spi: change to new flag variable
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / auditsc.c
blob1b31c130d0349faee4dc5ac7a219a3a27ff5e031
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
71 #include "audit.h"
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75 #define AUDIT_NAMES 20
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
83 /* number of audit rules */
84 int audit_n_rules;
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
89 struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103 struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
118 struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
123 #define AUDIT_AUX_IPCPERM 0
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS 16
128 struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
135 struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
146 struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
154 struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
160 struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
165 /* The per-task audit context. */
166 struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
245 int fds[2];
247 #if AUDIT_DEBUG
248 int put_count;
249 int ino_count;
250 #endif
253 static inline int open_arg(int flags, int mask)
255 int n = ACC_MODE(flags);
256 if (flags & (O_TRUNC | O_CREAT))
257 n |= AUDIT_PERM_WRITE;
258 return n & mask;
261 static int audit_match_perm(struct audit_context *ctx, int mask)
263 unsigned n;
264 if (unlikely(!ctx))
265 return 0;
266 n = ctx->major;
268 switch (audit_classify_syscall(ctx->arch, n)) {
269 case 0: /* native */
270 if ((mask & AUDIT_PERM_WRITE) &&
271 audit_match_class(AUDIT_CLASS_WRITE, n))
272 return 1;
273 if ((mask & AUDIT_PERM_READ) &&
274 audit_match_class(AUDIT_CLASS_READ, n))
275 return 1;
276 if ((mask & AUDIT_PERM_ATTR) &&
277 audit_match_class(AUDIT_CLASS_CHATTR, n))
278 return 1;
279 return 0;
280 case 1: /* 32bit on biarch */
281 if ((mask & AUDIT_PERM_WRITE) &&
282 audit_match_class(AUDIT_CLASS_WRITE_32, n))
283 return 1;
284 if ((mask & AUDIT_PERM_READ) &&
285 audit_match_class(AUDIT_CLASS_READ_32, n))
286 return 1;
287 if ((mask & AUDIT_PERM_ATTR) &&
288 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
289 return 1;
290 return 0;
291 case 2: /* open */
292 return mask & ACC_MODE(ctx->argv[1]);
293 case 3: /* openat */
294 return mask & ACC_MODE(ctx->argv[2]);
295 case 4: /* socketcall */
296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
297 case 5: /* execve */
298 return mask & AUDIT_PERM_EXEC;
299 default:
300 return 0;
304 static int audit_match_filetype(struct audit_context *ctx, int which)
306 unsigned index = which & ~S_IFMT;
307 mode_t mode = which & S_IFMT;
309 if (unlikely(!ctx))
310 return 0;
312 if (index >= ctx->name_count)
313 return 0;
314 if (ctx->names[index].ino == -1)
315 return 0;
316 if ((ctx->names[index].mode ^ mode) & S_IFMT)
317 return 0;
318 return 1;
322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
323 * ->first_trees points to its beginning, ->trees - to the current end of data.
324 * ->tree_count is the number of free entries in array pointed to by ->trees.
325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
327 * it's going to remain 1-element for almost any setup) until we free context itself.
328 * References in it _are_ dropped - at the same time we free/drop aux stuff.
331 #ifdef CONFIG_AUDIT_TREE
332 static void audit_set_auditable(struct audit_context *ctx)
334 if (!ctx->prio) {
335 ctx->prio = 1;
336 ctx->current_state = AUDIT_RECORD_CONTEXT;
340 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
342 struct audit_tree_refs *p = ctx->trees;
343 int left = ctx->tree_count;
344 if (likely(left)) {
345 p->c[--left] = chunk;
346 ctx->tree_count = left;
347 return 1;
349 if (!p)
350 return 0;
351 p = p->next;
352 if (p) {
353 p->c[30] = chunk;
354 ctx->trees = p;
355 ctx->tree_count = 30;
356 return 1;
358 return 0;
361 static int grow_tree_refs(struct audit_context *ctx)
363 struct audit_tree_refs *p = ctx->trees;
364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
365 if (!ctx->trees) {
366 ctx->trees = p;
367 return 0;
369 if (p)
370 p->next = ctx->trees;
371 else
372 ctx->first_trees = ctx->trees;
373 ctx->tree_count = 31;
374 return 1;
376 #endif
378 static void unroll_tree_refs(struct audit_context *ctx,
379 struct audit_tree_refs *p, int count)
381 #ifdef CONFIG_AUDIT_TREE
382 struct audit_tree_refs *q;
383 int n;
384 if (!p) {
385 /* we started with empty chain */
386 p = ctx->first_trees;
387 count = 31;
388 /* if the very first allocation has failed, nothing to do */
389 if (!p)
390 return;
392 n = count;
393 for (q = p; q != ctx->trees; q = q->next, n = 31) {
394 while (n--) {
395 audit_put_chunk(q->c[n]);
396 q->c[n] = NULL;
399 while (n-- > ctx->tree_count) {
400 audit_put_chunk(q->c[n]);
401 q->c[n] = NULL;
403 ctx->trees = p;
404 ctx->tree_count = count;
405 #endif
408 static void free_tree_refs(struct audit_context *ctx)
410 struct audit_tree_refs *p, *q;
411 for (p = ctx->first_trees; p; p = q) {
412 q = p->next;
413 kfree(p);
417 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
419 #ifdef CONFIG_AUDIT_TREE
420 struct audit_tree_refs *p;
421 int n;
422 if (!tree)
423 return 0;
424 /* full ones */
425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
426 for (n = 0; n < 31; n++)
427 if (audit_tree_match(p->c[n], tree))
428 return 1;
430 /* partial */
431 if (p) {
432 for (n = ctx->tree_count; n < 31; n++)
433 if (audit_tree_match(p->c[n], tree))
434 return 1;
436 #endif
437 return 0;
440 /* Determine if any context name data matches a rule's watch data */
441 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
442 * otherwise. */
443 static int audit_filter_rules(struct task_struct *tsk,
444 struct audit_krule *rule,
445 struct audit_context *ctx,
446 struct audit_names *name,
447 enum audit_state *state)
449 const struct cred *cred = get_task_cred(tsk);
450 int i, j, need_sid = 1;
451 u32 sid;
453 for (i = 0; i < rule->field_count; i++) {
454 struct audit_field *f = &rule->fields[i];
455 int result = 0;
457 switch (f->type) {
458 case AUDIT_PID:
459 result = audit_comparator(tsk->pid, f->op, f->val);
460 break;
461 case AUDIT_PPID:
462 if (ctx) {
463 if (!ctx->ppid)
464 ctx->ppid = sys_getppid();
465 result = audit_comparator(ctx->ppid, f->op, f->val);
467 break;
468 case AUDIT_UID:
469 result = audit_comparator(cred->uid, f->op, f->val);
470 break;
471 case AUDIT_EUID:
472 result = audit_comparator(cred->euid, f->op, f->val);
473 break;
474 case AUDIT_SUID:
475 result = audit_comparator(cred->suid, f->op, f->val);
476 break;
477 case AUDIT_FSUID:
478 result = audit_comparator(cred->fsuid, f->op, f->val);
479 break;
480 case AUDIT_GID:
481 result = audit_comparator(cred->gid, f->op, f->val);
482 break;
483 case AUDIT_EGID:
484 result = audit_comparator(cred->egid, f->op, f->val);
485 break;
486 case AUDIT_SGID:
487 result = audit_comparator(cred->sgid, f->op, f->val);
488 break;
489 case AUDIT_FSGID:
490 result = audit_comparator(cred->fsgid, f->op, f->val);
491 break;
492 case AUDIT_PERS:
493 result = audit_comparator(tsk->personality, f->op, f->val);
494 break;
495 case AUDIT_ARCH:
496 if (ctx)
497 result = audit_comparator(ctx->arch, f->op, f->val);
498 break;
500 case AUDIT_EXIT:
501 if (ctx && ctx->return_valid)
502 result = audit_comparator(ctx->return_code, f->op, f->val);
503 break;
504 case AUDIT_SUCCESS:
505 if (ctx && ctx->return_valid) {
506 if (f->val)
507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
508 else
509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
511 break;
512 case AUDIT_DEVMAJOR:
513 if (name)
514 result = audit_comparator(MAJOR(name->dev),
515 f->op, f->val);
516 else if (ctx) {
517 for (j = 0; j < ctx->name_count; j++) {
518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
519 ++result;
520 break;
524 break;
525 case AUDIT_DEVMINOR:
526 if (name)
527 result = audit_comparator(MINOR(name->dev),
528 f->op, f->val);
529 else if (ctx) {
530 for (j = 0; j < ctx->name_count; j++) {
531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
532 ++result;
533 break;
537 break;
538 case AUDIT_INODE:
539 if (name)
540 result = (name->ino == f->val);
541 else if (ctx) {
542 for (j = 0; j < ctx->name_count; j++) {
543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
