2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 unsigned long max_huge_pages
;
27 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
28 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
29 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
36 static DEFINE_SPINLOCK(hugetlb_lock
);
38 static void clear_huge_page(struct page
*page
, unsigned long addr
)
43 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
45 clear_user_highpage(page
+ i
, addr
);
49 static void copy_huge_page(struct page
*dst
, struct page
*src
,
50 unsigned long addr
, struct vm_area_struct
*vma
)
55 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
57 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
61 static void enqueue_huge_page(struct page
*page
)
63 int nid
= page_to_nid(page
);
64 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
66 free_huge_pages_node
[nid
]++;
69 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
70 unsigned long address
)
73 struct page
*page
= NULL
;
74 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
78 for (z
= zonelist
->zones
; *z
; z
++) {
79 nid
= zone_to_nid(*z
);
80 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
81 !list_empty(&hugepage_freelists
[nid
])) {
82 page
= list_entry(hugepage_freelists
[nid
].next
,
86 free_huge_pages_node
[nid
]--;
92 static void free_huge_page(struct page
*page
)
94 BUG_ON(page_count(page
));
96 INIT_LIST_HEAD(&page
->lru
);
98 spin_lock(&hugetlb_lock
);
99 enqueue_huge_page(page
);
100 spin_unlock(&hugetlb_lock
);
103 static int alloc_fresh_huge_page(void)
110 * Copy static prev_nid to local nid, work on that, then copy it
111 * back to prev_nid afterwards: otherwise there's a window in which
112 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
113 * But we don't need to use a spin_lock here: it really doesn't
114 * matter if occasionally a racer chooses the same nid as we do.
116 nid
= next_node(prev_nid
, node_online_map
);
117 if (nid
== MAX_NUMNODES
)
118 nid
= first_node(node_online_map
);
121 page
= alloc_pages_node(nid
, htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
124 set_compound_page_dtor(page
, free_huge_page
);
125 spin_lock(&hugetlb_lock
);
127 nr_huge_pages_node
[page_to_nid(page
)]++;
128 spin_unlock(&hugetlb_lock
);
129 put_page(page
); /* free it into the hugepage allocator */
135 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
140 spin_lock(&hugetlb_lock
);
141 if (vma
->vm_flags
& VM_MAYSHARE
)
143 else if (free_huge_pages
<= resv_huge_pages
)
146 page
= dequeue_huge_page(vma
, addr
);
150 spin_unlock(&hugetlb_lock
);
151 set_page_refcounted(page
);
155 if (vma
->vm_flags
& VM_MAYSHARE
)
157 spin_unlock(&hugetlb_lock
);
161 static int __init
hugetlb_init(void)
165 if (HPAGE_SHIFT
== 0)
168 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
169 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
171 for (i
= 0; i
< max_huge_pages
; ++i
) {
172 if (!alloc_fresh_huge_page())
175 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
176 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
179 module_init(hugetlb_init
);
181 static int __init
hugetlb_setup(char *s
)
183 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
187 __setup("hugepages=", hugetlb_setup
);
189 static unsigned int cpuset_mems_nr(unsigned int *array
)
194 for_each_node_mask(node
, cpuset_current_mems_allowed
)
201 static void update_and_free_page(struct page
*page
)
205 nr_huge_pages_node
[page_to_nid(page
)]--;
206 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
207 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
208 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
209 1 << PG_private
| 1<< PG_writeback
);
211 set_compound_page_dtor(page
, NULL
);
212 set_page_refcounted(page
);
213 __free_pages(page
, HUGETLB_PAGE_ORDER
);
216 #ifdef CONFIG_HIGHMEM
217 static void try_to_free_low(unsigned long count
)
221 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
222 struct page
*page
, *next
;
223 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
224 if (PageHighMem(page
))
226 list_del(&page
->lru
);
227 update_and_free_page(page
);
229 free_huge_pages_node
[page_to_nid(page
)]--;
230 if (count
>= nr_huge_pages
)
236 static inline void try_to_free_low(unsigned long count
)
241 static unsigned long set_max_huge_pages(unsigned long count
)
243 while (count
> nr_huge_pages
) {
244 if (!alloc_fresh_huge_page())
245 return nr_huge_pages
;
247 if (count
>= nr_huge_pages
)
248 return nr_huge_pages
;
250 spin_lock(&hugetlb_lock
);
251 count
= max(count
, resv_huge_pages
);
252 try_to_free_low(count
);
253 while (count
< nr_huge_pages
) {
254 struct page
*page
= dequeue_huge_page(NULL
, 0);
257 update_and_free_page(page
);
259 spin_unlock(&hugetlb_lock
);
260 return nr_huge_pages
;
263 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
264 struct file
*file
, void __user
*buffer
,
265 size_t *length
, loff_t
*ppos
)
267 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
268 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
272 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
273 struct file
*file
, void __user
*buffer
,
274 size_t *length
, loff_t
*ppos
)
276 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
277 if (hugepages_treat_as_movable
)
278 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
280 htlb_alloc_mask
= GFP_HIGHUSER
;
284 #endif /* CONFIG_SYSCTL */
286 int hugetlb_report_meminfo(char *buf
)
289 "HugePages_Total: %5lu\n"
290 "HugePages_Free: %5lu\n"
291 "HugePages_Rsvd: %5lu\n"
292 "Hugepagesize: %5lu kB\n",
299 int hugetlb_report_node_meminfo(int nid
, char *buf
)
302 "Node %d HugePages_Total: %5u\n"
303 "Node %d HugePages_Free: %5u\n",
304 nid
, nr_huge_pages_node
[nid
],
305 nid
, free_huge_pages_node
[nid
]);
308 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
309 unsigned long hugetlb_total_pages(void)
311 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
315 * We cannot handle pagefaults against hugetlb pages at all. They cause
316 * handle_mm_fault() to try to instantiate regular-sized pages in the
317 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
320 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
326 struct vm_operations_struct hugetlb_vm_ops
= {
327 .fault
= hugetlb_vm_op_fault
,
330 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
337 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
339 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
341 entry
= pte_mkyoung(entry
);
342 entry
= pte_mkhuge(entry
);
347 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
348 unsigned long address
, pte_t
*ptep
)
352 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
353 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
354 update_mmu_cache(vma
, address
, entry
);
355 lazy_mmu_prot_update(entry
);
360 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
361 struct vm_area_struct
*vma
)
363 pte_t
*src_pte
, *dst_pte
, entry
;
364 struct page
*ptepage
;
368 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
370 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
371 src_pte
= huge_pte_offset(src
, addr
);
374 dst_pte
= huge_pte_alloc(dst
, addr
);
377 spin_lock(&dst
->page_table_lock
);
378 spin_lock(&src
->page_table_lock
);
379 if (!pte_none(*src_pte
)) {
381 ptep_set_wrprotect(src
, addr
, src_pte
);
383 ptepage
= pte_page(entry
);
385 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
387 spin_unlock(&src
->page_table_lock
);
388 spin_unlock(&dst
->page_table_lock
);
396 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
399 struct mm_struct
*mm
= vma
->vm_mm
;
400 unsigned long address
;
406 * A page gathering list, protected by per file i_mmap_lock. The
407 * lock is used to avoid list corruption from multiple unmapping
408 * of the same page since we are using page->lru.
410 LIST_HEAD(page_list
);
412 WARN_ON(!is_vm_hugetlb_page(vma
));
413 BUG_ON(start
& ~HPAGE_MASK
);
414 BUG_ON(end
& ~HPAGE_MASK
);
416 spin_lock(&mm
->page_table_lock
);
417 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
418 ptep
= huge_pte_offset(mm
, address
);
422 if (huge_pmd_unshare(mm
, &address
, ptep
))
425 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
429 page
= pte_page(pte
);
431 set_page_dirty(page
);
432 list_add(&page
->lru
, &page_list
);
434 spin_unlock(&mm
->page_table_lock
);
435 flush_tlb_range(vma
, start
, end
);
436 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
437 list_del(&page
->lru
);
442 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
446 * It is undesirable to test vma->vm_file as it should be non-null
447 * for valid hugetlb area. However, vm_file will be NULL in the error
448 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
449 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
450 * to clean up. Since no pte has actually been setup, it is safe to
451 * do nothing in this case.
454 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
455 __unmap_hugepage_range(vma
, start
, end
);
456 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
460 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
461 unsigned long address
, pte_t
*ptep
, pte_t pte
)
463 struct page
*old_page
, *new_page
;
466 old_page
= pte_page(pte
);
468 /* If no-one else is actually using this page, avoid the copy
469 * and just make the page writable */
470 avoidcopy
= (page_count(old_page
) == 1);
472 set_huge_ptep_writable(vma
, address
, ptep
);
476 page_cache_get(old_page
);
477 new_page
= alloc_huge_page(vma
, address
);
480 page_cache_release(old_page
);
484 spin_unlock(&mm
->page_table_lock
);
485 copy_huge_page(new_page
, old_page
, address
, vma
);
486 spin_lock(&mm
->page_table_lock
);
488 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
489 if (likely(pte_same(*ptep
, pte
))) {
491 set_huge_pte_at(mm
, address
, ptep
,
492 make_huge_pte(vma
, new_page
, 1));
493 /* Make the old page be freed below */
496 page_cache_release(new_page
);
497 page_cache_release(old_page
);
501 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
502 unsigned long address
, pte_t
*ptep
, int write_access
)
504 int ret
= VM_FAULT_SIGBUS
;
508 struct address_space
*mapping
;
511 mapping
= vma
->vm_file
->f_mapping
;
512 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
513 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
516 * Use page lock to guard against racing truncation
517 * before we get page_table_lock.
520 page
= find_lock_page(mapping
, idx
);
522 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
525 if (hugetlb_get_quota(mapping
))
527 page
= alloc_huge_page(vma
, address
);
529 hugetlb_put_quota(mapping
);
533 clear_huge_page(page
, address
);
535 if (vma
->vm_flags
& VM_SHARED
) {
538 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
541 hugetlb_put_quota(mapping
);
550 spin_lock(&mm
->page_table_lock
);
551 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
556 if (!pte_none(*ptep
))
559 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
560 && (vma
->vm_flags
& VM_SHARED
)));
561 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
563 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
564 /* Optimization, do the COW without a second fault */
565 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
568 spin_unlock(&mm
->page_table_lock
);
574 spin_unlock(&mm
->page_table_lock
);
575 hugetlb_put_quota(mapping
);
581 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
582 unsigned long address
, int write_access
)
587 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
589 ptep
= huge_pte_alloc(mm
, address
);
594 * Serialize hugepage allocation and instantiation, so that we don't
595 * get spurious allocation failures if two CPUs race to instantiate
596 * the same page in the page cache.
598 mutex_lock(&hugetlb_instantiation_mutex
);
600 if (pte_none(entry
)) {
601 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
602 mutex_unlock(&hugetlb_instantiation_mutex
);
608 spin_lock(&mm
->page_table_lock
);
609 /* Check for a racing update before calling hugetlb_cow */
610 if (likely(pte_same(entry
, *ptep
)))
611 if (write_access
&& !pte_write(entry
))
612 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
613 spin_unlock(&mm
->page_table_lock
);
614 mutex_unlock(&hugetlb_instantiation_mutex
);
619 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
620 struct page
**pages
, struct vm_area_struct
**vmas
,
621 unsigned long *position
, int *length
, int i
)
623 unsigned long pfn_offset
;
624 unsigned long vaddr
= *position
;
625 int remainder
= *length
;
627 spin_lock(&mm
->page_table_lock
);
628 while (vaddr
< vma
->vm_end
&& remainder
) {
633 * Some archs (sparc64, sh*) have multiple pte_ts to
634 * each hugepage. We have to make * sure we get the
635 * first, for the page indexing below to work.
637 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
639 if (!pte
|| pte_none(*pte
)) {
642 spin_unlock(&mm
->page_table_lock
);
643 ret
= hugetlb_fault(mm
, vma
, vaddr
, 0);
644 spin_lock(&mm
->page_table_lock
);
645 if (!(ret
& VM_FAULT_MAJOR
))
654 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
655 page
= pte_page(*pte
);
659 pages
[i
] = page
+ pfn_offset
;
669 if (vaddr
< vma
->vm_end
&& remainder
&&
670 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
672 * We use pfn_offset to avoid touching the pageframes
673 * of this compound page.
678 spin_unlock(&mm
->page_table_lock
);
685 void hugetlb_change_protection(struct vm_area_struct
*vma
,
686 unsigned long address
, unsigned long end
, pgprot_t newprot
)
688 struct mm_struct
*mm
= vma
->vm_mm
;
689 unsigned long start
= address
;
693 BUG_ON(address
>= end
);
694 flush_cache_range(vma
, address
, end
);
696 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
697 spin_lock(&mm
->page_table_lock
);
698 for (; address
< end
; address
+= HPAGE_SIZE
) {
699 ptep
= huge_pte_offset(mm
, address
);
702 if (huge_pmd_unshare(mm
, &address
, ptep
))
704 if (!pte_none(*ptep
)) {
705 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
706 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
707 set_huge_pte_at(mm
, address
, ptep
, pte
);
708 lazy_mmu_prot_update(pte
);
711 spin_unlock(&mm
->page_table_lock
);
712 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
714 flush_tlb_range(vma
, start
, end
);
718 struct list_head link
;
723 static long region_add(struct list_head
*head
, long f
, long t
)
725 struct file_region
*rg
, *nrg
, *trg
;
727 /* Locate the region we are either in or before. */
728 list_for_each_entry(rg
, head
, link
)
732 /* Round our left edge to the current segment if it encloses us. */
736 /* Check for and consume any regions we now overlap with. */
738 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
739 if (&rg
->link
== head
)
744 /* If this area reaches higher then extend our area to
745 * include it completely. If this is not the first area
746 * which we intend to reuse, free it. */
759 static long region_chg(struct list_head
*head
, long f
, long t
)
761 struct file_region
*rg
, *nrg
;
764 /* Locate the region we are before or in. */
765 list_for_each_entry(rg
, head
, link
)
769 /* If we are below the current region then a new region is required.
770 * Subtle, allocate a new region at the position but make it zero
771 * size such that we can guarentee to record the reservation. */
772 if (&rg
->link
== head
|| t
< rg
->from
) {
773 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
778 INIT_LIST_HEAD(&nrg
->link
);
779 list_add(&nrg
->link
, rg
->link
.prev
);
784 /* Round our left edge to the current segment if it encloses us. */
789 /* Check for and consume any regions we now overlap with. */
790 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
791 if (&rg
->link
== head
)
796 /* We overlap with this area, if it extends futher than
797 * us then we must extend ourselves. Account for its
798 * existing reservation. */
803 chg
-= rg
->to
- rg
->from
;
808 static long region_truncate(struct list_head
*head
, long end
)
810 struct file_region
*rg
, *trg
;
813 /* Locate the region we are either in or before. */
814 list_for_each_entry(rg
, head
, link
)
817 if (&rg
->link
== head
)
820 /* If we are in the middle of a region then adjust it. */
821 if (end
> rg
->from
) {
824 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
827 /* Drop any remaining regions. */
828 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
829 if (&rg
->link
== head
)
831 chg
+= rg
->to
- rg
->from
;
838 static int hugetlb_acct_memory(long delta
)
842 spin_lock(&hugetlb_lock
);
843 if ((delta
+ resv_huge_pages
) <= free_huge_pages
) {
844 resv_huge_pages
+= delta
;
847 spin_unlock(&hugetlb_lock
);
851 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
855 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
859 * When cpuset is configured, it breaks the strict hugetlb page
860 * reservation as the accounting is done on a global variable. Such
861 * reservation is completely rubbish in the presence of cpuset because
862 * the reservation is not checked against page availability for the
863 * current cpuset. Application can still potentially OOM'ed by kernel
864 * with lack of free htlb page in cpuset that the task is in.
865 * Attempt to enforce strict accounting with cpuset is almost
866 * impossible (or too ugly) because cpuset is too fluid that
867 * task or memory node can be dynamically moved between cpusets.
869 * The change of semantics for shared hugetlb mapping with cpuset is
870 * undesirable. However, in order to preserve some of the semantics,
871 * we fall back to check against current free page availability as
872 * a best attempt and hopefully to minimize the impact of changing
873 * semantics that cpuset has.
875 if (chg
> cpuset_mems_nr(free_huge_pages_node
))
878 ret
= hugetlb_acct_memory(chg
);
881 region_add(&inode
->i_mapping
->private_list
, from
, to
);
885 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
887 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
888 hugetlb_acct_memory(freed
- chg
);