mac80211: Fix bug in computing crc over dynamic IEs in beacon
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobd079a9f64a8ef25557b042c683e9f5f709fa814e
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_GROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
277 #ifdef CONFIG_USER_SCHED
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
282 user->tg->uid = user->uid;
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
290 struct task_group root_task_group;
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
310 static DEFINE_SPINLOCK(task_group_lock);
312 #ifdef CONFIG_FAIR_GROUP_SCHED
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
344 struct task_group init_task_group;
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
349 struct task_group *tg;
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
378 #else
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
383 return NULL;
386 #endif /* CONFIG_GROUP_SCHED */
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
393 u64 exec_clock;
394 u64 min_vruntime;
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
399 struct list_head tasks;
400 struct list_head *balance_iterator;
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
406 struct sched_entity *curr, *next, *last;
408 unsigned int nr_spread_over;
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
424 #ifdef CONFIG_SMP
426 * the part of load.weight contributed by tasks
428 unsigned long task_weight;
431 * h_load = weight * f(tg)
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
436 unsigned long h_load;
439 * this cpu's part of tg->shares
441 unsigned long shares;
444 * load.weight at the time we set shares
446 unsigned long rq_weight;
447 #endif
448 #endif
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
485 #ifdef CONFIG_SMP
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
515 static struct root_domain def_root_domain;
517 #endif
520 * This is the main, per-CPU runqueue data structure.
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned long last_tick_seen;
539 unsigned char in_nohz_recently;
540 #endif
541 /* capture load from *all* tasks on this cpu: */
542 struct load_weight load;
543 unsigned long nr_load_updates;
544 u64 nr_switches;
545 u64 nr_migrations_in;
547 struct cfs_rq cfs;
548 struct rt_rq rt;
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
564 unsigned long nr_uninterruptible;
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
570 u64 clock;
572 atomic_t nr_iowait;
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
587 unsigned long avg_load_per_task;
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
641 static inline int cpu_of(struct rq *rq)
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
666 inline void update_rq_clock(struct rq *rq)
668 rq->clock = sched_clock_cpu(cpu_of(rq));
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
681 * runqueue_is_locked
682 * @cpu: the processor in question.
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
688 int runqueue_is_locked(int cpu)
690 return spin_is_locked(&cpu_rq(cpu)->lock);
694 * Debugging: various feature bits
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
700 enum {
701 #include "sched_features.h"
704 #undef SCHED_FEAT
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
713 #undef SCHED_FEAT
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
724 #undef SCHED_FEAT
726 static int sched_feat_show(struct seq_file *m, void *v)
728 int i;
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
735 seq_puts(m, "\n");
737 return 0;
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
749 if (cnt > 63)
750 cnt = 63;
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
755 buf[cnt] = 0;
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
774 if (!sched_feat_names[i])
775 return -EINVAL;
777 filp->f_pos += cnt;
779 return cnt;
782 static int sched_feat_open(struct inode *inode, struct file *filp)
784 return single_open(filp, sched_feat_show, NULL);
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
795 static __init int sched_init_debug(void)
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
800 return 0;
802 late_initcall(sched_init_debug);
804 #endif
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
825 unsigned int sysctl_sched_shares_thresh = 4;
828 * period over which we average the RT time consumption, measured
829 * in ms.
831 * default: 1s
833 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
836 * period over which we measure -rt task cpu usage in us.
837 * default: 1s
839 unsigned int sysctl_sched_rt_period = 1000000;
841 static __read_mostly int scheduler_running;
844 * part of the period that we allow rt tasks to run in us.
845 * default: 0.95s
847 int sysctl_sched_rt_runtime = 950000;
849 static inline u64 global_rt_period(void)
851 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854 static inline u64 global_rt_runtime(void)
856 if (sysctl_sched_rt_runtime < 0)
857 return RUNTIME_INF;
859 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862 #ifndef prepare_arch_switch
863 # define prepare_arch_switch(next) do { } while (0)
864 #endif
865 #ifndef finish_arch_switch
866 # define finish_arch_switch(prev) do { } while (0)
867 #endif
869 static inline int task_current(struct rq *rq, struct task_struct *p)
871 return rq->curr == p;
874 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
875 static inline int task_running(struct rq *rq, struct task_struct *p)
877 return task_current(rq, p);
880 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 #ifdef CONFIG_DEBUG_SPINLOCK
887 /* this is a valid case when another task releases the spinlock */
888 rq->lock.owner = current;
889 #endif
891 * If we are tracking spinlock dependencies then we have to
892 * fix up the runqueue lock - which gets 'carried over' from
893 * prev into current:
895 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897 spin_unlock_irq(&rq->lock);
900 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
901 static inline int task_running(struct rq *rq, struct task_struct *p)
903 #ifdef CONFIG_SMP
904 return p->oncpu;
905 #else
906 return task_current(rq, p);
907 #endif
910 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 #ifdef CONFIG_SMP
914 * We can optimise this out completely for !SMP, because the
915 * SMP rebalancing from interrupt is the only thing that cares
916 * here.
918 next->oncpu = 1;
919 #endif
920 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 spin_unlock_irq(&rq->lock);
922 #else
923 spin_unlock(&rq->lock);
924 #endif
927 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 #ifdef CONFIG_SMP
931 * After ->oncpu is cleared, the task can be moved to a different CPU.
932 * We must ensure this doesn't happen until the switch is completely
933 * finished.
935 smp_wmb();
936 prev->oncpu = 0;
937 #endif
938 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
939 local_irq_enable();
940 #endif
942 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
945 * __task_rq_lock - lock the runqueue a given task resides on.
946 * Must be called interrupts disabled.
948 static inline struct rq *__task_rq_lock(struct task_struct *p)
949 __acquires(rq->lock)
951 for (;;) {
952 struct rq *rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
956 spin_unlock(&rq->lock);
961 * task_rq_lock - lock the runqueue a given task resides on and disable
962 * interrupts. Note the ordering: we can safely lookup the task_rq without
963 * explicitly disabling preemption.
965 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
966 __acquires(rq->lock)
968 struct rq *rq;
970 for (;;) {
971 local_irq_save(*flags);
972 rq = task_rq(p);
973 spin_lock(&rq->lock);
974 if (likely(rq == task_rq(p)))
975 return rq;
976 spin_unlock_irqrestore(&rq->lock, *flags);
980 void task_rq_unlock_wait(struct task_struct *p)
982 struct rq *rq = task_rq(p);
984 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
985 spin_unlock_wait(&rq->lock);
988 static void __task_rq_unlock(struct rq *rq)
989 __releases(rq->lock)
991 spin_unlock(&rq->lock);
994 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
995 __releases(rq->lock)
997 spin_unlock_irqrestore(&rq->lock, *flags);
1001 * this_rq_lock - lock this runqueue and disable interrupts.
1003 static struct rq *this_rq_lock(void)
1004 __acquires(rq->lock)
1006 struct rq *rq;
1008 local_irq_disable();
1009 rq = this_rq();
1010 spin_lock(&rq->lock);
1012 return rq;
1015 #ifdef CONFIG_SCHED_HRTICK
1017 * Use HR-timers to deliver accurate preemption points.
1019 * Its all a bit involved since we cannot program an hrt while holding the
1020 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1021 * reschedule event.
1023 * When we get rescheduled we reprogram the hrtick_timer outside of the
1024 * rq->lock.
1028 * Use hrtick when:
1029 * - enabled by features
1030 * - hrtimer is actually high res
1032 static inline int hrtick_enabled(struct rq *rq)
1034 if (!sched_feat(HRTICK))
1035 return 0;
1036 if (!cpu_active(cpu_of(rq)))
1037 return 0;
1038 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041 static void hrtick_clear(struct rq *rq)
1043 if (hrtimer_active(&rq->hrtick_timer))
1044 hrtimer_cancel(&rq->hrtick_timer);
1048 * High-resolution timer tick.
1049 * Runs from hardirq context with interrupts disabled.
1051 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057 spin_lock(&rq->lock);
1058 update_rq_clock(rq);
1059 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1060 spin_unlock(&rq->lock);
1062 return HRTIMER_NORESTART;
1065 #ifdef CONFIG_SMP
1067 * called from hardirq (IPI) context
1069 static void __hrtick_start(void *arg)
1071 struct rq *rq = arg;
1073 spin_lock(&rq->lock);
1074 hrtimer_restart(&rq->hrtick_timer);
1075 rq->hrtick_csd_pending = 0;
1076 spin_unlock(&rq->lock);
1080 * Called to set the hrtick timer state.
1082 * called with rq->lock held and irqs disabled
1084 static void hrtick_start(struct rq *rq, u64 delay)
1086 struct hrtimer *timer = &rq->hrtick_timer;
1087 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089 hrtimer_set_expires(timer, time);
1091 if (rq == this_rq()) {
1092 hrtimer_restart(timer);
1093 } else if (!rq->hrtick_csd_pending) {
1094 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1095 rq->hrtick_csd_pending = 1;
1099 static int
1100 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 int cpu = (int)(long)hcpu;
1104 switch (action) {
1105 case CPU_UP_CANCELED:
1106 case CPU_UP_CANCELED_FROZEN:
1107 case CPU_DOWN_PREPARE:
1108 case CPU_DOWN_PREPARE_FROZEN:
1109 case CPU_DEAD:
1110 case CPU_DEAD_FROZEN:
1111 hrtick_clear(cpu_rq(cpu));
1112 return NOTIFY_OK;
1115 return NOTIFY_DONE;
1118 static __init void init_hrtick(void)
1120 hotcpu_notifier(hotplug_hrtick, 0);
1122 #else
1124 * Called to set the hrtick timer state.
1126 * called with rq->lock held and irqs disabled
1128 static void hrtick_start(struct rq *rq, u64 delay)
1130 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1131 HRTIMER_MODE_REL_PINNED, 0);
1134 static inline void init_hrtick(void)
1137 #endif /* CONFIG_SMP */
1139 static void init_rq_hrtick(struct rq *rq)
1141 #ifdef CONFIG_SMP
1142 rq->hrtick_csd_pending = 0;
1144 rq->hrtick_csd.flags = 0;
1145 rq->hrtick_csd.func = __hrtick_start;
1146 rq->hrtick_csd.info = rq;
1147 #endif
1149 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1150 rq->hrtick_timer.function = hrtick;
1152 #else /* CONFIG_SCHED_HRTICK */
1153 static inline void hrtick_clear(struct rq *rq)
1157 static inline void init_rq_hrtick(struct rq *rq)
1161 static inline void init_hrtick(void)
1164 #endif /* CONFIG_SCHED_HRTICK */
1167 * resched_task - mark a task 'to be rescheduled now'.
1169 * On UP this means the setting of the need_resched flag, on SMP it
1170 * might also involve a cross-CPU call to trigger the scheduler on
1171 * the target CPU.
1173 #ifdef CONFIG_SMP
1175 #ifndef tsk_is_polling
1176 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1177 #endif
1179 static void resched_task(struct task_struct *p)
1181 int cpu;
1183 assert_spin_locked(&task_rq(p)->lock);
1185 if (test_tsk_need_resched(p))
1186 return;
1188 set_tsk_need_resched(p);
1190 cpu = task_cpu(p);
1191 if (cpu == smp_processor_id())
1192 return;
1194 /* NEED_RESCHED must be visible before we test polling */
1195 smp_mb();
1196 if (!tsk_is_polling(p))
1197 smp_send_reschedule(cpu);
1200 static void resched_cpu(int cpu)
1202 struct rq *rq = cpu_rq(cpu);
1203 unsigned long flags;
1205 if (!spin_trylock_irqsave(&rq->lock, flags))
1206 return;
1207 resched_task(cpu_curr(cpu));
1208 spin_unlock_irqrestore(&rq->lock, flags);
1211 #ifdef CONFIG_NO_HZ
1213 * When add_timer_on() enqueues a timer into the timer wheel of an
1214 * idle CPU then this timer might expire before the next timer event
1215 * which is scheduled to wake up that CPU. In case of a completely
1216 * idle system the next event might even be infinite time into the
1217 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1218 * leaves the inner idle loop so the newly added timer is taken into
1219 * account when the CPU goes back to idle and evaluates the timer
1220 * wheel for the next timer event.
1222 void wake_up_idle_cpu(int cpu)
1224 struct rq *rq = cpu_rq(cpu);
1226 if (cpu == smp_processor_id())
1227 return;
1230 * This is safe, as this function is called with the timer
1231 * wheel base lock of (cpu) held. When the CPU is on the way
1232 * to idle and has not yet set rq->curr to idle then it will
1233 * be serialized on the timer wheel base lock and take the new
1234 * timer into account automatically.
1236 if (rq->curr != rq->idle)
1237 return;
1240 * We can set TIF_RESCHED on the idle task of the other CPU
1241 * lockless. The worst case is that the other CPU runs the
1242 * idle task through an additional NOOP schedule()
1244 set_tsk_need_resched(rq->idle);
1246 /* NEED_RESCHED must be visible before we test polling */
1247 smp_mb();
1248 if (!tsk_is_polling(rq->idle))
1249 smp_send_reschedule(cpu);
1251 #endif /* CONFIG_NO_HZ */
1253 static u64 sched_avg_period(void)
1255 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258 static void sched_avg_update(struct rq *rq)
1260 s64 period = sched_avg_period();
1262 while ((s64)(rq->clock - rq->age_stamp) > period) {
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1268 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1274 #else /* !CONFIG_SMP */
1275 static void resched_task(struct task_struct *p)
1277 assert_spin_locked(&task_rq(p)->lock);
1278 set_tsk_need_resched(p);
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 #endif /* CONFIG_SMP */
1286 #if BITS_PER_LONG == 32
1287 # define WMULT_CONST (~0UL)
1288 #else
1289 # define WMULT_CONST (1UL << 32)
1290 #endif
1292 #define WMULT_SHIFT 32
1295 * Shift right and round:
1297 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300 * delta *= weight / lw
1302 static unsigned long
1303 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1304 struct load_weight *lw)
1306 u64 tmp;
1308 if (!lw->inv_weight) {
1309 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1310 lw->inv_weight = 1;
1311 else
1312 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1313 / (lw->weight+1);
1316 tmp = (u64)delta_exec * weight;
1318 * Check whether we'd overflow the 64-bit multiplication:
1320 if (unlikely(tmp > WMULT_CONST))
1321 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1322 WMULT_SHIFT/2);
1323 else
1324 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 lw->weight += inc;
1332 lw->inv_weight = 0;
1335 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 lw->weight -= dec;
1338 lw->inv_weight = 0;
1342 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1343 * of tasks with abnormal "nice" values across CPUs the contribution that
1344 * each task makes to its run queue's load is weighted according to its
1345 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1346 * scaled version of the new time slice allocation that they receive on time
1347 * slice expiry etc.
1350 #define WEIGHT_IDLEPRIO 3
1351 #define WMULT_IDLEPRIO 1431655765
1354 * Nice levels are multiplicative, with a gentle 10% change for every
1355 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1356 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1357 * that remained on nice 0.
1359 * The "10% effect" is relative and cumulative: from _any_ nice level,
1360 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1361 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1362 * If a task goes up by ~10% and another task goes down by ~10% then
1363 * the relative distance between them is ~25%.)
1365 static const int prio_to_weight[40] = {
1366 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1367 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1368 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1369 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1370 /* 0 */ 1024, 820, 655, 526, 423,
1371 /* 5 */ 335, 272, 215, 172, 137,
1372 /* 10 */ 110, 87, 70, 56, 45,
1373 /* 15 */ 36, 29, 23, 18, 15,
1377 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 * In cases where the weight does not change often, we can use the
1380 * precalculated inverse to speed up arithmetics by turning divisions
1381 * into multiplications:
1383 static const u32 prio_to_wmult[40] = {
1384 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1385 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1386 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1387 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1388 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1389 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1390 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1391 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397 * runqueue iterator, to support SMP load-balancing between different
1398 * scheduling classes, without having to expose their internal data
1399 * structures to the load-balancing proper:
1401 struct rq_iterator {
1402 void *arg;
1403 struct task_struct *(*start)(void *);
1404 struct task_struct *(*next)(void *);
1407 #ifdef CONFIG_SMP
1408 static unsigned long
1409 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1410 unsigned long max_load_move, struct sched_domain *sd,
1411 enum cpu_idle_type idle, int *all_pinned,
1412 int *this_best_prio, struct rq_iterator *iterator);
1414 static int
1415 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1416 struct sched_domain *sd, enum cpu_idle_type idle,
1417 struct rq_iterator *iterator);
1418 #endif
1420 /* Time spent by the tasks of the cpu accounting group executing in ... */
1421 enum cpuacct_stat_index {
1422 CPUACCT_STAT_USER, /* ... user mode */
1423 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425 CPUACCT_STAT_NSTATS,
1428 #ifdef CONFIG_CGROUP_CPUACCT
1429 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1430 static void cpuacct_update_stats(struct task_struct *tsk,
1431 enum cpuacct_stat_index idx, cputime_t val);
1432 #else
1433 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1434 static inline void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val) {}
1436 #endif
1438 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 update_load_add(&rq->load, load);
1443 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 update_load_sub(&rq->load, load);
1448 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1449 typedef int (*tg_visitor)(struct task_group *, void *);
1452 * Iterate the full tree, calling @down when first entering a node and @up when
1453 * leaving it for the final time.
1455 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 struct task_group *parent, *child;
1458 int ret;
1460 rcu_read_lock();
1461 parent = &root_task_group;
1462 down:
1463 ret = (*down)(parent, data);
1464 if (ret)
1465 goto out_unlock;
1466 list_for_each_entry_rcu(child, &parent->children, siblings) {
1467 parent = child;
1468 goto down;
1471 continue;
1473 ret = (*up)(parent, data);
1474 if (ret)
1475 goto out_unlock;
1477 child = parent;
1478 parent = parent->parent;
1479 if (parent)
1480 goto up;
1481 out_unlock:
1482 rcu_read_unlock();
1484 return ret;
1487 static int tg_nop(struct task_group *tg, void *data)
1489 return 0;
1491 #endif
1493 #ifdef CONFIG_SMP
1494 /* Used instead of source_load when we know the type == 0 */
1495 static unsigned long weighted_cpuload(const int cpu)
1497 return cpu_rq(cpu)->load.weight;
1501 * Return a low guess at the load of a migration-source cpu weighted
1502 * according to the scheduling class and "nice" value.
1504 * We want to under-estimate the load of migration sources, to
1505 * balance conservatively.
1507 static unsigned long source_load(int cpu, int type)
1509 struct rq *rq = cpu_rq(cpu);
1510 unsigned long total = weighted_cpuload(cpu);
1512 if (type == 0 || !sched_feat(LB_BIAS))
1513 return total;
1515 return min(rq->cpu_load[type-1], total);
1519 * Return a high guess at the load of a migration-target cpu weighted
1520 * according to the scheduling class and "nice" value.
1522 static unsigned long target_load(int cpu, int type)
1524 struct rq *rq = cpu_rq(cpu);
1525 unsigned long total = weighted_cpuload(cpu);
1527 if (type == 0 || !sched_feat(LB_BIAS))
1528 return total;
1530 return max(rq->cpu_load[type-1], total);
1533 static struct sched_group *group_of(int cpu)
1535 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537 if (!sd)
1538 return NULL;
1540 return sd->groups;
1543 static unsigned long power_of(int cpu)
1545 struct sched_group *group = group_of(cpu);
1547 if (!group)
1548 return SCHED_LOAD_SCALE;
1550 return group->cpu_power;
1553 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555 static unsigned long cpu_avg_load_per_task(int cpu)
1557 struct rq *rq = cpu_rq(cpu);
1558 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560 if (nr_running)
1561 rq->avg_load_per_task = rq->load.weight / nr_running;
1562 else
1563 rq->avg_load_per_task = 0;
1565 return rq->avg_load_per_task;
1568 #ifdef CONFIG_FAIR_GROUP_SCHED
1570 static __read_mostly unsigned long *update_shares_data;
1572 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1575 * Calculate and set the cpu's group shares.
1577 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1578 unsigned long sd_shares,
1579 unsigned long sd_rq_weight,
1580 unsigned long *usd_rq_weight)
1582 unsigned long shares, rq_weight;
1583 int boost = 0;
1585 rq_weight = usd_rq_weight[cpu];
1586 if (!rq_weight) {
1587 boost = 1;
1588 rq_weight = NICE_0_LOAD;
1592 * \Sum_j shares_j * rq_weight_i
1593 * shares_i = -----------------------------
1594 * \Sum_j rq_weight_j
1596 shares = (sd_shares * rq_weight) / sd_rq_weight;
1597 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599 if (abs(shares - tg->se[cpu]->load.weight) >
1600 sysctl_sched_shares_thresh) {
1601 struct rq *rq = cpu_rq(cpu);
1602 unsigned long flags;
1604 spin_lock_irqsave(&rq->lock, flags);
1605 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1606 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 __set_se_shares(tg->se[cpu], shares);
1608 spin_unlock_irqrestore(&rq->lock, flags);
1613 * Re-compute the task group their per cpu shares over the given domain.
1614 * This needs to be done in a bottom-up fashion because the rq weight of a
1615 * parent group depends on the shares of its child groups.
1617 static int tg_shares_up(struct task_group *tg, void *data)
1619 unsigned long weight, rq_weight = 0, shares = 0;
1620 unsigned long *usd_rq_weight;
1621 struct sched_domain *sd = data;
1622 unsigned long flags;
1623 int i;
1625 if (!tg->se[0])
1626 return 0;
1628 local_irq_save(flags);
1629 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631 for_each_cpu(i, sched_domain_span(sd)) {
1632 weight = tg->cfs_rq[i]->load.weight;
1633 usd_rq_weight[i] = weight;
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1643 rq_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1647 if ((!shares && rq_weight) || shares > tg->shares)
1648 shares = tg->shares;
1650 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1651 shares = tg->shares;
1653 for_each_cpu(i, sched_domain_span(sd))
1654 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1656 local_irq_restore(flags);
1658 return 0;
1662 * Compute the cpu's hierarchical load factor for each task group.
1663 * This needs to be done in a top-down fashion because the load of a child
1664 * group is a fraction of its parents load.
1666 static int tg_load_down(struct task_group *tg, void *data)
1668 unsigned long load;
1669 long cpu = (long)data;
1671 if (!tg->parent) {
1672 load = cpu_rq(cpu)->load.weight;
1673 } else {
1674 load = tg->parent->cfs_rq[cpu]->h_load;
1675 load *= tg->cfs_rq[cpu]->shares;
1676 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1679 tg->cfs_rq[cpu]->h_load = load;
1681 return 0;
1684 static void update_shares(struct sched_domain *sd)
1686 s64 elapsed;
1687 u64 now;
1689 if (root_task_group_empty())
1690 return;
1692 now = cpu_clock(raw_smp_processor_id());
1693 elapsed = now - sd->last_update;
1695 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1696 sd->last_update = now;
1697 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703 if (root_task_group_empty())
1704 return;
1706 spin_unlock(&rq->lock);
1707 update_shares(sd);
1708 spin_lock(&rq->lock);
1711 static void update_h_load(long cpu)
1713 if (root_task_group_empty())
1714 return;
1716 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1719 #else
1721 static inline void update_shares(struct sched_domain *sd)
1725 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 #endif
1731 #ifdef CONFIG_PREEMPT
1733 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1736 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1737 * way at the expense of forcing extra atomic operations in all
1738 * invocations. This assures that the double_lock is acquired using the
1739 * same underlying policy as the spinlock_t on this architecture, which
1740 * reduces latency compared to the unfair variant below. However, it
1741 * also adds more overhead and therefore may reduce throughput.
1743 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(this_rq->lock)
1745 __acquires(busiest->lock)
1746 __acquires(this_rq->lock)
1748 spin_unlock(&this_rq->lock);
1749 double_rq_lock(this_rq, busiest);
1751 return 1;
1754 #else
1756 * Unfair double_lock_balance: Optimizes throughput at the expense of
1757 * latency by eliminating extra atomic operations when the locks are
1758 * already in proper order on entry. This favors lower cpu-ids and will
1759 * grant the double lock to lower cpus over higher ids under contention,
1760 * regardless of entry order into the function.
1762 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 __releases(this_rq->lock)
1764 __acquires(busiest->lock)
1765 __acquires(this_rq->lock)
1767 int ret = 0;
1769 if (unlikely(!spin_trylock(&busiest->lock))) {
1770 if (busiest < this_rq) {
1771 spin_unlock(&this_rq->lock);
1772 spin_lock(&busiest->lock);
1773 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1774 ret = 1;
1775 } else
1776 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 return ret;
1781 #endif /* CONFIG_PREEMPT */
1784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788 if (unlikely(!irqs_disabled())) {
1789 /* printk() doesn't work good under rq->lock */
1790 spin_unlock(&this_rq->lock);
1791 BUG_ON(1);
1794 return _double_lock_balance(this_rq, busiest);
1797 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1798 __releases(busiest->lock)
1800 spin_unlock(&busiest->lock);
1801 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803 #endif
1805 #ifdef CONFIG_FAIR_GROUP_SCHED
1806 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808 #ifdef CONFIG_SMP
1809 cfs_rq->shares = shares;
1810 #endif
1812 #endif
1814 static void calc_load_account_active(struct rq *this_rq);
1816 #include "sched_stats.h"
1817 #include "sched_idletask.c"
1818 #include "sched_fair.c"
1819 #include "sched_rt.c"
1820 #ifdef CONFIG_SCHED_DEBUG
1821 # include "sched_debug.c"
1822 #endif
1824 #define sched_class_highest (&rt_sched_class)
1825 #define for_each_class(class) \
1826 for (class = sched_class_highest; class; class = class->next)
1828 static void inc_nr_running(struct rq *rq)
1830 rq->nr_running++;
1833 static void dec_nr_running(struct rq *rq)
1835 rq->nr_running--;
1838 static void set_load_weight(struct task_struct *p)
1840 if (task_has_rt_policy(p)) {
1841 p->se.load.weight = prio_to_weight[0] * 2;
1842 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1843 return;
1847 * SCHED_IDLE tasks get minimal weight:
1849 if (p->policy == SCHED_IDLE) {
1850 p->se.load.weight = WEIGHT_IDLEPRIO;
1851 p->se.load.inv_weight = WMULT_IDLEPRIO;
1852 return;
1855 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1856 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1859 static void update_avg(u64 *avg, u64 sample)
1861 s64 diff = sample - *avg;
1862 *avg += diff >> 3;
1865 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867 if (wakeup)
1868 p->se.start_runtime = p->se.sum_exec_runtime;
1870 sched_info_queued(p);
1871 p->sched_class->enqueue_task(rq, p, wakeup);
1872 p->se.on_rq = 1;
1875 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877 if (sleep) {
1878 if (p->se.last_wakeup) {
1879 update_avg(&p->se.avg_overlap,
1880 p->se.sum_exec_runtime - p->se.last_wakeup);
1881 p->se.last_wakeup = 0;
1882 } else {
1883 update_avg(&p->se.avg_wakeup,
1884 sysctl_sched_wakeup_granularity);
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, sleep);
1890 p->se.on_rq = 0;
1894 * __normal_prio - return the priority that is based on the static prio
1896 static inline int __normal_prio(struct task_struct *p)
1898 return p->static_prio;
1902 * Calculate the expected normal priority: i.e. priority
1903 * without taking RT-inheritance into account. Might be
1904 * boosted by interactivity modifiers. Changes upon fork,
1905 * setprio syscalls, and whenever the interactivity
1906 * estimator recalculates.
1908 static inline int normal_prio(struct task_struct *p)
1910 int prio;
1912 if (task_has_rt_policy(p))
1913 prio = MAX_RT_PRIO-1 - p->rt_priority;
1914 else
1915 prio = __normal_prio(p);
1916 return prio;
1920 * Calculate the current priority, i.e. the priority
1921 * taken into account by the scheduler. This value might
1922 * be boosted by RT tasks, or might be boosted by
1923 * interactivity modifiers. Will be RT if the task got
1924 * RT-boosted. If not then it returns p->normal_prio.
1926 static int effective_prio(struct task_struct *p)
1928 p->normal_prio = normal_prio(p);
1930 * If we are RT tasks or we were boosted to RT priority,
1931 * keep the priority unchanged. Otherwise, update priority
1932 * to the normal priority:
1934 if (!rt_prio(p->prio))
1935 return p->normal_prio;
1936 return p->prio;
1940 * activate_task - move a task to the runqueue.
1942 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1944 if (task_contributes_to_load(p))
1945 rq->nr_uninterruptible--;
1947 enqueue_task(rq, p, wakeup);
1948 inc_nr_running(rq);
1952 * deactivate_task - remove a task from the runqueue.
1954 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible++;
1959 dequeue_task(rq, p, sleep);
1960 dec_nr_running(rq);
1964 * task_curr - is this task currently executing on a CPU?
1965 * @p: the task in question.
1967 inline int task_curr(const struct task_struct *p)
1969 return cpu_curr(task_cpu(p)) == p;
1972 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974 set_task_rq(p, cpu);
1975 #ifdef CONFIG_SMP
1977 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1978 * successfuly executed on another CPU. We must ensure that updates of
1979 * per-task data have been completed by this moment.
1981 smp_wmb();
1982 task_thread_info(p)->cpu = cpu;
1983 #endif
1986 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1987 const struct sched_class *prev_class,
1988 int oldprio, int running)
1990 if (prev_class != p->sched_class) {
1991 if (prev_class->switched_from)
1992 prev_class->switched_from(rq, p, running);
1993 p->sched_class->switched_to(rq, p, running);
1994 } else
1995 p->sched_class->prio_changed(rq, p, oldprio, running);
1999 * kthread_bind - bind a just-created kthread to a cpu.
2000 * @p: thread created by kthread_create().
2001 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2003 * Description: This function is equivalent to set_cpus_allowed(),
2004 * except that @cpu doesn't need to be online, and the thread must be
2005 * stopped (i.e., just returned from kthread_create()).
2007 * Function lives here instead of kthread.c because it messes with
2008 * scheduler internals which require locking.
2010 void kthread_bind(struct task_struct *p, unsigned int cpu)
2012 struct rq *rq = cpu_rq(cpu);
2013 unsigned long flags;
2015 /* Must have done schedule() in kthread() before we set_task_cpu */
2016 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2017 WARN_ON(1);
2018 return;
2021 spin_lock_irqsave(&rq->lock, flags);
2022 set_task_cpu(p, cpu);
2023 p->cpus_allowed = cpumask_of_cpu(cpu);
2024 p->rt.nr_cpus_allowed = 1;
2025 p->flags |= PF_THREAD_BOUND;
2026 spin_unlock_irqrestore(&rq->lock, flags);
2028 EXPORT_SYMBOL(kthread_bind);
2030 #ifdef CONFIG_SMP
2032 * Is this task likely cache-hot:
2034 static int
2035 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2037 s64 delta;
2040 * Buddy candidates are cache hot:
2042 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2043 (&p->se == cfs_rq_of(&p->se)->next ||
2044 &p->se == cfs_rq_of(&p->se)->last))
2045 return 1;
2047 if (p->sched_class != &fair_sched_class)
2048 return 0;
2050 if (sysctl_sched_migration_cost == -1)
2051 return 1;
2052 if (sysctl_sched_migration_cost == 0)
2053 return 0;
2055 delta = now - p->se.exec_start;
2057 return delta < (s64)sysctl_sched_migration_cost;
2061 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2063 int old_cpu = task_cpu(p);
2064 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2065 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2066 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2067 u64 clock_offset;
2069 clock_offset = old_rq->clock - new_rq->clock;
2071 trace_sched_migrate_task(p, new_cpu);
2073 #ifdef CONFIG_SCHEDSTATS
2074 if (p->se.wait_start)
2075 p->se.wait_start -= clock_offset;
2076 if (p->se.sleep_start)
2077 p->se.sleep_start -= clock_offset;
2078 if (p->se.block_start)
2079 p->se.block_start -= clock_offset;
2080 #endif
2081 if (old_cpu != new_cpu) {
2082 p->se.nr_migrations++;
2083 new_rq->nr_migrations_in++;
2084 #ifdef CONFIG_SCHEDSTATS
2085 if (task_hot(p, old_rq->clock, NULL))
2086 schedstat_inc(p, se.nr_forced2_migrations);
2087 #endif
2088 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2089 1, 1, NULL, 0);
2091 p->se.vruntime -= old_cfsrq->min_vruntime -
2092 new_cfsrq->min_vruntime;
2094 __set_task_cpu(p, new_cpu);
2097 struct migration_req {
2098 struct list_head list;
2100 struct task_struct *task;
2101 int dest_cpu;
2103 struct completion done;
2107 * The task's runqueue lock must be held.
2108 * Returns true if you have to wait for migration thread.
2110 static int
2111 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2113 struct rq *rq = task_rq(p);
2116 * If the task is not on a runqueue (and not running), then
2117 * it is sufficient to simply update the task's cpu field.
