge backward if suitable */
3087 if (start_pfn < early_node_map[i].end_pfn &&
3088 end_pfn >= early_node_map[i].start_pfn) {
3089 early_node_map[i].start_pfn = start_pfn;
3090 return;
3094 /* Check that early_node_map is large enough */
3095 if (i >= MAX_ACTIVE_REGIONS) {
3096 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3097 MAX_ACTIVE_REGIONS);
3098 return;
3101 early_node_map[i].nid = nid;
3102 early_node_map[i].start_pfn = start_pfn;
3103 early_node_map[i].end_pfn = end_pfn;
3104 nr_nodemap_entries = i + 1;
3108 * shrink_active_range - Shrink an existing registered range of PFNs
3109 * @nid: The node id the range is on that should be shrunk
3110 * @old_end_pfn: The old end PFN of the range
3111 * @new_end_pfn: The new PFN of the range
3113 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3114 * The map is kept at the end physical page range that has already been
3115 * registered with add_active_range(). This function allows an arch to shrink
3116 * an existing registered range.
3118 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3119 unsigned long new_end_pfn)
3121 int i;
3123 /* Find the old active region end and shrink */
3124 for_each_active_range_index_in_nid(i, nid)
3125 if (early_node_map[i].end_pfn == old_end_pfn) {
3126 early_node_map[i].end_pfn = new_end_pfn;
3127 break;
3132 * remove_all_active_ranges - Remove all currently registered regions
3134 * During discovery, it may be found that a table like SRAT is invalid
3135 * and an alternative discovery method must be used. This function removes
3136 * all currently registered regions.
3138 void __init remove_all_active_ranges(void)
3140 memset(early_node_map, 0, sizeof(early_node_map));
3141 nr_nodemap_entries = 0;
3142 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3143 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3144 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3145 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3148 /* Compare two active node_active_regions */
3149 static int __init cmp_node_active_region(const void *a, const void *b)
3151 struct node_active_region *arange = (struct node_active_region *)a;
3152 struct node_active_region *brange = (struct node_active_region *)b;
3154 /* Done this way to avoid overflows */
3155 if (arange->start_pfn > brange->start_pfn)
3156 return 1;
3157 if (arange->start_pfn < brange->start_pfn)
3158 return -1;
3160 return 0;
3163 /* sort the node_map by start_pfn */
3164 static void __init sort_node_map(void)
3166 sort(early_node_map, (size_t)nr_nodemap_entries,
3167 sizeof(struct node_active_region),
3168 cmp_node_active_region, NULL);
3171 /* Find the lowest pfn for a node */
3172 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3174 int i;
3175 unsigned long min_pfn = ULONG_MAX;
3177 /* Assuming a sorted map, the first range found has the starting pfn */
3178 for_each_active_range_index_in_nid(i, nid)
3179 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3181 if (min_pfn == ULONG_MAX) {
3182 printk(KERN_WARNING
3183 "Could not find start_pfn for node %lu\n", nid);
3184 return 0;
3187 return min_pfn;
3191 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3193 * It returns the minimum PFN based on information provided via
3194 * add_active_range().
3196 unsigned long __init find_min_pfn_with_active_regions(void)
3198 return find_min_pfn_for_node(MAX_NUMNODES);
3202 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3204 * It returns the maximum PFN based on information provided via
3205 * add_active_range().