544 ++result;
545 break;
549 break;
550 case AUDIT_WATCH:
551 if (name)
552 result = audit_watch_compare(rule->watch, name->ino, name->dev);
553 break;
554 case AUDIT_DIR:
555 if (ctx)
556 result = match_tree_refs(ctx, rule->tree);
557 break;
558 case AUDIT_LOGINUID:
559 result = 0;
560 if (ctx)
561 result = audit_comparator(tsk->loginuid, f->op, f->val);
562 break;
563 case AUDIT_SUBJ_USER:
564 case AUDIT_SUBJ_ROLE:
565 case AUDIT_SUBJ_TYPE:
566 case AUDIT_SUBJ_SEN:
567 case AUDIT_SUBJ_CLR:
568 /* NOTE: this may return negative values indicating
569 a temporary error. We simply treat this as a
570 match for now to avoid losing information that
571 may be wanted. An error message will also be
572 logged upon error */
573 if (f->lsm_rule) {
574 if (need_sid) {
575 security_task_getsecid(tsk, &sid);
576 need_sid = 0;
578 result = security_audit_rule_match(sid, f->type,
579 f->op,
580 f->lsm_rule,
581 ctx);
583 break;
584 case AUDIT_OBJ_USER:
585 case AUDIT_OBJ_ROLE:
586 case AUDIT_OBJ_TYPE:
587 case AUDIT_OBJ_LEV_LOW:
588 case AUDIT_OBJ_LEV_HIGH:
589 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
590 also applies here */
591 if (f->lsm_rule) {
592 /* Find files that match */
593 if (name) {
594 result = security_audit_rule_match(
595 name->osid, f->type, f->op,
596 f->lsm_rule, ctx);
597 } else if (ctx) {
598 for (j = 0; j < ctx->name_count; j++) {
599 if (security_audit_rule_match(
600 ctx->names[j].osid,
601 f->type, f->op,
602 f->lsm_rule, ctx)) {
603 ++result;
604 break;
608 /* Find ipc objects that match */
609 if (!ctx || ctx->type != AUDIT_IPC)
610 break;
611 if (security_audit_rule_match(ctx->ipc.osid,
612 f->type, f->op,
613 f->lsm_rule, ctx))
614 ++result;
616 break;
617 case AUDIT_ARG0:
618 case AUDIT_ARG1:
619 case AUDIT_ARG2:
620 case AUDIT_ARG3:
621 if (ctx)
622 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
623 break;
624 case AUDIT_FILTERKEY:
625 /* ignore this field for filtering */
626 result = 1;
627 break;
628 case AUDIT_PERM:
629 result = audit_match_perm(ctx, f->val);
630 break;
631 case AUDIT_FILETYPE:
632 result = audit_match_filetype(ctx, f->val);
633 break;
636 if (!result) {
637 put_cred(cred);
638 return 0;
642 if (ctx) {
643 if (rule->prio <= ctx->prio)
644 return 0;
645 if (rule->filterkey) {
646 kfree(ctx->filterkey);
647 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
649 ctx->prio = rule->prio;
651 switch (rule->action) {
652 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
653 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
655 put_cred(cred);
656 return 1;
659 /* At process creation time, we can determine if system-call auditing is
660 * completely disabled for this task. Since we only have the task
661 * structure at this point, we can only check uid and gid.
663 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
665 struct audit_entry *e;
666 enum audit_state state;
668 rcu_read_lock();
669 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
670 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
671 if (state == AUDIT_RECORD_CONTEXT)
672 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
673 rcu_read_unlock();
674 return state;
677 rcu_read_unlock();
678 return AUDIT_BUILD_CONTEXT;
681 /* At syscall entry and exit time, this filter is called if the
682 * audit_state is not low enough that auditing cannot take place, but is
683 * also not high enough that we already know we have to write an audit
684 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
686 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
687 struct audit_context *ctx,
688 struct list_head *list)
690 struct audit_entry *e;
691 enum audit_state state;
693 if (audit_pid && tsk->tgid == audit_pid)
694 return AUDIT_DISABLED;
696 rcu_read_lock();
697 if (!list_empty(list)) {
698 int word = AUDIT_WORD(ctx->major);
699 int bit = AUDIT_BIT(ctx->major);
701 list_for_each_entry_rcu(e, list, list) {
702 if ((e->rule.mask[word] & bit) == bit &&
703 audit_filter_rules(tsk, &e->rule, ctx, NULL,
704 &state)) {
705 rcu_read_unlock();
706 ctx->current_state = state;
707 return state;
711 rcu_read_unlock();
712 return AUDIT_BUILD_CONTEXT;
715 /* At syscall exit time, this filter is called if any audit_names[] have been
716 * collected during syscall processing. We only check rules in sublists at hash
717 * buckets applicable to the inode numbers in audit_names[].
718 * Regarding audit_state, same rules apply as for audit_filter_syscall().
720 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
722 int i;
723 struct audit_entry *e;
724 enum audit_state state;
726 if (audit_pid && tsk->tgid == audit_pid)
727 return;
729 rcu_read_lock();
730 for (i = 0; i < ctx->name_count; i++) {
731 int word = AUDIT_WORD(ctx->major);
732 int bit = AUDIT_BIT(ctx->major);
733 struct audit_names *n = &ctx->names[i];
734 int h = audit_hash_ino((u32)n->ino);
735 struct list_head *list = &audit_inode_hash[h];
737 if (list_empty(list))
738 continue;
740 list_for_each_entry_rcu(e, list, list) {
741 if ((e->rule.mask[word] & bit) == bit &&
742 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
743 rcu_read_unlock();
744 ctx->current_state = state;
745 return;
749 rcu_read_unlock();
752 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
753 int return_valid,
754 long return_code)
756 struct audit_context *context = tsk->audit_context;
758 if (likely(!context))
759 return NULL;
760 context->return_valid = return_valid;
763 * we need to fix up the return code in the audit logs if the actual
764 * return codes are later going to be fixed up by the arch specific
765 * signal handlers
767 * This is actually a test for:
768 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
769 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
771 * but is faster than a bunch of ||
773 if (unlikely(return_code <= -ERESTARTSYS) &&
774 (return_code >= -ERESTART_RESTARTBLOCK) &&
775 (return_code != -ENOIOCTLCMD))
776 context->return_code = -EINTR;
777 else
778 context->return_code = return_code;
780 if (context->in_syscall && !context->dummy) {
781 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
782 audit_filter_inodes(tsk, context);
785 tsk->audit_context = NULL;
786 return context;
789 static inline void audit_free_names(struct audit_context *context)
791 int i;
793 #if AUDIT_DEBUG == 2
794 if (context->put_count + context->ino_count != context->name_count) {
795 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
796 " name_count=%d put_count=%d"
797 " ino_count=%d [NOT freeing]\n",
798 __FILE__, __LINE__,
799 context->serial, context->major, context->in_syscall,
800 context->name_count, context->put_count,
801 context->ino_count);
802 for (i = 0; i < context->name_count; i++) {
803 printk(KERN_ERR "names[%d] = %p = %s\n", i,
804 context->names[i].name,
805 context->names[i].name ?: "(null)");
807 dump_stack();
808 return;
810 #endif
811 #if AUDIT_DEBUG
812 context->put_count = 0;
813 context->ino_count = 0;
814 #endif
816 for (i = 0; i < context->name_count; i++) {
817 if (context->names[i].name && context->names[i].name_put)
818 __putname(context->names[i].name);
820 context->name_count = 0;
821 path_put(&context->pwd);
822 context->pwd.dentry = NULL;
823 context->pwd.mnt = NULL;
826 static inline void audit_free_aux(struct audit_context *context)
828 struct audit_aux_data *aux;
830 while ((aux = context->aux)) {
831 context->aux = aux->next;
832 kfree(aux);
834 while ((aux = context->aux_pids)) {
835 context->aux_pids = aux->next;
836 kfree(aux);
840 static inline void audit_zero_context(struct audit_context *context,
841 enum audit_state state)
843 memset(context, 0, sizeof(*context));
844 context->state = state;
845 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
848 static inline struct audit_context *audit_alloc_context(enum audit_state state)
850 struct audit_context *context;
852 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
853 return NULL;
854 audit_zero_context(context, state);
855 INIT_LIST_HEAD(&context->killed_trees);
856 return context;
860 * audit_alloc - allocate an audit context block for a task
861 * @tsk: task
863 * Filter on the task information and allocate a per-task audit context
864 * if necessary. Doing so turns on system call auditing for the
865 * specified task. This is called from copy_process, so no lock is
866 * needed.
868 int audit_alloc(struct task_struct *tsk)
870 struct audit_context *context;
871 enum audit_state state;
872 char *key = NULL;
874 if (likely(!audit_ever_enabled))
875 return 0; /* Return if not auditing. */
877 state = audit_filter_task(tsk, &key);
878 if (likely(state == AUDIT_DISABLED))
879 return 0;
881 if (!(context = audit_alloc_context(state))) {
882 kfree(key);
883 audit_log_lost("out of memory in audit_alloc");
884 return -ENOMEM;
886 context->filterkey = key;
888 tsk->audit_context = context;
889 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
890 return 0;
893 static inline void audit_free_context(struct audit_context *context)
895 struct audit_context *previous;
896 int count = 0;
898 do {
899 previous = context->previous;
900 if (previous || (count && count < 10)) {
901 ++count;
902 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
903 " freeing multiple contexts (%d)\n",
904 context->serial, context->major,
905 context->name_count, count);
907 audit_free_names(context);
908 unroll_tree_refs(context, NULL, 0);
909 free_tree_refs(context);
910 audit_free_aux(context);
911 kfree(context->filterkey);
912 kfree(context->sockaddr);
913 kfree(context);
914 context = previous;
915 } while (context);
916 if (count >= 10)
917 printk(KERN_ERR "audit: freed %d contexts\n", count);
920 void audit_log_task_context(struct audit_buffer *ab)
922 char *ctx = NULL;
923 unsigned len;
924 int error;
925 u32 sid;
927 security_task_getsecid(current, &sid);
928 if (!sid)
929 return;
931 error = security_secid_to_secctx(sid, &ctx, &len);
932 if (error) {
933 if (error != -EINVAL)
934 goto error_path;
935 return;
938 audit_log_format(ab, " subj=%s", ctx);
939 security_release_secctx(ctx, len);
940 return;
942 error_path:
943 audit_panic("error in audit_log_task_context");
944 return;
947 EXPORT_SYMBOL(audit_log_task_context);
949 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
951 char name[sizeof(tsk->comm)];
952 struct mm_struct *mm = tsk->mm;
953 struct vm_area_struct *vma;
955 /* tsk == current */
957 get_task_comm(name, tsk);
958 audit_log_format(ab, " comm=");
959 audit_log_untrustedstring(ab, name);
961 if (mm) {
962 down_read(&mm->mmap_sem);
963 vma = mm->mmap;
964 while (vma) {
965 if ((vma->vm_flags & VM_EXECUTABLE) &&
966 vma->vm_file) {
967 audit_log_d_path(ab, "exe=",
968 &vma->vm_file->f_path);
969 break;
971 vma = vma->vm_next;
973 up_read(&mm->mmap_sem);
975 audit_log_task_context(ab);
978 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
979 uid_t auid, uid_t uid, unsigned int sessionid,
980 u32 sid, char *comm)
982 struct audit_buffer *ab;
983 char *ctx = NULL;
984 u32 len;
985 int rc = 0;
987 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
988 if (!ab)
989 return rc;
991 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
992 uid, sessionid);
993 if (security_secid_to_secctx(sid, &ctx, &len)) {
994 audit_log_format(ab, " obj=(none)");
995 rc = 1;
996 } else {
997 audit_log_format(ab, " obj=%s", ctx);
998 security_release_secctx(ctx, len);
1000 audit_log_format(ab, " ocomm=");
1001 audit_log_untrustedstring(ab, comm);
1002 audit_log_end(ab);
1004 return rc;
1008 * to_send and len_sent accounting are very loose estimates. We aren't
1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1010 * within about 500 bytes (next page boundry)
1012 * why snprintf? an int is up to 12 digits long. if we just assumed when
1013 * logging that a[%d]= was going to be 16 characters long we would be wasting
1014 * space in every audit message. In one 7500 byte message we can log up to
1015 * about 1000 min size arguments. That comes down to about 50% waste of space
1016 * if we didn't do the snprintf to find out how long arg_num_len was.
1018 static int audit_log_single_execve_arg(struct audit_context *context,
1019 struct audit_buffer **ab,
1020 int arg_num,
1021 size_t *len_sent,
1022 const char __user *p,
1023 char *buf)
1025 char arg_num_len_buf[12];
1026 const char __user *tmp_p = p;
1027 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1028 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1029 size_t len, len_left, to_send;
1030 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1031 unsigned int i, has_cntl = 0, too_long = 0;
1032 int ret;
1034 /* strnlen_user includes the null we don't want to send */
1035 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038 * We just created this mm, if we can't find the strings
1039 * we just copied into it something is _very_ wrong. Similar
1040 * for strings that are too long, we should not have created
1041 * any.
1043 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1044 WARN_ON(1);
1045 send_sig(SIGKILL, current, 0);
1046 return -1;
1049 /* walk the whole argument looking for non-ascii chars */
1050 do {
1051 if (len_left > MAX_EXECVE_AUDIT_LEN)
1052 to_send = MAX_EXECVE_AUDIT_LEN;
1053 else
1054 to_send = len_left;
1055 ret = copy_from_user(buf, tmp_p, to_send);
1057 * There is no reason for this copy to be short. We just
1058 * copied them here, and the mm hasn't been exposed to user-
1059 * space yet.
1061 if (ret) {
1062 WARN_ON(1);
1063 send_sig(SIGKILL, current, 0);
1064 return -1;
1066 buf[to_send] = '\0';
1067 has_cntl = audit_string_contains_control(buf, to_send);
1068 if (has_cntl) {
1070 * hex messages get logged as 2 bytes, so we can only
1071 * send half as much in each message
1073 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1074 break;
1076 len_left -= to_send;
1077 tmp_p += to_send;
1078 } while (len_left > 0);
1080 len_left = len;
1082 if (len > max_execve_audit_len)
1083 too_long = 1;
1085 /* rewalk the argument actually logging the message */
1086 for (i = 0; len_left > 0; i++) {
1087 int room_left;
1089 if (len_left > max_execve_audit_len)
1090 to_send = max_execve_audit_len;
1091 else
1092 to_send = len_left;
1094 /* do we have space left to send this argument in this ab? */
1095 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1096 if (has_cntl)
1097 room_left -= (to_send * 2);
1098 else
1099 room_left -= to_send;
1100 if (room_left < 0) {
1101 *len_sent = 0;
1102 audit_log_end(*ab);
1103 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1104 if (!*ab)
1105 return 0;
1109 * first record needs to say how long the original string was
1110 * so we can be sure nothing was lost.
1112 if ((i == 0) && (too_long))
1113 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1114 has_cntl ? 2*len : len);
1117 * normally arguments are small enough to fit and we already
1118 * filled buf above when we checked for control characters
1119 * so don't bother with another copy_from_user
1121 if (len >= max_execve_audit_len)
1122 ret = copy_from_user(buf, p, to_send);
1123 else
1124 ret = 0;
1125 if (ret) {
1126 WARN_ON(1);
1127 send_sig(SIGKILL, current, 0);
1128 return -1;
1130 buf[to_send] = '\0';
1132 /* actually log it */
1133 audit_log_format(*ab, " a%d", arg_num);
1134 if (too_long)
1135 audit_log_format(*ab, "[%d]", i);
1136 audit_log_format(*ab, "=");
1137 if (has_cntl)
1138 audit_log_n_hex(*ab, buf, to_send);
1139 else
1140 audit_log_string(*ab, buf);
1142 p += to_send;
1143 len_left -= to_send;
1144 *len_sent += arg_num_len;
1145 if (has_cntl)
1146 *len_sent += to_send * 2;
1147 else
1148 *len_sent += to_send;
1150 /* include the null we didn't log */
1151 return len + 1;
1154 static void audit_log_execve_info(struct audit_context *context,
1155 struct audit_buffer **ab,
1156 struct audit_aux_data_execve *axi)
1158 int i;
1159 size_t len, len_sent = 0;
1160 const char __user *p;
1161 char *buf;
1163 if (axi->mm != current->mm)
1164 return; /* execve failed, no additional info */
1166 p = (const char __user *)axi->mm->arg_start;
1168 audit_log_format(*ab, "argc=%d", axi->argc);
1171 * we need some kernel buffer to hold the userspace args. Just
1172 * allocate one big one rather than allocating one of the right size
1173 * for every single argument inside audit_log_single_execve_arg()
1174 * should be <8k allocation so should be pretty safe.
1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177 if (!buf) {
1178 audit_panic("out of memory for argv string\n");
1179 return;
1182 for (i = 0; i < axi->argc; i++) {
1183 len = audit_log_single_execve_arg(context, ab, i,
1184 &len_sent, p, buf);
1185 if (len <= 0)
1186 break;
1187 p += len;
1189 kfree(buf);
1192 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1194 int i;
1196 audit_log_format(ab, " %s=", prefix);
1197 CAP_FOR_EACH_U32(i) {
1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1202 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1204 kernel_cap_t *perm = &name->fcap.permitted;
1205 kernel_cap_t *inh = &name->fcap.inheritable;
1206 int log = 0;
1208 if (!cap_isclear(*perm)) {
1209 audit_log_cap(ab, "cap_fp", perm);
1210 log = 1;
1212 if (!cap_isclear(*inh)) {
1213 audit_log_cap(ab, "cap_fi", inh);
1214 log = 1;
1217 if (log)
1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1221 static void show_special(struct audit_context *context, int *call_panic)
1223 struct audit_buffer *ab;
1224 int i;
1226 ab = audit_log_start(context, GFP_KERNEL, context->type);
1227 if (!ab)
1228 return;
1230 switch (context->type) {
1231 case AUDIT_SOCKETCALL: {
1232 int nargs = context->socketcall.nargs;
1233 audit_log_format(ab, "nargs=%d", nargs);
1234 for (i = 0; i < nargs; i++)
1235 audit_log_format(ab, " a%d=%lx", i,
1236 context->socketcall.args[i]);
1237 break; }
1238 case AUDIT_IPC: {
1239 u32 osid = context->ipc.osid;
1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1242 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1243 if (osid) {
1244 char *ctx = NULL;
1245 u32 len;
1246 if (security_secid_to_secctx(osid, &ctx, &len)) {
1247 audit_log_format(ab, " osid=%u", osid);
1248 *call_panic = 1;
1249 } else {
1250 audit_log_format(ab, " obj=%s", ctx);
1251 security_release_secctx(ctx, len);
1254 if (context->ipc.has_perm) {
1255 audit_log_end(ab);
1256 ab = audit_log_start(context, GFP_KERNEL,
1257 AUDIT_IPC_SET_PERM);
1258 audit_log_format(ab,
1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1260 context->ipc.qbytes,
1261 context->ipc.perm_uid,
1262 context->ipc.perm_gid,
1263 context->ipc.perm_mode);
1264 if (!ab)
1265 return;
1267 break; }
1268 case AUDIT_MQ_OPEN: {
1269 audit_log_format(ab,
1270 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1271 "mq_msgsize=%ld mq_curmsgs=%ld",
1272 context->mq_open.oflag, context->mq_open.mode,
1273 context->mq_open.attr.mq_flags,
1274 context->mq_open.attr.mq_maxmsg,
1275 context->mq_open.attr.mq_msgsize,
1276 context->mq_open.attr.mq_curmsgs);
1277 break; }
1278 case AUDIT_MQ_SENDRECV: {
1279 audit_log_format(ab,
1280 "mqdes=%d msg_len=%zd msg_prio=%u "
1281 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1282 context->mq_sendrecv.mqdes,
1283 context->mq_sendrecv.msg_len,
1284 context->mq_sendrecv.msg_prio,
1285 context->mq_sendrecv.abs_timeout.tv_sec,
1286 context->mq_sendrecv.abs_timeout.tv_nsec);
1287 break; }
1288 case AUDIT_MQ_NOTIFY: {
1289 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1290 context->mq_notify.mqdes,
1291 context->mq_notify.sigev_signo);
1292 break; }
1293 case AUDIT_MQ_GETSETATTR: {
1294 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1295 audit_log_format(ab,
1296 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1297 "mq_curmsgs=%ld ",
1298 context->mq_getsetattr.mqdes,
1299 attr->mq_flags, attr->mq_maxmsg,
1300 attr->mq_msgsize, attr->mq_curmsgs);
1301 break; }
1302 case AUDIT_CAPSET: {
1303 audit_log_format(ab, "pid=%d", context->capset.pid);
1304 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1305 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1306 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1307 break; }
1309 audit_log_end(ab);
1312 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1314 const struct cred *cred;
1315 int i, call_panic = 0;
1316 struct audit_buffer *ab;
1317 struct audit_aux_data *aux;
1318 const char *tty;
1320 /* tsk == current */
1321 context->pid = tsk->pid;
1322 if (!context->ppid)
1323 context->ppid = sys_getppid();
1324 cred = current_cred();
1325 context->uid = cred->uid;
1326 context->gid = cred->gid;
1327 context->euid = cred->euid;
1328 context->suid = cred->suid;
1329 context->fsuid = cred->fsuid;
1330 context->egid = cred->egid;
1331 context->sgid = cred->sgid;
1332 context->fsgid = cred->fsgid;
1333 context->personality = tsk->personality;
1335 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1336 if (!ab)
1337 return; /* audit_panic has been called */
1338 audit_log_format(ab, "arch=%x syscall=%d",
1339 context->arch, context->major);
1340 if (context->personality != PER_LINUX)
1341 audit_log_format(ab, " per=%lx", context->personality);
1342 if (context->return_valid)
1343 audit_log_format(ab, " success=%s exit=%ld",
1344 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1345 context->return_code);
1347 spin_lock_irq(&tsk->sighand->siglock);
1348 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1349 tty = tsk->signal->tty->name;
1350 else
1351 tty = "(none)";
1352 spin_unlock_irq(&tsk->sighand->siglock);
1354 audit_log_format(ab,
1355 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1356 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1357 " euid=%u suid=%u fsuid=%u"
1358 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1359 context->argv[0],
1360 context->argv[1],
1361 context->argv[2],
1362 context->argv[3],
1363 context->name_count,
1364 context->ppid,
1365 context->pid,
1366 tsk->loginuid,
1367 context->uid,
1368 context->gid,
1369 context->euid, context->suid, context->fsuid,
1370 context->egid, context->sgid, context->fsgid, tty,
1371 tsk->sessionid);
1374 audit_log_task_info(ab, tsk);
1375 audit_log_key(ab, context->filterkey);
1376 audit_log_end(ab);
1378 for (aux = context->aux; aux; aux = aux->next) {
1380 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1381 if (!ab)
1382 continue; /* audit_panic has been called */
1384 switch (aux->type) {
1386 case AUDIT_EXECVE: {
1387 struct audit_aux_data_execve *axi = (void *)aux;
1388 audit_log_execve_info(context, &ab, axi);
1389 break; }
1391 case AUDIT_BPRM_FCAPS: {
1392 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1393 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1394 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1395 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1396 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1397 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1398 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1399 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1400 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1401 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1402 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1403 break; }
1406 audit_log_end(ab);
1409 if (context->type)
1410 show_special(context, &call_panic);
1412 if (context->fds[0] >= 0) {
1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1414 if (ab) {
1415 audit_log_format(ab, "fd0=%d fd1=%d",
1416 context->fds[0], context->fds[1]);
1417 audit_log_end(ab);
1421 if (context->sockaddr_len) {
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1423 if (ab) {
1424 audit_log_format(ab, "saddr=");
1425 audit_log_n_hex(ab, (void *)context->sockaddr,
1426 context->sockaddr_len);
1427 audit_log_end(ab);
1431 for (aux = context->aux_pids; aux; aux = aux->next) {
1432 struct audit_aux_data_pids *axs = (void *)aux;
1434 for (i = 0; i < axs->pid_count; i++)
1435 if (audit_log_pid_context(context, axs->target_pid[i],
1436 axs->target_auid[i],
1437 axs->target_uid[i],
1438 axs->target_sessionid[i],
1439 axs->target_sid[i],
1440 axs->target_comm[i]))
1441 call_panic = 1;
1444 if (context->target_pid &&
1445 audit_log_pid_context(context, context->target_pid,
1446 context->target_auid, context->target_uid,
1447 context->target_sessionid,
1448 context->target_sid, context->target_comm))
1449 call_panic = 1;
1451 if (context->pwd.dentry && context->pwd.mnt) {
1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1453 if (ab) {
1454 audit_log_d_path(ab, "cwd=", &context->pwd);
1455 audit_log_end(ab);
1458 for (i = 0; i < context->name_count; i++) {
1459 struct audit_names *n = &context->names[i];
1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1462 if (!ab)
1463 continue; /* audit_panic has been called */
1465 audit_log_format(ab, "item=%d", i);
1467 if (n->name) {
1468 switch(n->name_len) {
1469 case AUDIT_NAME_FULL:
1470 /* log the full path */
1471 audit_log_format(ab, " name=");
1472 audit_log_untrustedstring(ab, n->name);
1473 break;
1474 case 0:
1475 /* name was specified as a relative path and the
1476 * directory component is the cwd */
1477 audit_log_d_path(ab, "name=", &context->pwd);
1478 break;
1479 default:
1480 /* log the name's directory component */
1481 audit_log_format(ab, " name=");
1482 audit_log_n_untrustedstring(ab, n->name,
1483 n->name_len);
1485 } else
1486 audit_log_format(ab, " name=(null)");
1488 if (n->ino != (unsigned long)-1) {
1489 audit_log_format(ab, " inode=%lu"
1490 " dev=%02x:%02x mode=%#o"
1491 " ouid=%u ogid=%u rdev=%02x:%02x",
1492 n->ino,
1493 MAJOR(n->dev),
1494 MINOR(n->dev),
1495 n->mode,
1496 n->uid,
1497 n->gid,
1498 MAJOR(n->rdev),
1499 MINOR(n->rdev));
1501 if (n->osid != 0) {
1502 char *ctx = NULL;
1503 u32 len;
1504 if (security_secid_to_secctx(
1505 n->osid, &ctx, &len)) {
1506 audit_log_format(ab, " osid=%u", n->osid);
1507 call_panic = 2;
1508 } else {
1509 audit_log_format(ab, " obj=%s", ctx);
1510 security_release_secctx(ctx, len);
1514 audit_log_fcaps(ab, n);
1516 audit_log_end(ab);
1519 /* Send end of event record to help user space know we are finished */
1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1521 if (ab)
1522 audit_log_end(ab);
1523 if (call_panic)
1524 audit_panic("error converting sid to string");
1528 * audit_free - free a per-task audit context
1529 * @tsk: task whose audit context block to free
1531 * Called from copy_process and do_exit
1533 void audit_free(struct task_struct *tsk)
1535 struct audit_context *context;
1537 context = audit_get_context(tsk, 0, 0);
1538 if (likely(!context))
1539 return;
1541 /* Check for system calls that do not go through the exit
1542 * function (e.g., exit_group), then free context block.
1543 * We use GFP_ATOMIC here because we might be doing this
1544 * in the context of the idle thread */
1545 /* that can happen only if we are called from do_exit() */
1546 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1547 audit_log_exit(context, tsk);
1548 if (!list_empty(&context->killed_trees))
1549 audit_kill_trees(&context->killed_trees);
1551 audit_free_context(context);
1555 * audit_syscall_entry - fill in an audit record at syscall entry
1556 * @arch: architecture type
1557 * @major: major syscall type (function)
1558 * @a1: additional syscall register 1
1559 * @a2: additional syscall register 2
1560 * @a3: additional syscall register 3
1561 * @a4: additional syscall register 4
1563 * Fill in audit context at syscall entry. This only happens if the
1564 * audit context was created when the task was created and the state or
1565 * filters demand the audit context be built. If the state from the
1566 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1567 * then the record will be written at syscall exit time (otherwise, it
1568 * will only be written if another part of the kernel requests that it
1569 * be written).
1571 void audit_syscall_entry(int arch, int major,
1572 unsigned long a1, unsigned long a2,
1573 unsigned long a3, unsigned long a4)
1575 struct task_struct *tsk = current;
1576 struct audit_context *context = tsk->audit_context;
1577 enum audit_state state;
1579 if (unlikely(!context))
1580 return;
1583 * This happens only on certain architectures that make system
1584 * calls in kernel_thread via the entry.S interface, instead of
1585 * with direct calls. (If you are porting to a new
1586 * architecture, hitting this condition can indicate that you
1587 * got the _exit/_leave calls backward in entry.S.)
1589 * i386 no
1590 * x86_64 no
1591 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1593 * This also happens with vm86 emulation in a non-nested manner
1594 * (entries without exits), so this case must be caught.
1596 if (context->in_syscall) {
1597 struct audit_context *newctx;
1599 #if AUDIT_DEBUG
1600 printk(KERN_ERR
1601 "audit(:%d) pid=%d in syscall=%d;"
1602 " entering syscall=%d\n",
1603 context->serial, tsk->pid, context->major, major);
1604 #endif
1605 newctx = audit_alloc_context(context->state);
1606 if (newctx) {
1607 newctx->previous = context;
1608 context = newctx;
1609 tsk->audit_context = newctx;
1610 } else {
1611 /* If we can't alloc a new context, the best we
1612 * can do is to leak memory (any pending putname
1613 * will be lost). The only other alternative is
1614 * to abandon auditing. */
1615 audit_zero_context(context, context->state);
1618 BUG_ON(context->in_syscall || context->name_count);
1620 if (!audit_enabled)
1621 return;
1623 context->arch = arch;
1624 context->major = major;
1625 context->argv[0] = a1;
1626 context->argv[1] = a2;
1627 context->argv[2] = a3;
1628 context->argv[3] = a4;
1630 state = context->state;
1631 context->dummy = !audit_n_rules;
1632 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1633 context->prio = 0;
1634 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1636 if (likely(state == AUDIT_DISABLED))
1637 return;
1639 context->serial = 0;
1640 context->ctime = CURRENT_TIME;
1641 context->in_syscall = 1;
1642 context->current_state = state;
1643 context->ppid = 0;
1646 void audit_finish_fork(struct task_struct *child)
1648 struct audit_context *ctx = current->audit_context;
1649 struct audit_context *p = child->audit_context;
1650 if (!p || !ctx)
1651 return;
1652 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1653 return;
1654 p->arch = ctx->arch;
1655 p->major = ctx->major;
1656 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1657 p->ctime = ctx->ctime;
1658 p->dummy = ctx->dummy;
1659 p->in_syscall = ctx->in_syscall;
1660 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1661 p->ppid = current->pid;
1662 p->prio = ctx->prio;
1663 p->current_state = ctx->current_state;
1667 * audit_syscall_exit - deallocate audit context after a system call
1668 * @valid: success/failure flag
1669 * @return_code: syscall return value
1671 * Tear down after system call. If the audit context has been marked as
1672 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1673 * filtering, or because some other part of the kernel write an audit
1674 * message), then write out the syscall information. In call cases,
1675 * free the names stored from getname().
1677 void audit_syscall_exit(int valid, long return_code)
1679 struct task_struct *tsk = current;
1680 struct audit_context *context;
1682 context = audit_get_context(tsk, valid, return_code);
1684 if (likely(!context))
1685 return;
1687 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1688 audit_log_exit(context, tsk);
1690 context->in_syscall = 0;
1691 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1693 if (!list_empty(&context->killed_trees))
1694 audit_kill_trees(&context->killed_trees);
1696 if (context->previous) {
1697 struct audit_context *new_context = context->previous;
1698 context->previous = NULL;
1699 audit_free_context(context);
1700 tsk->audit_context = new_context;
1701 } else {
1702 audit_free_names(context);
1703 unroll_tree_refs(context, NULL, 0);
1704 audit_free_aux(context);
1705 context->aux = NULL;
1706 context->aux_pids = NULL;
1707 context->target_pid = 0;
1708 context->target_sid = 0;
1709 context->sockaddr_len = 0;
1710 context->type = 0;
1711 context->fds[0] = -1;
1712 if (context->state != AUDIT_RECORD_CONTEXT) {
1713 kfree(context->filterkey);
1714 context->filterkey = NULL;
1716 tsk->audit_context = context;
1720 static inline void handle_one(const struct inode *inode)
1722 #ifdef CONFIG_AUDIT_TREE
1723 struct audit_context *context;
1724 struct audit_tree_refs *p;
1725 struct audit_chunk *chunk;
1726 int count;
1727 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1728 return;
1729 context = current->audit_context;
1730 p = context->trees;
1731 count = context->tree_count;
1732 rcu_read_lock();
1733 chunk = audit_tree_lookup(inode);
1734 rcu_read_unlock();
1735 if (!chunk)
1736 return;
1737 if (likely(put_tree_ref(context, chunk)))
1738 return;
1739 if (unlikely(!grow_tree_refs(context))) {
1740 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1741 audit_set_auditable(context);
1742 audit_put_chunk(chunk);
1743 unroll_tree_refs(context, p, count);
1744 return;
1746 put_tree_ref(context, chunk);
1747 #endif
1750 static void handle_path(const struct dentry *dentry)
1752 #ifdef CONFIG_AUDIT_TREE
1753 struct audit_context *context;
1754 struct audit_tree_refs *p;
1755 const struct dentry *d, *parent;
1756 struct audit_chunk *drop;
1757 unsigned long seq;
1758 int count;
1760 context = current->audit_context;
1761 p = context->trees;
1762 count = context->tree_count;
1763 retry:
1764 drop = NULL;
1765 d = dentry;
1766 rcu_read_lock();
1767 seq = read_seqbegin(&rename_lock);
1768 for(;;) {
1769 struct inode *inode = d->d_inode;
1770 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1771 struct audit_chunk *chunk;
1772 chunk = audit_tree_lookup(inode);
1773 if (chunk) {
1774 if (unlikely(!put_tree_ref(context, chunk))) {
1775 drop = chunk;
1776 break;
1780 parent = d->d_parent;
1781 if (parent == d)
1782 break;
1783 d = parent;
1785 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1786 rcu_read_unlock();
1787 if (!drop) {
1788 /* just a race with rename */
1789 unroll_tree_refs(context, p, count);
1790 goto retry;
1792 audit_put_chunk(drop);
1793 if (grow_tree_refs(context)) {
1794 /* OK, got more space */
1795 unroll_tree_refs(context, p, count);
1796 goto retry;
1798 /* too bad */
1799 printk(KERN_WARNING
1800 "out of memory, audit has lost a tree reference\n");
1801 unroll_tree_refs(context, p, count);
1802 audit_set_auditable(context);
1803 return;
1805 rcu_read_unlock();
1806 #endif
1810 * audit_getname - add a name to the list
1811 * @name: name to add
1813 * Add a name to the list of audit names for this context.
1814 * Called from fs/namei.c:getname().
1816 void __audit_getname(const char *name)
1818 struct audit_context *context = current->audit_context;
1820 if (IS_ERR(name) || !name)
1821 return;
1823 if (!context->in_syscall) {
1824 #if AUDIT_DEBUG == 2
1825 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1826 __FILE__, __LINE__, context->serial, name);
1827 dump_stack();
1828 #endif
1829 return;
1831 BUG_ON(context->name_count >= AUDIT_NAMES);
1832 context->names[context->name_count].name = name;
1833 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1834 context->names[context->name_count].name_put = 1;
1835 context->names[context->name_count].ino = (unsigned long)-1;
1836 context->names[context->name_count].osid = 0;
1837 ++context->name_count;
1838 if (!context->pwd.dentry)
1839 get_fs_pwd(current->fs, &context->pwd);
1842 /* audit_putname - intercept a putname request
1843 * @name: name to intercept and delay for putname
1845 * If we have stored the name from getname in the audit context,
1846 * then we delay the putname until syscall exit.
1847 * Called from include/linux/fs.h:putname().
1849 void audit_putname(const char *name)
1851 struct audit_context *context = current->audit_context;
1853 BUG_ON(!context);
1854 if (!context->in_syscall) {
1855 #if AUDIT_DEBUG == 2
1856 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1857 __FILE__, __LINE__, context->serial, name);
1858 if (context->name_count) {
1859 int i;
1860 for (i = 0; i < context->name_count; i++)
1861 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1862 context->names[i].name,
1863 context->names[i].name ?: "(null)");
1865 #endif
1866 __putname(name);
1868 #if AUDIT_DEBUG
1869 else {
1870 ++context->put_count;
1871 if (context->put_count > context->name_count) {
1872 printk(KERN_ERR "%s:%d(:%d): major=%d"
1873 " in_syscall=%d putname(%p) name_count=%d"
1874 " put_count=%d\n",
1875 __FILE__, __LINE__,
1876 context->serial, context->major,
1877 context->in_syscall, name, context->name_count,
1878 context->put_count);
1879 dump_stack();
1882 #endif
1885 static int audit_inc_name_count(struct audit_context *context,
1886 const struct inode *inode)
1888 if (context->name_count >= AUDIT_NAMES) {
1889 if (inode)
1890 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1891 "dev=%02x:%02x, inode=%lu\n",
1892 MAJOR(inode->i_sb->s_dev),
1893 MINOR(inode->i_sb->s_dev),
1894 inode->i_ino);
1896 else
1897 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1898 return 1;
1900 context->name_count++;
1901 #if AUDIT_DEBUG
1902 context->ino_count++;
1903 #endif
1904 return 0;
1908 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1910 struct cpu_vfs_cap_data caps;
1911 int rc;
1913 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1914 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1915 name->fcap.fE = 0;
1916 name->fcap_ver = 0;
1918 if (!dentry)
1919 return 0;
1921 rc = get_vfs_caps_from_disk(dentry, &caps);
1922 if (rc)
1923 return rc;
1925 name->fcap.permitted = caps.permitted;
1926 name->fcap.inheritable = caps.inheritable;
1927 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1928 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1930 return 0;
1934 /* Copy inode data into an audit_names. */
1935 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1936 const struct inode *inode)
1938 name->ino = inode->i_ino;
1939 name->dev = inode->i_sb->s_dev;
1940 name->mode = inode->i_mode;
1941 name->uid = inode->i_uid;
1942 name->gid = inode->i_gid;
1943 name->rdev = inode->i_rdev;
1944 security_inode_getsecid(inode, &name->osid);
1945 audit_copy_fcaps(name, dentry);
1949 * audit_inode - store the inode and device from a lookup
1950 * @name: name being audited
1951 * @dentry: dentry being audited
1953 * Called from fs/namei.c:path_lookup().