2119 if (!p->se.on_rq && !task_running(rq, p)) {
2120 set_task_cpu(p, dest_cpu);
2121 return 0;
2124 init_completion(&req->done);
2125 req->task = p;
2126 req->dest_cpu = dest_cpu;
2127 list_add(&req->list, &rq->migration_queue);
2129 return 1;
2133 * wait_task_context_switch - wait for a thread to complete at least one
2134 * context switch.
2136 * @p must not be current.
2138 void wait_task_context_switch(struct task_struct *p)
2140 unsigned long nvcsw, nivcsw, flags;
2141 int running;
2142 struct rq *rq;
2144 nvcsw = p->nvcsw;
2145 nivcsw = p->nivcsw;
2146 for (;;) {
2148 * The runqueue is assigned before the actual context
2149 * switch. We need to take the runqueue lock.
2151 * We could check initially without the lock but it is
2152 * very likely that we need to take the lock in every
2153 * iteration.
2155 rq = task_rq_lock(p, &flags);
2156 running = task_running(rq, p);
2157 task_rq_unlock(rq, &flags);
2159 if (likely(!running))
2160 break;
2162 * The switch count is incremented before the actual
2163 * context switch. We thus wait for two switches to be
2164 * sure at least one completed.
2166 if ((p->nvcsw - nvcsw) > 1)
2167 break;
2168 if ((p->nivcsw - nivcsw) > 1)
2169 break;
2171 cpu_relax();
2176 * wait_task_inactive - wait for a thread to unschedule.
2178 * If @match_state is nonzero, it's the @p->state value just checked and
2179 * not expected to change. If it changes, i.e. @p might have woken up,
2180 * then return zero. When we succeed in waiting for @p to be off its CPU,
2181 * we return a positive number (its total switch count). If a second call
2182 * a short while later returns the same number, the caller can be sure that
2183 * @p has remained unscheduled the whole time.
2185 * The caller must ensure that the task *will* unschedule sometime soon,
2186 * else this function might spin for a *long* time. This function can't
2187 * be called with interrupts off, or it may introduce deadlock with
2188 * smp_call_function() if an IPI is sent by the same process we are
2189 * waiting to become inactive.
2191 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2193 unsigned long flags;
2194 int running, on_rq;
2195 unsigned long ncsw;
2196 struct rq *rq;
2198 for (;;) {
2200 * We do the initial early heuristics without holding
2201 * any task-queue locks at all. We'll only try to get
2202 * the runqueue lock when things look like they will
2203 * work out!
2205 rq = task_rq(p);
2208 * If the task is actively running on another CPU
2209 * still, just relax and busy-wait without holding
2210 * any locks.
2212 * NOTE! Since we don't hold any locks, it's not
2213 * even sure that "rq" stays as the right runqueue!
2214 * But we don't care, since "task_running()" will
2215 * return false if the runqueue has changed and p
2216 * is actually now running somewhere else!
2218 while (task_running(rq, p)) {
2219 if (match_state && unlikely(p->state != match_state))
2220 return 0;
2221 cpu_relax();
2225 * Ok, time to look more closely! We need the rq
2226 * lock now, to be *sure*. If we're wrong, we'll
2227 * just go back and repeat.
2229 rq = task_rq_lock(p, &flags);
2230 trace_sched_wait_task(rq, p);
2231 running = task_running(rq, p);
2232 on_rq = p->se.on_rq;
2233 ncsw = 0;
2234 if (!match_state || p->state == match_state)
2235 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2236 task_rq_unlock(rq, &flags);
2239 * If it changed from the expected state, bail out now.
2241 if (unlikely(!ncsw))
2242 break;
2245 * Was it really running after all now that we
2246 * checked with the proper locks actually held?
2248 * Oops. Go back and try again..
2250 if (unlikely(running)) {
2251 cpu_relax();
2252 continue;
2256 * It's not enough that it's not actively running,
2257 * it must be off the runqueue _entirely_, and not
2258 * preempted!
2260 * So if it was still runnable (but just not actively
2261 * running right now), it's preempted, and we should
2262 * yield - it could be a while.
2264 if (unlikely(on_rq)) {
2265 schedule_timeout_uninterruptible(1);
2266 continue;
2270 * Ahh, all good. It wasn't running, and it wasn't
2271 * runnable, which means that it will never become
2272 * running in the future either. We're all done!
2274 break;
2277 return ncsw;
2280 /***
2281 * kick_process - kick a running thread to enter/exit the kernel
2282 * @p: the to-be-kicked thread
2284 * Cause a process which is running on another CPU to enter
2285 * kernel-mode, without any delay. (to get signals handled.)
2287 * NOTE: this function doesnt have to take the runqueue lock,
2288 * because all it wants to ensure is that the remote task enters
2289 * the kernel. If the IPI races and the task has been migrated
2290 * to another CPU then no harm is done and the purpose has been
2291 * achieved as well.
2293 void kick_process(struct task_struct *p)
2295 int cpu;
2297 preempt_disable();
2298 cpu = task_cpu(p);
2299 if ((cpu != smp_processor_id()) && task_curr(p))
2300 smp_send_reschedule(cpu);
2301 preempt_enable();
2303 EXPORT_SYMBOL_GPL(kick_process);
2304 #endif /* CONFIG_SMP */
2307 * task_oncpu_function_call - call a function on the cpu on which a task runs
2308 * @p: the task to evaluate
2309 * @func: the function to be called
2310 * @info: the function call argument
2312 * Calls the function @func when the task is currently running. This might
2313 * be on the current CPU, which just calls the function directly
2315 void task_oncpu_function_call(struct task_struct *p,
2316 void (*func) (void *info), void *info)
2318 int cpu;
2320 preempt_disable();
2321 cpu = task_cpu(p);
2322 if (task_curr(p))
2323 smp_call_function_single(cpu, func, info, 1);
2324 preempt_enable();
2327 /***
2328 * try_to_wake_up - wake up a thread
2329 * @p: the to-be-woken-up thread
2330 * @state: the mask of task states that can be woken
2331 * @sync: do a synchronous wakeup?
2333 * Put it on the run-queue if it's not already there. The "current"
2334 * thread is always on the run-queue (except when the actual
2335 * re-schedule is in progress), and as such you're allowed to do
2336 * the simpler "current->state = TASK_RUNNING" to mark yourself
2337 * runnable without the overhead of this.
2339 * returns failure only if the task is already active.
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 struct rq *rq, *orig_rq;
2348 if (!sched_feat(SYNC_WAKEUPS))
2349 wake_flags &= ~WF_SYNC;
2351 this_cpu = get_cpu();
2353 smp_wmb();
2354 rq = orig_rq = task_rq_lock(p, &flags);
2355 update_rq_clock(rq);
2356 if (!(p->state & state))
2357 goto out;
2359 if (p->se.on_rq)
2360 goto out_running;
2362 cpu = task_cpu(p);
2363 orig_cpu = cpu;
2365 #ifdef CONFIG_SMP
2366 if (unlikely(task_running(rq, p)))
2367 goto out_activate;
2370 * In order to handle concurrent wakeups and release the rq->lock
2371 * we put the task in TASK_WAKING state.
2373 * First fix up the nr_uninterruptible count:
2375 if (task_contributes_to_load(p))
2376 rq->nr_uninterruptible--;
2377 p->state = TASK_WAKING;
2378 task_rq_unlock(rq, &flags);
2380 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2381 if (cpu != orig_cpu)
2382 set_task_cpu(p, cpu);
2384 rq = task_rq_lock(p, &flags);
2386 if (rq != orig_rq)
2387 update_rq_clock(rq);
2389 WARN_ON(p->state != TASK_WAKING);
2390 cpu = task_cpu(p);
2392 #ifdef CONFIG_SCHEDSTATS
2393 schedstat_inc(rq, ttwu_count);
2394 if (cpu == this_cpu)
2395 schedstat_inc(rq, ttwu_local);
2396 else {
2397 struct sched_domain *sd;
2398 for_each_domain(this_cpu, sd) {
2399 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 schedstat_inc(sd, ttwu_wake_remote);
2401 break;
2405 #endif /* CONFIG_SCHEDSTATS */
2407 out_activate:
2408 #endif /* CONFIG_SMP */
2409 schedstat_inc(p, se.nr_wakeups);
2410 if (wake_flags & WF_SYNC)
2411 schedstat_inc(p, se.nr_wakeups_sync);
2412 if (orig_cpu != cpu)
2413 schedstat_inc(p, se.nr_wakeups_migrate);
2414 if (cpu == this_cpu)
2415 schedstat_inc(p, se.nr_wakeups_local);
2416 else
2417 schedstat_inc(p, se.nr_wakeups_remote);
2418 activate_task(rq, p, 1);
2419 success = 1;
2422 * Only attribute actual wakeups done by this task.
2424 if (!in_interrupt()) {
2425 struct sched_entity *se = &current->se;
2426 u64 sample = se->sum_exec_runtime;
2428 if (se->last_wakeup)
2429 sample -= se->last_wakeup;
2430 else
2431 sample -= se->start_runtime;
2432 update_avg(&se->avg_wakeup, sample);
2434 se->last_wakeup = se->sum_exec_runtime;
2437 out_running:
2438 trace_sched_wakeup(rq, p, success);
2439 check_preempt_curr(rq, p, wake_flags);
2441 p->state = TASK_RUNNING;
2442 #ifdef CONFIG_SMP
2443 if (p->sched_class->task_wake_up)
2444 p->sched_class->task_wake_up(rq, p);
2446 if (unlikely(rq->idle_stamp)) {
2447 u64 delta = rq->clock - rq->idle_stamp;
2448 u64 max = 2*sysctl_sched_migration_cost;
2450 if (delta > max)
2451 rq->avg_idle = max;
2452 else
2453 update_avg(&rq->avg_idle, delta);
2454 rq->idle_stamp = 0;
2456 #endif
2457 out:
2458 task_rq_unlock(rq, &flags);
2459 put_cpu();
2461 return success;
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2470 * running.
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2475 int wake_up_process(struct task_struct *p)
2477 return try_to_wake_up(p, TASK_ALL, 0);
2479 EXPORT_SYMBOL(wake_up_process);
2481 int wake_up_state(struct task_struct *p, unsigned int state)
2483 return try_to_wake_up(p, state, 0);
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2490 * __sched_fork() is basic setup used by init_idle() too:
2492 static void __sched_fork(struct task_struct *p)
2494 p->se.exec_start = 0;
2495 p->se.sum_exec_runtime = 0;
2496 p->se.prev_sum_exec_runtime = 0;
2497 p->se.nr_migrations = 0;
2498 p->se.last_wakeup = 0;
2499 p->se.avg_overlap = 0;
2500 p->se.start_runtime = 0;
2501 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2502 p->se.avg_running = 0;
2504 #ifdef CONFIG_SCHEDSTATS
2505 p->se.wait_start = 0;
2506 p->se.wait_max = 0;
2507 p->se.wait_count = 0;
2508 p->se.wait_sum = 0;
2510 p->se.sleep_start = 0;
2511 p->se.sleep_max = 0;
2512 p->se.sum_sleep_runtime = 0;
2514 p->se.block_start = 0;
2515 p->se.block_max = 0;
2516 p->se.exec_max = 0;
2517 p->se.slice_max = 0;
2519 p->se.nr_migrations_cold = 0;
2520 p->se.nr_failed_migrations_affine = 0;
2521 p->se.nr_failed_migrations_running = 0;
2522 p->se.nr_failed_migrations_hot = 0;
2523 p->se.nr_forced_migrations = 0;
2524 p->se.nr_forced2_migrations = 0;
2526 p->se.nr_wakeups = 0;
2527 p->se.nr_wakeups_sync = 0;
2528 p->se.nr_wakeups_migrate = 0;
2529 p->se.nr_wakeups_local = 0;
2530 p->se.nr_wakeups_remote = 0;
2531 p->se.nr_wakeups_affine = 0;
2532 p->se.nr_wakeups_affine_attempts = 0;
2533 p->se.nr_wakeups_passive = 0;
2534 p->se.nr_wakeups_idle = 0;
2536 #endif
2538 INIT_LIST_HEAD(&p->rt.run_list);
2539 p->se.on_rq = 0;
2540 INIT_LIST_HEAD(&p->se.group_node);
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544 #endif
2547 * We mark the process as running here, but have not actually
2548 * inserted it onto the runqueue yet. This guarantees that
2549 * nobody will actually run it, and a signal or other external
2550 * event cannot wake it up and insert it on the runqueue either.
2552 p->state = TASK_RUNNING;
2556 * fork()/clone()-time setup:
2558 void sched_fork(struct task_struct *p, int clone_flags)
2560 int cpu = get_cpu();
2562 __sched_fork(p);
2565 * Revert to default priority/policy on fork if requested.
2567 if (unlikely(p->sched_reset_on_fork)) {
2568 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2569 p->policy = SCHED_NORMAL;
2570 p->normal_prio = p->static_prio;
2573 if (PRIO_TO_NICE(p->static_prio) < 0) {
2574 p->static_prio = NICE_TO_PRIO(0);
2575 p->normal_prio = p->static_prio;
2576 set_load_weight(p);
2580 * We don't need the reset flag anymore after the fork. It has
2581 * fulfilled its duty:
2583 p->sched_reset_on_fork = 0;
2587 * Make sure we do not leak PI boosting priority to the child.
2589 p->prio = current->normal_prio;
2591 if (!rt_prio(p->prio))
2592 p->sched_class = &fair_sched_class;
2594 #ifdef CONFIG_SMP
2595 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2596 #endif
2597 set_task_cpu(p, cpu);
2599 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2600 if (likely(sched_info_on()))
2601 memset(&p->sched_info, 0, sizeof(p->sched_info));
2602 #endif
2603 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2604 p->oncpu = 0;
2605 #endif
2606 #ifdef CONFIG_PREEMPT
2607 /* Want to start with kernel preemption disabled. */
2608 task_thread_info(p)->preempt_count = 1;
2609 #endif
2610 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2612 put_cpu();
2616 * wake_up_new_task - wake up a newly created task for the first time.
2618 * This function will do some initial scheduler statistics housekeeping
2619 * that must be done for every newly created context, then puts the task
2620 * on the runqueue and wakes it.
2622 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2624 unsigned long flags;
2625 struct rq *rq;
2627 rq = task_rq_lock(p, &flags);
2628 BUG_ON(p->state != TASK_RUNNING);
2629 update_rq_clock(rq);
2631 if (!p->sched_class->task_new || !current->se.on_rq) {
2632 activate_task(rq, p, 0);
2633 } else {
2635 * Let the scheduling class do new task startup
2636 * management (if any):
2638 p->sched_class->task_new(rq, p);
2639 inc_nr_running(rq);
2641 trace_sched_wakeup_new(rq, p, 1);
2642 check_preempt_curr(rq, p, WF_FORK);
2643 #ifdef CONFIG_SMP
2644 if (p->sched_class->task_wake_up)
2645 p->sched_class->task_wake_up(rq, p);
2646 #endif
2647 task_rq_unlock(rq, &flags);
2650 #ifdef CONFIG_PREEMPT_NOTIFIERS
2653 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2654 * @notifier: notifier struct to register
2656 void preempt_notifier_register(struct preempt_notifier *notifier)
2658 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2660 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2663 * preempt_notifier_unregister - no longer interested in preemption notifications
2664 * @notifier: notifier struct to unregister
2666 * This is safe to call from within a preemption notifier.
2668 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2670 hlist_del(&notifier->link);
2672 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2674 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2683 static void
2684 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2685 struct task_struct *next)
2687 struct preempt_notifier *notifier;
2688 struct hlist_node *node;
2690 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2691 notifier->ops->sched_out(notifier, next);
2694 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2696 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700 static void
2701 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2702 struct task_struct *next)
2706 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2709 * prepare_task_switch - prepare to switch tasks
2710 * @rq: the runqueue preparing to switch
2711 * @prev: the current task that is being switched out
2712 * @next: the task we are going to switch to.
2714 * This is called with the rq lock held and interrupts off. It must
2715 * be paired with a subsequent finish_task_switch after the context
2716 * switch.
2718 * prepare_task_switch sets up locking and calls architecture specific
2719 * hooks.
2721 static inline void
2722 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2723 struct task_struct *next)
2725 fire_sched_out_preempt_notifiers(prev, next);
2726 prepare_lock_switch(rq, next);
2727 prepare_arch_switch(next);
2731 * finish_task_switch - clean up after a task-switch
2732 * @rq: runqueue associated with task-switch
2733 * @prev: the thread we just switched away from.
2735 * finish_task_switch must be called after the context switch, paired
2736 * with a prepare_task_switch call before the context switch.
2737 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2738 * and do any other architecture-specific cleanup actions.
2740 * Note that we may have delayed dropping an mm in context_switch(). If
2741 * so, we finish that here outside of the runqueue lock. (Doing it
2742 * with the lock held can cause deadlocks; see schedule() for
2743 * details.)
2745 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2746 __releases(rq->lock)
2748 struct mm_struct *mm = rq->prev_mm;
2749 long prev_state;
2751 rq->prev_mm = NULL;
2754 * A task struct has one reference for the use as "current".
2755 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2756 * schedule one last time. The schedule call will never return, and
2757 * the scheduled task must drop that reference.
2758 * The test for TASK_DEAD must occur while the runqueue locks are
2759 * still held, otherwise prev could be scheduled on another cpu, die
2760 * there before we look at prev->state, and then the reference would
2761 * be dropped twice.
2762 * Manfred Spraul <manfred@colorfullife.com>
2764 prev_state = prev->state;
2765 finish_arch_switch(prev);
2766 perf_event_task_sched_in(current, cpu_of(rq));
2767 finish_lock_switch(rq, prev);
2769 fire_sched_in_preempt_notifiers(current);
2770 if (mm)
2771 mmdrop(mm);
2772 if (unlikely(prev_state == TASK_DEAD)) {
2774 * Remove function-return probe instances associated with this
2775 * task and put them back on the free list.
2777 kprobe_flush_task(prev);
2778 put_task_struct(prev);
2782 #ifdef CONFIG_SMP
2784 /* assumes rq->lock is held */
2785 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2787 if (prev->sched_class->pre_schedule)
2788 prev->sched_class->pre_schedule(rq, prev);
2791 /* rq->lock is NOT held, but preemption is disabled */
2792 static inline void post_schedule(struct rq *rq)
2794 if (rq->post_schedule) {
2795 unsigned long flags;
2797 spin_lock_irqsave(&rq->lock, flags);
2798 if (rq->curr->sched_class->post_schedule)
2799 rq->curr->sched_class->post_schedule(rq);
2800 spin_unlock_irqrestore(&rq->lock, flags);
2802 rq->post_schedule = 0;
2806 #else
2808 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2812 static inline void post_schedule(struct rq *rq)
2816 #endif
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2822 asmlinkage void schedule_tail(struct task_struct *prev)
2823 __releases(rq->lock)
2825 struct rq *rq = this_rq();
2827 finish_task_switch(rq, prev);
2830 * FIXME: do we need to worry about rq being invalidated by the
2831 * task_switch?
2833 post_schedule(rq);
2835 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2836 /* In this case, finish_task_switch does not reenable preemption */
2837 preempt_enable();
2838 #endif
2839 if (current->set_child_tid)
2840 put_user(task_pid_vnr(current), current->set_child_tid);
2844 * context_switch - switch to the new MM and the new
2845 * thread's register state.
2847 static inline void
2848 context_switch(struct rq *rq, struct task_struct *prev,
2849 struct task_struct *next)
2851 struct mm_struct *mm, *oldmm;
2853 prepare_task_switch(rq, prev, next);
2854 trace_sched_switch(rq, prev, next);
2855 mm = next->mm;
2856 oldmm = prev->active_mm;
2858 * For paravirt, this is coupled with an exit in switch_to to
2859 * combine the page table reload and the switch backend into
2860 * one hypercall.
2862 arch_start_context_switch(prev);
2864 if (unlikely(!mm)) {
2865 next->active_mm = oldmm;
2866 atomic_inc(&oldmm->mm_count);
2867 enter_lazy_tlb(oldmm, next);
2868 } else
2869 switch_mm(oldmm, mm, next);
2871 if (unlikely(!prev->mm)) {
2872 prev->active_mm = NULL;
2873 rq->prev_mm = oldmm;
2876 * Since the runqueue lock will be released by the next
2877 * task (which is an invalid locking op but in the case
2878 * of the scheduler it's an obvious special-case), so we
2879 * do an early lockdep release here:
2881 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2883 #endif
2885 /* Here we just switch the register state and the stack. */
2886 switch_to(prev, next, prev);
2888 barrier();
2890 * this_rq must be evaluated again because prev may have moved
2891 * CPUs since it called schedule(), thus the 'rq' on its stack
2892 * frame will be invalid.
2894 finish_task_switch(this_rq(), prev);
2898 * nr_running, nr_uninterruptible and nr_context_switches:
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, current number of uninterruptible-sleeping threads, total
2902 * number of context switches performed since bootup.
2904 unsigned long nr_running(void)
2906 unsigned long i, sum = 0;
2908 for_each_online_cpu(i)
2909 sum += cpu_rq(i)->nr_running;
2911 return sum;
2914 unsigned long nr_uninterruptible(void)
2916 unsigned long i, sum = 0;
2918 for_each_possible_cpu(i)
2919 sum += cpu_rq(i)->nr_uninterruptible;
2922 * Since we read the counters lockless, it might be slightly
2923 * inaccurate. Do not allow it to go below zero though:
2925 if (unlikely((long)sum < 0))
2926 sum = 0;
2928 return sum;
2931 unsigned long long nr_context_switches(void)
2933 int i;
2934 unsigned long long sum = 0;
2936 for_each_possible_cpu(i)
2937 sum += cpu_rq(i)->nr_switches;
2939 return sum;
2942 unsigned long nr_iowait(void)
2944 unsigned long i, sum = 0;
2946 for_each_possible_cpu(i)
2947 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2949 return sum;
2952 unsigned long nr_iowait_cpu(void)
2954 struct rq *this = this_rq();
2955 return atomic_read(&this->nr_iowait);
2958 unsigned long this_cpu_load(void)
2960 struct rq *this = this_rq();
2961 return this->cpu_load[0];
2965 /* Variables and functions for calc_load */
2966 static atomic_long_t calc_load_tasks;
2967 static unsigned long calc_load_update;
2968 unsigned long avenrun[3];
2969 EXPORT_SYMBOL(avenrun);
2972 * get_avenrun - get the load average array
2973 * @loads: pointer to dest load array
2974 * @offset: offset to add
2975 * @shift: shift count to shift the result left
2977 * These values are estimates at best, so no need for locking.
2979 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2981 loads[0] = (avenrun[0] + offset) << shift;
2982 loads[1] = (avenrun[1] + offset) << shift;
2983 loads[2] = (avenrun[2] + offset) << shift;
2986 static unsigned long
2987 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2989 load *= exp;
2990 load += active * (FIXED_1 - exp);
2991 return load >> FSHIFT;
2995 * calc_load - update the avenrun load estimates 10 ticks after the
2996 * CPUs have updated calc_load_tasks.
2998 void calc_global_load(void)
3000 unsigned long upd = calc_load_update + 10;
3001 long active;
3003 if (time_before(jiffies, upd))
3004 return;
3006 active = atomic_long_read(&calc_load_tasks);
3007 active = active > 0 ? active * FIXED_1 : 0;
3009 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3010 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3011 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3013 calc_load_update += LOAD_FREQ;
3017 * Either called from update_cpu_load() or from a cpu going idle
3019 static void calc_load_account_active(struct rq *this_rq)
3021 long nr_active, delta;
3023 nr_active = this_rq->nr_running;
3024 nr_active += (long) this_rq->nr_uninterruptible;
3026 if (nr_active != this_rq->calc_load_active) {
3027 delta = nr_active - this_rq->calc_load_active;
3028 this_rq->calc_load_active = nr_active;
3029 atomic_long_add(delta, &calc_load_tasks);
3034 * Externally visible per-cpu scheduler statistics:
3035 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3037 u64 cpu_nr_migrations(int cpu)
3039 return cpu_rq(cpu)->nr_migrations_in;
3043 * Update rq->cpu_load[] statistics. This function is usually called every
3044 * scheduler tick (TICK_NSEC).
3046 static void update_cpu_load(struct rq *this_rq)
3048 unsigned long this_load = this_rq->load.weight;
3049 int i, scale;
3051 this_rq->nr_load_updates++;
3053 /* Update our load: */
3054 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3055 unsigned long old_load, new_load;
3057 /* scale is effectively 1 << i now, and >> i divides by scale */
3059 old_load = this_rq->cpu_load[i];
3060 new_load = this_load;
3062 * Round up the averaging division if load is increasing. This
3063 * prevents us from getting stuck on 9 if the load is 10, for
3064 * example.
3066 if (new_load > old_load)
3067 new_load += scale-1;
3068 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3071 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3072 this_rq->calc_load_update += LOAD_FREQ;
3073 calc_load_account_active(this_rq);
3077 #ifdef CONFIG_SMP
3080 * double_rq_lock - safely lock two runqueues
3082 * Note this does not disable interrupts like task_rq_lock,
3083 * you need to do so manually before calling.
3085 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3086 __acquires(rq1->lock)
3087 __acquires(rq2->lock)
3089 BUG_ON(!irqs_disabled());
3090 if (rq1 == rq2) {
3091 spin_lock(&rq1->lock);
3092 __acquire(rq2->lock); /* Fake it out ;) */
3093 } else {
3094 if (rq1 < rq2) {
3095 spin_lock(&rq1->lock);
3096 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3097 } else {
3098 spin_lock(&rq2->lock);
3099 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3102 update_rq_clock(rq1);
3103 update_rq_clock(rq2);
3107 * double_rq_unlock - safely unlock two runqueues
3109 * Note this does not restore interrupts like task_rq_unlock,
3110 * you need to do so manually after calling.
3112 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3113 __releases(rq1->lock)
3114 __releases(rq2->lock)
3116 spin_unlock(&rq1->lock);
3117 if (rq1 != rq2)
3118 spin_unlock(&rq2->lock);
3119 else
3120 __release(rq2->lock);
3124 * If dest_cpu is allowed for this process, migrate the task to it.
3125 * This is accomplished by forcing the cpu_allowed mask to only
3126 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3127 * the cpu_allowed mask is restored.
3129 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3131 struct migration_req req;
3132 unsigned long flags;
3133 struct rq *rq;
3135 rq = task_rq_lock(p, &flags);
3136 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3137 || unlikely(!cpu_active(dest_cpu)))
3138 goto out;
3140 /* force the process onto the specified CPU */
3141 if (migrate_task(p, dest_cpu, &req)) {
3142 /* Need to wait for migration thread (might exit: take ref). */
3143 struct task_struct *mt = rq->migration_thread;
3145 get_task_struct(mt);
3146 task_rq_unlock(rq, &flags);
3147 wake_up_process(mt);
3148 put_task_struct(mt);
3149 wait_for_completion(&req.done);
3151 return;
3153 out:
3154 task_rq_unlock(rq, &flags);
3158 * sched_exec - execve() is a valuable balancing opportunity, because at
3159 * this point the task has the smallest effective memory and cache footprint.
3161 void sched_exec(void)
3163 int new_cpu, this_cpu = get_cpu();
3164 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3165 put_cpu();
3166 if (new_cpu != this_cpu)
3167 sched_migrate_task(current, new_cpu);
3171 * pull_task - move a task from a remote runqueue to the local runqueue.
3172 * Both runqueues must be locked.
3174 static void pull_task(struct rq *src_rq, struct task_struct *p,
3175 struct rq *this_rq, int this_cpu)
3177 deactivate_task(src_rq, p, 0);
3178 set_task_cpu(p, this_cpu);
3179 activate_task(this_rq, p, 0);
3181 * Note that idle threads have a prio of MAX_PRIO, for this test
3182 * to be always true for them.
3184 check_preempt_curr(this_rq, p, 0);
3188 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3190 static
3191 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3192 struct sched_domain *sd, enum cpu_idle_type idle,
3193 int *all_pinned)
3195 int tsk_cache_hot = 0;
3197 * We do not migrate tasks that are:
3198 * 1) running (obviously), or
3199 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3200 * 3) are cache-hot on their current CPU.
3202 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3203 schedstat_inc(p, se.nr_failed_migrations_affine);
3204 return 0;
3206 *all_pinned = 0;
3208 if (task_running(rq, p)) {
3209 schedstat_inc(p, se.nr_failed_migrations_running);
3210 return 0;
3214 * Aggressive migration if:
3215 * 1) task is cache cold, or
3216 * 2) too many balance attempts have failed.
3219 tsk_cache_hot = task_hot(p, rq->clock, sd);
3220 if (!tsk_cache_hot ||
3221 sd->nr_balance_failed > sd->cache_nice_tries) {
3222 #ifdef CONFIG_SCHEDSTATS
3223 if (tsk_cache_hot) {
3224 schedstat_inc(sd, lb_hot_gained[idle]);
3225 schedstat_inc(p, se.nr_forced_migrations);
3227 #endif
3228 return 1;
3231 if (tsk_cache_hot) {
3232 schedstat_inc(p, se.nr_failed_migrations_hot);
3233 return 0;
3235 return 1;
3238 static unsigned long
3239 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3240 unsigned long max_load_move, struct sched_domain *sd,
3241 enum cpu_idle_type idle, int *all_pinned,
3242 int *this_best_prio, struct rq_iterator *iterator)
3244 int loops = 0, pulled = 0, pinned = 0;
3245 struct task_struct *p;
3246 long rem_load_move = max_load_move;
3248 if (max_load_move == 0)
3249 goto out;
3251 pinned = 1;
3254 * Start the load-balancing iterator:
3256 p = iterator->start(iterator->arg);
3257 next:
3258 if (!p || loops++ > sysctl_sched_nr_migrate)
3259 goto out;
3261 if ((p->se.load.weight >> 1) > rem_load_move ||
3262 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3263 p = iterator->next(iterator->arg);
3264 goto next;
3267 pull_task(busiest, p, this_rq, this_cpu);
3268 pulled++;
3269 rem_load_move -= p->se.load.weight;
3271 #ifdef CONFIG_PREEMPT
3273 * NEWIDLE balancing is a source of latency, so preemptible kernels
3274 * will stop after the first task is pulled to minimize the critical
3275 * section.
3277 if (idle == CPU_NEWLY_IDLE)
3278 goto out;
3279 #endif
3282 * We only want to steal up to the prescribed amount of weighted load.
3284 if (rem_load_move > 0) {
3285 if (p->prio < *this_best_prio)
3286 *this_best_prio = p->prio;
3287 p = iterator->next(iterator->arg);
3288 goto next;
3290 out:
3292 * Right now, this is one of only two places pull_task() is called,
3293 * so we can safely collect pull_task() stats here rather than
3294 * inside pull_task().
3296 schedstat_add(sd, lb_gained[idle], pulled);
3298 if (all_pinned)
3299 *all_pinned = pinned;
3301 return max_load_move - rem_load_move;
3305 * move_tasks tries to move up to max_load_move weighted load from busiest to
3306 * this_rq, as part of a balancing operation within domain "sd".
3307 * Returns 1 if successful and 0 otherwise.
3309 * Called with both runqueues locked.
3311 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3312 unsigned long max_load_move,
3313 struct sched_domain *sd, enum cpu_idle_type idle,
3314 int *all_pinned)
3316 const struct sched_class *class = sched_class_highest;
3317 unsigned long total_load_moved = 0;
3318 int this_best_prio = this_rq->curr->prio;
3320 do {
3321 total_load_moved +=
3322 class->load_balance(this_rq, this_cpu, busiest,
3323 max_load_move - total_load_moved,
3324 sd, idle, all_pinned, &this_best_prio);
3325 class = class->next;
3327 #ifdef CONFIG_PREEMPT
3329 * NEWIDLE balancing is a source of latency, so preemptible
3330 * kernels will stop after the first task is pulled to minimize
3331 * the critical section.
3333 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3334 break;
3335 #endif
3336 } while (class && max_load_move > total_load_moved);
3338 return total_load_moved > 0;
3341 static int
3342 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3343 struct sched_domain *sd, enum cpu_idle_type idle,
3344 struct rq_iterator *iterator)
3346 struct task_struct *p = iterator->start(iterator->arg);
3347 int pinned = 0;
3349 while (p) {
3350 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3351 pull_task(busiest, p, this_rq, this_cpu);
3353 * Right now, this is only the second place pull_task()
3354 * is called, so we can safely collect pull_task()
3355 * stats here rather than inside pull_task().
3357 schedstat_inc(sd, lb_gained[idle]);
3359 return 1;
3361 p = iterator->next(iterator->arg);
3364 return 0;
3368 * move_one_task tries to move exactly one task from busiest to this_rq, as
3369 * part of active balancing operations within "domain".
3370 * Returns 1 if successful and 0 otherwise.
3372 * Called with both runqueues locked.