3207 unsigned long __init find_max_pfn_with_active_regions(void)
3209 int i;
3210 unsigned long max_pfn = 0;
3212 for (i = 0; i < nr_nodemap_entries; i++)
3213 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3215 return max_pfn;
3218 unsigned long __init early_calculate_totalpages(void)
3220 int i;
3221 unsigned long totalpages = 0;
3223 for (i = 0; i < nr_nodemap_entries; i++)
3224 totalpages += early_node_map[i].end_pfn -
3225 early_node_map[i].start_pfn;
3227 return totalpages;
3231 * Find the PFN the Movable zone begins in each node. Kernel memory
3232 * is spread evenly between nodes as long as the nodes have enough
3233 * memory. When they don't, some nodes will have more kernelcore than
3234 * others
3236 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3238 int i, nid;
3239 unsigned long usable_startpfn;
3240 unsigned long kernelcore_node, kernelcore_remaining;
3241 int usable_nodes = num_online_nodes();
3244 * If movablecore was specified, calculate what size of
3245 * kernelcore that corresponds so that memory usable for
3246 * any allocation type is evenly spread. If both kernelcore
3247 * and movablecore are specified, then the value of kernelcore
3248 * will be used for required_kernelcore if it's greater than
3249 * what movablecore would have allowed.
3251 if (required_movablecore) {
3252 unsigned long totalpages = early_calculate_totalpages();
3253 unsigned long corepages;
3256 * Round-up so that ZONE_MOVABLE is at least as large as what
3257 * was requested by the user
3259 required_movablecore =
3260 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3261 corepages = totalpages - required_movablecore;
3263 required_kernelcore = max(required_kernelcore, corepages);
3266 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3267 if (!required_kernelcore)
3268 return;
3270 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3271 find_usable_zone_for_movable();
3272 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3274 restart:
3275 /* Spread kernelcore memory as evenly as possible throughout nodes */
3276 kernelcore_node = required_kernelcore / usable_nodes;
3277 for_each_online_node(nid) {
3279 * Recalculate kernelcore_node if the division per node
3280 * now exceeds what is necessary to satisfy the requested
3281 * amount of memory for the kernel
3283 if (required_kernelcore < kernelcore_node)
3284 kernelcore_node = required_kernelcore / usable_nodes;
3287 * As the map is walked, we track how much memory is usable
3288 * by the kernel using kernelcore_remaining. When it is
3289 * 0, the rest of the node is usable by ZONE_MOVABLE
3291 kernelcore_remaining = kernelcore_node;
3293 /* Go through each range of PFNs within this node */
3294 for_each_active_range_index_in_nid(i, nid) {
3295 unsigned long start_pfn, end_pfn;
3296 unsigned long size_pages;
3298 start_pfn = max(early_node_map[i].start_pfn,
3299 zone_movable_pfn[nid]);
3300 end_pfn = early_node_map[i].end_pfn;
3301 if (start_pfn >= end_pfn)
3302 continue;
3304 /* Account for what is only usable for kernelcore */
3305 if (start_pfn < usable_startpfn) {
3306 unsigned long kernel_pages;
3307 kernel_pages = min(end_pfn, usable_startpfn)
3308 - start_pfn;
3310 kernelcore_remaining -= min(kernel_pages,
3311 kernelcore_remaining);
3312 required_kernelcore -= min(kernel_pages,
3313 required_kernelcore);
3315 /* Continue if range is now fully accounted */
3316 if (end_pfn <= usable_startpfn) {
3319 * Push zone_movable_pfn to the end so
3320 * that if we have to rebalance
3321 * kernelcore across nodes, we will
3322 * not double account here
3324 zone_movable_pfn[nid] = end_pfn;
3325 continue;
3327 start_pfn = usable_startpfn;
3331 * The usable PFN range for ZONE_MOVABLE is from
3332 * start_pfn->end_pfn. Calculate size_pages as the
3333 * number of pages used as kernelcore
3335 size_pages = end_pfn - start_pfn;
3336 if (size_pages > kernelcore_remaining)
3337 size_pages = kernelcore_remaining;
3338 zone_movable_pfn[nid] = start_pfn + size_pages;
3341 * Some kernelcore has been met, update counts and
3342 * break if the kernelcore for this node has been
3343 * satisified
3345 required_kernelcore -= min(required_kernelcore,
3346 size_pages);
3347 kernelcore_remaining -= size_pages;
3348 if (!kernelcore_remaining)
3349 break;
3354 * If there is still required_kernelcore, we do another pass with one
3355 * less node in the count. This will push zone_movable_pfn[nid] further
3356 * along on the nodes that still have memory until kernelcore is
3357 * satisified
3359 usable_nodes--;
3360 if (usable_nodes && required_kernelcore > usable_nodes)
3361 goto restart;
3363 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3364 for (nid = 0; nid < MAX_NUMNODES; nid++)
3365 zone_movable_pfn[nid] =
3366 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3370 * free_area_init_nodes - Initialise all pg_data_t and zone data
3371 * @max_zone_pfn: an array of max PFNs for each zone
3373 * This will call free_area_init_node() for each active node in the system.