1955 void __audit_inode(const char *name, const struct dentry *dentry)
1957 int idx;
1958 struct audit_context *context = current->audit_context;
1959 const struct inode *inode = dentry->d_inode;
1961 if (!context->in_syscall)
1962 return;
1963 if (context->name_count
1964 && context->names[context->name_count-1].name
1965 && context->names[context->name_count-1].name == name)
1966 idx = context->name_count - 1;
1967 else if (context->name_count > 1
1968 && context->names[context->name_count-2].name
1969 && context->names[context->name_count-2].name == name)
1970 idx = context->name_count - 2;
1971 else {
1972 /* FIXME: how much do we care about inodes that have no
1973 * associated name? */
1974 if (audit_inc_name_count(context, inode))
1975 return;
1976 idx = context->name_count - 1;
1977 context->names[idx].name = NULL;
1979 handle_path(dentry);
1980 audit_copy_inode(&context->names[idx], dentry, inode);
1984 * audit_inode_child - collect inode info for created/removed objects
1985 * @dentry: dentry being audited
1986 * @parent: inode of dentry parent
1988 * For syscalls that create or remove filesystem objects, audit_inode
1989 * can only collect information for the filesystem object's parent.
1990 * This call updates the audit context with the child's information.
1991 * Syscalls that create a new filesystem object must be hooked after
1992 * the object is created. Syscalls that remove a filesystem object
1993 * must be hooked prior, in order to capture the target inode during
1994 * unsuccessful attempts.
1996 void __audit_inode_child(const struct dentry *dentry,
1997 const struct inode *parent)
1999 int idx;
2000 struct audit_context *context = current->audit_context;
2001 const char *found_parent = NULL, *found_child = NULL;
2002 const struct inode *inode = dentry->d_inode;
2003 const char *dname = dentry->d_name.name;
2004 int dirlen = 0;
2006 if (!context->in_syscall)
2007 return;
2009 if (inode)
2010 handle_one(inode);
2012 /* parent is more likely, look for it first */
2013 for (idx = 0; idx < context->name_count; idx++) {
2014 struct audit_names *n = &context->names[idx];
2016 if (!n->name)
2017 continue;
2019 if (n->ino == parent->i_ino &&
2020 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2021 n->name_len = dirlen; /* update parent data in place */
2022 found_parent = n->name;
2023 goto add_names;
2027 /* no matching parent, look for matching child */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2031 if (!n->name)
2032 continue;
2034 /* strcmp() is the more likely scenario */
2035 if (!strcmp(dname, n->name) ||
2036 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2037 if (inode)
2038 audit_copy_inode(n, NULL, inode);
2039 else
2040 n->ino = (unsigned long)-1;
2041 found_child = n->name;
2042 goto add_names;
2046 add_names:
2047 if (!found_parent) {
2048 if (audit_inc_name_count(context, parent))
2049 return;
2050 idx = context->name_count - 1;
2051 context->names[idx].name = NULL;
2052 audit_copy_inode(&context->names[idx], NULL, parent);
2055 if (!found_child) {
2056 if (audit_inc_name_count(context, inode))
2057 return;
2058 idx = context->name_count - 1;
2060 /* Re-use the name belonging to the slot for a matching parent
2061 * directory. All names for this context are relinquished in
2062 * audit_free_names() */
2063 if (found_parent) {
2064 context->names[idx].name = found_parent;
2065 context->names[idx].name_len = AUDIT_NAME_FULL;
2066 /* don't call __putname() */
2067 context->names[idx].name_put = 0;
2068 } else {
2069 context->names[idx].name = NULL;
2072 if (inode)
2073 audit_copy_inode(&context->names[idx], NULL, inode);
2074 else
2075 context->names[idx].ino = (unsigned long)-1;
2078 EXPORT_SYMBOL_GPL(__audit_inode_child);
2081 * auditsc_get_stamp - get local copies of audit_context values
2082 * @ctx: audit_context for the task
2083 * @t: timespec to store time recorded in the audit_context
2084 * @serial: serial value that is recorded in the audit_context
2086 * Also sets the context as auditable.
2088 int auditsc_get_stamp(struct audit_context *ctx,
2089 struct timespec *t, unsigned int *serial)
2091 if (!ctx->in_syscall)
2092 return 0;
2093 if (!ctx->serial)
2094 ctx->serial = audit_serial();
2095 t->tv_sec = ctx->ctime.tv_sec;
2096 t->tv_nsec = ctx->ctime.tv_nsec;
2097 *serial = ctx->serial;
2098 if (!ctx->prio) {
2099 ctx->prio = 1;
2100 ctx->current_state = AUDIT_RECORD_CONTEXT;
2102 return 1;
2105 /* global counter which is incremented every time something logs in */
2106 static atomic_t session_id = ATOMIC_INIT(0);
2109 * audit_set_loginuid - set a task's audit_context loginuid
2110 * @task: task whose audit context is being modified
2111 * @loginuid: loginuid value
2113 * Returns 0.
2115 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2117 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2119 unsigned int sessionid = atomic_inc_return(&session_id);
2120 struct audit_context *context = task->audit_context;
2122 if (context && context->in_syscall) {
2123 struct audit_buffer *ab;
2125 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2126 if (ab) {
2127 audit_log_format(ab, "login pid=%d uid=%u "
2128 "old auid=%u new auid=%u"
2129 " old ses=%u new ses=%u",
2130 task->pid, task_uid(task),
2131 task->loginuid, loginuid,
2132 task->sessionid, sessionid);
2133 audit_log_end(ab);
2136 task->sessionid = sessionid;
2137 task->loginuid = loginuid;
2138 return 0;
2142 * __audit_mq_open - record audit data for a POSIX MQ open
2143 * @oflag: open flag
2144 * @mode: mode bits
2145 * @attr: queue attributes
2148 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2150 struct audit_context *context = current->audit_context;
2152 if (attr)
2153 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2154 else
2155 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2157 context->mq_open.oflag = oflag;
2158 context->mq_open.mode = mode;
2160 context->type = AUDIT_MQ_OPEN;
2164 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2165 * @mqdes: MQ descriptor
2166 * @msg_len: Message length
2167 * @msg_prio: Message priority
2168 * @abs_timeout: Message timeout in absolute time
2171 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2172 const struct timespec *abs_timeout)
2174 struct audit_context *context = current->audit_context;
2175 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2177 if (abs_timeout)
2178 memcpy(p, abs_timeout, sizeof(struct timespec));
2179 else
2180 memset(p, 0, sizeof(struct timespec));
2182 context->mq_sendrecv.mqdes = mqdes;
2183 context->mq_sendrecv.msg_len = msg_len;
2184 context->mq_sendrecv.msg_prio = msg_prio;
2186 context->type = AUDIT_MQ_SENDRECV;
2190 * __audit_mq_notify - record audit data for a POSIX MQ notify
2191 * @mqdes: MQ descriptor
2192 * @notification: Notification event
2196 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2198 struct audit_context *context = current->audit_context;
2200 if (notification)
2201 context->mq_notify.sigev_signo = notification->sigev_signo;
2202 else
2203 context->mq_notify.sigev_signo = 0;
2205 context->mq_notify.mqdes = mqdes;
2206 context->type = AUDIT_MQ_NOTIFY;
2210 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2211 * @mqdes: MQ descriptor
2212 * @mqstat: MQ flags
2215 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2217 struct audit_context *context = current->audit_context;
2218 context->mq_getsetattr.mqdes = mqdes;
2219 context->mq_getsetattr.mqstat = *mqstat;
2220 context->type = AUDIT_MQ_GETSETATTR;
2224 * audit_ipc_obj - record audit data for ipc object
2225 * @ipcp: ipc permissions
2228 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2230 struct audit_context *context = current->audit_context;
2231 context->ipc.uid = ipcp->uid;
2232 context->ipc.gid = ipcp->gid;
2233 context->ipc.mode = ipcp->mode;
2234 context->ipc.has_perm = 0;
2235 security_ipc_getsecid(ipcp, &context->ipc.osid);
2236 context->type = AUDIT_IPC;
2240 * audit_ipc_set_perm - record audit data for new ipc permissions
2241 * @qbytes: msgq bytes
2242 * @uid: msgq user id
2243 * @gid: msgq group id
2244 * @mode: msgq mode (permissions)
2246 * Called only after audit_ipc_obj().
2248 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2250 struct audit_context *context = current->audit_context;
2252 context->ipc.qbytes = qbytes;
2253 context->ipc.perm_uid = uid;
2254 context->ipc.perm_gid = gid;
2255 context->ipc.perm_mode = mode;
2256 context->ipc.has_perm = 1;
2259 int audit_bprm(struct linux_binprm *bprm)
2261 struct audit_aux_data_execve *ax;
2262 struct audit_context *context = current->audit_context;
2264 if (likely(!audit_enabled || !context || context->dummy))
2265 return 0;
2267 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2268 if (!ax)
2269 return -ENOMEM;
2271 ax->argc = bprm->argc;
2272 ax->envc = bprm->envc;
2273 ax->mm = bprm->mm;
2274 ax->d.type = AUDIT_EXECVE;
2275 ax->d.next = context->aux;
2276 context->aux = (void *)ax;
2277 return 0;
2282 * audit_socketcall - record audit data for sys_socketcall
2283 * @nargs: number of args
2284 * @args: args array
2287 void audit_socketcall(int nargs, unsigned long *args)
2289 struct audit_context *context = current->audit_context;
2291 if (likely(!context || context->dummy))
2292 return;
2294 context->type = AUDIT_SOCKETCALL;
2295 context->socketcall.nargs = nargs;
2296 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2300 * __audit_fd_pair - record audit data for pipe and socketpair
2301 * @fd1: the first file descriptor
2302 * @fd2: the second file descriptor
2305 void __audit_fd_pair(int fd1, int fd2)
2307 struct audit_context *context = current->audit_context;
2308 context->fds[0] = fd1;
2309 context->fds[1] = fd2;
2313 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2314 * @len: data length in user space
2315 * @a: data address in kernel space
2317 * Returns 0 for success or NULL context or < 0 on error.
2319 int audit_sockaddr(int len, void *a)
2321 struct audit_context *context = current->audit_context;
2323 if (likely(!context || context->dummy))
2324 return 0;
2326 if (!context->sockaddr) {
2327 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2328 if (!p)
2329 return -ENOMEM;
2330 context->sockaddr = p;
2333 context->sockaddr_len = len;
2334 memcpy(context->sockaddr, a, len);
2335 return 0;
2338 void __audit_ptrace(struct task_struct *t)
2340 struct audit_context *context = current->audit_context;
2342 context->target_pid = t->pid;
2343 context->target_auid = audit_get_loginuid(t);
2344 context->target_uid = task_uid(t);
2345 context->target_sessionid = audit_get_sessionid(t);
2346 security_task_getsecid(t, &context->target_sid);
2347 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2351 * audit_signal_info - record signal info for shutting down audit subsystem
2352 * @sig: signal value
2353 * @t: task being signaled
2355 * If the audit subsystem is being terminated, record the task (pid)
2356 * and uid that is doing that.
2358 int __audit_signal_info(int sig, struct task_struct *t)
2360 struct audit_aux_data_pids *axp;
2361 struct task_struct *tsk = current;
2362 struct audit_context *ctx = tsk->audit_context;
2363 uid_t uid = current_uid(), t_uid = task_uid(t);
2365 if (audit_pid && t->tgid == audit_pid) {
2366 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2367 audit_sig_pid = tsk->pid;
2368 if (tsk->loginuid != -1)
2369 audit_sig_uid = tsk->loginuid;
2370 else
2371 audit_sig_uid = uid;
2372 security_task_getsecid(tsk, &audit_sig_sid);
2374 if (!audit_signals || audit_dummy_context())
2375 return 0;
2378 /* optimize the common case by putting first signal recipient directly
2379 * in audit_context */
2380 if (!ctx->target_pid) {
2381 ctx->target_pid = t->tgid;
2382 ctx->target_auid = audit_get_loginuid(t);
2383 ctx->target_uid = t_uid;
2384 ctx->target_sessionid = audit_get_sessionid(t);
2385 security_task_getsecid(t, &ctx->target_sid);
2386 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2387 return 0;
2390 axp = (void *)ctx->aux_pids;
2391 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2392 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2393 if (!axp)
2394 return -ENOMEM;
2396 axp->d.type = AUDIT_OBJ_PID;
2397 axp->d.next = ctx->aux_pids;
2398 ctx->aux_pids = (void *)axp;
2400 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2402 axp->target_pid[axp->pid_count] = t->tgid;
2403 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2404 axp->target_uid[axp->pid_count] = t_uid;
2405 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2406 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2407 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2408 axp->pid_count++;
2410 return 0;
2414 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2415 * @bprm: pointer to the bprm being processed
2416 * @new: the proposed new credentials
2417 * @old: the old credentials
2419 * Simply check if the proc already has the caps given by the file and if not
2420 * store the priv escalation info for later auditing at the end of the syscall
2422 * -Eric
2424 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2425 const struct cred *new, const struct cred *old)
2427 struct audit_aux_data_bprm_fcaps *ax;
2428 struct audit_context *context = current->audit_context;
2429 struct cpu_vfs_cap_data vcaps;
2430 struct dentry *dentry;
2432 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2433 if (!ax)
2434 return -ENOMEM;
2436 ax->d.type = AUDIT_BPRM_FCAPS;
2437 ax->d.next = context->aux;
2438 context->aux = (void *)ax;
2440 dentry = dget(bprm->file->f_dentry);
2441 get_vfs_caps_from_disk(dentry, &vcaps);
2442 dput(dentry);
2444 ax->fcap.permitted = vcaps.permitted;
2445 ax->fcap.inheritable = vcaps.inheritable;
2446 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2447 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2449 ax->old_pcap.permitted = old->cap_permitted;
2450 ax->old_pcap.inheritable = old->cap_inheritable;
2451 ax->old_pcap.effective = old->cap_effective;
2453 ax->new_pcap.permitted = new->cap_permitted;
2454 ax->new_pcap.inheritable = new->cap_inheritable;
2455 ax->new_pcap.effective = new->cap_effective;
2456 return 0;
2460 * __audit_log_capset - store information about the arguments to the capset syscall
2461 * @pid: target pid of the capset call
2462 * @new: the new credentials
2463 * @old: the old (current) credentials
2465 * Record the aguments userspace sent to sys_capset for later printing by the
2466 * audit system if applicable
2468 void __audit_log_capset(pid_t pid,
2469 const struct cred *new, const struct cred *old)
2471 struct audit_context *context = current->audit_context;
2472 context->capset.pid = pid;
2473 context->capset.cap.effective = new->cap_effective;
2474 context->capset.cap.inheritable = new->cap_effective;
2475 context->capset.cap.permitted = new->cap_permitted;
2476 context->type = AUDIT_CAPSET;
2480 * audit_core_dumps - record information about processes that end abnormally
2481 * @signr: signal value
2483 * If a process ends with a core dump, something fishy is going on and we
2484 * should record the event for investigation.
2486 void audit_core_dumps(long signr)
2488 struct audit_buffer *ab;
2489 u32 sid;
2490 uid_t auid = audit_get_loginuid(current), uid;
2491 gid_t gid;
2492 unsigned int sessionid = audit_get_sessionid(current);
2494 if (!audit_enabled)
2495 return;
2497 if (signr == SIGQUIT) /* don't care for those */
2498 return;
2500 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2501 current_uid_gid(&uid, &gid);
2502 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2503 auid, uid, gid, sessionid);
2504 security_task_getsecid(current, &sid);
2505 if (sid) {
2506 char *ctx = NULL;
2507 u32 len;
2509 if (security_secid_to_secctx(sid, &ctx, &len))
2510 audit_log_format(ab, " ssid=%u", sid);
2511 else {
2512 audit_log_format(ab, " subj=%s", ctx);
2513 security_release_secctx(ctx, len);
2516 audit_log_format(ab, " pid=%d comm=", current->pid);
2517 audit_log_untrustedstring(ab, current->comm);
2518 audit_log_format(ab, " sig=%ld", signr);
2519 audit_log_end(ab);
2522 struct list_head *audit_killed_trees(void)
2524 struct audit_context *ctx = current->audit_context;
2525 if (likely(!ctx || !ctx->in_syscall))
2526 return NULL;
2527 return &ctx->killed_trees;