3374 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3375 struct sched_domain *sd, enum cpu_idle_type idle)
3377 const struct sched_class *class;
3379 for_each_class(class) {
3380 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3381 return 1;
3384 return 0;
3386 /********** Helpers for find_busiest_group ************************/
3388 * sd_lb_stats - Structure to store the statistics of a sched_domain
3389 * during load balancing.
3391 struct sd_lb_stats {
3392 struct sched_group *busiest; /* Busiest group in this sd */
3393 struct sched_group *this; /* Local group in this sd */
3394 unsigned long total_load; /* Total load of all groups in sd */
3395 unsigned long total_pwr; /* Total power of all groups in sd */
3396 unsigned long avg_load; /* Average load across all groups in sd */
3398 /** Statistics of this group */
3399 unsigned long this_load;
3400 unsigned long this_load_per_task;
3401 unsigned long this_nr_running;
3403 /* Statistics of the busiest group */
3404 unsigned long max_load;
3405 unsigned long busiest_load_per_task;
3406 unsigned long busiest_nr_running;
3408 int group_imb; /* Is there imbalance in this sd */
3409 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3410 int power_savings_balance; /* Is powersave balance needed for this sd */
3411 struct sched_group *group_min; /* Least loaded group in sd */
3412 struct sched_group *group_leader; /* Group which relieves group_min */
3413 unsigned long min_load_per_task; /* load_per_task in group_min */
3414 unsigned long leader_nr_running; /* Nr running of group_leader */
3415 unsigned long min_nr_running; /* Nr running of group_min */
3416 #endif
3420 * sg_lb_stats - stats of a sched_group required for load_balancing
3422 struct sg_lb_stats {
3423 unsigned long avg_load; /*Avg load across the CPUs of the group */
3424 unsigned long group_load; /* Total load over the CPUs of the group */
3425 unsigned long sum_nr_running; /* Nr tasks running in the group */
3426 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3427 unsigned long group_capacity;
3428 int group_imb; /* Is there an imbalance in the group ? */
3432 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3433 * @group: The group whose first cpu is to be returned.
3435 static inline unsigned int group_first_cpu(struct sched_group *group)
3437 return cpumask_first(sched_group_cpus(group));
3441 * get_sd_load_idx - Obtain the load index for a given sched domain.
3442 * @sd: The sched_domain whose load_idx is to be obtained.
3443 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3445 static inline int get_sd_load_idx(struct sched_domain *sd,
3446 enum cpu_idle_type idle)
3448 int load_idx;
3450 switch (idle) {
3451 case CPU_NOT_IDLE:
3452 load_idx = sd->busy_idx;
3453 break;
3455 case CPU_NEWLY_IDLE:
3456 load_idx = sd->newidle_idx;
3457 break;
3458 default:
3459 load_idx = sd->idle_idx;
3460 break;
3463 return load_idx;
3467 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3469 * init_sd_power_savings_stats - Initialize power savings statistics for
3470 * the given sched_domain, during load balancing.
3472 * @sd: Sched domain whose power-savings statistics are to be initialized.
3473 * @sds: Variable containing the statistics for sd.
3474 * @idle: Idle status of the CPU at which we're performing load-balancing.
3476 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3477 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3480 * Busy processors will not participate in power savings
3481 * balance.
3483 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3484 sds->power_savings_balance = 0;
3485 else {
3486 sds->power_savings_balance = 1;
3487 sds->min_nr_running = ULONG_MAX;
3488 sds->leader_nr_running = 0;
3493 * update_sd_power_savings_stats - Update the power saving stats for a
3494 * sched_domain while performing load balancing.
3496 * @group: sched_group belonging to the sched_domain under consideration.
3497 * @sds: Variable containing the statistics of the sched_domain
3498 * @local_group: Does group contain the CPU for which we're performing
3499 * load balancing ?
3500 * @sgs: Variable containing the statistics of the group.
3502 static inline void update_sd_power_savings_stats(struct sched_group *group,
3503 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3506 if (!sds->power_savings_balance)
3507 return;
3510 * If the local group is idle or completely loaded
3511 * no need to do power savings balance at this domain
3513 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3514 !sds->this_nr_running))
3515 sds->power_savings_balance = 0;
3518 * If a group is already running at full capacity or idle,
3519 * don't include that group in power savings calculations
3521 if (!sds->power_savings_balance ||
3522 sgs->sum_nr_running >= sgs->group_capacity ||
3523 !sgs->sum_nr_running)
3524 return;
3527 * Calculate the group which has the least non-idle load.
3528 * This is the group from where we need to pick up the load
3529 * for saving power
3531 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3532 (sgs->sum_nr_running == sds->min_nr_running &&
3533 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3534 sds->group_min = group;
3535 sds->min_nr_running = sgs->sum_nr_running;
3536 sds->min_load_per_task = sgs->sum_weighted_load /
3537 sgs->sum_nr_running;
3541 * Calculate the group which is almost near its
3542 * capacity but still has some space to pick up some load
3543 * from other group and save more power
3545 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3546 return;
3548 if (sgs->sum_nr_running > sds->leader_nr_running ||
3549 (sgs->sum_nr_running == sds->leader_nr_running &&
3550 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3551 sds->group_leader = group;
3552 sds->leader_nr_running = sgs->sum_nr_running;
3557 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3558 * @sds: Variable containing the statistics of the sched_domain
3559 * under consideration.
3560 * @this_cpu: Cpu at which we're currently performing load-balancing.
3561 * @imbalance: Variable to store the imbalance.
3563 * Description:
3564 * Check if we have potential to perform some power-savings balance.
3565 * If yes, set the busiest group to be the least loaded group in the
3566 * sched_domain, so that it's CPUs can be put to idle.
3568 * Returns 1 if there is potential to perform power-savings balance.
3569 * Else returns 0.
3571 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3572 int this_cpu, unsigned long *imbalance)
3574 if (!sds->power_savings_balance)
3575 return 0;
3577 if (sds->this != sds->group_leader ||
3578 sds->group_leader == sds->group_min)
3579 return 0;
3581 *imbalance = sds->min_load_per_task;
3582 sds->busiest = sds->group_min;
3584 return 1;
3587 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3588 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3589 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3591 return;
3594 static inline void update_sd_power_savings_stats(struct sched_group *group,
3595 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3597 return;
3600 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3601 int this_cpu, unsigned long *imbalance)
3603 return 0;
3605 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3608 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3610 return SCHED_LOAD_SCALE;
3613 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3615 return default_scale_freq_power(sd, cpu);
3618 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3620 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3621 unsigned long smt_gain = sd->smt_gain;
3623 smt_gain /= weight;
3625 return smt_gain;
3628 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3630 return default_scale_smt_power(sd, cpu);
3633 unsigned long scale_rt_power(int cpu)
3635 struct rq *rq = cpu_rq(cpu);
3636 u64 total, available;
3638 sched_avg_update(rq);
3640 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3641 available = total - rq->rt_avg;
3643 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3644 total = SCHED_LOAD_SCALE;
3646 total >>= SCHED_LOAD_SHIFT;
3648 return div_u64(available, total);
3651 static void update_cpu_power(struct sched_domain *sd, int cpu)
3653 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3654 unsigned long power = SCHED_LOAD_SCALE;
3655 struct sched_group *sdg = sd->groups;
3657 if (sched_feat(ARCH_POWER))
3658 power *= arch_scale_freq_power(sd, cpu);
3659 else
3660 power *= default_scale_freq_power(sd, cpu);
3662 power >>= SCHED_LOAD_SHIFT;
3664 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3665 if (sched_feat(ARCH_POWER))
3666 power *= arch_scale_smt_power(sd, cpu);
3667 else
3668 power *= default_scale_smt_power(sd, cpu);
3670 power >>= SCHED_LOAD_SHIFT;
3673 power *= scale_rt_power(cpu);
3674 power >>= SCHED_LOAD_SHIFT;
3676 if (!power)
3677 power = 1;
3679 sdg->cpu_power = power;
3682 static void update_group_power(struct sched_domain *sd, int cpu)
3684 struct sched_domain *child = sd->child;
3685 struct sched_group *group, *sdg = sd->groups;
3686 unsigned long power;
3688 if (!child) {
3689 update_cpu_power(sd, cpu);
3690 return;
3693 power = 0;
3695 group = child->groups;
3696 do {
3697 power += group->cpu_power;
3698 group = group->next;
3699 } while (group != child->groups);
3701 sdg->cpu_power = power;
3705 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3706 * @sd: The sched_domain whose statistics are to be updated.
3707 * @group: sched_group whose statistics are to be updated.
3708 * @this_cpu: Cpu for which load balance is currently performed.
3709 * @idle: Idle status of this_cpu
3710 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3711 * @sd_idle: Idle status of the sched_domain containing group.
3712 * @local_group: Does group contain this_cpu.
3713 * @cpus: Set of cpus considered for load balancing.
3714 * @balance: Should we balance.
3715 * @sgs: variable to hold the statistics for this group.
3717 static inline void update_sg_lb_stats(struct sched_domain *sd,
3718 struct sched_group *group, int this_cpu,
3719 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3720 int local_group, const struct cpumask *cpus,
3721 int *balance, struct sg_lb_stats *sgs)
3723 unsigned long load, max_cpu_load, min_cpu_load;
3724 int i;
3725 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3726 unsigned long sum_avg_load_per_task;
3727 unsigned long avg_load_per_task;
3729 if (local_group) {
3730 balance_cpu = group_first_cpu(group);
3731 if (balance_cpu == this_cpu)
3732 update_group_power(sd, this_cpu);
3735 /* Tally up the load of all CPUs in the group */
3736 sum_avg_load_per_task = avg_load_per_task = 0;
3737 max_cpu_load = 0;
3738 min_cpu_load = ~0UL;
3740 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3741 struct rq *rq = cpu_rq(i);
3743 if (*sd_idle && rq->nr_running)
3744 *sd_idle = 0;
3746 /* Bias balancing toward cpus of our domain */
3747 if (local_group) {
3748 if (idle_cpu(i) && !first_idle_cpu) {
3749 first_idle_cpu = 1;
3750 balance_cpu = i;
3753 load = target_load(i, load_idx);
3754 } else {
3755 load = source_load(i, load_idx);
3756 if (load > max_cpu_load)
3757 max_cpu_load = load;
3758 if (min_cpu_load > load)
3759 min_cpu_load = load;
3762 sgs->group_load += load;
3763 sgs->sum_nr_running += rq->nr_running;
3764 sgs->sum_weighted_load += weighted_cpuload(i);
3766 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3770 * First idle cpu or the first cpu(busiest) in this sched group
3771 * is eligible for doing load balancing at this and above
3772 * domains. In the newly idle case, we will allow all the cpu's
3773 * to do the newly idle load balance.
3775 if (idle != CPU_NEWLY_IDLE && local_group &&
3776 balance_cpu != this_cpu && balance) {
3777 *balance = 0;
3778 return;
3781 /* Adjust by relative CPU power of the group */
3782 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3786 * Consider the group unbalanced when the imbalance is larger
3787 * than the average weight of two tasks.
3789 * APZ: with cgroup the avg task weight can vary wildly and
3790 * might not be a suitable number - should we keep a
3791 * normalized nr_running number somewhere that negates
3792 * the hierarchy?
3794 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3795 group->cpu_power;
3797 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3798 sgs->group_imb = 1;
3800 sgs->group_capacity =
3801 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3805 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3806 * @sd: sched_domain whose statistics are to be updated.
3807 * @this_cpu: Cpu for which load balance is currently performed.
3808 * @idle: Idle status of this_cpu
3809 * @sd_idle: Idle status of the sched_domain containing group.
3810 * @cpus: Set of cpus considered for load balancing.
3811 * @balance: Should we balance.
3812 * @sds: variable to hold the statistics for this sched_domain.
3814 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3815 enum cpu_idle_type idle, int *sd_idle,
3816 const struct cpumask *cpus, int *balance,
3817 struct sd_lb_stats *sds)
3819 struct sched_domain *child = sd->child;
3820 struct sched_group *group = sd->groups;
3821 struct sg_lb_stats sgs;
3822 int load_idx, prefer_sibling = 0;
3824 if (child && child->flags & SD_PREFER_SIBLING)
3825 prefer_sibling = 1;
3827 init_sd_power_savings_stats(sd, sds, idle);
3828 load_idx = get_sd_load_idx(sd, idle);
3830 do {
3831 int local_group;
3833 local_group = cpumask_test_cpu(this_cpu,
3834 sched_group_cpus(group));
3835 memset(&sgs, 0, sizeof(sgs));
3836 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3837 local_group, cpus, balance, &sgs);
3839 if (local_group && balance && !(*balance))
3840 return;
3842 sds->total_load += sgs.group_load;
3843 sds->total_pwr += group->cpu_power;
3846 * In case the child domain prefers tasks go to siblings
3847 * first, lower the group capacity to one so that we'll try
3848 * and move all the excess tasks away.
3850 if (prefer_sibling)
3851 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3853 if (local_group) {
3854 sds->this_load = sgs.avg_load;
3855 sds->this = group;
3856 sds->this_nr_running = sgs.sum_nr_running;
3857 sds->this_load_per_task = sgs.sum_weighted_load;
3858 } else if (sgs.avg_load > sds->max_load &&
3859 (sgs.sum_nr_running > sgs.group_capacity ||
3860 sgs.group_imb)) {
3861 sds->max_load = sgs.avg_load;
3862 sds->busiest = group;
3863 sds->busiest_nr_running = sgs.sum_nr_running;
3864 sds->busiest_load_per_task = sgs.sum_weighted_load;
3865 sds->group_imb = sgs.group_imb;
3868 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3869 group = group->next;
3870 } while (group != sd->groups);
3874 * fix_small_imbalance - Calculate the minor imbalance that exists
3875 * amongst the groups of a sched_domain, during
3876 * load balancing.
3877 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3878 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3879 * @imbalance: Variable to store the imbalance.
3881 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3882 int this_cpu, unsigned long *imbalance)
3884 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3885 unsigned int imbn = 2;
3887 if (sds->this_nr_running) {
3888 sds->this_load_per_task /= sds->this_nr_running;
3889 if (sds->busiest_load_per_task >
3890 sds->this_load_per_task)
3891 imbn = 1;
3892 } else
3893 sds->this_load_per_task =
3894 cpu_avg_load_per_task(this_cpu);
3896 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3897 sds->busiest_load_per_task * imbn) {
3898 *imbalance = sds->busiest_load_per_task;
3899 return;
3903 * OK, we don't have enough imbalance to justify moving tasks,
3904 * however we may be able to increase total CPU power used by
3905 * moving them.
3908 pwr_now += sds->busiest->cpu_power *
3909 min(sds->busiest_load_per_task, sds->max_load);
3910 pwr_now += sds->this->cpu_power *
3911 min(sds->this_load_per_task, sds->this_load);
3912 pwr_now /= SCHED_LOAD_SCALE;
3914 /* Amount of load we'd subtract */
3915 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3916 sds->busiest->cpu_power;
3917 if (sds->max_load > tmp)
3918 pwr_move += sds->busiest->cpu_power *
3919 min(sds->busiest_load_per_task, sds->max_load - tmp);
3921 /* Amount of load we'd add */
3922 if (sds->max_load * sds->busiest->cpu_power <
3923 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3924 tmp = (sds->max_load * sds->busiest->cpu_power) /
3925 sds->this->cpu_power;
3926 else
3927 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3928 sds->this->cpu_power;
3929 pwr_move += sds->this->cpu_power *
3930 min(sds->this_load_per_task, sds->this_load + tmp);
3931 pwr_move /= SCHED_LOAD_SCALE;
3933 /* Move if we gain throughput */
3934 if (pwr_move > pwr_now)
3935 *imbalance = sds->busiest_load_per_task;
3939 * calculate_imbalance - Calculate the amount of imbalance present within the
3940 * groups of a given sched_domain during load balance.
3941 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3942 * @this_cpu: Cpu for which currently load balance is being performed.
3943 * @imbalance: The variable to store the imbalance.
3945 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3946 unsigned long *imbalance)
3948 unsigned long max_pull;
3950 * In the presence of smp nice balancing, certain scenarios can have
3951 * max load less than avg load(as we skip the groups at or below
3952 * its cpu_power, while calculating max_load..)
3954 if (sds->max_load < sds->avg_load) {
3955 *imbalance = 0;
3956 return fix_small_imbalance(sds, this_cpu, imbalance);
3959 /* Don't want to pull so many tasks that a group would go idle */
3960 max_pull = min(sds->max_load - sds->avg_load,
3961 sds->max_load - sds->busiest_load_per_task);
3963 /* How much load to actually move to equalise the imbalance */
3964 *imbalance = min(max_pull * sds->busiest->cpu_power,
3965 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3966 / SCHED_LOAD_SCALE;
3969 * if *imbalance is less than the average load per runnable task
3970 * there is no gaurantee that any tasks will be moved so we'll have
3971 * a think about bumping its value to force at least one task to be
3972 * moved
3974 if (*imbalance < sds->busiest_load_per_task)
3975 return fix_small_imbalance(sds, this_cpu, imbalance);
3978 /******* find_busiest_group() helpers end here *********************/
3981 * find_busiest_group - Returns the busiest group within the sched_domain
3982 * if there is an imbalance. If there isn't an imbalance, and
3983 * the user has opted for power-savings, it returns a group whose
3984 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3985 * such a group exists.
3987 * Also calculates the amount of weighted load which should be moved
3988 * to restore balance.
3990 * @sd: The sched_domain whose busiest group is to be returned.
3991 * @this_cpu: The cpu for which load balancing is currently being performed.
3992 * @imbalance: Variable which stores amount of weighted load which should
3993 * be moved to restore balance/put a group to idle.
3994 * @idle: The idle status of this_cpu.
3995 * @sd_idle: The idleness of sd
3996 * @cpus: The set of CPUs under consideration for load-balancing.
3997 * @balance: Pointer to a variable indicating if this_cpu
3998 * is the appropriate cpu to perform load balancing at this_level.
4000 * Returns: - the busiest group if imbalance exists.
4001 * - If no imbalance and user has opted for power-savings balance,
4002 * return the least loaded group whose CPUs can be
4003 * put to idle by rebalancing its tasks onto our group.
4005 static struct sched_group *
4006 find_busiest_group(struct sched_domain *sd, int this_cpu,
4007 unsigned long *imbalance, enum cpu_idle_type idle,
4008 int *sd_idle, const struct cpumask *cpus, int *balance)
4010 struct sd_lb_stats sds;
4012 memset(&sds, 0, sizeof(sds));
4015 * Compute the various statistics relavent for load balancing at
4016 * this level.
4018 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4019 balance, &sds);
4021 /* Cases where imbalance does not exist from POV of this_cpu */
4022 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4023 * at this level.
4024 * 2) There is no busy sibling group to pull from.
4025 * 3) This group is the busiest group.
4026 * 4) This group is more busy than the avg busieness at this
4027 * sched_domain.
4028 * 5) The imbalance is within the specified limit.
4029 * 6) Any rebalance would lead to ping-pong
4031 if (balance && !(*balance))
4032 goto ret;
4034 if (!sds.busiest || sds.busiest_nr_running == 0)
4035 goto out_balanced;
4037 if (sds.this_load >= sds.max_load)
4038 goto out_balanced;
4040 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4042 if (sds.this_load >= sds.avg_load)
4043 goto out_balanced;
4045 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4046 goto out_balanced;
4048 sds.busiest_load_per_task /= sds.busiest_nr_running;
4049 if (sds.group_imb)
4050 sds.busiest_load_per_task =
4051 min(sds.busiest_load_per_task, sds.avg_load);
4054 * We're trying to get all the cpus to the average_load, so we don't
4055 * want to push ourselves above the average load, nor do we wish to
4056 * reduce the max loaded cpu below the average load, as either of these
4057 * actions would just result in more rebalancing later, and ping-pong
4058 * tasks around. Thus we look for the minimum possible imbalance.
4059 * Negative imbalances (*we* are more loaded than anyone else) will
4060 * be counted as no imbalance for these purposes -- we can't fix that
4061 * by pulling tasks to us. Be careful of negative numbers as they'll
4062 * appear as very large values with unsigned longs.
4064 if (sds.max_load <= sds.busiest_load_per_task)
4065 goto out_balanced;
4067 /* Looks like there is an imbalance. Compute it */
4068 calculate_imbalance(&sds, this_cpu, imbalance);
4069 return sds.busiest;
4071 out_balanced:
4073 * There is no obvious imbalance. But check if we can do some balancing
4074 * to save power.
4076 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4077 return sds.busiest;
4078 ret:
4079 *imbalance = 0;
4080 return NULL;
4084 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4086 static struct rq *
4087 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4088 unsigned long imbalance, const struct cpumask *cpus)
4090 struct rq *busiest = NULL, *rq;
4091 unsigned long max_load = 0;
4092 int i;
4094 for_each_cpu(i, sched_group_cpus(group)) {
4095 unsigned long power = power_of(i);
4096 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4097 unsigned long wl;
4099 if (!cpumask_test_cpu(i, cpus))
4100 continue;
4102 rq = cpu_rq(i);
4103 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4104 wl /= power;
4106 if (capacity && rq->nr_running == 1 && wl > imbalance)
4107 continue;
4109 if (wl > max_load) {
4110 max_load = wl;
4111 busiest = rq;
4115 return busiest;
4119 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4120 * so long as it is large enough.
4122 #define MAX_PINNED_INTERVAL 512
4124 /* Working cpumask for load_balance and load_balance_newidle. */
4125 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4128 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4129 * tasks if there is an imbalance.
4131 static int load_balance(int this_cpu, struct rq *this_rq,
4132 struct sched_domain *sd, enum cpu_idle_type idle,
4133 int *balance)
4135 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4136 struct sched_group *group;
4137 unsigned long imbalance;
4138 struct rq *busiest;
4139 unsigned long flags;
4140 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4142 cpumask_copy(cpus, cpu_online_mask);
4145 * When power savings policy is enabled for the parent domain, idle
4146 * sibling can pick up load irrespective of busy siblings. In this case,
4147 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4148 * portraying it as CPU_NOT_IDLE.
4150 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4151 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4152 sd_idle = 1;
4154 schedstat_inc(sd, lb_count[idle]);
4156 redo:
4157 update_shares(sd);
4158 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4159 cpus, balance);
4161 if (*balance == 0)
4162 goto out_balanced;
4164 if (!group) {
4165 schedstat_inc(sd, lb_nobusyg[idle]);
4166 goto out_balanced;
4169 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4170 if (!busiest) {
4171 schedstat_inc(sd, lb_nobusyq[idle]);
4172 goto out_balanced;
4175 BUG_ON(busiest == this_rq);
4177 schedstat_add(sd, lb_imbalance[idle], imbalance);
4179 ld_moved = 0;
4180 if (busiest->nr_running > 1) {
4182 * Attempt to move tasks. If find_busiest_group has found
4183 * an imbalance but busiest->nr_running <= 1, the group is
4184 * still unbalanced. ld_moved simply stays zero, so it is
4185 * correctly treated as an imbalance.
4187 local_irq_save(flags);
4188 double_rq_lock(this_rq, busiest);
4189 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4190 imbalance, sd, idle, &all_pinned);
4191 double_rq_unlock(this_rq, busiest);
4192 local_irq_restore(flags);
4195 * some other cpu did the load balance for us.
4197 if (ld_moved && this_cpu != smp_processor_id())
4198 resched_cpu(this_cpu);
4200 /* All tasks on this runqueue were pinned by CPU affinity */
4201 if (unlikely(all_pinned)) {
4202 cpumask_clear_cpu(cpu_of(busiest), cpus);
4203 if (!cpumask_empty(cpus))
4204 goto redo;
4205 goto out_balanced;
4209 if (!ld_moved) {
4210 schedstat_inc(sd, lb_failed[idle]);
4211 sd->nr_balance_failed++;
4213 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4215 spin_lock_irqsave(&busiest->lock, flags);
4217 /* don't kick the migration_thread, if the curr
4218 * task on busiest cpu can't be moved to this_cpu
4220 if (!cpumask_test_cpu(this_cpu,
4221 &busiest->curr->cpus_allowed)) {
4222 spin_unlock_irqrestore(&busiest->lock, flags);
4223 all_pinned = 1;
4224 goto out_one_pinned;
4227 if (!busiest->active_balance) {
4228 busiest->active_balance = 1;
4229 busiest->push_cpu = this_cpu;
4230 active_balance = 1;
4232 spin_unlock_irqrestore(&busiest->lock, flags);
4233 if (active_balance)
4234 wake_up_process(busiest->migration_thread);
4237 * We've kicked active balancing, reset the failure
4238 * counter.
4240 sd->nr_balance_failed = sd->cache_nice_tries+1;
4242 } else
4243 sd->nr_balance_failed = 0;
4245 if (likely(!active_balance)) {
4246 /* We were unbalanced, so reset the balancing interval */
4247 sd->balance_interval = sd->min_interval;
4248 } else {
4250 * If we've begun active balancing, start to back off. This
4251 * case may not be covered by the all_pinned logic if there
4252 * is only 1 task on the busy runqueue (because we don't call
4253 * move_tasks).
4255 if (sd->balance_interval < sd->max_interval)
4256 sd->balance_interval *= 2;
4259 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4260 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4261 ld_moved = -1;
4263 goto out;
4265 out_balanced:
4266 schedstat_inc(sd, lb_balanced[idle]);
4268 sd->nr_balance_failed = 0;
4270 out_one_pinned:
4271 /* tune up the balancing interval */
4272 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4273 (sd->balance_interval < sd->max_interval))
4274 sd->balance_interval *= 2;
4276 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4277 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4278 ld_moved = -1;
4279 else
4280 ld_moved = 0;
4281 out:
4282 if (ld_moved)
4283 update_shares(sd);
4284 return ld_moved;
4288 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4289 * tasks if there is an imbalance.
4291 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4292 * this_rq is locked.
4294 static int
4295 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4297 struct sched_group *group;
4298 struct rq *busiest = NULL;
4299 unsigned long imbalance;
4300 int ld_moved = 0;
4301 int sd_idle = 0;
4302 int all_pinned = 0;
4303 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4305 cpumask_copy(cpus, cpu_online_mask);
4308 * When power savings policy is enabled for the parent domain, idle
4309 * sibling can pick up load irrespective of busy siblings. In this case,
4310 * let the state of idle sibling percolate up as IDLE, instead of
4311 * portraying it as CPU_NOT_IDLE.
4313 if (sd->flags & SD_SHARE_CPUPOWER &&
4314 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4315 sd_idle = 1;
4317 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4318 redo:
4319 update_shares_locked(this_rq, sd);
4320 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4321 &sd_idle, cpus, NULL);
4322 if (!group) {
4323 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4324 goto out_balanced;
4327 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4328 if (!busiest) {
4329 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4330 goto out_balanced;
4333 BUG_ON(busiest == this_rq);
4335 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4337 ld_moved = 0;
4338 if (busiest->nr_running > 1) {
4339 /* Attempt to move tasks */
4340 double_lock_balance(this_rq, busiest);
4341 /* this_rq->clock is already updated */
4342 update_rq_clock(busiest);
4343 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4344 imbalance, sd, CPU_NEWLY_IDLE,
4345 &all_pinned);
4346 double_unlock_balance(this_rq, busiest);
4348 if (unlikely(all_pinned)) {
4349 cpumask_clear_cpu(cpu_of(busiest), cpus);
4350 if (!cpumask_empty(cpus))
4351 goto redo;
4355 if (!ld_moved) {
4356 int active_balance = 0;
4358 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4359 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4360 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4361 return -1;
4363 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4364 return -1;
4366 if (sd->nr_balance_failed++ < 2)
4367 return -1;
4370 * The only task running in a non-idle cpu can be moved to this
4371 * cpu in an attempt to completely freeup the other CPU
4372 * package. The same method used to move task in load_balance()
4373 * have been extended for load_balance_newidle() to speedup
4374 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4376 * The package power saving logic comes from
4377 * find_busiest_group(). If there are no imbalance, then
4378 * f_b_g() will return NULL. However when sched_mc={1,2} then
4379 * f_b_g() will select a group from which a running task may be
4380 * pulled to this cpu in order to make the other package idle.
4381 * If there is no opportunity to make a package idle and if
4382 * there are no imbalance, then f_b_g() will return NULL and no
4383 * action will be taken in load_balance_newidle().
4385 * Under normal task pull operation due to imbalance, there
4386 * will be more than one task in the source run queue and
4387 * move_tasks() will succeed. ld_moved will be true and this
4388 * active balance code will not be triggered.
4391 /* Lock busiest in correct order while this_rq is held */
4392 double_lock_balance(this_rq, busiest);
4395 * don't kick the migration_thread, if the curr
4396 * task on busiest cpu can't be moved to this_cpu
4398 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4399 double_unlock_balance(this_rq, busiest);
4400 all_pinned = 1;
4401 return ld_moved;
4404 if (!busiest->active_balance) {
4405 busiest->active_balance = 1;
4406 busiest->push_cpu = this_cpu;
4407 active_balance = 1;
4410 double_unlock_balance(this_rq, busiest);
4412 * Should not call ttwu while holding a rq->lock
4414 spin_unlock(&this_rq->lock);
4415 if (active_balance)
4416 wake_up_process(busiest->migration_thread);
4417 spin_lock(&this_rq->lock);
4419 } else
4420 sd->nr_balance_failed = 0;
4422 update_shares_locked(this_rq, sd);
4423 return ld_moved;
4425 out_balanced:
4426 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4427 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4428 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4429 return -1;
4430 sd->nr_balance_failed = 0;
4432 return 0;
4436 * idle_balance is called by schedule() if this_cpu is about to become
4437 * idle. Attempts to pull tasks from other CPUs.
4439 static void idle_balance(int this_cpu, struct rq *this_rq)
4441 struct sched_domain *sd;
4442 int pulled_task = 0;
4443 unsigned long next_balance = jiffies + HZ;
4445 this_rq->idle_stamp = this_rq->clock;
4447 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4448 return;
4450 for_each_domain(this_cpu, sd) {
4451 unsigned long interval;
4453 if (!(sd->flags & SD_LOAD_BALANCE))
4454 continue;
4456 if (sd->flags & SD_BALANCE_NEWIDLE)
4457 /* If we've pulled tasks over stop searching: */
4458 pulled_task = load_balance_newidle(this_cpu, this_rq,
4459 sd);
4461 interval = msecs_to_jiffies(sd->balance_interval);
4462 if (time_after(next_balance, sd->last_balance + interval))
4463 next_balance = sd->last_balance + interval;
4464 if (pulled_task) {
4465 this_rq->idle_stamp = 0;
4466 break;
4469 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4471 * We are going idle. next_balance may be set based on
4472 * a busy processor. So reset next_balance.
4474 this_rq->next_balance = next_balance;
4479 * active_load_balance is run by migration threads. It pushes running tasks
4480 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4481 * running on each physical CPU where possible, and avoids physical /
4482 * logical imbalances.
4484 * Called with busiest_rq locked.
4486 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4488 int target_cpu = busiest_rq->push_cpu;
4489 struct sched_domain *sd;
4490 struct rq *target_rq;
4492 /* Is there any task to move? */
4493 if (busiest_rq->nr_running <= 1)
4494 return;
4496 target_rq = cpu_rq(target_cpu);
4499 * This condition is "impossible", if it occurs
4500 * we need to fix it. Originally reported by
4501 * Bjorn Helgaas on a 128-cpu setup.
4503 BUG_ON(busiest_rq == target_rq);
4505 /* move a task from busiest_rq to target_rq */
4506 double_lock_balance(busiest_rq, target_rq);
4507 update_rq_clock(busiest_rq);
4508 update_rq_clock(target_rq);
4510 /* Search for an sd spanning us and the target CPU. */
4511 for_each_domain(target_cpu, sd) {
4512 if ((sd->flags & SD_LOAD_BALANCE) &&
4513 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4514 break;
4517 if (likely(sd)) {
4518 schedstat_inc(sd, alb_count);
4520 if (move_one_task(target_rq, target_cpu, busiest_rq,
4521 sd, CPU_IDLE))
4522 schedstat_inc(sd, alb_pushed);
4523 else
4524 schedstat_inc(sd, alb_failed);
4526 double_unlock_balance(busiest_rq, target_rq);
4529 #ifdef CONFIG_NO_HZ
4530 static struct {
4531 atomic_t load_balancer;
4532 cpumask_var_t cpu_mask;
4533 cpumask_var_t ilb_grp_nohz_mask;
4534 } nohz ____cacheline_aligned = {
4535 .load_balancer = ATOMIC_INIT(-1),
4538 int get_nohz_load_balancer(void)
4540 return atomic_read(&nohz.load_balancer);
4543 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4545 * lowest_flag_domain - Return lowest sched_domain containing flag.
4546 * @cpu: The cpu whose lowest level of sched domain is to
4547 * be returned.
4548 * @flag: The flag to check for the lowest sched_domain
4549 * for the given cpu.
4551 * Returns the lowest sched_domain of a cpu which contains the given flag.