3374 * Using the page ranges provided by add_active_range(), the size of each
3375 * zone in each node and their holes is calculated. If the maximum PFN
3376 * between two adjacent zones match, it is assumed that the zone is empty.
3377 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3378 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3379 * starts where the previous one ended. For example, ZONE_DMA32 starts
3380 * at arch_max_dma_pfn.
3382 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3384 unsigned long nid;
3385 enum zone_type i;
3387 /* Sort early_node_map as initialisation assumes it is sorted */
3388 sort_node_map();
3390 /* Record where the zone boundaries are */
3391 memset(arch_zone_lowest_possible_pfn, 0,
3392 sizeof(arch_zone_lowest_possible_pfn));
3393 memset(arch_zone_highest_possible_pfn, 0,
3394 sizeof(arch_zone_highest_possible_pfn));
3395 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3396 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3397 for (i = 1; i < MAX_NR_ZONES; i++) {
3398 if (i == ZONE_MOVABLE)
3399 continue;
3400 arch_zone_lowest_possible_pfn[i] =
3401 arch_zone_highest_possible_pfn[i-1];
3402 arch_zone_highest_possible_pfn[i] =
3403 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3405 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3406 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3408 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3409 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3410 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3412 /* Print out the zone ranges */
3413 printk("Zone PFN ranges:\n");
3414 for (i = 0; i < MAX_NR_ZONES; i++) {
3415 if (i == ZONE_MOVABLE)
3416 continue;
3417 printk(" %-8s %8lu -> %8lu\n",
3418 zone_names[i],
3419 arch_zone_lowest_possible_pfn[i],
3420 arch_zone_highest_possible_pfn[i]);
3423 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3424 printk("Movable zone start PFN for each node\n");
3425 for (i = 0; i < MAX_NUMNODES; i++) {
3426 if (zone_movable_pfn[i])
3427 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3430 /* Print out the early_node_map[] */
3431 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3432 for (i = 0; i < nr_nodemap_entries; i++)
3433 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3434 early_node_map[i].start_pfn,
3435 early_node_map[i].end_pfn);
3437 /* Initialise every node */
3438 setup_nr_node_ids();
3439 for_each_online_node(nid) {
3440 pg_data_t *pgdat = NODE_DATA(nid);
3441 free_area_init_node(nid, pgdat, NULL,
3442 find_min_pfn_for_node(nid), NULL);
3446 static int __init cmdline_parse_core(char *p, unsigned long *core)
3448 unsigned long long coremem;
3449 if (!p)
3450 return -EINVAL;
3452 coremem = memparse(p, &p);
3453 *core = coremem >> PAGE_SHIFT;
3455 /* Paranoid check that UL is enough for the coremem value */
3456 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3458 return 0;
3462 * kernelcore=size sets the amount of memory for use for allocations that
3463 * cannot be reclaimed or migrated.
3465 static int __init cmdline_parse_kernelcore(char *p)
3467 return cmdline_parse_core(p, &required_kernelcore);
3471 * movablecore=size sets the amount of memory for use for allocations that
3472 * can be reclaimed or migrated.
3474 static int __init cmdline_parse_movablecore(char *p)
3476 return cmdline_parse_core(p, &required_movablecore);
3479 early_param("kernelcore", cmdline_parse_kernelcore);
3480 early_param("movablecore", cmdline_parse_movablecore);
3482 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3485 * set_dma_reserve - set the specified number of pages reserved in the first zone
3486 * @new_dma_reserve: The number of pages to mark reserved
3488 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3489 * In the DMA zone, a significant percentage may be consumed by kernel image
3490 * and other unfreeable allocations which can skew the watermarks badly. This
3491 * function may optionally be used to account for unfreeable pages in the
3492 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3493 * smaller per-cpu batchsize.
3495 void __init set_dma_reserve(unsigned long new_dma_reserve)
3497 dma_reserve = new_dma_reserve;
3500 #ifndef CONFIG_NEED_MULTIPLE_NODES
3501 static bootmem_data_t contig_bootmem_data;
3502 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3504 EXPORT_SYMBOL(contig_page_data);
3505 #endif
3507 void __init free_area_init(unsigned long *zones_size)
3509 free_area_init_node(0, NODE_DATA(0), zones_size,
3510 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3513 static int page_alloc_cpu_notify(struct notifier_block *self,
3514 unsigned long action, void *hcpu)
3516 int cpu = (unsigned long)hcpu;
3518 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3519 local_irq_disable();
3520 __drain_pages(cpu);
3521 vm_events_fold_cpu(cpu);
3522 local_irq_enable();
3523 refresh_cpu_vm_stats(cpu);
3525 return NOTIFY_OK;
3528 void __init page_alloc_init(void)
3530 hotcpu_notifier(page_alloc_cpu_notify, 0);
3534 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3535 * or min_free_kbytes changes.
3537 static void calculate_totalreserve_pages(void)
3539 struct pglist_data *pgdat;
3540 unsigned long reserve_pages = 0;
3541 enum zone_type i, j;
3543 for_each_online_pgdat(pgdat) {
3544 for (i = 0; i < MAX_NR_ZONES; i++) {
3545 struct zone *zone = pgdat->node_zones + i;
3546 unsigned long max = 0;
3548 /* Find valid and maximum lowmem_reserve in the zone */
3549 for (j = i; j < MAX_NR_ZONES; j++) {
3550 if (zone->lowmem_reserve[j] > max)
3551 max = zone->lowmem_reserve[j];
3554 /* we treat pages_high as reserved pages. */
3555 max += zone->pages_high;
3557 if (max > zone->present_pages)
3558 max = zone->present_pages;
3559 reserve_pages += max;
3562 totalreserve_pages = reserve_pages;
3566 * setup_per_zone_lowmem_reserve - called whenever
3567 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3568 * has a correct pages reserved value, so an adequate number of
3569 * pages are left in the zone after a successful __alloc_pages().
3571 static void setup_per_zone_lowmem_reserve(void)
3573 struct pglist_data *pgdat;
3574 enum zone_type j, idx;
3576 for_each_online_pgdat(pgdat) {
3577 for (j = 0; j < MAX_NR_ZONES; j++) {
3578 struct zone *zone = pgdat->node_zones + j;
3579 unsigned long present_pages = zone->present_pages;
3581 zone->lowmem_reserve[j] = 0;
3583 idx = j;
3584 while (idx) {
3585 struct zone *lower_zone;
3587 idx--;
3589 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3590 sysctl_lowmem_reserve_ratio[idx] = 1;
3592 lower_zone = pgdat->node_zones + idx;
3593 lower_zone->lowmem_reserve[j] = present_pages /
3594 sysctl_lowmem_reserve_ratio[idx];
3595 present_pages += lower_zone->present_pages;
3600 /* update totalreserve_pages */
3601 calculate_totalreserve_pages();
3605 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3607 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3608 * with respect to min_free_kbytes.