4553 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4555 struct sched_domain *sd;
4557 for_each_domain(cpu, sd)
4558 if (sd && (sd->flags & flag))
4559 break;
4561 return sd;
4565 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4566 * @cpu: The cpu whose domains we're iterating over.
4567 * @sd: variable holding the value of the power_savings_sd
4568 * for cpu.
4569 * @flag: The flag to filter the sched_domains to be iterated.
4571 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4572 * set, starting from the lowest sched_domain to the highest.
4574 #define for_each_flag_domain(cpu, sd, flag) \
4575 for (sd = lowest_flag_domain(cpu, flag); \
4576 (sd && (sd->flags & flag)); sd = sd->parent)
4579 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4580 * @ilb_group: group to be checked for semi-idleness
4582 * Returns: 1 if the group is semi-idle. 0 otherwise.
4584 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4585 * and atleast one non-idle CPU. This helper function checks if the given
4586 * sched_group is semi-idle or not.
4588 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4590 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4591 sched_group_cpus(ilb_group));
4594 * A sched_group is semi-idle when it has atleast one busy cpu
4595 * and atleast one idle cpu.
4597 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4598 return 0;
4600 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4601 return 0;
4603 return 1;
4606 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4607 * @cpu: The cpu which is nominating a new idle_load_balancer.
4609 * Returns: Returns the id of the idle load balancer if it exists,
4610 * Else, returns >= nr_cpu_ids.
4612 * This algorithm picks the idle load balancer such that it belongs to a
4613 * semi-idle powersavings sched_domain. The idea is to try and avoid
4614 * completely idle packages/cores just for the purpose of idle load balancing
4615 * when there are other idle cpu's which are better suited for that job.
4617 static int find_new_ilb(int cpu)
4619 struct sched_domain *sd;
4620 struct sched_group *ilb_group;
4623 * Have idle load balancer selection from semi-idle packages only
4624 * when power-aware load balancing is enabled
4626 if (!(sched_smt_power_savings || sched_mc_power_savings))
4627 goto out_done;
4630 * Optimize for the case when we have no idle CPUs or only one
4631 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4633 if (cpumask_weight(nohz.cpu_mask) < 2)
4634 goto out_done;
4636 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4637 ilb_group = sd->groups;
4639 do {
4640 if (is_semi_idle_group(ilb_group))
4641 return cpumask_first(nohz.ilb_grp_nohz_mask);
4643 ilb_group = ilb_group->next;
4645 } while (ilb_group != sd->groups);
4648 out_done:
4649 return cpumask_first(nohz.cpu_mask);
4651 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4652 static inline int find_new_ilb(int call_cpu)
4654 return cpumask_first(nohz.cpu_mask);
4656 #endif
4659 * This routine will try to nominate the ilb (idle load balancing)
4660 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4661 * load balancing on behalf of all those cpus. If all the cpus in the system
4662 * go into this tickless mode, then there will be no ilb owner (as there is
4663 * no need for one) and all the cpus will sleep till the next wakeup event
4664 * arrives...
4666 * For the ilb owner, tick is not stopped. And this tick will be used
4667 * for idle load balancing. ilb owner will still be part of
4668 * nohz.cpu_mask..
4670 * While stopping the tick, this cpu will become the ilb owner if there
4671 * is no other owner. And will be the owner till that cpu becomes busy
4672 * or if all cpus in the system stop their ticks at which point
4673 * there is no need for ilb owner.
4675 * When the ilb owner becomes busy, it nominates another owner, during the
4676 * next busy scheduler_tick()
4678 int select_nohz_load_balancer(int stop_tick)
4680 int cpu = smp_processor_id();
4682 if (stop_tick) {
4683 cpu_rq(cpu)->in_nohz_recently = 1;
4685 if (!cpu_active(cpu)) {
4686 if (atomic_read(&nohz.load_balancer) != cpu)
4687 return 0;
4690 * If we are going offline and still the leader,
4691 * give up!
4693 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4694 BUG();
4696 return 0;
4699 cpumask_set_cpu(cpu, nohz.cpu_mask);
4701 /* time for ilb owner also to sleep */
4702 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4703 if (atomic_read(&nohz.load_balancer) == cpu)
4704 atomic_set(&nohz.load_balancer, -1);
4705 return 0;
4708 if (atomic_read(&nohz.load_balancer) == -1) {
4709 /* make me the ilb owner */
4710 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4711 return 1;
4712 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4713 int new_ilb;
4715 if (!(sched_smt_power_savings ||
4716 sched_mc_power_savings))
4717 return 1;
4719 * Check to see if there is a more power-efficient
4720 * ilb.
4722 new_ilb = find_new_ilb(cpu);
4723 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4724 atomic_set(&nohz.load_balancer, -1);
4725 resched_cpu(new_ilb);
4726 return 0;
4728 return 1;
4730 } else {
4731 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4732 return 0;
4734 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4736 if (atomic_read(&nohz.load_balancer) == cpu)
4737 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4738 BUG();
4740 return 0;
4742 #endif
4744 static DEFINE_SPINLOCK(balancing);
4747 * It checks each scheduling domain to see if it is due to be balanced,
4748 * and initiates a balancing operation if so.
4750 * Balancing parameters are set up in arch_init_sched_domains.
4752 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4754 int balance = 1;
4755 struct rq *rq = cpu_rq(cpu);
4756 unsigned long interval;
4757 struct sched_domain *sd;
4758 /* Earliest time when we have to do rebalance again */
4759 unsigned long next_balance = jiffies + 60*HZ;
4760 int update_next_balance = 0;
4761 int need_serialize;
4763 for_each_domain(cpu, sd) {
4764 if (!(sd->flags & SD_LOAD_BALANCE))
4765 continue;
4767 interval = sd->balance_interval;
4768 if (idle != CPU_IDLE)
4769 interval *= sd->busy_factor;
4771 /* scale ms to jiffies */
4772 interval = msecs_to_jiffies(interval);
4773 if (unlikely(!interval))
4774 interval = 1;
4775 if (interval > HZ*NR_CPUS/10)
4776 interval = HZ*NR_CPUS/10;
4778 need_serialize = sd->flags & SD_SERIALIZE;
4780 if (need_serialize) {
4781 if (!spin_trylock(&balancing))
4782 goto out;
4785 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4786 if (load_balance(cpu, rq, sd, idle, &balance)) {
4788 * We've pulled tasks over so either we're no
4789 * longer idle, or one of our SMT siblings is
4790 * not idle.
4792 idle = CPU_NOT_IDLE;
4794 sd->last_balance = jiffies;
4796 if (need_serialize)
4797 spin_unlock(&balancing);
4798 out:
4799 if (time_after(next_balance, sd->last_balance + interval)) {
4800 next_balance = sd->last_balance + interval;
4801 update_next_balance = 1;
4805 * Stop the load balance at this level. There is another
4806 * CPU in our sched group which is doing load balancing more
4807 * actively.
4809 if (!balance)
4810 break;
4814 * next_balance will be updated only when there is a need.
4815 * When the cpu is attached to null domain for ex, it will not be
4816 * updated.
4818 if (likely(update_next_balance))
4819 rq->next_balance = next_balance;
4823 * run_rebalance_domains is triggered when needed from the scheduler tick.
4824 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4825 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4827 static void run_rebalance_domains(struct softirq_action *h)
4829 int this_cpu = smp_processor_id();
4830 struct rq *this_rq = cpu_rq(this_cpu);
4831 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4832 CPU_IDLE : CPU_NOT_IDLE;
4834 rebalance_domains(this_cpu, idle);
4836 #ifdef CONFIG_NO_HZ
4838 * If this cpu is the owner for idle load balancing, then do the
4839 * balancing on behalf of the other idle cpus whose ticks are
4840 * stopped.
4842 if (this_rq->idle_at_tick &&
4843 atomic_read(&nohz.load_balancer) == this_cpu) {
4844 struct rq *rq;
4845 int balance_cpu;
4847 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4848 if (balance_cpu == this_cpu)
4849 continue;
4852 * If this cpu gets work to do, stop the load balancing
4853 * work being done for other cpus. Next load
4854 * balancing owner will pick it up.
4856 if (need_resched())
4857 break;
4859 rebalance_domains(balance_cpu, CPU_IDLE);
4861 rq = cpu_rq(balance_cpu);
4862 if (time_after(this_rq->next_balance, rq->next_balance))
4863 this_rq->next_balance = rq->next_balance;
4866 #endif
4869 static inline int on_null_domain(int cpu)
4871 return !rcu_dereference(cpu_rq(cpu)->sd);
4875 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4877 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4878 * idle load balancing owner or decide to stop the periodic load balancing,
4879 * if the whole system is idle.
4881 static inline void trigger_load_balance(struct rq *rq, int cpu)
4883 #ifdef CONFIG_NO_HZ
4885 * If we were in the nohz mode recently and busy at the current
4886 * scheduler tick, then check if we need to nominate new idle
4887 * load balancer.
4889 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4890 rq->in_nohz_recently = 0;
4892 if (atomic_read(&nohz.load_balancer) == cpu) {
4893 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4894 atomic_set(&nohz.load_balancer, -1);
4897 if (atomic_read(&nohz.load_balancer) == -1) {
4898 int ilb = find_new_ilb(cpu);
4900 if (ilb < nr_cpu_ids)
4901 resched_cpu(ilb);
4906 * If this cpu is idle and doing idle load balancing for all the
4907 * cpus with ticks stopped, is it time for that to stop?
4909 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4910 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4911 resched_cpu(cpu);
4912 return;
4916 * If this cpu is idle and the idle load balancing is done by
4917 * someone else, then no need raise the SCHED_SOFTIRQ
4919 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4920 cpumask_test_cpu(cpu, nohz.cpu_mask))
4921 return;
4922 #endif
4923 /* Don't need to rebalance while attached to NULL domain */
4924 if (time_after_eq(jiffies, rq->next_balance) &&
4925 likely(!on_null_domain(cpu)))
4926 raise_softirq(SCHED_SOFTIRQ);
4929 #else /* CONFIG_SMP */
4932 * on UP we do not need to balance between CPUs:
4934 static inline void idle_balance(int cpu, struct rq *rq)
4938 #endif
4940 DEFINE_PER_CPU(struct kernel_stat, kstat);
4942 EXPORT_PER_CPU_SYMBOL(kstat);
4945 * Return any ns on the sched_clock that have not yet been accounted in
4946 * @p in case that task is currently running.
4948 * Called with task_rq_lock() held on @rq.
4950 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4952 u64 ns = 0;
4954 if (task_current(rq, p)) {
4955 update_rq_clock(rq);
4956 ns = rq->clock - p->se.exec_start;
4957 if ((s64)ns < 0)
4958 ns = 0;
4961 return ns;
4964 unsigned long long task_delta_exec(struct task_struct *p)
4966 unsigned long flags;
4967 struct rq *rq;
4968 u64 ns = 0;
4970 rq = task_rq_lock(p, &flags);
4971 ns = do_task_delta_exec(p, rq);
4972 task_rq_unlock(rq, &flags);
4974 return ns;
4978 * Return accounted runtime for the task.
4979 * In case the task is currently running, return the runtime plus current's
4980 * pending runtime that have not been accounted yet.
4982 unsigned long long task_sched_runtime(struct task_struct *p)
4984 unsigned long flags;
4985 struct rq *rq;
4986 u64 ns = 0;
4988 rq = task_rq_lock(p, &flags);
4989 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4990 task_rq_unlock(rq, &flags);
4992 return ns;
4996 * Return sum_exec_runtime for the thread group.
4997 * In case the task is currently running, return the sum plus current's
4998 * pending runtime that have not been accounted yet.
5000 * Note that the thread group might have other running tasks as well,
5001 * so the return value not includes other pending runtime that other
5002 * running tasks might have.
5004 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5006 struct task_cputime totals;
5007 unsigned long flags;
5008 struct rq *rq;
5009 u64 ns;
5011 rq = task_rq_lock(p, &flags);
5012 thread_group_cputime(p, &totals);
5013 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5014 task_rq_unlock(rq, &flags);
5016 return ns;
5020 * Account user cpu time to a process.
5021 * @p: the process that the cpu time gets accounted to
5022 * @cputime: the cpu time spent in user space since the last update
5023 * @cputime_scaled: cputime scaled by cpu frequency
5025 void account_user_time(struct task_struct *p, cputime_t cputime,
5026 cputime_t cputime_scaled)
5028 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5029 cputime64_t tmp;
5031 /* Add user time to process. */
5032 p->utime = cputime_add(p->utime, cputime);
5033 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5034 account_group_user_time(p, cputime);
5036 /* Add user time to cpustat. */
5037 tmp = cputime_to_cputime64(cputime);
5038 if (TASK_NICE(p) > 0)
5039 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5040 else
5041 cpustat->user = cputime64_add(cpustat->user, tmp);
5043 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5044 /* Account for user time used */
5045 acct_update_integrals(p);
5049 * Account guest cpu time to a process.
5050 * @p: the process that the cpu time gets accounted to
5051 * @cputime: the cpu time spent in virtual machine since the last update
5052 * @cputime_scaled: cputime scaled by cpu frequency
5054 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5055 cputime_t cputime_scaled)
5057 cputime64_t tmp;
5058 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5060 tmp = cputime_to_cputime64(cputime);
5062 /* Add guest time to process. */
5063 p->utime = cputime_add(p->utime, cputime);
5064 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5065 account_group_user_time(p, cputime);
5066 p->gtime = cputime_add(p->gtime, cputime);
5068 /* Add guest time to cpustat. */
5069 cpustat->user = cputime64_add(cpustat->user, tmp);
5070 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5074 * Account system cpu time to a process.
5075 * @p: the process that the cpu time gets accounted to
5076 * @hardirq_offset: the offset to subtract from hardirq_count()
5077 * @cputime: the cpu time spent in kernel space since the last update
5078 * @cputime_scaled: cputime scaled by cpu frequency
5080 void account_system_time(struct task_struct *p, int hardirq_offset,
5081 cputime_t cputime, cputime_t cputime_scaled)
5083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5084 cputime64_t tmp;
5086 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5087 account_guest_time(p, cputime, cputime_scaled);
5088 return;
5091 /* Add system time to process. */
5092 p->stime = cputime_add(p->stime, cputime);
5093 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5094 account_group_system_time(p, cputime);
5096 /* Add system time to cpustat. */
5097 tmp = cputime_to_cputime64(cputime);
5098 if (hardirq_count() - hardirq_offset)
5099 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5100 else if (softirq_count())
5101 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5102 else
5103 cpustat->system = cputime64_add(cpustat->system, tmp);
5105 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5107 /* Account for system time used */
5108 acct_update_integrals(p);
5112 * Account for involuntary wait time.
5113 * @steal: the cpu time spent in involuntary wait
5115 void account_steal_time(cputime_t cputime)
5117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5118 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5120 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5124 * Account for idle time.
5125 * @cputime: the cpu time spent in idle wait
5127 void account_idle_time(cputime_t cputime)
5129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5130 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5131 struct rq *rq = this_rq();
5133 if (atomic_read(&rq->nr_iowait) > 0)
5134 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5135 else
5136 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5139 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5142 * Account a single tick of cpu time.
5143 * @p: the process that the cpu time gets accounted to
5144 * @user_tick: indicates if the tick is a user or a system tick
5146 void account_process_tick(struct task_struct *p, int user_tick)
5148 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5149 struct rq *rq = this_rq();
5151 if (user_tick)
5152 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5153 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5154 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5155 one_jiffy_scaled);
5156 else
5157 account_idle_time(cputime_one_jiffy);
5161 * Account multiple ticks of steal time.
5162 * @p: the process from which the cpu time has been stolen
5163 * @ticks: number of stolen ticks
5165 void account_steal_ticks(unsigned long ticks)
5167 account_steal_time(jiffies_to_cputime(ticks));
5171 * Account multiple ticks of idle time.
5172 * @ticks: number of stolen ticks
5174 void account_idle_ticks(unsigned long ticks)
5176 account_idle_time(jiffies_to_cputime(ticks));
5179 #endif
5182 * Use precise platform statistics if available:
5184 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5185 cputime_t task_utime(struct task_struct *p)
5187 return p->utime;
5190 cputime_t task_stime(struct task_struct *p)
5192 return p->stime;
5194 #else
5195 cputime_t task_utime(struct task_struct *p)
5197 clock_t utime = cputime_to_clock_t(p->utime),
5198 total = utime + cputime_to_clock_t(p->stime);
5199 u64 temp;
5202 * Use CFS's precise accounting:
5204 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5206 if (total) {
5207 temp *= utime;
5208 do_div(temp, total);
5210 utime = (clock_t)temp;
5212 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5213 return p->prev_utime;
5216 cputime_t task_stime(struct task_struct *p)
5218 clock_t stime;
5221 * Use CFS's precise accounting. (we subtract utime from
5222 * the total, to make sure the total observed by userspace
5223 * grows monotonically - apps rely on that):
5225 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5226 cputime_to_clock_t(task_utime(p));
5228 if (stime >= 0)
5229 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5231 return p->prev_stime;
5233 #endif
5235 inline cputime_t task_gtime(struct task_struct *p)
5237 return p->gtime;
5241 * This function gets called by the timer code, with HZ frequency.
5242 * We call it with interrupts disabled.
5244 * It also gets called by the fork code, when changing the parent's
5245 * timeslices.
5247 void scheduler_tick(void)
5249 int cpu = smp_processor_id();
5250 struct rq *rq = cpu_rq(cpu);
5251 struct task_struct *curr = rq->curr;
5253 sched_clock_tick();
5255 spin_lock(&rq->lock);
5256 update_rq_clock(rq);
5257 update_cpu_load(rq);
5258 curr->sched_class->task_tick(rq, curr, 0);
5259 spin_unlock(&rq->lock);
5261 perf_event_task_tick(curr, cpu);
5263 #ifdef CONFIG_SMP
5264 rq->idle_at_tick = idle_cpu(cpu);
5265 trigger_load_balance(rq, cpu);
5266 #endif
5269 notrace unsigned long get_parent_ip(unsigned long addr)
5271 if (in_lock_functions(addr)) {
5272 addr = CALLER_ADDR2;
5273 if (in_lock_functions(addr))
5274 addr = CALLER_ADDR3;
5276 return addr;
5279 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5280 defined(CONFIG_PREEMPT_TRACER))
5282 void __kprobes add_preempt_count(int val)
5284 #ifdef CONFIG_DEBUG_PREEMPT
5286 * Underflow?
5288 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5289 return;
5290 #endif
5291 preempt_count() += val;
5292 #ifdef CONFIG_DEBUG_PREEMPT
5294 * Spinlock count overflowing soon?
5296 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5297 PREEMPT_MASK - 10);
5298 #endif
5299 if (preempt_count() == val)
5300 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5302 EXPORT_SYMBOL(add_preempt_count);
5304 void __kprobes sub_preempt_count(int val)
5306 #ifdef CONFIG_DEBUG_PREEMPT
5308 * Underflow?
5310 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5311 return;
5313 * Is the spinlock portion underflowing?
5315 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5316 !(preempt_count() & PREEMPT_MASK)))
5317 return;
5318 #endif
5320 if (preempt_count() == val)
5321 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5322 preempt_count() -= val;
5324 EXPORT_SYMBOL(sub_preempt_count);
5326 #endif
5329 * Print scheduling while atomic bug:
5331 static noinline void __schedule_bug(struct task_struct *prev)
5333 struct pt_regs *regs = get_irq_regs();
5335 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5336 prev->comm, prev->pid, preempt_count());
5338 debug_show_held_locks(prev);
5339 print_modules();
5340 if (irqs_disabled())
5341 print_irqtrace_events(prev);
5343 if (regs)
5344 show_regs(regs);
5345 else
5346 dump_stack();
5350 * Various schedule()-time debugging checks and statistics:
5352 static inline void schedule_debug(struct task_struct *prev)
5355 * Test if we are atomic. Since do_exit() needs to call into
5356 * schedule() atomically, we ignore that path for now.
5357 * Otherwise, whine if we are scheduling when we should not be.
5359 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5360 __schedule_bug(prev);
5362 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5364 schedstat_inc(this_rq(), sched_count);
5365 #ifdef CONFIG_SCHEDSTATS
5366 if (unlikely(prev->lock_depth >= 0)) {
5367 schedstat_inc(this_rq(), bkl_count);
5368 schedstat_inc(prev, sched_info.bkl_count);
5370 #endif
5373 static void put_prev_task(struct rq *rq, struct task_struct *p)
5375 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5377 update_avg(&p->se.avg_running, runtime);
5379 if (p->state == TASK_RUNNING) {
5381 * In order to avoid avg_overlap growing stale when we are
5382 * indeed overlapping and hence not getting put to sleep, grow
5383 * the avg_overlap on preemption.
5385 * We use the average preemption runtime because that
5386 * correlates to the amount of cache footprint a task can
5387 * build up.
5389 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5390 update_avg(&p->se.avg_overlap, runtime);
5391 } else {
5392 update_avg(&p->se.avg_running, 0);
5394 p->sched_class->put_prev_task(rq, p);
5398 * Pick up the highest-prio task:
5400 static inline struct task_struct *
5401 pick_next_task(struct rq *rq)
5403 const struct sched_class *class;
5404 struct task_struct *p;
5407 * Optimization: we know that if all tasks are in
5408 * the fair class we can call that function directly:
5410 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5411 p = fair_sched_class.pick_next_task(rq);
5412 if (likely(p))
5413 return p;
5416 class = sched_class_highest;
5417 for ( ; ; ) {
5418 p = class->pick_next_task(rq);
5419 if (p)
5420 return p;
5422 * Will never be NULL as the idle class always
5423 * returns a non-NULL p:
5425 class = class->next;
5430 * schedule() is the main scheduler function.
5432 asmlinkage void __sched schedule(void)
5434 struct task_struct *prev, *next;
5435 unsigned long *switch_count;
5436 struct rq *rq;
5437 int cpu;
5439 need_resched:
5440 preempt_disable();
5441 cpu = smp_processor_id();
5442 rq = cpu_rq(cpu);
5443 rcu_sched_qs(cpu);
5444 prev = rq->curr;
5445 switch_count = &prev->nivcsw;
5447 release_kernel_lock(prev);
5448 need_resched_nonpreemptible:
5450 schedule_debug(prev);
5452 if (sched_feat(HRTICK))
5453 hrtick_clear(rq);
5455 spin_lock_irq(&rq->lock);
5456 update_rq_clock(rq);
5457 clear_tsk_need_resched(prev);
5459 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5460 if (unlikely(signal_pending_state(prev->state, prev)))
5461 prev->state = TASK_RUNNING;
5462 else
5463 deactivate_task(rq, prev, 1);
5464 switch_count = &prev->nvcsw;
5467 pre_schedule(rq, prev);
5469 if (unlikely(!rq->nr_running))
5470 idle_balance(cpu, rq);
5472 put_prev_task(rq, prev);
5473 next = pick_next_task(rq);
5475 if (likely(prev != next)) {
5476 sched_info_switch(prev, next);
5477 perf_event_task_sched_out(prev, next, cpu);
5479 rq->nr_switches++;
5480 rq->curr = next;
5481 ++*switch_count;
5483 context_switch(rq, prev, next); /* unlocks the rq */
5485 * the context switch might have flipped the stack from under
5486 * us, hence refresh the local variables.
5488 cpu = smp_processor_id();
5489 rq = cpu_rq(cpu);
5490 } else
5491 spin_unlock_irq(&rq->lock);
5493 post_schedule(rq);
5495 if (unlikely(reacquire_kernel_lock(current) < 0))
5496 goto need_resched_nonpreemptible;
5498 preempt_enable_no_resched();
5499 if (need_resched())
5500 goto need_resched;
5502 EXPORT_SYMBOL(schedule);
5504 #ifdef CONFIG_SMP
5506 * Look out! "owner" is an entirely speculative pointer
5507 * access and not reliable.
5509 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5511 unsigned int cpu;
5512 struct rq *rq;
5514 if (!sched_feat(OWNER_SPIN))
5515 return 0;
5517 #ifdef CONFIG_DEBUG_PAGEALLOC
5519 * Need to access the cpu field knowing that
5520 * DEBUG_PAGEALLOC could have unmapped it if
5521 * the mutex owner just released it and exited.
5523 if (probe_kernel_address(&owner->cpu, cpu))
5524 goto out;
5525 #else
5526 cpu = owner->cpu;
5527 #endif
5530 * Even if the access succeeded (likely case),
5531 * the cpu field may no longer be valid.
5533 if (cpu >= nr_cpumask_bits)
5534 goto out;
5537 * We need to validate that we can do a
5538 * get_cpu() and that we have the percpu area.
5540 if (!cpu_online(cpu))
5541 goto out;
5543 rq = cpu_rq(cpu);
5545 for (;;) {
5547 * Owner changed, break to re-assess state.
5549 if (lock->owner != owner)
5550 break;
5553 * Is that owner really running on that cpu?
5555 if (task_thread_info(rq->curr) != owner || need_resched())
5556 return 0;
5558 cpu_relax();
5560 out:
5561 return 1;
5563 #endif
5565 #ifdef CONFIG_PREEMPT
5567 * this is the entry point to schedule() from in-kernel preemption
5568 * off of preempt_enable. Kernel preemptions off return from interrupt
5569 * occur there and call schedule directly.
5571 asmlinkage void __sched preempt_schedule(void)
5573 struct thread_info *ti = current_thread_info();
5576 * If there is a non-zero preempt_count or interrupts are disabled,
5577 * we do not want to preempt the current task. Just return..
5579 if (likely(ti->preempt_count || irqs_disabled()))
5580 return;
5582 do {
5583 add_preempt_count(PREEMPT_ACTIVE);
5584 schedule();
5585 sub_preempt_count(PREEMPT_ACTIVE);
5588 * Check again in case we missed a preemption opportunity
5589 * between schedule and now.
5591 barrier();
5592 } while (need_resched());
5594 EXPORT_SYMBOL(preempt_schedule);
5597 * this is the entry point to schedule() from kernel preemption
5598 * off of irq context.
5599 * Note, that this is called and return with irqs disabled. This will
5600 * protect us against recursive calling from irq.
5602 asmlinkage void __sched preempt_schedule_irq(void)
5604 struct thread_info *ti = current_thread_info();
5606 /* Catch callers which need to be fixed */
5607 BUG_ON(ti->preempt_count || !irqs_disabled());
5609 do {
5610 add_preempt_count(PREEMPT_ACTIVE);
5611 local_irq_enable();
5612 schedule();
5613 local_irq_disable();
5614 sub_preempt_count(PREEMPT_ACTIVE);
5617 * Check again in case we missed a preemption opportunity
5618 * between schedule and now.
5620 barrier();
5621 } while (need_resched());
5624 #endif /* CONFIG_PREEMPT */
5626 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5627 void *key)
5629 return try_to_wake_up(curr->private, mode, wake_flags);
5631 EXPORT_SYMBOL(default_wake_function);
5634 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5635 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5636 * number) then we wake all the non-exclusive tasks and one exclusive task.
5638 * There are circumstances in which we can try to wake a task which has already
5639 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5640 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5642 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5643 int nr_exclusive, int wake_flags, void *key)
5645 wait_queue_t *curr, *next;
5647 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5648 unsigned flags = curr->flags;
5650 if (curr->func(curr, mode, wake_flags, key) &&
5651 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5652 break;
5657 * __wake_up - wake up threads blocked on a waitqueue.
5658 * @q: the waitqueue
5659 * @mode: which threads
5660 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5661 * @key: is directly passed to the wakeup function
5663 * It may be assumed that this function implies a write memory barrier before
5664 * changing the task state if and only if any tasks are woken up.
5666 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5667 int nr_exclusive, void *key)
5669 unsigned long flags;
5671 spin_lock_irqsave(&q->lock, flags);
5672 __wake_up_common(q, mode, nr_exclusive, 0, key);
5673 spin_unlock_irqrestore(&q->lock, flags);
5675 EXPORT_SYMBOL(__wake_up);
5678 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5680 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5682 __wake_up_common(q, mode, 1, 0, NULL);
5685 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5687 __wake_up_common(q, mode, 1, 0, key);
5691 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5692 * @q: the waitqueue
5693 * @mode: which threads
5694 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5695 * @key: opaque value to be passed to wakeup targets
5697 * The sync wakeup differs that the waker knows that it will schedule
5698 * away soon, so while the target thread will be woken up, it will not
5699 * be migrated to another CPU - ie. the two threads are 'synchronized'
5700 * with each other. This can prevent needless bouncing between CPUs.
5702 * On UP it can prevent extra preemption.
5704 * It may be assumed that this function implies a write memory barrier before
5705 * changing the task state if and only if any tasks are woken up.
5707 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5708 int nr_exclusive, void *key)
5710 unsigned long flags;
5711 int wake_flags = WF_SYNC;
5713 if (unlikely(!q))
5714 return;
5716 if (unlikely(!nr_exclusive))
5717 wake_flags = 0;
5719 spin_lock_irqsave(&q->lock, flags);
5720 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5721 spin_unlock_irqrestore(&q->lock, flags);
5723 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5726 * __wake_up_sync - see __wake_up_sync_key()
5728 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5730 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5732 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5735 * complete: - signals a single thread waiting on this completion
5736 * @x: holds the state of this particular completion
5738 * This will wake up a single thread waiting on this completion. Threads will be
5739 * awakened in the same order in which they were queued.
5741 * See also complete_all(), wait_for_completion() and related routines.
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
5746 void complete(struct completion *x)
5748 unsigned long flags;
5750 spin_lock_irqsave(&x->wait.lock, flags);
5751 x->done++;
5752 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5753 spin_unlock_irqrestore(&x->wait.lock, flags);
5755 EXPORT_SYMBOL(complete);
5758 * complete_all: - signals all threads waiting on this completion
5759 * @x: holds the state of this particular completion
5761 * This will wake up all threads waiting on this particular completion event.
5763 * It may be assumed that this function implies a write memory barrier before
5764 * changing the task state if and only if any tasks are woken up.
5766 void complete_all(struct completion *x)
5768 unsigned long flags;
5770 spin_lock_irqsave(&x->wait.lock, flags);
5771 x->done += UINT_MAX/2;
5772 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5773 spin_unlock_irqrestore(&x->wait.lock, flags);
5775 EXPORT_SYMBOL(complete_all);
5777 static inline long __sched
5778 do_wait_for_common(struct completion *x, long timeout, int state)
5780 if (!x->done) {
5781 DECLARE_WAITQUEUE(wait, current);
5783 wait.flags |= WQ_FLAG_EXCLUSIVE;
5784 __add_wait_queue_tail(&x->wait, &wait);
5785 do {
5786 if (signal_pending_state(state, current)) {
5787 timeout = -ERESTARTSYS;
5788 break;
5790 __set_current_state(state);
5791 spin_unlock_irq(&x->wait.lock);
5792 timeout = schedule_timeout(timeout);
5793 spin_lock_irq(&x->wait.lock);
5794 } while (!x->done && timeout);
5795 __remove_wait_queue(&x->wait, &wait);
5796 if (!x->done)
5797 return timeout;
5799 x->done--;
5800 return timeout ?: 1;
5803 static long __sched
5804 wait_for_common(struct completion *x, long timeout, int state)
5806 might_sleep();
5808 spin_lock_irq(&x->wait.lock);
5809 timeout = do_wait_for_common(x, timeout, state);
5810 spin_unlock_irq(&x->wait.lock);
5811 return timeout;
5815 * wait_for_completion: - waits for completion of a task
5816 * @x: holds the state of this particular completion
5818 * This waits to be signaled for completion of a specific task. It is NOT
5819 * interruptible and there is no timeout.
5821 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5822 * and interrupt capability. Also see complete().
5824 void __sched wait_for_completion(struct completion *x)
5826 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5828 EXPORT_SYMBOL(wait_for_completion);
5831 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5832 * @x: holds the state of this particular completion
5833 * @timeout: timeout value in jiffies
5835 * This waits for either a completion of a specific task to be signaled or for a
5836 * specified timeout to expire. The timeout is in jiffies. It is not
5837 * interruptible.
5839 unsigned long __sched
5840 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5842 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5844 EXPORT_SYMBOL(wait_for_completion_timeout);
5847 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5848 * @x: holds the state of this particular completion
5850 * This waits for completion of a specific task to be signaled. It is
5851 * interruptible.
5853 int __sched wait_for_completion_interruptible(struct completion *x)
5855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5856 if (t == -ERESTARTSYS)
5857 return t;
5858 return 0;
5860 EXPORT_SYMBOL(wait_for_completion_interruptible);
5863 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5864 * @x: holds the state of this particular completion
5865 * @timeout: timeout value in jiffies
5867 * This waits for either a completion of a specific task to be signaled or for a
5868 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5870 unsigned long __sched
5871 wait_for_completion_interruptible_timeout(struct completion *x,
5872 unsigned long timeout)
5874 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5876 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5879 * wait_for_completion_killable: - waits for completion of a task (killable)
5880 * @x: holds the state of this particular completion
5882 * This waits to be signaled for completion of a specific task. It can be
5883 * interrupted by a kill signal.
5885 int __sched wait_for_completion_killable(struct completion *x)
5887 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5888 if (t == -ERESTARTSYS)
5889 return t;
5890 return 0;
5892 EXPORT_SYMBOL(wait_for_completion_killable);
5895 * try_wait_for_completion - try to decrement a completion without blocking
5896 * @x: completion structure
5898 * Returns: 0 if a decrement cannot be done without blocking
5899 * 1 if a decrement succeeded.
5901 * If a completion is being used as a counting completion,
5902 * attempt to decrement the counter without blocking. This
5903 * enables us to avoid waiting if the resource the completion
5904 * is protecting is not available.
5906 bool try_wait_for_completion(struct completion *x)
5908 int ret = 1;
5910 spin_lock_irq(&x->wait.lock);
5911 if (!x->done)
5912 ret = 0;
5913 else
5914 x->done--;
5915 spin_unlock_irq(&x->wait.lock);
5916 return ret;
5918 EXPORT_SYMBOL(try_wait_for_completion);
5921 * completion_done - Test to see if a completion has any waiters
5922 * @x: completion structure
5924 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5925 * 1 if there are no waiters.
5928 bool completion_done(struct completion *x)
5930 int ret = 1;
5932 spin_lock_irq(&x->wait.lock);
5933 if (!x->done)
5934 ret = 0;
5935 spin_unlock_irq(&x->wait.lock);
5936 return ret;
5938 EXPORT_SYMBOL(completion_done);
5940 static long __sched
5941 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5943 unsigned long flags;
5944 wait_queue_t wait;
5946 init_waitqueue_entry(&wait, current);
5948 __set_current_state(state);
5950 spin_lock_irqsave(&q->lock, flags);
5951 __add_wait_queue(q, &wait);
5952 spin_unlock(&q->lock);
5953 timeout = schedule_timeout(timeout);
5954 spin_lock_irq(&q->lock);
5955 __remove_wait_queue(q, &wait);
5956 spin_unlock_irqrestore(&q->lock, flags);
5958 return timeout;
5961 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5963 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5965 EXPORT_SYMBOL(interruptible_sleep_on);
5967 long __sched
5968 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5970 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5972 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5974 void __sched sleep_on(wait_queue_head_t *q)
5976 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5978 EXPORT_SYMBOL(sleep_on);
5980 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5982 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5984 EXPORT_SYMBOL(sleep_on_timeout);
5986 #ifdef CONFIG_RT_MUTEXES
5989 * rt_mutex_setprio - set the current priority of a task
5990 * @p: task
5991 * @prio: prio value (kernel-internal form)
5993 * This function changes the 'effective' priority of a task. It does
5994 * not touch ->normal_prio like __setscheduler().
5996 * Used by the rt_mutex code to implement priority inheritance logic.
5998 void rt_mutex_setprio(struct task_struct *p, int prio)
6000 unsigned long flags;
6001 int oldprio, on_rq, running;
6002 struct rq *rq;
6003 const struct sched_class *prev_class = p->sched_class;
6005 BUG_ON(prio < 0 || prio > MAX_PRIO);
6007 rq = task_rq_lock(p, &flags);
6008 update_rq_clock(rq);
6010 oldprio = p->prio;
6011 on_rq = p->se.on_rq;
6012 running = task_current(rq, p);
6013 if (on_rq)
6014 dequeue_task(rq, p, 0);
6015 if (running)
6016 p->sched_class->put_prev_task(rq, p);
6018 if (rt_prio(prio))
6019 p->sched_class = &rt_sched_class;
6020 else
6021 p->sched_class = &fair_sched_class;
6023 p->prio = prio;
6025 if (running)
6026 p->sched_class->set_curr_task(rq);
6027 if (on_rq) {
6028 enqueue_task(rq, p, 0);
6030 check_class_changed(rq, p, prev_class, oldprio, running);
6032 task_rq_unlock(rq, &flags);
6035 #endif
6037 void set_user_nice(struct task_struct *p, long nice)
6039 int old_prio, delta, on_rq;
6040 unsigned long flags;
6041 struct rq *rq;
6043 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6044 return;
6046 * We have to be careful, if called from sys_setpriority(),
6047 * the task might be in the middle of scheduling on another CPU.
6049 rq = task_rq_lock(p, &flags);
6050 update_rq_clock(rq);
6052 * The RT priorities are set via sched_setscheduler(), but we still
6053 * allow the 'normal' nice value to be set - but as expected
6054 * it wont have any effect on scheduling until the task is
6055 * SCHED_FIFO/SCHED_RR:
6057 if (task_has_rt_policy(p)) {
6058 p->static_prio = NICE_TO_PRIO(nice);
6059 goto out_unlock;
6061 on_rq = p->se.on_rq;
6062 if (on_rq)
6063 dequeue_task(rq, p, 0);
6065 p->static_prio = NICE_TO_PRIO(nice);
6066 set_load_weight(p);
6067 old_prio = p->prio;
6068 p->prio = effective_prio(p);
6069 delta = p->prio - old_prio;
6071 if (on_rq) {
6072 enqueue_task(rq, p, 0);
6074 * If the task increased its priority or is running and
6075 * lowered its priority, then reschedule its CPU:
6077 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6078 resched_task(rq->curr);
6080 out_unlock:
6081 task_rq_unlock(rq, &flags);
6083 EXPORT_SYMBOL(set_user_nice);
6086 * can_nice - check if a task can reduce its nice value
6087 * @p: task
6088 * @nice: nice value
6090 int can_nice(const struct task_struct *p, const int nice)
6092 /* convert nice value [19,-20] to rlimit style value [1,40] */
6093 int nice_rlim = 20 - nice;
6095 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6096 capable(CAP_SYS_NICE));
6099 #ifdef __ARCH_WANT_SYS_NICE
6102 * sys_nice - change the priority of the current process.
6103 * @increment: priority increment
6105 * sys_setpriority is a more generic, but much slower function that
6106 * does similar things.
6108 SYSCALL_DEFINE1(nice, int, increment)
6110 long nice, retval;
6113 * Setpriority might change our priority at the same moment.
6114 * We don't have to worry. Conceptually one call occurs first
6115 * and we have a single winner.
6117 if (increment < -40)
6118 increment = -40;
6119 if (increment > 40)
6120 increment = 40;
6122 nice = TASK_NICE(current) + increment;
6123 if (nice < -20)
6124 nice = -20;
6125 if (nice > 19)
6126 nice = 19;
6128 if (increment < 0 && !can_nice(current, nice))
6129 return -EPERM;
6131 retval = security_task_setnice(current, nice);
6132 if (retval)
6133 return retval;
6135 set_user_nice(current, nice);
6136 return 0;
6139 #endif
6142 * task_prio - return the priority value of a given task.
6143 * @p: the task in question.
6145 * This is the priority value as seen by users in /proc.
6146 * RT tasks are offset by -200. Normal tasks are centered
6147 * around 0, value goes from -16 to +15.
6149 int task_prio(const struct task_struct *p)
6151 return p->prio - MAX_RT_PRIO;
6155 * task_nice - return the nice value of a given task.
6156 * @p: the task in question.
6158 int task_nice(const struct task_struct *p)
6160 return TASK_NICE(p);
6162 EXPORT_SYMBOL(task_nice);
6165 * idle_cpu - is a given cpu idle currently?
6166 * @cpu: the processor in question.
6168 int idle_cpu(int cpu)
6170 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6174 * idle_task - return the idle task for a given cpu.
6175 * @cpu: the processor in question.
6177 struct task_struct *idle_task(int cpu)
6179 return cpu_rq(cpu)->idle;
6183 * find_process_by_pid - find a process with a matching PID value.
6184 * @pid: the pid in question.
6186 static struct task_struct *find_process_by_pid(pid_t pid)
6188 return pid ? find_task_by_vpid(pid) : current;
6191 /* Actually do priority change: must hold rq lock. */
6192 static void
6193 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6195 BUG_ON(p->se.on_rq);
6197 p->policy = policy;
6198 switch (p->policy) {
6199 case SCHED_NORMAL:
6200 case SCHED_BATCH:
6201 case SCHED_IDLE:
6202 p->sched_class = &fair_sched_class;
6203 break;
6204 case SCHED_FIFO:
6205 case SCHED_RR:
6206 p->sched_class = &rt_sched_class;
6207 break;
6210 p->rt_priority = prio;
6211 p->normal_prio = normal_prio(p);
6212 /* we are holding p->pi_lock already */
6213 p->prio = rt_mutex_getprio(p);
6214 set_load_weight(p);
6218 * check the target process has a UID that matches the current process's
6220 static bool check_same_owner(struct task_struct *p)
6222 const struct cred *cred = current_cred(), *pcred;
6223 bool match;
6225 rcu_read_lock();
6226 pcred = __task_cred(p);
6227 match = (cred->euid == pcred->euid ||
6228 cred->euid == pcred->uid);
6229 rcu_read_unlock();
6230 return match;
6233 static int __sched_setscheduler(struct task_struct *p, int policy,
6234 struct sched_param *param, bool user)
6236 int retval, oldprio, oldpolicy = -1, on_rq, running;
6237 unsigned long flags;
6238 const struct sched_class *prev_class = p->sched_class;
6239 struct rq *rq;
6240 int reset_on_fork;
6242 /* may grab non-irq protected spin_locks */
6243 BUG_ON(in_interrupt());
6244 recheck:
6245 /* double check policy once rq lock held */
6246 if (policy < 0) {
6247 reset_on_fork = p->sched_reset_on_fork;
6248 policy = oldpolicy = p->policy;
6249 } else {
6250 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6251 policy &= ~SCHED_RESET_ON_FORK;
6253 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6254 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6255 policy != SCHED_IDLE)
6256 return -EINVAL;
6260 * Valid priorities for SCHED_FIFO and SCHED_RR are
6261 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6262 * SCHED_BATCH and SCHED_IDLE is 0.
6264 if (param->sched_priority < 0 ||
6265 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6266 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6267 return -EINVAL;
6268 if (rt_policy(policy) != (param->sched_priority != 0))
6269 return -EINVAL;
6272 * Allow unprivileged RT tasks to decrease priority:
6274 if (user && !capable(CAP_SYS_NICE)) {
6275 if (rt_policy(policy)) {
6276 unsigned long rlim_rtprio;
6278 if (!lock_task_sighand(p, &flags))
6279 return -ESRCH;
6280 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6281 unlock_task_sighand(p, &flags);
6283 /* can't set/change the rt policy */
6284 if (policy != p->policy && !rlim_rtprio)
6285 return -EPERM;
6287 /* can't increase priority */
6288 if (param->sched_priority > p->rt_priority &&
6289 param->sched_priority > rlim_rtprio)
6290 return -EPERM;
6293 * Like positive nice levels, dont allow tasks to
6294 * move out of SCHED_IDLE either:
6296 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6297 return -EPERM;
6299 /* can't change other user's priorities */
6300 if (!check_same_owner(p))
6301 return -EPERM;
6303 /* Normal users shall not reset the sched_reset_on_fork flag */
6304 if (p->sched_reset_on_fork && !reset_on_fork)
6305 return -EPERM;
6308 if (user) {
6309 #ifdef CONFIG_RT_GROUP_SCHED
6311 * Do not allow realtime tasks into groups that have no runtime
6312 * assigned.
6314 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6315 task_group(p)->rt_bandwidth.rt_runtime == 0)
6316 return -EPERM;
6317 #endif
6319 retval = security_task_setscheduler(p, policy, param);
6320 if (retval)
6321 return retval;
6325 * make sure no PI-waiters arrive (or leave) while we are
6326 * changing the priority of the task:
6328 spin_lock_irqsave(&p->pi_lock, flags);
6330 * To be able to change p->policy safely, the apropriate
6331 * runqueue lock must be held.
6333 rq = __task_rq_lock(p);
6334 /* recheck policy now with rq lock held */
6335 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6336 policy = oldpolicy = -1;
6337 __task_rq_unlock(rq);
6338 spin_unlock_irqrestore(&p->pi_lock, flags);
6339 goto recheck;
6341 update_rq_clock(rq);
6342 on_rq = p->se.on_rq;
6343 running = task_current(rq, p);
6344 if (on_rq)
6345 deactivate_task(rq, p, 0);
6346 if (running)
6347 p->sched_class->put_prev_task(rq, p);
6349 p->sched_reset_on_fork = reset_on_fork;
6351 oldprio = p->prio;
6352 __setscheduler(rq, p, policy, param->sched_priority);
6354 if (running)
6355 p->sched_class->set_curr_task(rq);
6356 if (on_rq) {
6357 activate_task(rq, p, 0);
6359 check_class_changed(rq, p, prev_class, oldprio, running);
6361 __task_rq_unlock(rq);
6362 spin_unlock_irqrestore(&p->pi_lock, flags);
6364 rt_mutex_adjust_pi(p);
6366 return 0;
6370 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6371 * @p: the task in question.
6372 * @policy: new policy.
6373 * @param: structure containing the new RT priority.
6375 * NOTE that the task may be already dead.
6377 int sched_setscheduler(struct task_struct *p, int policy,
6378 struct sched_param *param)
6380 return __sched_setscheduler(p, policy, param, true);
6382 EXPORT_SYMBOL_GPL(sched_setscheduler);
6385 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6386 * @p: the task in question.
6387 * @policy: new policy.
6388 * @param: structure containing the new RT priority.
6390 * Just like sched_setscheduler, only don't bother checking if the
6391 * current context has permission. For example, this is needed in
6392 * stop_machine(): we create temporary high priority worker threads,
6393 * but our caller might not have that capability.
6395 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6396 struct sched_param *param)
6398 return __sched_setscheduler(p, policy, param, false);
6401 static int
6402 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6404 struct sched_param lparam;
6405 struct task_struct *p;
6406 int retval;
6408 if (!param || pid < 0)
6409 return -EINVAL;
6410 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6411 return -EFAULT;
6413 rcu_read_lock();
6414 retval = -ESRCH;
6415 p = find_process_by_pid(pid);
6416 if (p != NULL)
6417 retval = sched_setscheduler(p, policy, &lparam);
6418 rcu_read_unlock();
6420 return retval;
6424 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6425 * @pid: the pid in question.
6426 * @policy: new policy.
6427 * @param: structure containing the new RT priority.
6429 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6430 struct sched_param __user *, param)
6432 /* negative values for policy are not valid */
6433 if (policy < 0)
6434 return -EINVAL;
6436 return do_sched_setscheduler(pid, policy, param);
6440 * sys_sched_setparam - set/change the RT priority of a thread
6441 * @pid: the pid in question.
6442 * @param: structure containing the new RT priority.
6444 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6446 return do_sched_setscheduler(pid, -1, param);
6450 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6451 * @pid: the pid in question.
6453 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6455 struct task_struct *p;
6456 int retval;
6458 if (pid < 0)
6459 return -EINVAL;
6461 retval = -ESRCH;
6462 read_lock(&tasklist_lock);
6463 p = find_process_by_pid(pid);
6464 if (p) {
6465 retval = security_task_getscheduler(p);
6466 if (!retval)
6467 retval = p->policy
6468 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6470 read_unlock(&tasklist_lock);
6471 return retval;
6475 * sys_sched_getparam - get the RT priority of a thread
6476 * @pid: the pid in question.
6477 * @param: structure containing the RT priority.
6479 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6481 struct sched_param lp;
6482 struct task_struct *p;
6483 int retval;
6485 if (!param || pid < 0)
6486 return -EINVAL;
6488 read_lock(&tasklist_lock);
6489 p = find_process_by_pid(pid);
6490 retval = -ESRCH;
6491 if (!p)
6492 goto out_unlock;
6494 retval = security_task_getscheduler(p);
6495 if (retval)
6496 goto out_unlock;
6498 lp.sched_priority = p->rt_priority;
6499 read_unlock(&tasklist_lock);
6502 * This one might sleep, we cannot do it with a spinlock held ...
6504 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6506 return retval;
6508 out_unlock:
6509 read_unlock(&tasklist_lock);
6510 return retval;
6513 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6515 cpumask_var_t cpus_allowed, new_mask;
6516 struct task_struct *p;
6517 int retval;
6519 get_online_cpus();
6520 read_lock(&tasklist_lock);
6522 p = find_process_by_pid(pid);
6523 if (!p) {
6524 read_unlock(&tasklist_lock);
6525 put_online_cpus();
6526 return -ESRCH;
6530 * It is not safe to call set_cpus_allowed with the
6531 * tasklist_lock held. We will bump the task_struct's
6532 * usage count and then drop tasklist_lock.
6534 get_task_struct(p);
6535 read_unlock(&tasklist_lock);
6537 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6538 retval = -ENOMEM;
6539 goto out_put_task;
6541 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6542 retval = -ENOMEM;
6543 goto out_free_cpus_allowed;
6545 retval = -EPERM;
6546 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6547 goto out_unlock;
6549 retval = security_task_setscheduler(p, 0, NULL);
6550 if (retval)
6551 goto out_unlock;
6553 cpuset_cpus_allowed(p, cpus_allowed);
6554 cpumask_and(new_mask, in_mask, cpus_allowed);
6555 again:
6556 retval = set_cpus_allowed_ptr(p, new_mask);
6558 if (!retval) {
6559 cpuset_cpus_allowed(p, cpus_allowed);
6560 if (!cpumask_subset(new_mask, cpus_allowed)) {
6562 * We must have raced with a concurrent cpuset
6563 * update. Just reset the cpus_allowed to the
6564 * cpuset's cpus_allowed
6566 cpumask_copy(new_mask, cpus_allowed);
6567 goto again;
6570 out_unlock:
6571 free_cpumask_var(new_mask);
6572 out_free_cpus_allowed:
6573 free_cpumask_var(cpus_allowed);
6574 out_put_task:
6575 put_task_struct(p);
6576 put_online_cpus();
6577 return retval;
6580 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6581 struct cpumask *new_mask)
6583 if (len < cpumask_size())
6584 cpumask_clear(new_mask);
6585 else if (len > cpumask_size())
6586 len = cpumask_size();
6588 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6592 * sys_sched_setaffinity - set the cpu affinity of a process
6593 * @pid: pid of the process
6594 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6595 * @user_mask_ptr: user-space pointer to the new cpu mask
6597 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6598 unsigned long __user *, user_mask_ptr)
6600 cpumask_var_t new_mask;
6601 int retval;
6603 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6604 return -ENOMEM;
6606 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6607 if (retval == 0)
6608 retval = sched_setaffinity(pid, new_mask);
6609 free_cpumask_var(new_mask);
6610 return retval;
6613 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6615 struct task_struct *p;
6616 int retval;
6618 get_online_cpus();
6619 read_lock(&tasklist_lock);
6621 retval = -ESRCH;
6622 p = find_process_by_pid(pid);
6623 if (!p)
6624 goto out_unlock;
6626 retval = security_task_getscheduler(p);
6627 if (retval)
6628 goto out_unlock;
6630 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6632 out_unlock:
6633 read_unlock(&tasklist_lock);
6634 put_online_cpus();
6636 return retval;
6640 * sys_sched_getaffinity - get the cpu affinity of a process
6641 * @pid: pid of the process
6642 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6643 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6645 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6646 unsigned long __user *, user_mask_ptr)
6648 int ret;
6649 cpumask_var_t mask;
6651 if (len < cpumask_size())
6652 return -EINVAL;
6654 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6655 return -ENOMEM;
6657 ret = sched_getaffinity(pid, mask);
6658 if (ret == 0) {
6659 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6660 ret = -EFAULT;
6661 else
6662 ret = cpumask_size();
6664 free_cpumask_var(mask);
6666 return ret;
6670 * sys_sched_yield - yield the current processor to other threads.
6672 * This function yields the current CPU to other tasks. If there are no
6673 * other threads running on this CPU then this function will return.
6675 SYSCALL_DEFINE0(sched_yield)
6677 struct rq *rq = this_rq_lock();
6679 schedstat_inc(rq, yld_count);
6680 current->sched_class->yield_task(rq);
6683 * Since we are going to call schedule() anyway, there's
6684 * no need to preempt or enable interrupts:
6686 __release(rq->lock);
6687 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6688 _raw_spin_unlock(&rq->lock);
6689 preempt_enable_no_resched();
6691 schedule();
6693 return 0;
6696 static inline int should_resched(void)
6698 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6701 static void __cond_resched(void)
6703 add_preempt_count(PREEMPT_ACTIVE);
6704 schedule();
6705 sub_preempt_count(PREEMPT_ACTIVE);
6708 int __sched _cond_resched(void)
6710 if (should_resched()) {
6711 __cond_resched();
6712 return 1;
6714 return 0;
6716 EXPORT_SYMBOL(_cond_resched);
6719 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6720 * call schedule, and on return reacquire the lock.
6722 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6723 * operations here to prevent schedule() from being called twice (once via
6724 * spin_unlock(), once by hand).
6726 int __cond_resched_lock(spinlock_t *lock)
6728 int resched = should_resched();
6729 int ret = 0;
6731 lockdep_assert_held(lock);
6733 if (spin_needbreak(lock) || resched) {
6734 spin_unlock(lock);
6735 if (resched)
6736 __cond_resched();
6737 else
6738 cpu_relax();
6739 ret = 1;
6740 spin_lock(lock);
6742 return ret;
6744 EXPORT_SYMBOL(__cond_resched_lock);
6746 int __sched __cond_resched_softirq(void)
6748 BUG_ON(!in_softirq());
6750 if (should_resched()) {
6751 local_bh_enable();
6752 __cond_resched();
6753 local_bh_disable();
6754 return 1;
6756 return 0;
6758 EXPORT_SYMBOL(__cond_resched_softirq);
6761 * yield - yield the current processor to other threads.
6763 * This is a shortcut for kernel-space yielding - it marks the
6764 * thread runnable and calls sys_sched_yield().
6766 void __sched yield(void)
6768 set_current_state(TASK_RUNNING);
6769 sys_sched_yield();
6771 EXPORT_SYMBOL(yield);
6774 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6775 * that process accounting knows that this is a task in IO wait state.
6777 void __sched io_schedule(void)
6779 struct rq *rq = raw_rq();
6781 delayacct_blkio_start();
6782 atomic_inc(&rq->nr_iowait);
6783 current->in_iowait = 1;
6784 schedule();
6785 current->in_iowait = 0;
6786 atomic_dec(&rq->nr_iowait);
6787 delayacct_blkio_end();
6789 EXPORT_SYMBOL(io_schedule);
6791 long __sched io_schedule_timeout(long timeout)
6793 struct rq *rq = raw_rq();
6794 long ret;
6796 delayacct_blkio_start();
6797 atomic_inc(&rq->nr_iowait);
6798 current->in_iowait = 1;
6799 ret = schedule_timeout(timeout);
6800 current->in_iowait = 0;
6801 atomic_dec(&rq->nr_iowait);
6802 delayacct_blkio_end();
6803 return ret;
6807 * sys_sched_get_priority_max - return maximum RT priority.
6808 * @policy: scheduling class.
6810 * this syscall returns the maximum rt_priority that can be used
6811 * by a given scheduling class.
6813 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6815 int ret = -EINVAL;
6817 switch (policy) {
6818 case SCHED_FIFO:
6819 case SCHED_RR:
6820 ret = MAX_USER_RT_PRIO-1;
6821 break;
6822 case SCHED_NORMAL:
6823 case SCHED_BATCH:
6824 case SCHED_IDLE:
6825 ret = 0;
6826 break;
6828 return ret;
6832 * sys_sched_get_priority_min - return minimum RT priority.
6833 * @policy: scheduling class.
6835 * this syscall returns the minimum rt_priority that can be used
6836 * by a given scheduling class.
6838 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6840 int ret = -EINVAL;
6842 switch (policy) {
6843 case SCHED_FIFO:
6844 case SCHED_RR:
6845 ret = 1;
6846 break;
6847 case SCHED_NORMAL:
6848 case SCHED_BATCH:
6849 case SCHED_IDLE:
6850 ret = 0;
6852 return ret;
6856 * sys_sched_rr_get_interval - return the default timeslice of a process.
6857 * @pid: pid of the process.
6858 * @interval: userspace pointer to the timeslice value.
6860 * this syscall writes the default timeslice value of a given process
6861 * into the user-space timespec buffer. A value of '0' means infinity.
6863 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6864 struct timespec __user *, interval)
6866 struct task_struct *p;
6867 unsigned int time_slice;
6868 int retval;
6869 struct timespec t;
6871 if (pid < 0)
6872 return -EINVAL;
6874 retval = -ESRCH;
6875 read_lock(&tasklist_lock);
6876 p = find_process_by_pid(pid);
6877 if (!p)
6878 goto out_unlock;
6880 retval = security_task_getscheduler(p);
6881 if (retval)
6882 goto out_unlock;
6884 time_slice = p->sched_class->get_rr_interval(p);
6886 read_unlock(&tasklist_lock);
6887 jiffies_to_timespec(time_slice, &t);
6888 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6889 return retval;
6891 out_unlock:
6892 read_unlock(&tasklist_lock);
6893 return retval;
6896 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6898 void sched_show_task(struct task_struct *p)
6900 unsigned long free = 0;
6901 unsigned state;
6903 state = p->state ? __ffs(p->state) + 1 : 0;
6904 printk(KERN_INFO "%-13.13s %c", p->comm,
6905 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6906 #if BITS_PER_LONG == 32
6907 if (state == TASK_RUNNING)
6908 printk(KERN_CONT " running ");
6909 else
6910 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6911 #else
6912 if (state == TASK_RUNNING)
6913 printk(KERN_CONT " running task ");
6914 else
6915 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6916 #endif
6917 #ifdef CONFIG_DEBUG_STACK_USAGE
6918 free = stack_not_used(p);
6919 #endif
6920 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6921 task_pid_nr(p), task_pid_nr(p->real_parent),
6922 (unsigned long)task_thread_info(p)->flags);
6924 show_stack(p, NULL);
6927 void show_state_filter(unsigned long state_filter)
6929 struct task_struct *g, *p;
6931 #if BITS_PER_LONG == 32
6932 printk(KERN_INFO
6933 " task PC stack pid father\n");
6934 #else
6935 printk(KERN_INFO
6936 " task PC stack pid father\n");
6937 #endif
6938 read_lock(&tasklist_lock);
6939 do_each_thread(g, p) {
6941 * reset the NMI-timeout, listing all files on a slow
6942 * console might take alot of time:
6944 touch_nmi_watchdog();
6945 if (!state_filter || (p->state & state_filter))
6946 sched_show_task(p);
6947 } while_each_thread(g, p);
6949 touch_all_softlockup_watchdogs();
6951 #ifdef CONFIG_SCHED_DEBUG
6952 sysrq_sched_debug_show();
6953 #endif
6954 read_unlock(&tasklist_lock);
6956 * Only show locks if all tasks are dumped:
6958 if (state_filter == -1)
6959 debug_show_all_locks();
6962 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6964 idle->sched_class = &idle_sched_class;
6968 * init_idle - set up an idle thread for a given CPU
6969 * @idle: task in question
6970 * @cpu: cpu the idle task belongs to
6972 * NOTE: this function does not set the idle thread's NEED_RESCHED
6973 * flag, to make booting more robust.
6975 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6977 struct rq *rq = cpu_rq(cpu);
6978 unsigned long flags;
6980 spin_lock_irqsave(&rq->lock, flags);
6982 __sched_fork(idle);
6983 idle->se.exec_start = sched_clock();
6985 idle->prio = idle->normal_prio = MAX_PRIO;
6986 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6987 __set_task_cpu(idle, cpu);
6989 rq->curr = rq->idle = idle;
6990 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6991 idle->oncpu = 1;
6992 #endif
6993 spin_unlock_irqrestore(&rq->lock, flags);
6995 /* Set the preempt count _outside_ the spinlocks! */
6996 #if defined(CONFIG_PREEMPT)
6997 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6998 #else
6999 task_thread_info(idle)->preempt_count = 0;
7000 #endif
7002 * The idle tasks have their own, simple scheduling class:
7004 idle->sched_class = &idle_sched_class;
7005 ftrace_graph_init_task(idle);
7009 * In a system that switches off the HZ timer nohz_cpu_mask
7010 * indicates which cpus entered this state. This is used
7011 * in the rcu update to wait only for active cpus. For system
7012 * which do not switch off the HZ timer nohz_cpu_mask should
7013 * always be CPU_BITS_NONE.
7015 cpumask_var_t nohz_cpu_mask;
7018 * Increase the granularity value when there are more CPUs,
7019 * because with more CPUs the 'effective latency' as visible
7020 * to users decreases. But the relationship is not linear,
7021 * so pick a second-best guess by going with the log2 of the
7022 * number of CPUs.
7024 * This idea comes from the SD scheduler of Con Kolivas:
7026 static inline void sched_init_granularity(void)
7028 unsigned int factor = 1 + ilog2(num_online_cpus());
7029 const unsigned long limit = 200000000;
7031 sysctl_sched_min_granularity *= factor;
7032 if (sysctl_sched_min_granularity > limit)
7033 sysctl_sched_min_granularity = limit;
7035 sysctl_sched_latency *= factor;
7036 if (sysctl_sched_latency > limit)
7037 sysctl_sched_latency = limit;
7039 sysctl_sched_wakeup_granularity *= factor;
7041 sysctl_sched_shares_ratelimit *= factor;
7044 #ifdef CONFIG_SMP
7046 * This is how migration works:
7048 * 1) we queue a struct migration_req structure in the source CPU's
7049 * runqueue and wake up that CPU's migration thread.
7050 * 2) we down() the locked semaphore => thread blocks.
7051 * 3) migration thread wakes up (implicitly it forces the migrated
7052 * thread off the CPU)
7053 * 4) it gets the migration request and checks whether the migrated
7054 * task is still in the wrong runqueue.
7055 * 5) if it's in the wrong runqueue then the migration thread removes
7056 * it and puts it into the right queue.
7057 * 6) migration thread up()s the semaphore.
7058 * 7) we wake up and the migration is done.
7062 * Change a given task's CPU affinity. Migrate the thread to a
7063 * proper CPU and schedule it away if the CPU it's executing on
7064 * is removed from the allowed bitmask.
7066 * NOTE: the caller must have a valid reference to the task, the
7067 * task must not exit() & deallocate itself prematurely. The
7068 * call is not atomic; no spinlocks may be held.
7070 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7072 struct migration_req req;
7073 unsigned long flags;
7074 struct rq *rq;
7075 int ret = 0;
7077 rq = task_rq_lock(p, &flags);
7078 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7079 ret = -EINVAL;
7080 goto out;
7083 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7084 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7085 ret = -EINVAL;
7086 goto out;
7089 if (p->sched_class->set_cpus_allowed)
7090 p->sched_class->set_cpus_allowed(p, new_mask);
7091 else {
7092 cpumask_copy(&p->cpus_allowed, new_mask);
7093 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7096 /* Can the task run on the task's current CPU? If so, we're done */
7097 if (cpumask_test_cpu(task_cpu(p), new_mask))
7098 goto out;
7100 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7101 /* Need help from migration thread: drop lock and wait. */
7102 struct task_struct *mt = rq->migration_thread;
7104 get_task_struct(mt);
7105 task_rq_unlock(rq, &flags);
7106 wake_up_process(rq->migration_thread);
7107 put_task_struct(mt);
7108 wait_for_completion(&req.done);
7109 tlb_migrate_finish(p->mm);
7110 return 0;
7112 out:
7113 task_rq_unlock(rq, &flags);
7115 return ret;
7117 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7120 * Move (not current) task off this cpu, onto dest cpu. We're doing
7121 * this because either it can't run here any more (set_cpus_allowed()
7122 * away from this CPU, or CPU going down), or because we're
7123 * attempting to rebalance this task on exec (sched_exec).
7125 * So we race with normal scheduler movements, but that's OK, as long
7126 * as the task is no longer on this CPU.
7128 * Returns non-zero if task was successfully migrated.
7130 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7132 struct rq *rq_dest, *rq_src;
7133 int ret = 0, on_rq;
7135 if (unlikely(!cpu_active(dest_cpu)))
7136 return ret;
7138 rq_src = cpu_rq(src_cpu);
7139 rq_dest = cpu_rq(dest_cpu);
7141 double_rq_lock(rq_src, rq_dest);
7142 /* Already moved. */
7143 if (task_cpu(p) != src_cpu)
7144 goto done;
7145 /* Affinity changed (again). */
7146 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7147 goto fail;
7149 on_rq = p->se.on_rq;
7150 if (on_rq)
7151 deactivate_task(rq_src, p, 0);
7153 set_task_cpu(p, dest_cpu);
7154 if (on_rq) {
7155 activate_task(rq_dest, p, 0);
7156 check_preempt_curr(rq_dest, p, 0);
7158 done:
7159 ret = 1;
7160 fail:
7161 double_rq_unlock(rq_src, rq_dest);
7162 return ret;
7165 #define RCU_MIGRATION_IDLE 0
7166 #define RCU_MIGRATION_NEED_QS 1
7167 #define RCU_MIGRATION_GOT_QS 2
7168 #define RCU_MIGRATION_MUST_SYNC 3
7171 * migration_thread - this is a highprio system thread that performs
7172 * thread migration by bumping thread off CPU then 'pushing' onto
7173 * another runqueue.
7175 static int migration_thread(void *data)
7177 int badcpu;
7178 int cpu = (long)data;
7179 struct rq *rq;
7181 rq = cpu_rq(cpu);
7182 BUG_ON(rq->migration_thread != current);
7184 set_current_state(TASK_INTERRUPTIBLE);
7185 while (!kthread_should_stop()) {
7186 struct migration_req *req;
7187 struct list_head *head;
7189 spin_lock_irq(&rq->lock);
7191 if (cpu_is_offline(cpu)) {
7192 spin_unlock_irq(&rq->lock);
7193 break;
7196 if (rq->active_balance) {
7197 active_load_balance(rq, cpu);
7198 rq->active_balance = 0;
7201 head = &rq->migration_queue;
7203 if (list_empty(head)) {
7204 spin_unlock_irq(&rq->lock);
7205 schedule();
7206 set_current_state(TASK_INTERRUPTIBLE);
7207 continue;
7209 req = list_entry(head->next, struct migration_req, list);
7210 list_del_init(head->next);
7212 if (req->task != NULL) {
7213 spin_unlock(&rq->lock);
7214 __migrate_task(req->task, cpu, req->dest_cpu);
7215 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7216 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7217 spin_unlock(&rq->lock);
7218 } else {
7219 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7220 spin_unlock(&rq->lock);
7221 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7223 local_irq_enable();
7225 complete(&req->done);
7227 __set_current_state(TASK_RUNNING);
7229 return 0;
7232 #ifdef CONFIG_HOTPLUG_CPU
7234 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7236 int ret;
7238 local_irq_disable();
7239 ret = __migrate_task(p, src_cpu, dest_cpu);
7240 local_irq_enable();
7241 return ret;
7245 * Figure out where task on dead CPU should go, use force if necessary.
7247 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7249 int dest_cpu;
7250 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7252 again:
7253 /* Look for allowed, online CPU in same node. */
7254 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7255 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7256 goto move;
7258 /* Any allowed, online CPU? */
7259 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7260 if (dest_cpu < nr_cpu_ids)
7261 goto move;
7263 /* No more Mr. Nice Guy. */
7264 if (dest_cpu >= nr_cpu_ids) {
7265 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7266 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7269 * Don't tell them about moving exiting tasks or
7270 * kernel threads (both mm NULL), since they never
7271 * leave kernel.
7273 if (p->mm && printk_ratelimit()) {
7274 printk(KERN_INFO "process %d (%s) no "
7275 "longer affine to cpu%d\n",
7276 task_pid_nr(p), p->comm, dead_cpu);
7280 move:
7281 /* It can have affinity changed while we were choosing. */
7282 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7283 goto again;
7287 * While a dead CPU has no uninterruptible tasks queued at this point,
7288 * it might still have a nonzero ->nr_uninterruptible counter, because
7289 * for performance reasons the counter is not stricly tracking tasks to
7290 * their home CPUs. So we just add the counter to another CPU's counter,
7291 * to keep the global sum constant after CPU-down:
7293 static void migrate_nr_uninterruptible(struct rq *rq_src)
7295 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7296 unsigned long flags;
7298 local_irq_save(flags);
7299 double_rq_lock(rq_src, rq_dest);
7300 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7301 rq_src->nr_uninterruptible = 0;
7302 double_rq_unlock(rq_src, rq_dest);
7303 local_irq_restore(flags);
7306 /* Run through task list and migrate tasks from the dead cpu. */
7307 static void migrate_live_tasks(int src_cpu)
7309 struct task_struct *p, *t;
7311 read_lock(&tasklist_lock);
7313 do_each_thread(t, p) {
7314 if (p == current)
7315 continue;
7317 if (task_cpu(p) == src_cpu)
7318 move_task_off_dead_cpu(src_cpu, p);
7319 } while_each_thread(t, p);
7321 read_unlock(&tasklist_lock);
7325 * Schedules idle task to be the next runnable task on current CPU.
7326 * It does so by boosting its priority to highest possible.
7327 * Used by CPU offline code.
7329 void sched_idle_next(void)
7331 int this_cpu = smp_processor_id();
7332 struct rq *rq = cpu_rq(this_cpu);
7333 struct task_struct *p = rq->idle;
7334 unsigned long flags;
7336 /* cpu has to be offline */
7337 BUG_ON(cpu_online(this_cpu));
7340 * Strictly not necessary since rest of the CPUs are stopped by now
7341 * and interrupts disabled on the current cpu.
7343 spin_lock_irqsave(&rq->lock, flags);
7345 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7347 update_rq_clock(rq);
7348 activate_task(rq, p, 0);
7350 spin_unlock_irqrestore(&rq->lock, flags);
7354 * Ensures that the idle task is using init_mm right before its cpu goes
7355 * offline.
7357 void idle_task_exit(void)
7359 struct mm_struct *mm = current->active_mm;
7361 BUG_ON(cpu_online(smp_processor_id()));
7363 if (mm != &init_mm)
7364 switch_mm(mm, &init_mm, current);
7365 mmdrop(mm);
7368 /* called under rq->lock with disabled interrupts */
7369 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7371 struct rq *rq = cpu_rq(dead_cpu);
7373 /* Must be exiting, otherwise would be on tasklist. */
7374 BUG_ON(!p->exit_state);
7376 /* Cannot have done final schedule yet: would have vanished. */
7377 BUG_ON(p->state == TASK_DEAD);
7379 get_task_struct(p);
7382 * Drop lock around migration; if someone else moves it,
7383 * that's OK. No task can be added to this CPU, so iteration is
7384 * fine.
7386 spin_unlock_irq(&rq->lock);
7387 move_task_off_dead_cpu(dead_cpu, p);
7388 spin_lock_irq(&rq->lock);
7390 put_task_struct(p);
7393 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7394 static void migrate_dead_tasks(unsigned int dead_cpu)
7396 struct rq *rq = cpu_rq(dead_cpu);
7397 struct task_struct *next;
7399 for ( ; ; ) {
7400 if (!rq->nr_running)
7401 break;
7402 update_rq_clock(rq);
7403 next = pick_next_task(rq);
7404 if (!next)
7405 break;
7406 next->sched_class->put_prev_task(rq, next);
7407 migrate_dead(dead_cpu, next);
7413 * remove the tasks which were accounted by rq from calc_load_tasks.
7415 static void calc_global_load_remove(struct rq *rq)
7417 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7418 rq->calc_load_active = 0;
7420 #endif /* CONFIG_HOTPLUG_CPU */
7422 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7424 static struct ctl_table sd_ctl_dir[] = {
7426 .procname = "sched_domain",
7427 .mode = 0555,
7429 {0, },
7432 static struct ctl_table sd_ctl_root[] = {
7434 .ctl_name = CTL_KERN,
7435 .procname = "kernel",
7436 .mode = 0555,
7437 .child = sd_ctl_dir,
7439 {0, },
7442 static struct ctl_table *sd_alloc_ctl_entry(int n)
7444 struct ctl_table *entry =
7445 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7447 return entry;
7450 static void sd_free_ctl_entry(struct ctl_table **tablep)
7452 struct ctl_table *entry;
7455 * In the intermediate directories, both the child directory and
7456 * procname are dynamically allocated and could fail but the mode
7457 * will always be set. In the lowest directory the names are
7458 * static strings and all have proc handlers.
7460 for (entry = *tablep; entry->mode; entry++) {
7461 if (entry->child)
7462 sd_free_ctl_entry(&entry->child);
7463 if (entry->proc_handler == NULL)
7464 kfree(entry->procname);
7467 kfree(*tablep);
7468 *tablep = NULL;
7471 static void
7472 set_table_entry(struct ctl_table *entry,
7473 const char *procname, void *data, int maxlen,
7474 mode_t mode, proc_handler *proc_handler)
7476 entry->procname = procname;
7477 entry->data = data;
7478 entry->maxlen = maxlen;
7479 entry->mode = mode;
7480 entry->proc_handler = proc_handler;
7483 static struct ctl_table *
7484 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7486 struct ctl_table *table = sd_alloc_ctl_entry(13);
7488 if (table == NULL)
7489 return NULL;
7491 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7492 sizeof(long), 0644, proc_doulongvec_minmax);
7493 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7494 sizeof(long), 0644, proc_doulongvec_minmax);
7495 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7496 sizeof(int), 0644, proc_dointvec_minmax);
7497 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7498 sizeof(int), 0644, proc_dointvec_minmax);
7499 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7500 sizeof(int), 0644, proc_dointvec_minmax);
7501 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7502 sizeof(int), 0644, proc_dointvec_minmax);
7503 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7504 sizeof(int), 0644, proc_dointvec_minmax);
7505 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7506 sizeof(int), 0644, proc_dointvec_minmax);
7507 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7508 sizeof(int), 0644, proc_dointvec_minmax);
7509 set_table_entry(&table[9], "cache_nice_tries",
7510 &sd->cache_nice_tries,
7511 sizeof(int), 0644, proc_dointvec_minmax);
7512 set_table_entry(&table[10], "flags", &sd->flags,
7513 sizeof(int), 0644, proc_dointvec_minmax);
7514 set_table_entry(&table[11], "name", sd->name,
7515 CORENAME_MAX_SIZE, 0444, proc_dostring);
7516 /* &table[12] is terminator */
7518 return table;
7521 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7523 struct ctl_table *entry, *table;
7524 struct sched_domain *sd;
7525 int domain_num = 0, i;
7526 char buf[32];
7528 for_each_domain(cpu, sd)
7529 domain_num++;
7530 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7531 if (table == NULL)
7532 return NULL;
7534 i = 0;
7535 for_each_domain(cpu, sd) {
7536 snprintf(buf, 32, "domain%d", i);
7537 entry->procname = kstrdup(buf, GFP_KERNEL);
7538 entry->mode = 0555;
7539 entry->child = sd_alloc_ctl_domain_table(sd);
7540 entry++;
7541 i++;
7543 return table;
7546 static struct ctl_table_header *sd_sysctl_header;
7547 static void register_sched_domain_sysctl(void)
7549 int i, cpu_num = num_online_cpus();
7550 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7551 char buf[32];
7553 WARN_ON(sd_ctl_dir[0].child);
7554 sd_ctl_dir[0].child = entry;
7556 if (entry == NULL)
7557 return;
7559 for_each_online_cpu(i) {
7560 snprintf(buf, 32, "cpu%d", i);
7561 entry->procname = kstrdup(buf, GFP_KERNEL);
7562 entry->mode = 0555;
7563 entry->child = sd_alloc_ctl_cpu_table(i);
7564 entry++;
7567 WARN_ON(sd_sysctl_header);
7568 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7571 /* may be called multiple times per register */
7572 static void unregister_sched_domain_sysctl(void)
7574 if (sd_sysctl_header)
7575 unregister_sysctl_table(sd_sysctl_header);
7576 sd_sysctl_header = NULL;
7577 if (sd_ctl_dir[0].child)
7578 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7580 #else
7581 static void register_sched_domain_sysctl(void)
7584 static void unregister_sched_domain_sysctl(void)
7587 #endif
7589 static void set_rq_online(struct rq *rq)
7591 if (!rq->online) {
7592 const struct sched_class *class;
7594 cpumask_set_cpu(rq->cpu, rq->rd->online);
7595 rq->online = 1;
7597 for_each_class(class) {
7598 if (class->rq_online)
7599 class->rq_online(rq);
7604 static void set_rq_offline(struct rq *rq)
7606 if (rq->online) {
7607 const struct sched_class *class;
7609 for_each_class(class) {
7610 if (class->rq_offline)
7611 class->rq_offline(rq);
7614 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7615 rq->online = 0;
7620 * migration_call - callback that gets triggered when a CPU is added.
7621 * Here we can start up the necessary migration thread for the new CPU.
7623 static int __cpuinit
7624 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7626 struct task_struct *p;
7627 int cpu = (long)hcpu;
7628 unsigned long flags;
7629 struct rq *rq;
7631 switch (action) {
7633 case CPU_UP_PREPARE:
7634 case CPU_UP_PREPARE_FROZEN:
7635 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7636 if (IS_ERR(p))
7637 return NOTIFY_BAD;
7638 kthread_bind(p, cpu);
7639 /* Must be high prio: stop_machine expects to yield to it. */
7640 rq = task_rq_lock(p, &flags);
7641 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7642 task_rq_unlock(rq, &flags);
7643 get_task_struct(p);
7644 cpu_rq(cpu)->migration_thread = p;
7645 rq->calc_load_update = calc_load_update;
7646 break;
7648 case CPU_ONLINE:
7649 case CPU_ONLINE_FROZEN:
7650 /* Strictly unnecessary, as first user will wake it. */
7651 wake_up_process(cpu_rq(cpu)->migration_thread);
7653 /* Update our root-domain */
7654 rq = cpu_rq(cpu);
7655 spin_lock_irqsave(&rq->lock, flags);
7656 if (rq->rd) {
7657 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7659 set_rq_online(rq);
7661 spin_unlock_irqrestore(&rq->lock, flags);
7662 break;
7664 #ifdef CONFIG_HOTPLUG_CPU
7665 case CPU_UP_CANCELED:
7666 case CPU_UP_CANCELED_FROZEN:
7667 if (!cpu_rq(cpu)->migration_thread)
7668 break;
7669 /* Unbind it from offline cpu so it can run. Fall thru. */
7670 kthread_bind(cpu_rq(cpu)->migration_thread,
7671 cpumask_any(cpu_online_mask));
7672 kthread_stop(cpu_rq(cpu)->migration_thread);
7673 put_task_struct(cpu_rq(cpu)->migration_thread);
7674 cpu_rq(cpu)->migration_thread = NULL;
7675 break;
7677 case CPU_DEAD:
7678 case CPU_DEAD_FROZEN:
7679 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7680 migrate_live_tasks(cpu);
7681 rq = cpu_rq(cpu);
7682 kthread_stop(rq->migration_thread);
7683 put_task_struct(rq->migration_thread);
7684 rq->migration_thread = NULL;
7685 /* Idle task back to normal (off runqueue, low prio) */
7686 spin_lock_irq(&rq->lock);
7687 update_rq_clock(rq);
7688 deactivate_task(rq, rq->idle, 0);
7689 rq->idle->static_prio = MAX_PRIO;
7690 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7691 rq->idle->sched_class = &idle_sched_class;
7692 migrate_dead_tasks(cpu);
7693 spin_unlock_irq(&rq->lock);
7694 cpuset_unlock();
7695 migrate_nr_uninterruptible(rq);
7696 BUG_ON(rq->nr_running != 0);
7697 calc_global_load_remove(rq);
7699 * No need to migrate the tasks: it was best-effort if
7700 * they didn't take sched_hotcpu_mutex. Just wake up
7701 * the requestors.
7703 spin_lock_irq(&rq->lock);
7704 while (!list_empty(&rq->migration_queue)) {
7705 struct migration_req *req;
7707 req = list_entry(rq->migration_queue.next,
7708 struct migration_req, list);
7709 list_del_init(&req->list);
7710 spin_unlock_irq(&rq->lock);
7711 complete(&req->done);
7712 spin_lock_irq(&rq->lock);
7714 spin_unlock_irq(&rq->lock);
7715 break;
7717 case CPU_DYING:
7718 case CPU_DYING_FROZEN:
7719 /* Update our root-domain */
7720 rq = cpu_rq(cpu);
7721 spin_lock_irqsave(&rq->lock, flags);
7722 if (rq->rd) {
7723 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7724 set_rq_offline(rq);
7726 spin_unlock_irqrestore(&rq->lock, flags);
7727 break;
7728 #endif
7730 return NOTIFY_OK;
7734 * Register at high priority so that task migration (migrate_all_tasks)
7735 * happens before everything else. This has to be lower priority than
7736 * the notifier in the perf_event subsystem, though.
7738 static struct notifier_block __cpuinitdata migration_notifier = {
7739 .notifier_call = migration_call,
7740 .priority = 10
7743 static int __init migration_init(void)
7745 void *cpu = (void *)(long)smp_processor_id();
7746 int err;
7748 /* Start one for the boot CPU: */
7749 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7750 BUG_ON(err == NOTIFY_BAD);
7751 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7752 register_cpu_notifier(&migration_notifier);
7754 return 0;
7756 early_initcall(migration_init);
7757 #endif
7759 #ifdef CONFIG_SMP
7761 #ifdef CONFIG_SCHED_DEBUG
7763 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7764 struct cpumask *groupmask)
7766 struct sched_group *group = sd->groups;
7767 char str[256];
7769 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7770 cpumask_clear(groupmask);
7772 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7774 if (!(sd->flags & SD_LOAD_BALANCE)) {
7775 printk("does not load-balance\n");
7776 if (sd->parent)
7777 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7778 " has parent");
7779 return -1;
7782 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7784 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7785 printk(KERN_ERR "ERROR: domain->span does not contain "
7786 "CPU%d\n", cpu);
7788 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7789 printk(KERN_ERR "ERROR: domain->groups does not contain"
7790 " CPU%d\n", cpu);
7793 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7794 do {
7795 if (!group) {
7796 printk("\n");
7797 printk(KERN_ERR "ERROR: group is NULL\n");
7798 break;
7801 if (!group->cpu_power) {
7802 printk(KERN_CONT "\n");
7803 printk(KERN_ERR "ERROR: domain->cpu_power not "
7804 "set\n");
7805 break;
7808 if (!cpumask_weight(sched_group_cpus(group))) {
7809 printk(KERN_CONT "\n");
7810 printk(KERN_ERR "ERROR: empty group\n");
7811 break;
7814 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7815 printk(KERN_CONT "\n");
7816 printk(KERN_ERR "ERROR: repeated CPUs\n");
7817 break;
7820 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7822 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7824 printk(KERN_CONT " %s", str);
7825 if (group->cpu_power != SCHED_LOAD_SCALE) {
7826 printk(KERN_CONT " (cpu_power = %d)",
7827 group->cpu_power);
7830 group = group->next;
7831 } while (group != sd->groups);
7832 printk(KERN_CONT "\n");
7834 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7835 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7837 if (sd->parent &&
7838 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7839 printk(KERN_ERR "ERROR: parent span is not a superset "
7840 "of domain->span\n");
7841 return 0;
7844 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7846 cpumask_var_t groupmask;
7847 int level = 0;
7849 if (!sd) {
7850 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7851 return;
7854 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7856 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7857 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7858 return;
7861 for (;;) {
7862 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7863 break;
7864 level++;
7865 sd = sd->parent;
7866 if (!sd)
7867 break;
7869 free_cpumask_var(groupmask);
7871 #else /* !CONFIG_SCHED_DEBUG */
7872 # define sched_domain_debug(sd, cpu) do { } while (0)
7873 #endif /* CONFIG_SCHED_DEBUG */
7875 static int sd_degenerate(struct sched_domain *sd)
7877 if (cpumask_weight(sched_domain_span(sd)) == 1)
7878 return 1;
7880 /* Following flags need at least 2 groups */
7881 if (sd->flags & (SD_LOAD_BALANCE |
7882 SD_BALANCE_NEWIDLE |
7883 SD_BALANCE_FORK |
7884 SD_BALANCE_EXEC |
7885 SD_SHARE_CPUPOWER |
7886 SD_SHARE_PKG_RESOURCES)) {
7887 if (sd->groups != sd->groups->next)
7888 return 0;
7891 /* Following flags don't use groups */
7892 if (sd->flags & (SD_WAKE_AFFINE))
7893 return 0;
7895 return 1;
7898 static int
7899 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7901 unsigned long cflags = sd->flags, pflags = parent->flags;
7903 if (sd_degenerate(parent))
7904 return 1;
7906 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7907 return 0;
7909 /* Flags needing groups don't count if only 1 group in parent */
7910 if (parent->groups == parent->groups->next) {
7911 pflags &= ~(SD_LOAD_BALANCE |
7912 SD_BALANCE_NEWIDLE |
7913 SD_BALANCE_FORK |
7914 SD_BALANCE_EXEC |
7915 SD_SHARE_CPUPOWER |
7916 SD_SHARE_PKG_RESOURCES);
7917 if (nr_node_ids == 1)
7918 pflags &= ~SD_SERIALIZE;
7920 if (~cflags & pflags)
7921 return 0;
7923 return 1;
7926 static void free_rootdomain(struct root_domain *rd)
7928 cpupri_cleanup(&rd->cpupri);
7930 free_cpumask_var(rd->rto_mask);
7931 free_cpumask_var(rd->online);
7932 free_cpumask_var(rd->span);
7933 kfree(rd);
7936 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7938 struct root_domain *old_rd = NULL;
7939 unsigned long flags;
7941 spin_lock_irqsave(&rq->lock, flags);
7943 if (rq->rd) {
7944 old_rd = rq->rd;
7946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7947 set_rq_offline(rq);
7949 cpumask_clear_cpu(rq->cpu, old_rd->span);
7952 * If we dont want to free the old_rt yet then
7953 * set old_rd to NULL to skip the freeing later
7954 * in this function:
7956 if (!atomic_dec_and_test(&old_rd->refcount))
7957 old_rd = NULL;
7960 atomic_inc(&rd->refcount);
7961 rq->rd = rd;
7963 cpumask_set_cpu(rq->cpu, rd->span);
7964 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7965 set_rq_online(rq);
7967 spin_unlock_irqrestore(&rq->lock, flags);
7969 if (old_rd)
7970 free_rootdomain(old_rd);
7973 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7975 gfp_t gfp = GFP_KERNEL;
7977 memset(rd, 0, sizeof(*rd));
7979 if (bootmem)
7980 gfp = GFP_NOWAIT;
7982 if (!alloc_cpumask_var(&rd->span, gfp))
7983 goto out;
7984 if (!alloc_cpumask_var(&rd->online, gfp))
7985 goto free_span;
7986 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7987 goto free_online;
7989 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7990 goto free_rto_mask;
7991 return 0;
7993 free_rto_mask:
7994 free_cpumask_var(rd->rto_mask);
7995 free_online:
7996 free_cpumask_var(rd->online);
7997 free_span:
7998 free_cpumask_var(rd->span);
7999 out:
8000 return -ENOMEM;
8003 static void init_defrootdomain(void)
8005 init_rootdomain(&def_root_domain, true);
8007 atomic_set(&def_root_domain.refcount, 1);
8010 static struct root_domain *alloc_rootdomain(void)
8012 struct root_domain *rd;
8014 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8015 if (!rd)
8016 return NULL;
8018 if (init_rootdomain(rd, false) != 0) {
8019 kfree(rd);
8020 return NULL;
8023 return rd;
8027 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8028 * hold the hotplug lock.
8030 static void
8031 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8033 struct rq *rq = cpu_rq(cpu);
8034 struct sched_domain *tmp;
8036 /* Remove the sched domains which do not contribute to scheduling. */
8037 for (tmp = sd; tmp; ) {
8038 struct sched_domain *parent = tmp->parent;
8039 if (!parent)
8040 break;
8042 if (sd_parent_degenerate(tmp, parent)) {
8043 tmp->parent = parent->parent;
8044 if (parent->parent)
8045 parent->parent->child = tmp;
8046 } else
8047 tmp = tmp->parent;
8050 if (sd && sd_degenerate(sd)) {
8051 sd = sd->parent;
8052 if (sd)
8053 sd->child = NULL;
8056 sched_domain_debug(sd, cpu);
8058 rq_attach_root(rq, rd);
8059 rcu_assign_pointer(rq->sd, sd);
8062 /* cpus with isolated domains */
8063 static cpumask_var_t cpu_isolated_map;
8065 /* Setup the mask of cpus configured for isolated domains */
8066 static int __init isolated_cpu_setup(char *str)
8068 cpulist_parse(str, cpu_isolated_map);
8069 return 1;
8072 __setup("isolcpus=", isolated_cpu_setup);
8075 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8076 * to a function which identifies what group(along with sched group) a CPU
8077 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8078 * (due to the fact that we keep track of groups covered with a struct cpumask).
8080 * init_sched_build_groups will build a circular linked list of the groups
8081 * covered by the given span, and will set each group's ->cpumask correctly,
8082 * and ->cpu_power to 0.
8084 static void
8085 init_sched_build_groups(const struct cpumask *span,
8086 const struct cpumask *cpu_map,
8087 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8088 struct sched_group **sg,
8089 struct cpumask *tmpmask),
8090 struct cpumask *covered, struct cpumask *tmpmask)
8092 struct sched_group *first = NULL, *last = NULL;
8093 int i;
8095 cpumask_clear(covered);
8097 for_each_cpu(i, span) {
8098 struct sched_group *sg;
8099 int group = group_fn(i, cpu_map, &sg, tmpmask);
8100 int j;
8102 if (cpumask_test_cpu(i, covered))
8103 continue;
8105 cpumask_clear(sched_group_cpus(sg));
8106 sg->cpu_power = 0;
8108 for_each_cpu(j, span) {
8109 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8110 continue;
8112 cpumask_set_cpu(j, covered);
8113 cpumask_set_cpu(j, sched_group_cpus(sg));
8115 if (!first)
8116 first = sg;
8117 if (last)
8118 last->next = sg;
8119 last = sg;
8121 last->next = first;
8124 #define SD_NODES_PER_DOMAIN 16
8126 #ifdef CONFIG_NUMA
8129 * find_next_best_node - find the next node to include in a sched_domain
8130 * @node: node whose sched_domain we're building
8131 * @used_nodes: nodes already in the sched_domain
8133 * Find the next node to include in a given scheduling domain. Simply
8134 * finds the closest node not already in the @used_nodes map.
8136 * Should use nodemask_t.
8138 static int find_next_best_node(int node, nodemask_t *used_nodes)
8140 int i, n, val, min_val, best_node = 0;
8142 min_val = INT_MAX;
8144 for (i = 0; i < nr_node_ids; i++) {
8145 /* Start at @node */
8146 n = (node + i) % nr_node_ids;
8148 if (!nr_cpus_node(n))
8149 continue;
8151 /* Skip already used nodes */
8152 if (node_isset(n, *used_nodes))
8153 continue;
8155 /* Simple min distance search */
8156 val = node_distance(node, n);
8158 if (val < min_val) {
8159 min_val = val;
8160 best_node = n;
8164 node_set(best_node, *used_nodes);
8165 return best_node;
8169 * sched_domain_node_span - get a cpumask for a node's sched_domain
8170 * @node: node whose cpumask we're constructing
8171 * @span: resulting cpumask
8173 * Given a node, construct a good cpumask for its sched_domain to span. It
8174 * should be one that prevents unnecessary balancing, but also spreads tasks
8175 * out optimally.
8177 static void sched_domain_node_span(int node, struct cpumask *span)
8179 nodemask_t used_nodes;
8180 int i;
8182 cpumask_clear(span);
8183 nodes_clear(used_nodes);
8185 cpumask_or(span, span, cpumask_of_node(node));
8186 node_set(node, used_nodes);
8188 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8189 int next_node = find_next_best_node(node, &used_nodes);
8191 cpumask_or(span, span, cpumask_of_node(next_node));
8194 #endif /* CONFIG_NUMA */
8196 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8199 * The cpus mask in sched_group and sched_domain hangs off the end.
8201 * ( See the the comments in include/linux/sched.h:struct sched_group
8202 * and struct sched_domain. )
8204 struct static_sched_group {
8205 struct sched_group sg;
8206 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8209 struct static_sched_domain {
8210 struct sched_domain sd;
8211 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8214 struct s_data {
8215 #ifdef CONFIG_NUMA
8216 int sd_allnodes;
8217 cpumask_var_t domainspan;
8218 cpumask_var_t covered;
8219 cpumask_var_t notcovered;
8220 #endif
8221 cpumask_var_t nodemask;
8222 cpumask_var_t this_sibling_map;
8223 cpumask_var_t this_core_map;
8224 cpumask_var_t send_covered;
8225 cpumask_var_t tmpmask;
8226 struct sched_group **sched_group_nodes;
8227 struct root_domain *rd;
8230 enum s_alloc {
8231 sa_sched_groups = 0,
8232 sa_rootdomain,
8233 sa_tmpmask,
8234 sa_send_covered,
8235 sa_this_core_map,
8236 sa_this_sibling_map,
8237 sa_nodemask,
8238 sa_sched_group_nodes,
8239 #ifdef CONFIG_NUMA
8240 sa_notcovered,
8241 sa_covered,
8242 sa_domainspan,
8243 #endif
8244 sa_none,
8248 * SMT sched-domains:
8250 #ifdef CONFIG_SCHED_SMT
8251 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8252 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8254 static int
8255 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8256 struct sched_group **sg, struct cpumask *unused)
8258 if (sg)
8259 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8260 return cpu;
8262 #endif /* CONFIG_SCHED_SMT */
8265 * multi-core sched-domains:
8267 #ifdef CONFIG_SCHED_MC
8268 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8269 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8270 #endif /* CONFIG_SCHED_MC */
8272 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8273 static int
8274 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8275 struct sched_group **sg, struct cpumask *mask)
8277 int group;
8279 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8280 group = cpumask_first(mask);
8281 if (sg)
8282 *sg = &per_cpu(sched_group_core, group).sg;
8283 return group;
8285 #elif defined(CONFIG_SCHED_MC)
8286 static int
8287 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8288 struct sched_group **sg, struct cpumask *unused)
8290 if (sg)
8291 *sg = &per_cpu(sched_group_core, cpu).sg;
8292 return cpu;
8294 #endif
8296 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8297 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8299 static int
8300 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8301 struct sched_group **sg, struct cpumask *mask)
8303 int group;
8304 #ifdef CONFIG_SCHED_MC
8305 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8306 group = cpumask_first(mask);
8307 #elif defined(CONFIG_SCHED_SMT)
8308 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8309 group = cpumask_first(mask);
8310 #else
8311 group = cpu;
8312 #endif
8313 if (sg)
8314 *sg = &per_cpu(sched_group_phys, group).sg;
8315 return group;
8318 #ifdef CONFIG_NUMA
8320 * The init_sched_build_groups can't handle what we want to do with node
8321 * groups, so roll our own. Now each node has its own list of groups which
8322 * gets dynamically allocated.
8324 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8325 static struct sched_group ***sched_group_nodes_bycpu;
8327 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8328 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8330 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8331 struct sched_group **sg,
8332 struct cpumask *nodemask)
8334 int group;
8336 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8337 group = cpumask_first(nodemask);
8339 if (sg)
8340 *sg = &per_cpu(sched_group_allnodes, group).sg;
8341 return group;
8344 static void init_numa_sched_groups_power(struct sched_group *group_head)
8346 struct sched_group *sg = group_head;
8347 int j;
8349 if (!sg)
8350 return;
8351 do {
8352 for_each_cpu(j, sched_group_cpus(sg)) {
8353 struct sched_domain *sd;
8355 sd = &per_cpu(phys_domains, j).sd;
8356 if (j != group_first_cpu(sd->groups)) {
8358 * Only add "power" once for each
8359 * physical package.
8361 continue;
8364 sg->cpu_power += sd->groups->cpu_power;
8366 sg = sg->next;
8367 } while (sg != group_head);
8370 static int build_numa_sched_groups(struct s_data *d,
8371 const struct cpumask *cpu_map, int num)
8373 struct sched_domain *sd;
8374 struct sched_group *sg, *prev;
8375 int n, j;
8377 cpumask_clear(d->covered);
8378 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8379 if (cpumask_empty(d->nodemask)) {
8380 d->sched_group_nodes[num] = NULL;
8381 goto out;
8384 sched_domain_node_span(num, d->domainspan);
8385 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8387 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8388 GFP_KERNEL, num);
8389 if (!sg) {
8390 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8391 num);
8392 return -ENOMEM;
8394 d->sched_group_nodes[num] = sg;
8396 for_each_cpu(j, d->nodemask) {
8397 sd = &per_cpu(node_domains, j).sd;
8398 sd->groups = sg;
8401 sg->cpu_power = 0;
8402 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8403 sg->next = sg;
8404 cpumask_or(d->covered, d->covered, d->nodemask);
8406 prev = sg;
8407 for (j = 0; j < nr_node_ids; j++) {
8408 n = (num + j) % nr_node_ids;
8409 cpumask_complement(d->notcovered, d->covered);
8410 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8411 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8412 if (cpumask_empty(d->tmpmask))
8413 break;
8414 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8415 if (cpumask_empty(d->tmpmask))
8416 continue;
8417 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8418 GFP_KERNEL, num);
8419 if (!sg) {
8420 printk(KERN_WARNING
8421 "Can not alloc domain group for node %d\n", j);
8422 return -ENOMEM;
8424 sg->cpu_power = 0;
8425 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8426 sg->next = prev->next;
8427 cpumask_or(d->covered, d->covered, d->tmpmask);
8428 prev->next = sg;
8429 prev = sg;
8431 out:
8432 return 0;
8434 #endif /* CONFIG_NUMA */
8436 #ifdef CONFIG_NUMA
8437 /* Free memory allocated for various sched_group structures */
8438 static void free_sched_groups(const struct cpumask *cpu_map,
8439 struct cpumask *nodemask)
8441 int cpu, i;
8443 for_each_cpu(cpu, cpu_map) {
8444 struct sched_group **sched_group_nodes
8445 = sched_group_nodes_bycpu[cpu];
8447 if (!sched_group_nodes)
8448 continue;
8450 for (i = 0; i < nr_node_ids; i++) {
8451 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8453 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8454 if (cpumask_empty(nodemask))
8455 continue;
8457 if (sg == NULL)
8458 continue;
8459 sg = sg->next;
8460 next_sg:
8461 oldsg = sg;
8462 sg = sg->next;
8463 kfree(oldsg);
8464 if (oldsg != sched_group_nodes[i])
8465 goto next_sg;
8467 kfree(sched_group_nodes);
8468 sched_group_nodes_bycpu[cpu] = NULL;
8471 #else /* !CONFIG_NUMA */
8472 static void free_sched_groups(const struct cpumask *cpu_map,
8473 struct cpumask *nodemask)
8476 #endif /* CONFIG_NUMA */
8479 * Initialize sched groups cpu_power.
8481 * cpu_power indicates the capacity of sched group, which is used while
8482 * distributing the load between different sched groups in a sched domain.
8483 * Typically cpu_power for all the groups in a sched domain will be same unless
8484 * there are asymmetries in the topology. If there are asymmetries, group
8485 * having more cpu_power will pickup more load compared to the group having
8486 * less cpu_power.
8488 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8490 struct sched_domain *child;
8491 struct sched_group *group;
8492 long power;
8493 int weight;
8495 WARN_ON(!sd || !sd->groups);
8497 if (cpu != group_first_cpu(sd->groups))
8498 return;
8500 child = sd->child;
8502 sd->groups->cpu_power = 0;
8504 if (!child) {
8505 power = SCHED_LOAD_SCALE;
8506 weight = cpumask_weight(sched_domain_span(sd));
8508 * SMT siblings share the power of a single core.
8509 * Usually multiple threads get a better yield out of
8510 * that one core than a single thread would have,
8511 * reflect that in sd->smt_gain.
8513 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8514 power *= sd->smt_gain;
8515 power /= weight;
8516 power >>= SCHED_LOAD_SHIFT;
8518 sd->groups->cpu_power += power;
8519 return;
8523 * Add cpu_power of each child group to this groups cpu_power.
8525 group = child->groups;
8526 do {
8527 sd->groups->cpu_power += group->cpu_power;
8528 group = group->next;
8529 } while (group != child->groups);
8533 * Initializers for schedule domains
8534 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8537 #ifdef CONFIG_SCHED_DEBUG
8538 # define SD_INIT_NAME(sd, type) sd->name = #type
8539 #else
8540 # define SD_INIT_NAME(sd, type) do { } while (0)
8541 #endif
8543 #define SD_INIT(sd, type) sd_init_##type(sd)
8545 #define SD_INIT_FUNC(type) \
8546 static noinline void sd_init_##type(struct sched_domain *sd) \
8548 memset(sd, 0, sizeof(*sd)); \
8549 *sd = SD_##type##_INIT; \
8550 sd->level = SD_LV_##type; \
8551 SD_INIT_NAME(sd, type); \
8554 SD_INIT_FUNC(CPU)
8555 #ifdef CONFIG_NUMA
8556 SD_INIT_FUNC(ALLNODES)
8557 SD_INIT_FUNC(NODE)
8558 #endif
8559 #ifdef CONFIG_SCHED_SMT
8560 SD_INIT_FUNC(SIBLING)
8561 #endif
8562 #ifdef CONFIG_SCHED_MC
8563 SD_INIT_FUNC(MC)
8564 #endif
8566 static int default_relax_domain_level = -1;
8568 static int __init setup_relax_domain_level(char *str)
8570 unsigned long val;
8572 val = simple_strtoul(str, NULL, 0);
8573 if (val < SD_LV_MAX)
8574 default_relax_domain_level = val;
8576 return 1;
8578 __setup("relax_domain_level=", setup_relax_domain_level);
8580 static void set_domain_attribute(struct sched_domain *sd,
8581 struct sched_domain_attr *attr)
8583 int request;
8585 if (!attr || attr->relax_domain_level < 0) {
8586 if (default_relax_domain_level < 0)
8587 return;
8588 else
8589 request = default_relax_domain_level;
8590 } else
8591 request = attr->relax_domain_level;
8592 if (request < sd->level) {
8593 /* turn off idle balance on this domain */
8594 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8595 } else {
8596 /* turn on idle balance on this domain */
8597 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8601 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8602 const struct cpumask *cpu_map)
8604 switch (what) {
8605 case sa_sched_groups:
8606 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8607 d->sched_group_nodes = NULL;
8608 case sa_rootdomain:
8609 free_rootdomain(d->rd); /* fall through */
8610 case sa_tmpmask:
8611 free_cpumask_var(d->tmpmask); /* fall through */
8612 case sa_send_covered:
8613 free_cpumask_var(d->send_covered); /* fall through */
8614 case sa_this_core_map:
8615 free_cpumask_var(d->this_core_map); /* fall through */
8616 case sa_this_sibling_map:
8617 free_cpumask_var(d->this_sibling_map); /* fall through */
8618 case sa_nodemask:
8619 free_cpumask_var(d->nodemask); /* fall through */
8620 case sa_sched_group_nodes:
8621 #ifdef CONFIG_NUMA
8622 kfree(d->sched_group_nodes); /* fall through */
8623 case sa_notcovered:
8624 free_cpumask_var(d->notcovered); /* fall through */
8625 case sa_covered:
8626 free_cpumask_var(d->covered); /* fall through */
8627 case sa_domainspan:
8628 free_cpumask_var(d->domainspan); /* fall through */
8629 #endif
8630 case sa_none:
8631 break;
8635 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8636 const struct cpumask *cpu_map)
8638 #ifdef CONFIG_NUMA
8639 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8640 return sa_none;
8641 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8642 return sa_domainspan;
8643 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8644 return sa_covered;
8645 /* Allocate the per-node list of sched groups */
8646 d->sched_group_nodes = kcalloc(nr_node_ids,
8647 sizeof(struct sched_group *), GFP_KERNEL);
8648 if (!d->sched_group_nodes) {
8649 printk(KERN_WARNING "Can not alloc sched group node list\n");
8650 return sa_notcovered;
8652 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8653 #endif
8654 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8655 return sa_sched_group_nodes;
8656 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8657 return sa_nodemask;
8658 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8659 return sa_this_sibling_map;
8660 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8661 return sa_this_core_map;
8662 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8663 return sa_send_covered;
8664 d->rd = alloc_rootdomain();
8665 if (!d->rd) {
8666 printk(KERN_WARNING "Cannot alloc root domain\n");
8667 return sa_tmpmask;
8669 return sa_rootdomain;
8672 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8673 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8675 struct sched_domain *sd = NULL;
8676 #ifdef CONFIG_NUMA
8677 struct sched_domain *parent;
8679 d->sd_allnodes = 0;
8680 if (cpumask_weight(cpu_map) >
8681 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8682 sd = &per_cpu(allnodes_domains, i).sd;
8683 SD_INIT(sd, ALLNODES);
8684 set_domain_attribute(sd, attr);
8685 cpumask_copy(sched_domain_span(sd), cpu_map);
8686 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8687 d->sd_allnodes = 1;
8689 parent = sd;
8691 sd = &per_cpu(node_domains, i).sd;
8692 SD_INIT(sd, NODE);
8693 set_domain_attribute(sd, attr);
8694 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8695 sd->parent = parent;
8696 if (parent)
8697 parent->child = sd;
8698 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8699 #endif
8700 return sd;
8703 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8704 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8705 struct sched_domain *parent, int i)
8707 struct sched_domain *sd;
8708 sd = &per_cpu(phys_domains, i).sd;
8709 SD_INIT(sd, CPU);
8710 set_domain_attribute(sd, attr);
8711 cpumask_copy(sched_domain_span(sd), d->nodemask);
8712 sd->parent = parent;
8713 if (parent)
8714 parent->child = sd;
8715 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8716 return sd;
8719 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8720 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8721 struct sched_domain *parent, int i)
8723 struct sched_domain *sd = parent;
8724 #ifdef CONFIG_SCHED_MC
8725 sd = &per_cpu(core_domains, i).sd;
8726 SD_INIT(sd, MC);
8727 set_domain_attribute(sd, attr);
8728 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8729 sd->parent = parent;
8730 parent->child = sd;
8731 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8732 #endif
8733 return sd;
8736 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8737 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8738 struct sched_domain *parent, int i)
8740 struct sched_domain *sd = parent;
8741 #ifdef CONFIG_SCHED_SMT
8742 sd = &per_cpu(cpu_domains, i).sd;
8743 SD_INIT(sd, SIBLING);
8744 set_domain_attribute(sd, attr);
8745 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8746 sd->parent = parent;
8747 parent->child = sd;
8748 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8749 #endif
8750 return sd;
8753 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8754 const struct cpumask *cpu_map, int cpu)
8756 switch (l) {
8757 #ifdef CONFIG_SCHED_SMT
8758 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8759 cpumask_and(d->this_sibling_map, cpu_map,
8760 topology_thread_cpumask(cpu));
8761 if (cpu == cpumask_first(d->this_sibling_map))
8762 init_sched_build_groups(d->this_sibling_map, cpu_map,
8763 &cpu_to_cpu_group,
8764 d->send_covered, d->tmpmask);
8765 break;
8766 #endif
8767 #ifdef CONFIG_SCHED_MC
8768 case SD_LV_MC: /* set up multi-core groups */
8769 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8770 if (cpu == cpumask_first(d->this_core_map))
8771 init_sched_build_groups(d->this_core_map, cpu_map,
8772 &cpu_to_core_group,
8773 d->send_covered, d->tmpmask);
8774 break;
8775 #endif
8776 case SD_LV_CPU: /* set up physical groups */
8777 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8778 if (!cpumask_empty(d->nodemask))
8779 init_sched_build_groups(d->nodemask, cpu_map,
8780 &cpu_to_phys_group,
8781 d->send_covered, d->tmpmask);
8782 break;
8783 #ifdef CONFIG_NUMA
8784 case SD_LV_ALLNODES:
8785 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8786 d->send_covered, d->tmpmask);
8787 break;
8788 #endif
8789 default:
8790 break;
8795 * Build sched domains for a given set of cpus and attach the sched domains
8796 * to the individual cpus
8798 static int __build_sched_domains(const struct cpumask *cpu_map,
8799 struct sched_domain_attr *attr)
8801 enum s_alloc alloc_state = sa_none;
8802 struct s_data d;
8803 struct sched_domain *sd;
8804 int i;
8805 #ifdef CONFIG_NUMA
8806 d.sd_allnodes = 0;
8807 #endif
8809 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8810 if (alloc_state != sa_rootdomain)
8811 goto error;
8812 alloc_state = sa_sched_groups;
8815 * Set up domains for cpus specified by the cpu_map.
8817 for_each_cpu(i, cpu_map) {
8818 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8819 cpu_map);
8821 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8822 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8823 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8824 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8827 for_each_cpu(i, cpu_map) {
8828 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8829 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8832 /* Set up physical groups */
8833 for (i = 0; i < nr_node_ids; i++)
8834 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8836 #ifdef CONFIG_NUMA
8837 /* Set up node groups */
8838 if (d.sd_allnodes)
8839 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8841 for (i = 0; i < nr_node_ids; i++)
8842 if (build_numa_sched_groups(&d, cpu_map, i))
8843 goto error;
8844 #endif
8846 /* Calculate CPU power for physical packages and nodes */
8847 #ifdef CONFIG_SCHED_SMT
8848 for_each_cpu(i, cpu_map) {
8849 sd = &per_cpu(cpu_domains, i).sd;
8850 init_sched_groups_power(i, sd);
8852 #endif
8853 #ifdef CONFIG_SCHED_MC
8854 for_each_cpu(i, cpu_map) {
8855 sd = &per_cpu(core_domains, i).sd;
8856 init_sched_groups_power(i, sd);
8858 #endif
8860 for_each_cpu(i, cpu_map) {
8861 sd = &per_cpu(phys_domains, i).sd;
8862 init_sched_groups_power(i, sd);
8865 #ifdef CONFIG_NUMA
8866 for (i = 0; i < nr_node_ids; i++)
8867 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8869 if (d.sd_allnodes) {
8870 struct sched_group *sg;
8872 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8873 d.tmpmask);
8874 init_numa_sched_groups_power(sg);
8876 #endif
8878 /* Attach the domains */
8879 for_each_cpu(i, cpu_map) {
8880 #ifdef CONFIG_SCHED_SMT
8881 sd = &per_cpu(cpu_domains, i).sd;
8882 #elif defined(CONFIG_SCHED_MC)
8883 sd = &per_cpu(core_domains, i).sd;
8884 #else
8885 sd = &per_cpu(phys_domains, i).sd;
8886 #endif
8887 cpu_attach_domain(sd, d.rd, i);
8890 d.sched_group_nodes = NULL; /* don't free this we still need it */
8891 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8892 return 0;
8894 error:
8895 __free_domain_allocs(&d, alloc_state, cpu_map);
8896 return -ENOMEM;
8899 static int build_sched_domains(const struct cpumask *cpu_map)
8901 return __build_sched_domains(cpu_map, NULL);
8904 static struct cpumask *doms_cur; /* current sched domains */
8905 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8906 static struct sched_domain_attr *dattr_cur;
8907 /* attribues of custom domains in 'doms_cur' */
8910 * Special case: If a kmalloc of a doms_cur partition (array of
8911 * cpumask) fails, then fallback to a single sched domain,
8912 * as determined by the single cpumask fallback_doms.
8914 static cpumask_var_t fallback_doms;
8917 * arch_update_cpu_topology lets virtualized architectures update the
8918 * cpu core maps. It is supposed to return 1 if the topology changed
8919 * or 0 if it stayed the same.
8921 int __attribute__((weak)) arch_update_cpu_topology(void)
8923 return 0;
8927 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8928 * For now this just excludes isolated cpus, but could be used to
8929 * exclude other special cases in the future.
8931 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8933 int err;
8935 arch_update_cpu_topology();
8936 ndoms_cur = 1;
8937 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8938 if (!doms_cur)
8939 doms_cur = fallback_doms;
8940 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8941 dattr_cur = NULL;
8942 err = build_sched_domains(doms_cur);
8943 register_sched_domain_sysctl();
8945 return err;
8948 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8949 struct cpumask *tmpmask)
8951 free_sched_groups(cpu_map, tmpmask);
8955 * Detach sched domains from a group of cpus specified in cpu_map
8956 * These cpus will now be attached to the NULL domain
8958 static void detach_destroy_domains(const struct cpumask *cpu_map)
8960 /* Save because hotplug lock held. */
8961 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8962 int i;
8964 for_each_cpu(i, cpu_map)
8965 cpu_attach_domain(NULL, &def_root_domain, i);
8966 synchronize_sched();
8967 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8970 /* handle null as "default" */
8971 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8972 struct sched_domain_attr *new, int idx_new)
8974 struct sched_domain_attr tmp;
8976 /* fast path */
8977 if (!new && !cur)
8978 return 1;
8980 tmp = SD_ATTR_INIT;
8981 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8982 new ? (new + idx_new) : &tmp,
8983 sizeof(struct sched_domain_attr));
8987 * Partition sched domains as specified by the 'ndoms_new'
8988 * cpumasks in the array doms_new[] of cpumasks. This compares
8989 * doms_new[] to the current sched domain partitioning, doms_cur[].
8990 * It destroys each deleted domain and builds each new domain.
8992 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8993 * The masks don't intersect (don't overlap.) We should setup one
8994 * sched domain for each mask. CPUs not in any of the cpumasks will
8995 * not be load balanced. If the same cpumask appears both in the
8996 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8997 * it as it is.
8999 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9000 * ownership of it and will kfree it when done with it. If the caller
9001 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9002 * ndoms_new == 1, and partition_sched_domains() will fallback to
9003 * the single partition 'fallback_doms', it also forces the domains
9004 * to be rebuilt.
9006 * If doms_new == NULL it will be replaced with cpu_online_mask.
9007 * ndoms_new == 0 is a special case for destroying existing domains,
9008 * and it will not create the default domain.
9010 * Call with hotplug lock held
9012 /* FIXME: Change to struct cpumask *doms_new[] */
9013 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9014 struct sched_domain_attr *dattr_new)
9016 int i, j, n;
9017 int new_topology;
9019 mutex_lock(&sched_domains_mutex);
9021 /* always unregister in case we don't destroy any domains */
9022 unregister_sched_domain_sysctl();
9024 /* Let architecture update cpu core mappings. */
9025 new_topology = arch_update_cpu_topology();
9027 n = doms_new ? ndoms_new : 0;
9029 /* Destroy deleted domains */
9030 for (i = 0; i < ndoms_cur; i++) {
9031 for (j = 0; j < n && !new_topology; j++) {
9032 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9033 && dattrs_equal(dattr_cur, i, dattr_new, j))
9034 goto match1;
9036 /* no match - a current sched domain not in new doms_new[] */
9037 detach_destroy_domains(doms_cur + i);
9038 match1:
9042 if (doms_new == NULL) {
9043 ndoms_cur = 0;
9044 doms_new = fallback_doms;
9045 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9046 WARN_ON_ONCE(dattr_new);
9049 /* Build new domains */
9050 for (i = 0; i < ndoms_new; i++) {
9051 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9052 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9053 && dattrs_equal(dattr_new, i, dattr_cur, j))
9054 goto match2;
9056 /* no match - add a new doms_new */
9057 __build_sched_domains(doms_new + i,
9058 dattr_new ? dattr_new + i : NULL);
9059 match2:
9063 /* Remember the new sched domains */
9064 if (doms_cur != fallback_doms)
9065 kfree(doms_cur);
9066 kfree(dattr_cur); /* kfree(NULL) is safe */
9067 doms_cur = doms_new;
9068 dattr_cur = dattr_new;
9069 ndoms_cur = ndoms_new;
9071 register_sched_domain_sysctl();
9073 mutex_unlock(&sched_domains_mutex);
9076 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9077 static void arch_reinit_sched_domains(void)
9079 get_online_cpus();
9081 /* Destroy domains first to force the rebuild */
9082 partition_sched_domains(0, NULL, NULL);
9084 rebuild_sched_domains();
9085 put_online_cpus();
9088 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9090 unsigned int level = 0;
9092 if (sscanf(buf, "%u", &level) != 1)
9093 return -EINVAL;
9096 * level is always be positive so don't check for
9097 * level < POWERSAVINGS_BALANCE_NONE which is 0
9098 * What happens on 0 or 1 byte write,
9099 * need to check for count as well?
9102 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9103 return -EINVAL;
9105 if (smt)
9106 sched_smt_power_savings = level;
9107 else
9108 sched_mc_power_savings = level;
9110 arch_reinit_sched_domains();
9112 return count;
9115 #ifdef CONFIG_SCHED_MC
9116 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9117 char *page)
9119 return sprintf(page, "%u\n", sched_mc_power_savings);
9121 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9122 const char *buf, size_t count)
9124 return sched_power_savings_store(buf, count, 0);
9126 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9127 sched_mc_power_savings_show,
9128 sched_mc_power_savings_store);
9129 #endif
9131 #ifdef CONFIG_SCHED_SMT
9132 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9133 char *page)
9135 return sprintf(page, "%u\n", sched_smt_power_savings);
9137 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9138 const char *buf, size_t count)
9140 return sched_power_savings_store(buf, count, 1);
9142 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9143 sched_smt_power_savings_show,
9144 sched_smt_power_savings_store);
9145 #endif
9147 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9149 int err = 0;
9151 #ifdef CONFIG_SCHED_SMT
9152 if (smt_capable())
9153 err = sysfs_create_file(&cls->kset.kobj,
9154 &attr_sched_smt_power_savings.attr);
9155 #endif
9156 #ifdef CONFIG_SCHED_MC
9157 if (!err && mc_capable())
9158 err = sysfs_create_file(&cls->kset.kobj,
9159 &attr_sched_mc_power_savings.attr);
9160 #endif
9161 return err;
9163 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9165 #ifndef CONFIG_CPUSETS
9167 * Add online and remove offline CPUs from the scheduler domains.
9168 * When cpusets are enabled they take over this function.
9170 static int update_sched_domains(struct notifier_block *nfb,
9171 unsigned long action, void *hcpu)
9173 switch (action) {
9174 case CPU_ONLINE:
9175 case CPU_ONLINE_FROZEN:
9176 case CPU_DEAD:
9177 case CPU_DEAD_FROZEN:
9178 partition_sched_domains(1, NULL, NULL);
9179 return NOTIFY_OK;
9181 default:
9182 return NOTIFY_DONE;
9185 #endif
9187 static int update_runtime(struct notifier_block *nfb,
9188 unsigned long action, void *hcpu)
9190 int cpu = (int)(long)hcpu;
9192 switch (action) {
9193 case CPU_DOWN_PREPARE:
9194 case CPU_DOWN_PREPARE_FROZEN:
9195 disable_runtime(cpu_rq(cpu));
9196 return NOTIFY_OK;
9198 case CPU_DOWN_FAILED:
9199 case CPU_DOWN_FAILED_FROZEN:
9200 case CPU_ONLINE:
9201 case CPU_ONLINE_FROZEN:
9202 enable_runtime(cpu_rq(cpu));
9203 return NOTIFY_OK;
9205 default:
9206 return NOTIFY_DONE;
9210 void __init sched_init_smp(void)
9212 cpumask_var_t non_isolated_cpus;
9214 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9215 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9217 #if defined(CONFIG_NUMA)
9218 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9219 GFP_KERNEL);
9220 BUG_ON(sched_group_nodes_bycpu == NULL);
9221 #endif
9222 get_online_cpus();
9223 mutex_lock(&sched_domains_mutex);
9224 arch_init_sched_domains(cpu_online_mask);
9225 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9226 if (cpumask_empty(non_isolated_cpus))
9227 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9228 mutex_unlock(&sched_domains_mutex);
9229 put_online_cpus();
9231 #ifndef CONFIG_CPUSETS
9232 /* XXX: Theoretical race here - CPU may be hotplugged now */
9233 hotcpu_notifier(update_sched_domains, 0);
9234 #endif
9236 /* RT runtime code needs to handle some hotplug events */
9237 hotcpu_notifier(update_runtime, 0);
9239 init_hrtick();
9241 /* Move init over to a non-isolated CPU */
9242 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9243 BUG();
9244 sched_init_granularity();
9245 free_cpumask_var(non_isolated_cpus);
9247 init_sched_rt_class();
9249 #else
9250 void __init sched_init_smp(void)
9252 sched_init_granularity();
9254 #endif /* CONFIG_SMP */
9256 const_debug unsigned int sysctl_timer_migration = 1;
9258 int in_sched_functions(unsigned long addr)
9260 return in_lock_functions(addr) ||
9261 (addr >= (unsigned long)__sched_text_start
9262 && addr < (unsigned long)__sched_text_end);
9265 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9267 cfs_rq->tasks_timeline = RB_ROOT;
9268 INIT_LIST_HEAD(&cfs_rq->tasks);
9269 #ifdef CONFIG_FAIR_GROUP_SCHED
9270 cfs_rq->rq = rq;
9271 #endif
9272 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9275 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9277 struct rt_prio_array *array;
9278 int i;
9280 array = &rt_rq->active;
9281 for (i = 0; i < MAX_RT_PRIO; i++) {
9282 INIT_LIST_HEAD(array->queue + i);
9283 __clear_bit(i, array->bitmap);
9285 /* delimiter for bitsearch: */
9286 __set_bit(MAX_RT_PRIO, array->bitmap);
9288 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9289 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9290 #ifdef CONFIG_SMP
9291 rt_rq->highest_prio.next = MAX_RT_PRIO;
9292 #endif
9293 #endif
9294 #ifdef CONFIG_SMP
9295 rt_rq->rt_nr_migratory = 0;
9296 rt_rq->overloaded = 0;
9297 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9298 #endif
9300 rt_rq->rt_time = 0;
9301 rt_rq->rt_throttled = 0;
9302 rt_rq->rt_runtime = 0;
9303 spin_lock_init(&rt_rq->rt_runtime_lock);
9305 #ifdef CONFIG_RT_GROUP_SCHED
9306 rt_rq->rt_nr_boosted = 0;
9307 rt_rq->rq = rq;
9308 #endif
9311 #ifdef CONFIG_FAIR_GROUP_SCHED
9312 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9313 struct sched_entity *se, int cpu, int add,
9314 struct sched_entity *parent)
9316 struct rq *rq = cpu_rq(cpu);
9317 tg->cfs_rq[cpu] = cfs_rq;
9318 init_cfs_rq(cfs_rq, rq);
9319 cfs_rq->tg = tg;
9320 if (add)
9321 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9323 tg->se[cpu] = se;
9324 /* se could be NULL for init_task_group */
9325 if (!se)
9326 return;
9328 if (!parent)
9329 se->cfs_rq = &rq->cfs;
9330 else
9331 se->cfs_rq = parent->my_q;
9333 se->my_q = cfs_rq;
9334 se->load.weight = tg->shares;
9335 se->load.inv_weight = 0;
9336 se->parent = parent;
9338 #endif
9340 #ifdef CONFIG_RT_GROUP_SCHED
9341 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9342 struct sched_rt_entity *rt_se, int cpu, int add,
9343 struct sched_rt_entity *parent)
9345 struct rq *rq = cpu_rq(cpu);
9347 tg->rt_rq[cpu] = rt_rq;
9348 init_rt_rq(rt_rq, rq);
9349 rt_rq->tg = tg;
9350 rt_rq->rt_se = rt_se;
9351 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9352 if (add)
9353 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9355 tg->rt_se[cpu] = rt_se;
9356 if (!rt_se)
9357 return;
9359 if (!parent)
9360 rt_se->rt_rq = &rq->rt;
9361 else
9362 rt_se->rt_rq = parent->my_q;
9364 rt_se->my_q = rt_rq;
9365 rt_se->parent = parent;
9366 INIT_LIST_HEAD(&rt_se->run_list);
9368 #endif
9370 void __init sched_init(void)
9372 int i, j;
9373 unsigned long alloc_size = 0, ptr;
9375 #ifdef CONFIG_FAIR_GROUP_SCHED
9376 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9377 #endif
9378 #ifdef CONFIG_RT_GROUP_SCHED
9379 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9380 #endif
9381 #ifdef CONFIG_USER_SCHED
9382 alloc_size *= 2;
9383 #endif
9384 #ifdef CONFIG_CPUMASK_OFFSTACK
9385 alloc_size += num_possible_cpus() * cpumask_size();
9386 #endif
9388 * As sched_init() is called before page_alloc is setup,
9389 * we use alloc_bootmem().
9391 if (alloc_size) {
9392 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9394 #ifdef CONFIG_FAIR_GROUP_SCHED
9395 init_task_group.se = (struct sched_entity **)ptr;
9396 ptr += nr_cpu_ids * sizeof(void **);
9398 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9399 ptr += nr_cpu_ids * sizeof(void **);
9401 #ifdef CONFIG_USER_SCHED
9402 root_task_group.se = (struct sched_entity **)ptr;
9403 ptr += nr_cpu_ids * sizeof(void **);
9405 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9406 ptr += nr_cpu_ids * sizeof(void **);
9407 #endif /* CONFIG_USER_SCHED */
9408 #endif /* CONFIG_FAIR_GROUP_SCHED */
9409 #ifdef CONFIG_RT_GROUP_SCHED
9410 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9411 ptr += nr_cpu_ids * sizeof(void **);
9413 init_task_group.rt_rq = (struct rt_rq **)ptr;
9414 ptr += nr_cpu_ids * sizeof(void **);
9416 #ifdef CONFIG_USER_SCHED
9417 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9418 ptr += nr_cpu_ids * sizeof(void **);
9420 root_task_group.rt_rq = (struct rt_rq **)ptr;
9421 ptr += nr_cpu_ids * sizeof(void **);
9422 #endif /* CONFIG_USER_SCHED */
9423 #endif /* CONFIG_RT_GROUP_SCHED */
9424 #ifdef CONFIG_CPUMASK_OFFSTACK
9425 for_each_possible_cpu(i) {
9426 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9427 ptr += cpumask_size();
9429 #endif /* CONFIG_CPUMASK_OFFSTACK */
9432 #ifdef CONFIG_SMP
9433 init_defrootdomain();
9434 #endif
9436 init_rt_bandwidth(&def_rt_bandwidth,
9437 global_rt_period(), global_rt_runtime());
9439 #ifdef CONFIG_RT_GROUP_SCHED
9440 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9441 global_rt_period(), global_rt_runtime());
9442 #ifdef CONFIG_USER_SCHED
9443 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9444 global_rt_period(), RUNTIME_INF);
9445 #endif /* CONFIG_USER_SCHED */
9446 #endif /* CONFIG_RT_GROUP_SCHED */
9448 #ifdef CONFIG_GROUP_SCHED
9449 list_add(&init_task_group.list, &task_groups);
9450 INIT_LIST_HEAD(&init_task_group.children);
9452 #ifdef CONFIG_USER_SCHED
9453 INIT_LIST_HEAD(&root_task_group.children);
9454 init_task_group.parent = &root_task_group;
9455 list_add(&init_task_group.siblings, &root_task_group.children);
9456 #endif /* CONFIG_USER_SCHED */
9457 #endif /* CONFIG_GROUP_SCHED */
9459 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9460 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9461 __alignof__(unsigned long));
9462 #endif
9463 for_each_possible_cpu(i) {
9464 struct rq *rq;
9466 rq = cpu_rq(i);
9467 spin_lock_init(&rq->lock);
9468 rq->nr_running = 0;
9469 rq->calc_load_active = 0;
9470 rq->calc_load_update = jiffies + LOAD_FREQ;
9471 init_cfs_rq(&rq->cfs, rq);
9472 init_rt_rq(&rq->rt, rq);
9473 #ifdef CONFIG_FAIR_GROUP_SCHED
9474 init_task_group.shares = init_task_group_load;
9475 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9476 #ifdef CONFIG_CGROUP_SCHED
9478 * How much cpu bandwidth does init_task_group get?
9480 * In case of task-groups formed thr' the cgroup filesystem, it
9481 * gets 100% of the cpu resources in the system. This overall
9482 * system cpu resource is divided among the tasks of
9483 * init_task_group and its child task-groups in a fair manner,
9484 * based on each entity's (task or task-group's) weight
9485 * (se->load.weight).
9487 * In other words, if init_task_group has 10 tasks of weight
9488 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9489 * then A0's share of the cpu resource is:
9491 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9493 * We achieve this by letting init_task_group's tasks sit
9494 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9496 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9497 #elif defined CONFIG_USER_SCHED
9498 root_task_group.shares = NICE_0_LOAD;
9499 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9501 * In case of task-groups formed thr' the user id of tasks,
9502 * init_task_group represents tasks belonging to root user.
9503 * Hence it forms a sibling of all subsequent groups formed.
9504 * In this case, init_task_group gets only a fraction of overall
9505 * system cpu resource, based on the weight assigned to root
9506 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9507 * by letting tasks of init_task_group sit in a separate cfs_rq
9508 * (init_tg_cfs_rq) and having one entity represent this group of
9509 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9511 init_tg_cfs_entry(&init_task_group,
9512 &per_cpu(init_tg_cfs_rq, i),
9513 &per_cpu(init_sched_entity, i), i, 1,
9514 root_task_group.se[i]);
9516 #endif
9517 #endif /* CONFIG_FAIR_GROUP_SCHED */
9519 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9520 #ifdef CONFIG_RT_GROUP_SCHED
9521 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9522 #ifdef CONFIG_CGROUP_SCHED
9523 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9524 #elif defined CONFIG_USER_SCHED
9525 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9526 init_tg_rt_entry(&init_task_group,
9527 &per_cpu(init_rt_rq, i),
9528 &per_cpu(init_sched_rt_entity, i), i, 1,
9529 root_task_group.rt_se[i]);
9530 #endif
9531 #endif
9533 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9534 rq->cpu_load[j] = 0;
9535 #ifdef CONFIG_SMP
9536 rq->sd = NULL;
9537 rq->rd = NULL;
9538 rq->post_schedule = 0;
9539 rq->active_balance = 0;
9540 rq->next_balance = jiffies;
9541 rq->push_cpu = 0;
9542 rq->cpu = i;
9543 rq->online = 0;
9544 rq->migration_thread = NULL;
9545 rq->idle_stamp = 0;
9546 rq->avg_idle = 2*sysctl_sched_migration_cost;
9547 INIT_LIST_HEAD(&rq->migration_queue);
9548 rq_attach_root(rq, &def_root_domain);
9549 #endif
9550 init_rq_hrtick(rq);
9551 atomic_set(&rq->nr_iowait, 0);
9554 set_load_weight(&init_task);
9556 #ifdef CONFIG_PREEMPT_NOTIFIERS
9557 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9558 #endif
9560 #ifdef CONFIG_SMP
9561 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9562 #endif
9564 #ifdef CONFIG_RT_MUTEXES
9565 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9566 #endif
9569 * The boot idle thread does lazy MMU switching as well:
9571 atomic_inc(&init_mm.mm_count);
9572 enter_lazy_tlb(&init_mm, current);
9575 * Make us the idle thread. Technically, schedule() should not be
9576 * called from this thread, however somewhere below it might be,
9577 * but because we are the idle thread, we just pick up running again
9578 * when this runqueue becomes "idle".
9580 init_idle(current, smp_processor_id());
9582 calc_load_update = jiffies + LOAD_FREQ;
9585 * During early bootup we pretend to be a normal task:
9587 current->sched_class = &fair_sched_class;
9589 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9590 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9591 #ifdef CONFIG_SMP
9592 #ifdef CONFIG_NO_HZ
9593 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9594 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9595 #endif
9596 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9597 #endif /* SMP */
9599 perf_event_init();
9601 scheduler_running = 1;
9604 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9605 static inline int preempt_count_equals(int preempt_offset)
9607 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9609 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9612 void __might_sleep(char *file, int line, int preempt_offset)
9614 #ifdef in_atomic
9615 static unsigned long prev_jiffy; /* ratelimiting */
9617 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9618 system_state != SYSTEM_RUNNING || oops_in_progress)
9619 return;
9620 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9621 return;
9622 prev_jiffy = jiffies;
9624 printk(KERN_ERR
9625 "BUG: sleeping function called from invalid context at %s:%d\n",
9626 file, line);
9627 printk(KERN_ERR
9628 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9629 in_atomic(), irqs_disabled(),
9630 current->pid, current->comm);
9632 debug_show_held_locks(current);
9633 if (irqs_disabled())
9634 print_irqtrace_events(current);
9635 dump_stack();
9636 #endif
9638 EXPORT_SYMBOL(__might_sleep);
9639 #endif
9641 #ifdef CONFIG_MAGIC_SYSRQ
9642 static void normalize_task(struct rq *rq, struct task_struct *p)
9644 int on_rq;
9646 update_rq_clock(rq);
9647 on_rq = p->se.on_rq;
9648 if (on_rq)
9649 deactivate_task(rq, p, 0);
9650 __setscheduler(rq, p, SCHED_NORMAL, 0);
9651 if (on_rq) {
9652 activate_task(rq, p, 0);
9653 resched_task(rq->curr);
9657 void normalize_rt_tasks(void)
9659 struct task_struct *g, *p;
9660 unsigned long flags;
9661 struct rq *rq;
9663 read_lock_irqsave(&tasklist_lock, flags);
9664 do_each_thread(g, p) {
9666 * Only normalize user tasks:
9668 if (!p->mm)
9669 continue;
9671 p->se.exec_start = 0;
9672 #ifdef CONFIG_SCHEDSTATS
9673 p->se.wait_start = 0;
9674 p->se.sleep_start = 0;
9675 p->se.block_start = 0;
9676 #endif
9678 if (!rt_task(p)) {
9680 * Renice negative nice level userspace
9681 * tasks back to 0:
9683 if (TASK_NICE(p) < 0 && p->mm)
9684 set_user_nice(p, 0);
9685 continue;
9688 spin_lock(&p->pi_lock);
9689 rq = __task_rq_lock(p);
9691 normalize_task(rq, p);
9693 __task_rq_unlock(rq);
9694 spin_unlock(&p->pi_lock);
9695 } while_each_thread(g, p);
9697 read_unlock_irqrestore(&tasklist_lock, flags);
9700 #endif /* CONFIG_MAGIC_SYSRQ */
9702 #ifdef CONFIG_IA64
9704 * These functions are only useful for the IA64 MCA handling.
9706 * They can only be called when the whole system has been
9707 * stopped - every CPU needs to be quiescent, and no scheduling
9708 * activity can take place. Using them for anything else would
9709 * be a serious bug, and as a result, they aren't even visible
9710 * under any other configuration.
9714 * curr_task - return the current task for a given cpu.
9715 * @cpu: the processor in question.
9717 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9719 struct task_struct *curr_task(int cpu)
9721 return cpu_curr(cpu);
9725 * set_curr_task - set the current task for a given cpu.
9726 * @cpu: the processor in question.
9727 * @p: the task pointer to set.
9729 * Description: This function must only be used when non-maskable interrupts
9730 * are serviced on a separate stack. It allows the architecture to switch the
9731 * notion of the current task on a cpu in a non-blocking manner. This function
9732 * must be called with all CPU's synchronized, and interrupts disabled, the
9733 * and caller must save the original value of the current task (see
9734 * curr_task() above) and restore that value before reenabling interrupts and
9735 * re-starting the system.
9737 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9739 void set_curr_task(int cpu, struct task_struct *p)
9741 cpu_curr(cpu) = p;
9744 #endif
9746 #ifdef CONFIG_FAIR_GROUP_SCHED
9747 static void free_fair_sched_group(struct task_group *tg)
9749 int i;
9751 for_each_possible_cpu(i) {
9752 if (tg->cfs_rq)
9753 kfree(tg->cfs_rq[i]);
9754 if (tg->se)
9755 kfree(tg->se[i]);
9758 kfree(tg->cfs_rq);
9759 kfree(tg->se);
9762 static
9763 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9765 struct cfs_rq *cfs_rq;
9766 struct sched_entity *se;
9767 struct rq *rq;
9768 int i;
9770 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9771 if (!tg->cfs_rq)
9772 goto err;
9773 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9774 if (!tg->se)
9775 goto err;
9777 tg->shares = NICE_0_LOAD;
9779 for_each_possible_cpu(i) {
9780 rq = cpu_rq(i);
9782 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9783 GFP_KERNEL, cpu_to_node(i));
9784 if (!cfs_rq)
9785 goto err;
9787 se = kzalloc_node(sizeof(struct sched_entity),
9788 GFP_KERNEL, cpu_to_node(i));
9789 if (!se)
9790 goto err;
9792 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9795 return 1;
9797 err:
9798 return 0;
9801 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9803 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9804 &cpu_rq(cpu)->leaf_cfs_rq_list);
9807 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9809 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9811 #else /* !CONFG_FAIR_GROUP_SCHED */
9812 static inline void free_fair_sched_group(struct task_group *tg)
9816 static inline
9817 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9819 return 1;
9822 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9826 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9829 #endif /* CONFIG_FAIR_GROUP_SCHED */
9831 #ifdef CONFIG_RT_GROUP_SCHED
9832 static void free_rt_sched_group(struct task_group *tg)
9834 int i;
9836 destroy_rt_bandwidth(&tg->rt_bandwidth);
9838 for_each_possible_cpu(i) {
9839 if (tg->rt_rq)
9840 kfree(tg->rt_rq[i]);
9841 if (tg->rt_se)
9842 kfree(tg->rt_se[i]);
9845 kfree(tg->rt_rq);
9846 kfree(tg->rt_se);
9849 static
9850 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9852 struct rt_rq *rt_rq;
9853 struct sched_rt_entity *rt_se;
9854 struct rq *rq;
9855 int i;
9857 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9858 if (!tg->rt_rq)
9859 goto err;
9860 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9861 if (!tg->rt_se)
9862 goto err;
9864 init_rt_bandwidth(&tg->rt_bandwidth,
9865 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9867 for_each_possible_cpu(i) {
9868 rq = cpu_rq(i);
9870 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9871 GFP_KERNEL, cpu_to_node(i));
9872 if (!rt_rq)
9873 goto err;
9875 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9876 GFP_KERNEL, cpu_to_node(i));
9877 if (!rt_se)
9878 goto err;
9880 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9883 return 1;
9885 err:
9886 return 0;
9889 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9891 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9892 &cpu_rq(cpu)->leaf_rt_rq_list);
9895 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9897 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9899 #else /* !CONFIG_RT_GROUP_SCHED */
9900 static inline void free_rt_sched_group(struct task_group *tg)
9904 static inline
9905 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9907 return 1;
9910 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9914 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9917 #endif /* CONFIG_RT_GROUP_SCHED */
9919 #ifdef CONFIG_GROUP_SCHED
9920 static void free_sched_group(struct task_group *tg)
9922 free_fair_sched_group(tg);
9923 free_rt_sched_group(tg);
9924 kfree(tg);
9927 /* allocate runqueue etc for a new task group */
9928 struct task_group *sched_create_group(struct task_group *parent)
9930 struct task_group *tg;
9931 unsigned long flags;
9932 int i;
9934 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9935 if (!tg)
9936 return ERR_PTR(-ENOMEM);
9938 if (!alloc_fair_sched_group(tg, parent))
9939 goto err;
9941 if (!alloc_rt_sched_group(tg, parent))
9942 goto err;
9944 spin_lock_irqsave(&task_group_lock, flags);
9945 for_each_possible_cpu(i) {
9946 register_fair_sched_group(tg, i);
9947 register_rt_sched_group(tg, i);
9949 list_add_rcu(&tg->list, &task_groups);
9951 WARN_ON(!parent); /* root should already exist */
9953 tg->parent = parent;
9954 INIT_LIST_HEAD(&tg->children);
9955 list_add_rcu(&tg->siblings, &parent->children);
9956 spin_unlock_irqrestore(&task_group_lock, flags);
9958 return tg;
9960 err:
9961 free_sched_group(tg);
9962 return ERR_PTR(-ENOMEM);
9965 /* rcu callback to free various structures associated with a task group */
9966 static void free_sched_group_rcu(struct rcu_head *rhp)
9968 /* now it should be safe to free those cfs_rqs */
9969 free_sched_group(container_of(rhp, struct task_group, rcu));
9972 /* Destroy runqueue etc associated with a task group */
9973 void sched_destroy_group(struct task_group *tg)
9975 unsigned long flags;
9976 int i;
9978 spin_lock_irqsave(&task_group_lock, flags);
9979 for_each_possible_cpu(i) {
9980 unregister_fair_sched_group(tg, i);
9981 unregister_rt_sched_group(tg, i);
9983 list_del_rcu(&tg->list);
9984 list_del_rcu(&tg->siblings);
9985 spin_unlock_irqrestore(&task_group_lock, flags);
9987 /* wait for possible concurrent references to cfs_rqs complete */
9988 call_rcu(&tg->rcu, free_sched_group_rcu);
9991 /* change task's runqueue when it moves between groups.
9992 * The caller of this function should have put the task in its new group
9993 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9994 * reflect its new group.
9996 void sched_move_task(struct task_struct *tsk)
9998 int on_rq, running;
9999 unsigned long flags;
10000 struct rq *rq;
10002 rq = task_rq_lock(tsk, &flags);
10004 update_rq_clock(rq);
10006 running = task_current(rq, tsk);
10007 on_rq = tsk->se.on_rq;
10009 if (on_rq)
10010 dequeue_task(rq, tsk, 0);
10011 if (unlikely(running))
10012 tsk->sched_class->put_prev_task(rq, tsk);
10014 set_task_rq(tsk, task_cpu(tsk));
10016 #ifdef CONFIG_FAIR_GROUP_SCHED
10017 if (tsk->sched_class->moved_group)
10018 tsk->sched_class->moved_group(tsk);
10019 #endif
10021 if (unlikely(running))
10022 tsk->sched_class->set_curr_task(rq);
10023 if (on_rq)
10024 enqueue_task(rq, tsk, 0);
10026 task_rq_unlock(rq, &flags);
10028 #endif /* CONFIG_GROUP_SCHED */
10030 #ifdef CONFIG_FAIR_GROUP_SCHED
10031 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10033 struct cfs_rq *cfs_rq = se->cfs_rq;
10034 int on_rq;
10036 on_rq = se->on_rq;
10037 if (on_rq)
10038 dequeue_entity(cfs_rq, se, 0);
10040 se->load.weight = shares;
10041 se->load.inv_weight = 0;
10043 if (on_rq)
10044 enqueue_entity(cfs_rq, se, 0);
10047 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10049 struct cfs_rq *cfs_rq = se->cfs_rq;
10050 struct rq *rq = cfs_rq->rq;
10051 unsigned long flags;
10053 spin_lock_irqsave(&rq->lock, flags);
10054 __set_se_shares(se, shares);
10055 spin_unlock_irqrestore(&rq->lock, flags);
10058 static DEFINE_MUTEX(shares_mutex);
10060 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10062 int i;
10063 unsigned long flags;
10066 * We can't change the weight of the root cgroup.
10068 if (!tg->se[0])
10069 return -EINVAL;
10071 if (shares < MIN_SHARES)
10072 shares = MIN_SHARES;
10073 else if (shares > MAX_SHARES)
10074 shares = MAX_SHARES;
10076 mutex_lock(&shares_mutex);
10077 if (tg->shares == shares)
10078 goto done;
10080 spin_lock_irqsave(&task_group_lock, flags);
10081 for_each_possible_cpu(i)
10082 unregister_fair_sched_group(tg, i);
10083 list_del_rcu(&tg->siblings);
10084 spin_unlock_irqrestore(&task_group_lock, flags);
10086 /* wait for any ongoing reference to this group to finish */
10087 synchronize_sched();
10090 * Now we are free to modify the group's share on each cpu
10091 * w/o tripping rebalance_share or load_balance_fair.
10093 tg->shares = shares;
10094 for_each_possible_cpu(i) {
10096 * force a rebalance
10098 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10099 set_se_shares(tg->se[i], shares);
10103 * Enable load balance activity on this group, by inserting it back on
10104 * each cpu's rq->leaf_cfs_rq_list.
10106 spin_lock_irqsave(&task_group_lock, flags);
10107 for_each_possible_cpu(i)
10108 register_fair_sched_group(tg, i);
10109 list_add_rcu(&tg->siblings, &tg->parent->children);
10110 spin_unlock_irqrestore(&task_group_lock, flags);
10111 done:
10112 mutex_unlock(&shares_mutex);
10113 return 0;
10116 unsigned long sched_group_shares(struct task_group *tg)
10118 return tg->shares;
10120 #endif
10122 #ifdef CONFIG_RT_GROUP_SCHED
10124 * Ensure that the real time constraints are schedulable.
10126 static DEFINE_MUTEX(rt_constraints_mutex);
10128 static unsigned long to_ratio(u64 period, u64 runtime)
10130 if (runtime == RUNTIME_INF)
10131 return 1ULL << 20;
10133 return div64_u64(runtime << 20, period);
10136 /* Must be called with tasklist_lock held */
10137 static inline int tg_has_rt_tasks(struct task_group *tg)
10139 struct task_struct *g, *p;
10141 do_each_thread(g, p) {
10142 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10143 return 1;
10144 } while_each_thread(g, p);
10146 return 0;
10149 struct rt_schedulable_data {
10150 struct task_group *tg;
10151 u64 rt_period;
10152 u64 rt_runtime;
10155 static int tg_schedulable(struct task_group *tg, void *data)
10157 struct rt_schedulable_data *d = data;
10158 struct task_group *child;
10159 unsigned long total, sum = 0;
10160 u64 period, runtime;
10162 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10163 runtime = tg->rt_bandwidth.rt_runtime;
10165 if (tg == d->tg) {
10166 period = d->rt_period;
10167 runtime = d->rt_runtime;
10170 #ifdef CONFIG_USER_SCHED
10171 if (tg == &root_task_group) {
10172 period = global_rt_period();
10173 runtime = global_rt_runtime();
10175 #endif
10178 * Cannot have more runtime than the period.
10180 if (runtime > period && runtime != RUNTIME_INF)
10181 return -EINVAL;
10184 * Ensure we don't starve existing RT tasks.
10186 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10187 return -EBUSY;
10189 total = to_ratio(period, runtime);
10192 * Nobody can have more than the global setting allows.
10194 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10195 return -EINVAL;
10198 * The sum of our children's runtime should not exceed our own.
10200 list_for_each_entry_rcu(child, &tg->children, siblings) {
10201 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10202 runtime = child->rt_bandwidth.rt_runtime;
10204 if (child == d->tg) {
10205 period = d->rt_period;
10206 runtime = d->rt_runtime;
10209 sum += to_ratio(period, runtime);
10212 if (sum > total)
10213 return -EINVAL;
10215 return 0;
10218 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10220 struct rt_schedulable_data data = {
10221 .tg = tg,
10222 .rt_period = period,
10223 .rt_runtime = runtime,
10226 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10229 static int tg_set_bandwidth(struct task_group *tg,
10230 u64 rt_period, u64 rt_runtime)
10232 int i, err = 0;
10234 mutex_lock(&rt_constraints_mutex);
10235 read_lock(&tasklist_lock);
10236 err = __rt_schedulable(tg, rt_period, rt_runtime);
10237 if (err)
10238 goto unlock;
10240 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10241 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10242 tg->rt_bandwidth.rt_runtime = rt_runtime;
10244 for_each_possible_cpu(i) {
10245 struct rt_rq *rt_rq = tg->rt_rq[i];
10247 spin_lock(&rt_rq->rt_runtime_lock);
10248 rt_rq->rt_runtime = rt_runtime;
10249 spin_unlock(&rt_rq->rt_runtime_lock);
10251 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10252 unlock:
10253 read_unlock(&tasklist_lock);
10254 mutex_unlock(&rt_constraints_mutex);
10256 return err;
10259 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10261 u64 rt_runtime, rt_period;
10263 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10264 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10265 if (rt_runtime_us < 0)
10266 rt_runtime = RUNTIME_INF;
10268 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10271 long sched_group_rt_runtime(struct task_group *tg)
10273 u64 rt_runtime_us;
10275 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10276 return -1;
10278 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10279 do_div(rt_runtime_us, NSEC_PER_USEC);
10280 return rt_runtime_us;
10283 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10285 u64 rt_runtime, rt_period;
10287 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10288 rt_runtime = tg->rt_bandwidth.rt_runtime;
10290 if (rt_period == 0)
10291 return -EINVAL;
10293 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10296 long sched_group_rt_period(struct task_group *tg)
10298 u64 rt_period_us;
10300 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10301 do_div(rt_period_us, NSEC_PER_USEC);
10302 return rt_period_us;
10305 static int sched_rt_global_constraints(void)
10307 u64 runtime, period;
10308 int ret = 0;
10310 if (sysctl_sched_rt_period <= 0)
10311 return -EINVAL;
10313 runtime = global_rt_runtime();
10314 period = global_rt_period();
10317 * Sanity check on the sysctl variables.
10319 if (runtime > period && runtime != RUNTIME_INF)
10320 return -EINVAL;
10322 mutex_lock(&rt_constraints_mutex);
10323 read_lock(&tasklist_lock);
10324 ret = __rt_schedulable(NULL, 0, 0);
10325 read_unlock(&tasklist_lock);
10326 mutex_unlock(&rt_constraints_mutex);
10328 return ret;
10331 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10333 /* Don't accept realtime tasks when there is no way for them to run */
10334 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10335 return 0;
10337 return 1;
10340 #else /* !CONFIG_RT_GROUP_SCHED */
10341 static int sched_rt_global_constraints(void)
10343 unsigned long flags;
10344 int i;
10346 if (sysctl_sched_rt_period <= 0)
10347 return -EINVAL;
10350 * There's always some RT tasks in the root group
10351 * -- migration, kstopmachine etc..
10353 if (sysctl_sched_rt_runtime == 0)
10354 return -EBUSY;
10356 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10357 for_each_possible_cpu(i) {
10358 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10360 spin_lock(&rt_rq->rt_runtime_lock);
10361 rt_rq->rt_runtime = global_rt_runtime();
10362 spin_unlock(&rt_rq->rt_runtime_lock);
10364 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10366 return 0;
10368 #endif /* CONFIG_RT_GROUP_SCHED */
10370 int sched_rt_handler(struct ctl_table *table, int write,
10371 void __user *buffer, size_t *lenp,
10372 loff_t *ppos)
10374 int ret;
10375 int old_period, old_runtime;
10376 static DEFINE_MUTEX(mutex);
10378 mutex_lock(&mutex);
10379 old_period = sysctl_sched_rt_period;
10380 old_runtime = sysctl_sched_rt_runtime;
10382 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10384 if (!ret && write) {
10385 ret = sched_rt_global_constraints();
10386 if (ret) {
10387 sysctl_sched_rt_period = old_period;
10388 sysctl_sched_rt_runtime = old_runtime;
10389 } else {
10390 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10391 def_rt_bandwidth.rt_period =
10392 ns_to_ktime(global_rt_period());
10395 mutex_unlock(&mutex);
10397 return ret;
10400 #ifdef CONFIG_CGROUP_SCHED
10402 /* return corresponding task_group object of a cgroup */
10403 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10405 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10406 struct task_group, css);
10409 static struct cgroup_subsys_state *
10410 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10412 struct task_group *tg, *parent;
10414 if (!cgrp->parent) {
10415 /* This is early initialization for the top cgroup */
10416 return &init_task_group.css;
10419 parent = cgroup_tg(cgrp->parent);
10420 tg = sched_create_group(parent);
10421 if (IS_ERR(tg))
10422 return ERR_PTR(-ENOMEM);
10424 return &tg->css;
10427 static void
10428 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10430 struct task_group *tg = cgroup_tg(cgrp);
10432 sched_destroy_group(tg);
10435 static int
10436 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10438 #ifdef CONFIG_RT_GROUP_SCHED
10439 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10440 return -EINVAL;
10441 #else
10442 /* We don't support RT-tasks being in separate groups */
10443 if (tsk->sched_class != &fair_sched_class)
10444 return -EINVAL;
10445 #endif
10446 return 0;
10449 static int
10450 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10451 struct task_struct *tsk, bool threadgroup)
10453 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10454 if (retval)
10455 return retval;
10456 if (threadgroup) {
10457 struct task_struct *c;
10458 rcu_read_lock();
10459 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10460 retval = cpu_cgroup_can_attach_task(cgrp, c);
10461 if (retval) {
10462 rcu_read_unlock();
10463 return retval;
10466 rcu_read_unlock();
10468 return 0;
10471 static void
10472 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10473 struct cgroup *old_cont, struct task_struct *tsk,
10474 bool threadgroup)
10476 sched_move_task(tsk);
10477 if (threadgroup) {
10478 struct task_struct *c;
10479 rcu_read_lock();
10480 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10481 sched_move_task(c);
10483 rcu_read_unlock();
10487 #ifdef CONFIG_FAIR_GROUP_SCHED
10488 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10489 u64 shareval)
10491 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10494 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10496 struct task_group *tg = cgroup_tg(cgrp);
10498 return (u64) tg->shares;
10500 #endif /* CONFIG_FAIR_GROUP_SCHED */
10502 #ifdef CONFIG_RT_GROUP_SCHED
10503 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10504 s64 val)
10506 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10509 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10511 return sched_group_rt_runtime(cgroup_tg(cgrp));
10514 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10515 u64 rt_period_us)
10517 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10520 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10522 return sched_group_rt_period(cgroup_tg(cgrp));
10524 #endif /* CONFIG_RT_GROUP_SCHED */
10526 static struct cftype cpu_files[] = {
10527 #ifdef CONFIG_FAIR_GROUP_SCHED
10529 .name = "shares",
10530 .read_u64 = cpu_shares_read_u64,
10531 .write_u64 = cpu_shares_write_u64,
10533 #endif
10534 #ifdef CONFIG_RT_GROUP_SCHED
10536 .name = "rt_runtime_us",
10537 .read_s64 = cpu_rt_runtime_read,
10538 .write_s64 = cpu_rt_runtime_write,
10541 .name = "rt_period_us",
10542 .read_u64 = cpu_rt_period_read_uint,
10543 .write_u64 = cpu_rt_period_write_uint,
10545 #endif
10548 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10550 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10553 struct cgroup_subsys cpu_cgroup_subsys = {
10554 .name = "cpu",
10555 .create = cpu_cgroup_create,
10556 .destroy = cpu_cgroup_destroy,
10557 .can_attach = cpu_cgroup_can_attach,
10558 .attach = cpu_cgroup_attach,
10559 .populate = cpu_cgroup_populate,
10560 .subsys_id = cpu_cgroup_subsys_id,
10561 .early_init = 1,
10564 #endif /* CONFIG_CGROUP_SCHED */
10566 #ifdef CONFIG_CGROUP_CPUACCT
10569 * CPU accounting code for task groups.
10571 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10572 * (balbir@in.ibm.com).
10575 /* track cpu usage of a group of tasks and its child groups */
10576 struct cpuacct {
10577 struct cgroup_subsys_state css;
10578 /* cpuusage holds pointer to a u64-type object on every cpu */
10579 u64 *cpuusage;
10580 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10581 struct cpuacct *parent;
10584 struct cgroup_subsys cpuacct_subsys;
10586 /* return cpu accounting group corresponding to this container */
10587 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10589 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10590 struct cpuacct, css);
10593 /* return cpu accounting group to which this task belongs */
10594 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10596 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10597 struct cpuacct, css);
10600 /* create a new cpu accounting group */
10601 static struct cgroup_subsys_state *cpuacct_create(
10602 struct cgroup_subsys *ss, struct cgroup *cgrp)
10604 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10605 int i;
10607 if (!ca)
10608 goto out;
10610 ca->cpuusage = alloc_percpu(u64);
10611 if (!ca->cpuusage)
10612 goto out_free_ca;
10614 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10615 if (percpu_counter_init(&ca->cpustat[i], 0))
10616 goto out_free_counters;
10618 if (cgrp->parent)
10619 ca->parent = cgroup_ca(cgrp->parent);
10621 return &ca->css;
10623 out_free_counters:
10624 while (--i >= 0)
10625 percpu_counter_destroy(&ca->cpustat[i]);
10626 free_percpu(ca->cpuusage);
10627 out_free_ca:
10628 kfree(ca);
10629 out:
10630 return ERR_PTR(-ENOMEM);
10633 /* destroy an existing cpu accounting group */
10634 static void
10635 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10637 struct cpuacct *ca = cgroup_ca(cgrp);
10638 int i;
10640 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10641 percpu_counter_destroy(&ca->cpustat[i]);
10642 free_percpu(ca->cpuusage);
10643 kfree(ca);
10646 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10648 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10649 u64 data;
10651 #ifndef CONFIG_64BIT
10653 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10655 spin_lock_irq(&cpu_rq(cpu)->lock);
10656 data = *cpuusage;
10657 spin_unlock_irq(&cpu_rq(cpu)->lock);
10658 #else
10659 data = *cpuusage;
10660 #endif
10662 return data;
10665 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10667 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10669 #ifndef CONFIG_64BIT
10671 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10673 spin_lock_irq(&cpu_rq(cpu)->lock);
10674 *cpuusage = val;
10675 spin_unlock_irq(&cpu_rq(cpu)->lock);
10676 #else
10677 *cpuusage = val;
10678 #endif
10681 /* return total cpu usage (in nanoseconds) of a group */
10682 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10684 struct cpuacct *ca = cgroup_ca(cgrp);
10685 u64 totalcpuusage = 0;
10686 int i;
10688 for_each_present_cpu(i)
10689 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10691 return totalcpuusage;
10694 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10695 u64 reset)
10697 struct cpuacct *ca = cgroup_ca(cgrp);
10698 int err = 0;
10699 int i;
10701 if (reset) {
10702 err = -EINVAL;
10703 goto out;
10706 for_each_present_cpu(i)
10707 cpuacct_cpuusage_write(ca, i, 0);
10709 out:
10710 return err;
10713 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10714 struct seq_file *m)
10716 struct cpuacct *ca = cgroup_ca(cgroup);
10717 u64 percpu;
10718 int i;
10720 for_each_present_cpu(i) {
10721 percpu = cpuacct_cpuusage_read(ca, i);
10722 seq_printf(m, "%llu ", (unsigned long long) percpu);
10724 seq_printf(m, "\n");
10725 return 0;
10728 static const char *cpuacct_stat_desc[] = {
10729 [CPUACCT_STAT_USER] = "user",
10730 [CPUACCT_STAT_SYSTEM] = "system",
10733 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10734 struct cgroup_map_cb *cb)
10736 struct cpuacct *ca = cgroup_ca(cgrp);
10737 int i;
10739 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10740 s64 val = percpu_counter_read(&ca->cpustat[i]);
10741 val = cputime64_to_clock_t(val);
10742 cb->fill(cb, cpuacct_stat_desc[i], val);
10744 return 0;
10747 static struct cftype files[] = {
10749 .name = "usage",
10750 .read_u64 = cpuusage_read,
10751 .write_u64 = cpuusage_write,
10754 .name = "usage_percpu",
10755 .read_seq_string = cpuacct_percpu_seq_read,
10758 .name = "stat",
10759 .read_map = cpuacct_stats_show,
10763 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10765 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10769 * charge this task's execution time to its accounting group.
10771 * called with rq->lock held.
10773 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10775 struct cpuacct *ca;
10776 int cpu;
10778 if (unlikely(!cpuacct_subsys.active))
10779 return;
10781 cpu = task_cpu(tsk);
10783 rcu_read_lock();
10785 ca = task_ca(tsk);
10787 for (; ca; ca = ca->parent) {
10788 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10789 *cpuusage += cputime;
10792 rcu_read_unlock();
10796 * Charge the system/user time to the task's accounting group.
10798 static void cpuacct_update_stats(struct task_struct *tsk,
10799 enum cpuacct_stat_index idx, cputime_t val)
10801 struct cpuacct *ca;
10803 if (unlikely(!cpuacct_subsys.active))
10804 return;
10806 rcu_read_lock();
10807 ca = task_ca(tsk);
10809 do {
10810 percpu_counter_add(&ca->cpustat[idx], val);
10811 ca = ca->parent;
10812 } while (ca);
10813 rcu_read_unlock();
10816 struct cgroup_subsys cpuacct_subsys = {
10817 .name = "cpuacct",
10818 .create = cpuacct_create,
10819 .destroy = cpuacct_destroy,
10820 .populate = cpuacct_populate,
10821 .subsys_id = cpuacct_subsys_id,
10823 #endif /* CONFIG_CGROUP_CPUACCT */
10825 #ifndef CONFIG_SMP
10827 int rcu_expedited_torture_stats(char *page)
10829 return 0;
10831 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10833 void synchronize_sched_expedited(void)
10836 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10838 #else /* #ifndef CONFIG_SMP */
10840 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10841 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10843 #define RCU_EXPEDITED_STATE_POST -2
10844 #define RCU_EXPEDITED_STATE_IDLE -1
10846 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10848 int rcu_expedited_torture_stats(char *page)
10850 int cnt = 0;
10851 int cpu;
10853 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10854 for_each_online_cpu(cpu) {
10855 cnt += sprintf(&page[cnt], " %d:%d",
10856 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10858 cnt += sprintf(&page[cnt], "\n");
10859 return cnt;
10861 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10863 static long synchronize_sched_expedited_count;
10866 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10867 * approach to force grace period to end quickly. This consumes
10868 * significant time on all CPUs, and is thus not recommended for
10869 * any sort of common-case code.
10871 * Note that it is illegal to call this function while holding any
10872 * lock that is acquired by a CPU-hotplug notifier. Failing to
10873 * observe this restriction will result in deadlock.
10875 void synchronize_sched_expedited(void)
10877 int cpu;
10878 unsigned long flags;
10879 bool need_full_sync = 0;
10880 struct rq *rq;
10881 struct migration_req *req;
10882 long snap;
10883 int trycount = 0;
10885 smp_mb(); /* ensure prior mod happens before capturing snap. */
10886 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10887 get_online_cpus();
10888 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10889 put_online_cpus();
10890 if (trycount++ < 10)
10891 udelay(trycount * num_online_cpus());
10892 else {
10893 synchronize_sched();
10894 return;
10896 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10897 smp_mb(); /* ensure test happens before caller kfree */
10898 return;
10900 get_online_cpus();
10902 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10903 for_each_online_cpu(cpu) {
10904 rq = cpu_rq(cpu);
10905 req = &per_cpu(rcu_migration_req, cpu);
10906 init_completion(&req->done);
10907 req->task = NULL;
10908 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10909 spin_lock_irqsave(&rq->lock, flags);
10910 list_add(&req->list, &rq->migration_queue);
10911 spin_unlock_irqrestore(&rq->lock, flags);
10912 wake_up_process(rq->migration_thread);
10914 for_each_online_cpu(cpu) {
10915 rcu_expedited_state = cpu;
10916 req = &per_cpu(rcu_migration_req, cpu);
10917 rq = cpu_rq(cpu);
10918 wait_for_completion(&req->done);
10919 spin_lock_irqsave(&rq->lock, flags);
10920 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10921 need_full_sync = 1;
10922 req->dest_cpu = RCU_MIGRATION_IDLE;
10923 spin_unlock_irqrestore(&rq->lock, flags);
10925 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10926 mutex_unlock(&rcu_sched_expedited_mutex);
10927 put_online_cpus();
10928 if (need_full_sync)
10929 synchronize_sched();
10931 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10933 #endif /* #else #ifndef CONFIG_SMP */