3610 void setup_per_zone_pages_min(void)
3612 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3613 unsigned long lowmem_pages = 0;
3614 struct zone *zone;
3615 unsigned long flags;
3617 /* Calculate total number of !ZONE_HIGHMEM pages */
3618 for_each_zone(zone) {
3619 if (!is_highmem(zone))
3620 lowmem_pages += zone->present_pages;
3623 for_each_zone(zone) {
3624 u64 tmp;
3626 spin_lock_irqsave(&zone->lru_lock, flags);
3627 tmp = (u64)pages_min * zone->present_pages;
3628 do_div(tmp, lowmem_pages);
3629 if (is_highmem(zone)) {
3631 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3632 * need highmem pages, so cap pages_min to a small
3633 * value here.
3635 * The (pages_high-pages_low) and (pages_low-pages_min)
3636 * deltas controls asynch page reclaim, and so should
3637 * not be capped for highmem.
3639 int min_pages;
3641 min_pages = zone->present_pages / 1024;
3642 if (min_pages < SWAP_CLUSTER_MAX)
3643 min_pages = SWAP_CLUSTER_MAX;
3644 if (min_pages > 128)
3645 min_pages = 128;
3646 zone->pages_min = min_pages;
3647 } else {
3649 * If it's a lowmem zone, reserve a number of pages
3650 * proportionate to the zone's size.
3652 zone->pages_min = tmp;
3655 zone->pages_low = zone->pages_min + (tmp >> 2);
3656 zone->pages_high = zone->pages_min + (tmp >> 1);
3657 spin_unlock_irqrestore(&zone->lru_lock, flags);
3660 /* update totalreserve_pages */
3661 calculate_totalreserve_pages();
3665 * Initialise min_free_kbytes.
3667 * For small machines we want it small (128k min). For large machines
3668 * we want it large (64MB max). But it is not linear, because network
3669 * bandwidth does not increase linearly with machine size. We use
3671 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3672 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3674 * which yields
3676 * 16MB: 512k
3677 * 32MB: 724k
3678 * 64MB: 1024k
3679 * 128MB: 1448k
3680 * 256MB: 2048k
3681 * 512MB: 2896k
3682 * 1024MB: 4096k
3683 * 2048MB: 5792k
3684 * 4096MB: 8192k
3685 * 8192MB: 11584k
3686 * 16384MB: 16384k
3688 static int __init init_per_zone_pages_min(void)
3690 unsigned long lowmem_kbytes;
3692 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3694 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3695 if (min_free_kbytes < 128)
3696 min_free_kbytes = 128;
3697 if (min_free_kbytes > 65536)
3698 min_free_kbytes = 65536;
3699 setup_per_zone_pages_min();
3700 setup_per_zone_lowmem_reserve();
3701 return 0;
3703 module_init(init_per_zone_pages_min)
3706 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3707 * that we can call two helper functions whenever min_free_kbytes
3708 * changes.
3710 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3711 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3713 proc_dointvec(table, write, file, buffer, length, ppos);
3714 if (write)
3715 setup_per_zone_pages_min();
3716 return 0;
3719 #ifdef CONFIG_NUMA
3720 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3721 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3723 struct zone *zone;
3724 int rc;
3726 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3727 if (rc)
3728 return rc;
3730 for_each_zone(zone)
3731 zone->min_unmapped_pages = (zone->present_pages *
3732 sysctl_min_unmapped_ratio) / 100;
3733 return 0;
3736 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3737 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3739 struct zone *zone;
3740 int rc;
3742 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3743 if (rc)
3744 return rc;
3746 for_each_zone(zone)
3747 zone->min_slab_pages = (zone->present_pages *
3748 sysctl_min_slab_ratio) / 100;
3749 return 0;
3751 #endif
3754 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3755 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3756 * whenever sysctl_lowmem_reserve_ratio changes.
3758 * The reserve ratio obviously has absolutely no relation with the
3759 * pages_min watermarks. The lowmem reserve ratio can only make sense
3760 * if in function of the boot time zone sizes.
3762 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3763 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3765 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3766 setup_per_zone_lowmem_reserve();
3767 return 0;
3771 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3772 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3773 * can have before it gets flushed back to buddy allocator.
3776 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3777 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3779 struct zone *zone;
3780 unsigned int cpu;
3781 int ret;
3783 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3784 if (!write || (ret == -EINVAL))
3785 return ret;
3786 for_each_zone(zone) {
3787 for_each_online_cpu(cpu) {
3788 unsigned long high;
3789 high = zone->present_pages / percpu_pagelist_fraction;
3790 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3793 return 0;
3796 int hashdist = HASHDIST_DEFAULT;
3798 #ifdef CONFIG_NUMA
3799 static int __init set_hashdist(char *str)
3801 if (!str)
3802 return 0;
3803 hashdist = simple_strtoul(str, &str, 0);
3804 return 1;
3806 __setup("hashdist=", set_hashdist);
3807 #endif
3810 * allocate a large system hash table from bootmem
3811 * - it is assumed that the hash table must contain an exact power-of-2
3812 * quantity of entries
3813 * - limit is the number of hash buckets, not the total allocation size
3815 void *__init alloc_large_system_hash(const char *tablename,
3816 unsigned long bucketsize,
3817 unsigned long numentries,
3818 int scale,
3819 int flags,
3820 unsigned int *_hash_shift,
3821 unsigned int *_hash_mask,
3822 unsigned long limit)
3824 unsigned long long max = limit;
3825 unsigned long log2qty, size;
3826 void *table = NULL;
3828 /* allow the kernel cmdline to have a say */
3829 if (!numentries) {
3830 /* round applicable memory size up to nearest megabyte */
3831 numentries = nr_kernel_pages;
3832 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3833 numentries >>= 20 - PAGE_SHIFT;
3834 numentries <<= 20 - PAGE_SHIFT;
3836 /* limit to 1 bucket per 2^scale bytes of low memory */
3837 if (scale > PAGE_SHIFT)
3838 numentries >>= (scale - PAGE_SHIFT);
3839 else
3840 numentries <<= (PAGE_SHIFT - scale);
3842 /* Make sure we've got at least a 0-order allocation.. */
3843 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3844 numentries = PAGE_SIZE / bucketsize;
3846 numentries = roundup_pow_of_two(numentries);
3848 /* limit allocation size to 1/16 total memory by default */
3849 if (max == 0) {
3850 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3851 do_div(max, bucketsize);
3854 if (numentries > max)
3855 numentries = max;
3857 log2qty = ilog2(numentries);
3859 do {
3860 size = bucketsize << log2qty;
3861 if (flags & HASH_EARLY)
3862 table = alloc_bootmem(size);
3863 else if (hashdist)
3864 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3865 else {
3866 unsigned long order;
3867 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3869 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3871 * If bucketsize is not a power-of-two, we may free
3872 * some pages at the end of hash table.
3874 if (table) {
3875 unsigned long alloc_end = (unsigned long)table +
3876 (PAGE_SIZE << order);
3877 unsigned long used = (unsigned long)table +
3878 PAGE_ALIGN(size);
3879 split_page(virt_to_page(table), order);
3880 while (used < alloc_end) {
3881 free_page(used);
3882 used += PAGE_SIZE;
3886 } while (!table && size > PAGE_SIZE && --log2qty);
3888 if (!table)
3889 panic("Failed to allocate %s hash table\n", tablename);
3891 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3892 tablename,
3893 (1U << log2qty),
3894 ilog2(size) - PAGE_SHIFT,
3895 size);
3897 if (_hash_shift)
3898 *_hash_shift = log2qty;
3899 if (_hash_mask)
3900 *_hash_mask = (1 << log2qty) - 1;
3902 return table;
3905 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3906 struct page *pfn_to_page(unsigned long pfn)
3908 return __pfn_to_page(pfn);
3910 unsigned long page_to_pfn(struct page *page)
3912 return __page_to_pfn(page);
3914 EXPORT_SYMBOL(pfn_to_page);
3915 EXPORT_SYMBOL(page_to_pfn);
3916 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */