2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
42 struct page
*dst_page
, int dst_offset
,
43 struct page
*src_page
, int src_offset
, int size
,
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
47 struct page
*dst_page
, int dst_offset
,
48 struct page
*src_page
, int src_offset
, int size
,
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
58 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
62 for (x
= 0; x
< src_size
; x
++)
63 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
68 * @dst: Buffer to take the bytes from src hex; must be at least of
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
73 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
78 for (x
= 0; x
< dst_size
; x
++) {
80 tmp
[1] = src
[x
* 2 + 1];
81 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
95 static int ecryptfs_calculate_md5(char *dst
,
96 struct ecryptfs_crypt_stat
*crypt_stat
,
99 struct scatterlist sg
;
100 struct hash_desc desc
= {
101 .tfm
= crypt_stat
->hash_tfm
,
102 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
106 mutex_lock(&crypt_stat
->cs_hash_tfm_mutex
);
107 sg_init_one(&sg
, (u8
*)src
, len
);
109 desc
.tfm
= crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH
, 0,
111 if (IS_ERR(desc
.tfm
)) {
112 rc
= PTR_ERR(desc
.tfm
);
113 ecryptfs_printk(KERN_ERR
, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
118 crypt_stat
->hash_tfm
= desc
.tfm
;
120 rc
= crypto_hash_init(&desc
);
123 "%s: Error initializing crypto hash; rc = [%d]\n",
127 rc
= crypto_hash_update(&desc
, &sg
, len
);
130 "%s: Error updating crypto hash; rc = [%d]\n",
134 rc
= crypto_hash_final(&desc
, dst
);
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
142 mutex_unlock(&crypt_stat
->cs_hash_tfm_mutex
);
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
148 char *chaining_modifier
)
150 int cipher_name_len
= strlen(cipher_name
);
151 int chaining_modifier_len
= strlen(chaining_modifier
);
152 int algified_name_len
;
155 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
156 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
157 if (!(*algified_name
)) {
161 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
162 chaining_modifier
, cipher_name
);
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
174 * Generate the initialization vector from the given root IV and page
177 * Returns zero on success; non-zero on error.
179 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
183 char dst
[MD5_DIGEST_SIZE
];
184 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
186 if (unlikely(ecryptfs_verbosity
> 0)) {
187 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
195 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
196 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
197 if (unlikely(ecryptfs_verbosity
> 0)) {
198 ecryptfs_printk(KERN_DEBUG
, "source:\n");
199 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
201 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
202 (crypt_stat
->iv_bytes
+ 16));
204 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
208 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
209 if (unlikely(ecryptfs_verbosity
> 0)) {
210 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
211 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
221 * Initialize the crypt_stat structure.
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
226 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
227 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
228 mutex_init(&crypt_stat
->keysig_list_mutex
);
229 mutex_init(&crypt_stat
->cs_mutex
);
230 mutex_init(&crypt_stat
->cs_tfm_mutex
);
231 mutex_init(&crypt_stat
->cs_hash_tfm_mutex
);
232 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
239 * Releases all memory associated with a crypt_stat struct.
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
243 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
246 crypto_free_blkcipher(crypt_stat
->tfm
);
247 if (crypt_stat
->hash_tfm
)
248 crypto_free_hash(crypt_stat
->hash_tfm
);
249 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
250 &crypt_stat
->keysig_list
, crypt_stat_list
) {
251 list_del(&key_sig
->crypt_stat_list
);
252 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
254 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
260 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
262 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
264 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
265 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
266 &mount_crypt_stat
->global_auth_tok_list
,
267 mount_crypt_stat_list
) {
268 list_del(&auth_tok
->mount_crypt_stat_list
);
269 if (auth_tok
->global_auth_tok_key
270 && !(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
271 key_put(auth_tok
->global_auth_tok_key
);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
274 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
275 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
286 * Fills in a scatterlist array with page references for a passed
289 * Returns the number of scatterlist structs in array used
291 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
297 int remainder_of_page
;
299 sg_init_table(sg
, sg_size
);
301 while (size
> 0 && i
< sg_size
) {
302 pg
= virt_to_page(addr
);
303 offset
= offset_in_page(addr
);
305 sg_set_page(&sg
[i
], pg
, 0, offset
);
306 remainder_of_page
= PAGE_CACHE_SIZE
- offset
;
307 if (size
>= remainder_of_page
) {
309 sg
[i
].length
= remainder_of_page
;
310 addr
+= remainder_of_page
;
311 size
-= remainder_of_page
;
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
333 * Returns the number of bytes encrypted; negative value on error
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
336 struct scatterlist
*dest_sg
,
337 struct scatterlist
*src_sg
, int size
,
340 struct blkcipher_desc desc
= {
341 .tfm
= crypt_stat
->tfm
,
343 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
347 BUG_ON(!crypt_stat
|| !crypt_stat
->tfm
348 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
));
349 if (unlikely(ecryptfs_verbosity
> 0)) {
350 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
351 crypt_stat
->key_size
);
352 ecryptfs_dump_hex(crypt_stat
->key
,
353 crypt_stat
->key_size
);
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
357 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
358 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
359 crypt_stat
->key_size
);
360 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
363 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
365 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
369 ecryptfs_printk(KERN_DEBUG
, "Encrypting [%d] bytes.\n", size
);
370 crypto_blkcipher_encrypt_iv(&desc
, dest_sg
, src_sg
, size
);
371 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
377 * ecryptfs_lower_offset_for_extent
379 * Convert an eCryptfs page index into a lower byte offset
381 static void ecryptfs_lower_offset_for_extent(loff_t
*offset
, loff_t extent_num
,
382 struct ecryptfs_crypt_stat
*crypt_stat
)
384 (*offset
) = ecryptfs_lower_header_size(crypt_stat
)
385 + (crypt_stat
->extent_size
* extent_num
);
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
397 * Encrypts one extent of data.
399 * Return zero on success; non-zero otherwise
401 static int ecryptfs_encrypt_extent(struct page
*enc_extent_page
,
402 struct ecryptfs_crypt_stat
*crypt_stat
,
404 unsigned long extent_offset
)
407 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
410 extent_base
= (((loff_t
)page
->index
)
411 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
412 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
413 (extent_base
+ extent_offset
));
415 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base
+ extent_offset
), rc
);
420 if (unlikely(ecryptfs_verbosity
> 0)) {
421 ecryptfs_printk(KERN_DEBUG
, "Encrypting extent "
423 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
424 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
426 ecryptfs_dump_hex((char *)
428 + (extent_offset
* crypt_stat
->extent_size
)),
431 rc
= ecryptfs_encrypt_page_offset(crypt_stat
, enc_extent_page
, 0,
433 * crypt_stat
->extent_size
),
434 crypt_stat
->extent_size
, extent_iv
);
436 printk(KERN_ERR
"%s: Error attempting to encrypt page with "
437 "page->index = [%ld], extent_offset = [%ld]; "
438 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
443 if (unlikely(ecryptfs_verbosity
> 0)) {
444 ecryptfs_printk(KERN_DEBUG
, "Encrypt extent [0x%.16llx]; "
446 (unsigned long long)(extent_base
+ extent_offset
), rc
);
447 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page
)), 8);
456 * ecryptfs_encrypt_page
457 * @page: Page mapped from the eCryptfs inode for the file; contains
458 * decrypted content that needs to be encrypted (to a temporary
459 * page; not in place) and written out to the lower file
461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462 * that eCryptfs pages may straddle the lower pages -- for instance,
463 * if the file was created on a machine with an 8K page size
464 * (resulting in an 8K header), and then the file is copied onto a
465 * host with a 32K page size, then when reading page 0 of the eCryptfs
466 * file, 24K of page 0 of the lower file will be read and decrypted,
467 * and then 8K of page 1 of the lower file will be read and decrypted.
469 * Returns zero on success; negative on error
471 int ecryptfs_encrypt_page(struct page
*page
)
473 struct inode
*ecryptfs_inode
;
474 struct ecryptfs_crypt_stat
*crypt_stat
;
475 char *enc_extent_virt
;
476 struct page
*enc_extent_page
= NULL
;
477 loff_t extent_offset
;
480 ecryptfs_inode
= page
->mapping
->host
;
482 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
483 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
484 enc_extent_page
= alloc_page(GFP_USER
);
485 if (!enc_extent_page
) {
487 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
488 "encrypted extent\n");
491 enc_extent_virt
= kmap(enc_extent_page
);
492 for (extent_offset
= 0;
493 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
497 rc
= ecryptfs_encrypt_extent(enc_extent_page
, crypt_stat
, page
,
500 printk(KERN_ERR
"%s: Error encrypting extent; "
501 "rc = [%d]\n", __func__
, rc
);
504 ecryptfs_lower_offset_for_extent(
505 &offset
, ((((loff_t
)page
->index
)
507 / crypt_stat
->extent_size
))
508 + extent_offset
), crypt_stat
);
509 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
,
510 offset
, crypt_stat
->extent_size
);
512 ecryptfs_printk(KERN_ERR
, "Error attempting "
513 "to write lower page; rc = [%d]"
520 if (enc_extent_page
) {
521 kunmap(enc_extent_page
);
522 __free_page(enc_extent_page
);
527 static int ecryptfs_decrypt_extent(struct page
*page
,
528 struct ecryptfs_crypt_stat
*crypt_stat
,
529 struct page
*enc_extent_page
,
530 unsigned long extent_offset
)
533 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
536 extent_base
= (((loff_t
)page
->index
)
537 * (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
));
538 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
539 (extent_base
+ extent_offset
));
541 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
542 "extent [0x%.16llx]; rc = [%d]\n",
543 (unsigned long long)(extent_base
+ extent_offset
), rc
);
546 if (unlikely(ecryptfs_verbosity
> 0)) {
547 ecryptfs_printk(KERN_DEBUG
, "Decrypting extent "
549 ecryptfs_dump_hex(extent_iv
, crypt_stat
->iv_bytes
);
550 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes before "
552 ecryptfs_dump_hex((char *)
553 (page_address(enc_extent_page
)
554 + (extent_offset
* crypt_stat
->extent_size
)),
557 rc
= ecryptfs_decrypt_page_offset(crypt_stat
, page
,
559 * crypt_stat
->extent_size
),
561 crypt_stat
->extent_size
, extent_iv
);
563 printk(KERN_ERR
"%s: Error attempting to decrypt to page with "
564 "page->index = [%ld], extent_offset = [%ld]; "
565 "rc = [%d]\n", __func__
, page
->index
, extent_offset
,
570 if (unlikely(ecryptfs_verbosity
> 0)) {
571 ecryptfs_printk(KERN_DEBUG
, "Decrypt extent [0x%.16llx]; "
573 (unsigned long long)(extent_base
+ extent_offset
), rc
);
574 ecryptfs_printk(KERN_DEBUG
, "First 8 bytes after "
576 ecryptfs_dump_hex((char *)(page_address(page
)
578 * crypt_stat
->extent_size
)), 8);
585 * ecryptfs_decrypt_page
586 * @page: Page mapped from the eCryptfs inode for the file; data read
587 * and decrypted from the lower file will be written into this
590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
591 * that eCryptfs pages may straddle the lower pages -- for instance,
592 * if the file was created on a machine with an 8K page size
593 * (resulting in an 8K header), and then the file is copied onto a
594 * host with a 32K page size, then when reading page 0 of the eCryptfs
595 * file, 24K of page 0 of the lower file will be read and decrypted,
596 * and then 8K of page 1 of the lower file will be read and decrypted.
598 * Returns zero on success; negative on error
600 int ecryptfs_decrypt_page(struct page
*page
)
602 struct inode
*ecryptfs_inode
;
603 struct ecryptfs_crypt_stat
*crypt_stat
;
604 char *enc_extent_virt
;
605 struct page
*enc_extent_page
= NULL
;
606 unsigned long extent_offset
;
609 ecryptfs_inode
= page
->mapping
->host
;
611 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
612 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
613 enc_extent_page
= alloc_page(GFP_USER
);
614 if (!enc_extent_page
) {
616 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
617 "encrypted extent\n");
620 enc_extent_virt
= kmap(enc_extent_page
);
621 for (extent_offset
= 0;
622 extent_offset
< (PAGE_CACHE_SIZE
/ crypt_stat
->extent_size
);
626 ecryptfs_lower_offset_for_extent(
627 &offset
, ((page
->index
* (PAGE_CACHE_SIZE
628 / crypt_stat
->extent_size
))
629 + extent_offset
), crypt_stat
);
630 rc
= ecryptfs_read_lower(enc_extent_virt
, offset
,
631 crypt_stat
->extent_size
,
634 ecryptfs_printk(KERN_ERR
, "Error attempting "
635 "to read lower page; rc = [%d]"
639 rc
= ecryptfs_decrypt_extent(page
, crypt_stat
, enc_extent_page
,
642 printk(KERN_ERR
"%s: Error encrypting extent; "
643 "rc = [%d]\n", __func__
, rc
);
648 if (enc_extent_page
) {
649 kunmap(enc_extent_page
);
650 __free_page(enc_extent_page
);
656 * decrypt_scatterlist
657 * @crypt_stat: Cryptographic context
658 * @dest_sg: The destination scatterlist to decrypt into
659 * @src_sg: The source scatterlist to decrypt from
660 * @size: The number of bytes to decrypt
661 * @iv: The initialization vector to use for the decryption
663 * Returns the number of bytes decrypted; negative value on error
665 static int decrypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
666 struct scatterlist
*dest_sg
,
667 struct scatterlist
*src_sg
, int size
,
670 struct blkcipher_desc desc
= {
671 .tfm
= crypt_stat
->tfm
,
673 .flags
= CRYPTO_TFM_REQ_MAY_SLEEP
677 /* Consider doing this once, when the file is opened */
678 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
679 rc
= crypto_blkcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
680 crypt_stat
->key_size
);
682 ecryptfs_printk(KERN_ERR
, "Error setting key; rc = [%d]\n",
684 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
688 ecryptfs_printk(KERN_DEBUG
, "Decrypting [%d] bytes.\n", size
);
689 rc
= crypto_blkcipher_decrypt_iv(&desc
, dest_sg
, src_sg
, size
);
690 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
692 ecryptfs_printk(KERN_ERR
, "Error decrypting; rc = [%d]\n",
702 * ecryptfs_encrypt_page_offset
703 * @crypt_stat: The cryptographic context
704 * @dst_page: The page to encrypt into
705 * @dst_offset: The offset in the page to encrypt into
706 * @src_page: The page to encrypt from
707 * @src_offset: The offset in the page to encrypt from
708 * @size: The number of bytes to encrypt
709 * @iv: The initialization vector to use for the encryption
711 * Returns the number of bytes encrypted
714 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
715 struct page
*dst_page
, int dst_offset
,
716 struct page
*src_page
, int src_offset
, int size
,
719 struct scatterlist src_sg
, dst_sg
;
721 sg_init_table(&src_sg
, 1);
722 sg_init_table(&dst_sg
, 1);
724 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
725 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
726 return encrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
730 * ecryptfs_decrypt_page_offset
731 * @crypt_stat: The cryptographic context
732 * @dst_page: The page to decrypt into
733 * @dst_offset: The offset in the page to decrypt into
734 * @src_page: The page to decrypt from
735 * @src_offset: The offset in the page to decrypt from
736 * @size: The number of bytes to decrypt
737 * @iv: The initialization vector to use for the decryption
739 * Returns the number of bytes decrypted
742 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat
*crypt_stat
,
743 struct page
*dst_page
, int dst_offset
,
744 struct page
*src_page
, int src_offset
, int size
,
747 struct scatterlist src_sg
, dst_sg
;
749 sg_init_table(&src_sg
, 1);
750 sg_set_page(&src_sg
, src_page
, size
, src_offset
);
752 sg_init_table(&dst_sg
, 1);
753 sg_set_page(&dst_sg
, dst_page
, size
, dst_offset
);
755 return decrypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, size
, iv
);
758 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
761 * ecryptfs_init_crypt_ctx
762 * @crypt_stat: Uninitialized crypt stats structure
764 * Initialize the crypto context.
766 * TODO: Performance: Keep a cache of initialized cipher contexts;
767 * only init if needed
769 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
774 if (!crypt_stat
->cipher
) {
775 ecryptfs_printk(KERN_ERR
, "No cipher specified\n");
778 ecryptfs_printk(KERN_DEBUG
,
779 "Initializing cipher [%s]; strlen = [%d]; "
780 "key_size_bits = [%zd]\n",
781 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
782 crypt_stat
->key_size
<< 3);
783 if (crypt_stat
->tfm
) {
787 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
788 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
789 crypt_stat
->cipher
, "cbc");
792 crypt_stat
->tfm
= crypto_alloc_blkcipher(full_alg_name
, 0,
794 kfree(full_alg_name
);
795 if (IS_ERR(crypt_stat
->tfm
)) {
796 rc
= PTR_ERR(crypt_stat
->tfm
);
797 crypt_stat
->tfm
= NULL
;
798 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
799 "Error initializing cipher [%s]\n",
803 crypto_blkcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
806 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
811 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
815 crypt_stat
->extent_mask
= 0xFFFFFFFF;
816 crypt_stat
->extent_shift
= 0;
817 if (crypt_stat
->extent_size
== 0)
819 extent_size_tmp
= crypt_stat
->extent_size
;
820 while ((extent_size_tmp
& 0x01) == 0) {
821 extent_size_tmp
>>= 1;
822 crypt_stat
->extent_mask
<<= 1;
823 crypt_stat
->extent_shift
++;
827 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
829 /* Default values; may be overwritten as we are parsing the
831 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
832 set_extent_mask_and_shift(crypt_stat
);
833 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
834 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
835 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
837 if (PAGE_CACHE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
838 crypt_stat
->metadata_size
=
839 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
841 crypt_stat
->metadata_size
= PAGE_CACHE_SIZE
;
846 * ecryptfs_compute_root_iv
849 * On error, sets the root IV to all 0's.
851 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
854 char dst
[MD5_DIGEST_SIZE
];
856 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
857 BUG_ON(crypt_stat
->iv_bytes
<= 0);
858 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
860 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
861 "cannot generate root IV\n");
864 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
865 crypt_stat
->key_size
);
867 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
868 "MD5 while generating root IV\n");
871 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
874 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
875 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
880 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
882 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
883 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
884 ecryptfs_compute_root_iv(crypt_stat
);
885 if (unlikely(ecryptfs_verbosity
> 0)) {
886 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
887 ecryptfs_dump_hex(crypt_stat
->key
,
888 crypt_stat
->key_size
);
893 * ecryptfs_copy_mount_wide_flags_to_inode_flags
894 * @crypt_stat: The inode's cryptographic context
895 * @mount_crypt_stat: The mount point's cryptographic context
897 * This function propagates the mount-wide flags to individual inode
900 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901 struct ecryptfs_crypt_stat
*crypt_stat
,
902 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
904 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
905 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
906 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
907 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
908 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
909 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
910 if (mount_crypt_stat
->flags
911 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
912 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
913 else if (mount_crypt_stat
->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
915 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
919 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920 struct ecryptfs_crypt_stat
*crypt_stat
,
921 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
923 struct ecryptfs_global_auth_tok
*global_auth_tok
;
926 mutex_lock(&crypt_stat
->keysig_list_mutex
);
927 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
929 list_for_each_entry(global_auth_tok
,
930 &mount_crypt_stat
->global_auth_tok_list
,
931 mount_crypt_stat_list
) {
932 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
934 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
936 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
942 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
943 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
948 * ecryptfs_set_default_crypt_stat_vals
949 * @crypt_stat: The inode's cryptographic context
950 * @mount_crypt_stat: The mount point's cryptographic context
952 * Default values in the event that policy does not override them.
954 static void ecryptfs_set_default_crypt_stat_vals(
955 struct ecryptfs_crypt_stat
*crypt_stat
,
956 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
960 ecryptfs_set_default_sizes(crypt_stat
);
961 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
962 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
963 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
964 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
965 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
969 * ecryptfs_new_file_context
970 * @ecryptfs_dentry: The eCryptfs dentry
972 * If the crypto context for the file has not yet been established,
973 * this is where we do that. Establishing a new crypto context
974 * involves the following decisions:
975 * - What cipher to use?
976 * - What set of authentication tokens to use?
977 * Here we just worry about getting enough information into the
978 * authentication tokens so that we know that they are available.
979 * We associate the available authentication tokens with the new file
980 * via the set of signatures in the crypt_stat struct. Later, when
981 * the headers are actually written out, we may again defer to
982 * userspace to perform the encryption of the session key; for the
983 * foreseeable future, this will be the case with public key packets.
985 * Returns zero on success; non-zero otherwise
987 int ecryptfs_new_file_context(struct dentry
*ecryptfs_dentry
)
989 struct ecryptfs_crypt_stat
*crypt_stat
=
990 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
991 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
992 &ecryptfs_superblock_to_private(
993 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
997 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
998 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1001 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
1004 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
1005 "to the inode key sigs; rc = [%d]\n", rc
);
1009 strlen(mount_crypt_stat
->global_default_cipher_name
);
1010 memcpy(crypt_stat
->cipher
,
1011 mount_crypt_stat
->global_default_cipher_name
,
1013 crypt_stat
->cipher
[cipher_name_len
] = '\0';
1014 crypt_stat
->key_size
=
1015 mount_crypt_stat
->global_default_cipher_key_size
;
1016 ecryptfs_generate_new_key(crypt_stat
);
1017 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
1019 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
1020 "context for cipher [%s]: rc = [%d]\n",
1021 crypt_stat
->cipher
, rc
);
1027 * ecryptfs_validate_marker - check for the ecryptfs marker
1028 * @data: The data block in which to check
1030 * Returns zero if marker found; -EINVAL if not found
1032 static int ecryptfs_validate_marker(char *data
)
1036 m_1
= get_unaligned_be32(data
);
1037 m_2
= get_unaligned_be32(data
+ 4);
1038 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
1040 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
1042 MAGIC_ECRYPTFS_MARKER
);
1043 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1044 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
1048 struct ecryptfs_flag_map_elem
{
1053 /* Add support for additional flags by adding elements here. */
1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
1055 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
1056 {0x00000002, ECRYPTFS_ENCRYPTED
},
1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
1062 * ecryptfs_process_flags
1063 * @crypt_stat: The cryptographic context
1064 * @page_virt: Source data to be parsed
1065 * @bytes_read: Updated with the number of bytes read
1067 * Returns zero on success; non-zero if the flag set is invalid
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
1070 char *page_virt
, int *bytes_read
)
1076 flags
= get_unaligned_be32(page_virt
);
1077 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1078 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1079 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
1080 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
1082 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
1083 /* Version is in top 8 bits of the 32-bit flag vector */
1084 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
1090 * write_ecryptfs_marker
1091 * @page_virt: The pointer to in a page to begin writing the marker
1092 * @written: Number of bytes written
1094 * Marker = 0x3c81b7f5
1096 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
1100 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
1101 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
1102 put_unaligned_be32(m_1
, page_virt
);
1103 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
1104 put_unaligned_be32(m_2
, page_virt
);
1105 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1108 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
1109 struct ecryptfs_crypt_stat
*crypt_stat
,
1115 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
1116 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
1117 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
1118 flags
|= ecryptfs_flag_map
[i
].file_flag
;
1119 /* Version is in top 8 bits of the 32-bit flag vector */
1120 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
1121 put_unaligned_be32(flags
, page_virt
);
1125 struct ecryptfs_cipher_code_str_map_elem
{
1126 char cipher_str
[16];
1130 /* Add support for additional ciphers by adding elements here. The
1131 * cipher_code is whatever OpenPGP applicatoins use to identify the
1132 * ciphers. List in order of probability. */
1133 static struct ecryptfs_cipher_code_str_map_elem
1134 ecryptfs_cipher_code_str_map
[] = {
1135 {"aes",RFC2440_CIPHER_AES_128
},
1136 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
1138 {"cast5", RFC2440_CIPHER_CAST_5
},
1139 {"twofish", RFC2440_CIPHER_TWOFISH
},
1140 {"cast6", RFC2440_CIPHER_CAST_6
},
1141 {"aes", RFC2440_CIPHER_AES_192
},
1142 {"aes", RFC2440_CIPHER_AES_256
}
1146 * ecryptfs_code_for_cipher_string
1147 * @cipher_name: The string alias for the cipher
1148 * @key_bytes: Length of key in bytes; used for AES code selection
1150 * Returns zero on no match, or the cipher code on match
1152 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
1156 struct ecryptfs_cipher_code_str_map_elem
*map
=
1157 ecryptfs_cipher_code_str_map
;
1159 if (strcmp(cipher_name
, "aes") == 0) {
1160 switch (key_bytes
) {
1162 code
= RFC2440_CIPHER_AES_128
;
1165 code
= RFC2440_CIPHER_AES_192
;
1168 code
= RFC2440_CIPHER_AES_256
;
1171 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1172 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1173 code
= map
[i
].cipher_code
;
1181 * ecryptfs_cipher_code_to_string
1182 * @str: Destination to write out the cipher name
1183 * @cipher_code: The code to convert to cipher name string
1185 * Returns zero on success
1187 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1193 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1194 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1195 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1196 if (str
[0] == '\0') {
1197 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1198 "[%d]\n", cipher_code
);
1204 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1206 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1207 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1210 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1212 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1213 return rc
>= 0 ? -EINVAL
: rc
;
1214 rc
= ecryptfs_validate_marker(marker
);
1216 ecryptfs_i_size_init(file_size
, inode
);
1221 ecryptfs_write_header_metadata(char *virt
,
1222 struct ecryptfs_crypt_stat
*crypt_stat
,
1225 u32 header_extent_size
;
1226 u16 num_header_extents_at_front
;
1228 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1229 num_header_extents_at_front
=
1230 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1231 put_unaligned_be32(header_extent_size
, virt
);
1233 put_unaligned_be16(num_header_extents_at_front
, virt
);
1237 struct kmem_cache
*ecryptfs_header_cache
;
1240 * ecryptfs_write_headers_virt
1241 * @page_virt: The virtual address to write the headers to
1242 * @max: The size of memory allocated at page_virt
1243 * @size: Set to the number of bytes written by this function
1244 * @crypt_stat: The cryptographic context
1245 * @ecryptfs_dentry: The eCryptfs dentry
1250 * Octets 0-7: Unencrypted file size (big-endian)
1251 * Octets 8-15: eCryptfs special marker
1252 * Octets 16-19: Flags
1253 * Octet 16: File format version number (between 0 and 255)
1254 * Octets 17-18: Reserved
1255 * Octet 19: Bit 1 (lsb): Reserved
1257 * Bits 3-8: Reserved
1258 * Octets 20-23: Header extent size (big-endian)
1259 * Octets 24-25: Number of header extents at front of file
1261 * Octet 26: Begin RFC 2440 authentication token packet set
1263 * Lower data (CBC encrypted)
1265 * Lower data (CBC encrypted)
1268 * Returns zero on success
1270 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1272 struct ecryptfs_crypt_stat
*crypt_stat
,
1273 struct dentry
*ecryptfs_dentry
)
1279 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1280 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1282 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1285 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1288 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1289 ecryptfs_dentry
, &written
,
1292 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1293 "set; rc = [%d]\n", rc
);
1302 ecryptfs_write_metadata_to_contents(struct dentry
*ecryptfs_dentry
,
1303 char *virt
, size_t virt_len
)
1307 rc
= ecryptfs_write_lower(ecryptfs_dentry
->d_inode
, virt
,
1310 printk(KERN_ERR
"%s: Error attempting to write header "
1311 "information to lower file; rc = [%d]\n", __func__
, rc
);
1318 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1319 char *page_virt
, size_t size
)
1323 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ECRYPTFS_XATTR_NAME
, page_virt
,
1328 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1333 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1335 return (unsigned long) page_address(page
);
1340 * ecryptfs_write_metadata
1341 * @ecryptfs_dentry: The eCryptfs dentry
1343 * Write the file headers out. This will likely involve a userspace
1344 * callout, in which the session key is encrypted with one or more
1345 * public keys and/or the passphrase necessary to do the encryption is
1346 * retrieved via a prompt. Exactly what happens at this point should
1347 * be policy-dependent.
1349 * Returns zero on success; non-zero on error
1351 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
)
1353 struct ecryptfs_crypt_stat
*crypt_stat
=
1354 &ecryptfs_inode_to_private(ecryptfs_dentry
->d_inode
)->crypt_stat
;
1361 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1362 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1363 printk(KERN_ERR
"Key is invalid; bailing out\n");
1368 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1373 virt_len
= crypt_stat
->metadata_size
;
1374 order
= get_order(virt_len
);
1375 /* Released in this function */
1376 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1378 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1382 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1383 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1386 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1390 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1391 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, virt
,
1394 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_dentry
, virt
,
1397 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1398 "rc = [%d]\n", __func__
, rc
);
1402 free_pages((unsigned long)virt
, order
);
1407 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1408 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1409 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1410 char *virt
, int *bytes_read
,
1411 int validate_header_size
)
1414 u32 header_extent_size
;
1415 u16 num_header_extents_at_front
;
1417 header_extent_size
= get_unaligned_be32(virt
);
1418 virt
+= sizeof(__be32
);
1419 num_header_extents_at_front
= get_unaligned_be16(virt
);
1420 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1421 * (size_t)header_extent_size
));
1422 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1423 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1424 && (crypt_stat
->metadata_size
1425 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1427 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1428 crypt_stat
->metadata_size
);
1434 * set_default_header_data
1435 * @crypt_stat: The cryptographic context
1437 * For version 0 file format; this function is only for backwards
1438 * compatibility for files created with the prior versions of
1441 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1443 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1446 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1448 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1449 struct ecryptfs_crypt_stat
*crypt_stat
;
1452 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1454 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1455 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1456 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1457 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1458 file_size
+= crypt_stat
->metadata_size
;
1460 file_size
= get_unaligned_be64(page_virt
);
1461 i_size_write(inode
, (loff_t
)file_size
);
1462 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1466 * ecryptfs_read_headers_virt
1467 * @page_virt: The virtual address into which to read the headers
1468 * @crypt_stat: The cryptographic context
1469 * @ecryptfs_dentry: The eCryptfs dentry
1470 * @validate_header_size: Whether to validate the header size while reading
1472 * Read/parse the header data. The header format is detailed in the
1473 * comment block for the ecryptfs_write_headers_virt() function.
1475 * Returns zero on success
1477 static int ecryptfs_read_headers_virt(char *page_virt
,
1478 struct ecryptfs_crypt_stat
*crypt_stat
,
1479 struct dentry
*ecryptfs_dentry
,
1480 int validate_header_size
)
1486 ecryptfs_set_default_sizes(crypt_stat
);
1487 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1488 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1489 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1490 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1493 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1494 ecryptfs_i_size_init(page_virt
, ecryptfs_dentry
->d_inode
);
1495 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1496 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1499 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1502 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1503 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1504 "file version [%d] is supported by this "
1505 "version of eCryptfs\n",
1506 crypt_stat
->file_version
,
1507 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1511 offset
+= bytes_read
;
1512 if (crypt_stat
->file_version
>= 1) {
1513 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1514 &bytes_read
, validate_header_size
);
1516 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1517 "metadata; rc = [%d]\n", rc
);
1519 offset
+= bytes_read
;
1521 set_default_header_data(crypt_stat
);
1522 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1529 * ecryptfs_read_xattr_region
1530 * @page_virt: The vitual address into which to read the xattr data
1531 * @ecryptfs_inode: The eCryptfs inode
1533 * Attempts to read the crypto metadata from the extended attribute
1534 * region of the lower file.
1536 * Returns zero on success; non-zero on error
1538 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1540 struct dentry
*lower_dentry
=
1541 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_dentry
;
1545 size
= ecryptfs_getxattr_lower(lower_dentry
, ECRYPTFS_XATTR_NAME
,
1546 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1548 if (unlikely(ecryptfs_verbosity
> 0))
1549 printk(KERN_INFO
"Error attempting to read the [%s] "
1550 "xattr from the lower file; return value = "
1551 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1559 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1560 struct inode
*inode
)
1562 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1563 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1566 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1567 ECRYPTFS_XATTR_NAME
, file_size
,
1568 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1569 if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1570 return rc
>= 0 ? -EINVAL
: rc
;
1571 rc
= ecryptfs_validate_marker(marker
);
1573 ecryptfs_i_size_init(file_size
, inode
);
1578 * ecryptfs_read_metadata
1580 * Common entry point for reading file metadata. From here, we could
1581 * retrieve the header information from the header region of the file,
1582 * the xattr region of the file, or some other repostory that is
1583 * stored separately from the file itself. The current implementation
1584 * supports retrieving the metadata information from the file contents
1585 * and from the xattr region.
1587 * Returns zero if valid headers found and parsed; non-zero otherwise
1589 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1592 char *page_virt
= NULL
;
1593 struct inode
*ecryptfs_inode
= ecryptfs_dentry
->d_inode
;
1594 struct ecryptfs_crypt_stat
*crypt_stat
=
1595 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1596 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1597 &ecryptfs_superblock_to_private(
1598 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1600 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1602 /* Read the first page from the underlying file */
1603 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1606 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1610 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1613 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1615 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1617 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1618 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1620 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1621 "file header region or xattr region\n");
1625 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1627 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1629 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1630 "file xattr region either\n");
1633 if (crypt_stat
->mount_crypt_stat
->flags
1634 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1635 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1637 printk(KERN_WARNING
"Attempt to access file with "
1638 "crypto metadata only in the extended attribute "
1639 "region, but eCryptfs was mounted without "
1640 "xattr support enabled. eCryptfs will not treat "
1641 "this like an encrypted file.\n");
1647 memset(page_virt
, 0, PAGE_CACHE_SIZE
);
1648 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1654 * ecryptfs_encrypt_filename - encrypt filename
1656 * CBC-encrypts the filename. We do not want to encrypt the same
1657 * filename with the same key and IV, which may happen with hard
1658 * links, so we prepend random bits to each filename.
1660 * Returns zero on success; non-zero otherwise
1663 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1664 struct ecryptfs_crypt_stat
*crypt_stat
,
1665 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1669 filename
->encrypted_filename
= NULL
;
1670 filename
->encrypted_filename_size
= 0;
1671 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
1672 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
1673 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
1675 size_t remaining_bytes
;
1677 rc
= ecryptfs_write_tag_70_packet(
1679 &filename
->encrypted_filename_size
,
1680 mount_crypt_stat
, NULL
,
1681 filename
->filename_size
);
1683 printk(KERN_ERR
"%s: Error attempting to get packet "
1684 "size for tag 72; rc = [%d]\n", __func__
,
1686 filename
->encrypted_filename_size
= 0;
1689 filename
->encrypted_filename
=
1690 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1691 if (!filename
->encrypted_filename
) {
1692 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1693 "to kmalloc [%zd] bytes\n", __func__
,
1694 filename
->encrypted_filename_size
);
1698 remaining_bytes
= filename
->encrypted_filename_size
;
1699 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1704 filename
->filename_size
);
1706 printk(KERN_ERR
"%s: Error attempting to generate "
1707 "tag 70 packet; rc = [%d]\n", __func__
,
1709 kfree(filename
->encrypted_filename
);
1710 filename
->encrypted_filename
= NULL
;
1711 filename
->encrypted_filename_size
= 0;
1714 filename
->encrypted_filename_size
= packet_size
;
1716 printk(KERN_ERR
"%s: No support for requested filename "
1717 "encryption method in this release\n", __func__
);
1725 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1726 const char *name
, size_t name_size
)
1730 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1731 if (!(*copied_name
)) {
1735 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1736 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1737 * in printing out the
1740 (*copied_name_size
) = name_size
;
1746 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1747 * @key_tfm: Crypto context for key material, set by this function
1748 * @cipher_name: Name of the cipher
1749 * @key_size: Size of the key in bytes
1751 * Returns zero on success. Any crypto_tfm structs allocated here
1752 * should be released by other functions, such as on a superblock put
1753 * event, regardless of whether this function succeeds for fails.
1756 ecryptfs_process_key_cipher(struct crypto_blkcipher
**key_tfm
,
1757 char *cipher_name
, size_t *key_size
)
1759 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1760 char *full_alg_name
= NULL
;
1764 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1766 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1767 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1770 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1774 *key_tfm
= crypto_alloc_blkcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1775 if (IS_ERR(*key_tfm
)) {
1776 rc
= PTR_ERR(*key_tfm
);
1777 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1778 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1781 crypto_blkcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1782 if (*key_size
== 0) {
1783 struct blkcipher_alg
*alg
= crypto_blkcipher_alg(*key_tfm
);
1785 *key_size
= alg
->max_keysize
;
1787 get_random_bytes(dummy_key
, *key_size
);
1788 rc
= crypto_blkcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1790 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1791 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1797 kfree(full_alg_name
);
1801 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1802 static struct list_head key_tfm_list
;
1803 struct mutex key_tfm_list_mutex
;
1805 int __init
ecryptfs_init_crypto(void)
1807 mutex_init(&key_tfm_list_mutex
);
1808 INIT_LIST_HEAD(&key_tfm_list
);
1813 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1815 * Called only at module unload time
1817 int ecryptfs_destroy_crypto(void)
1819 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1821 mutex_lock(&key_tfm_list_mutex
);
1822 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1824 list_del(&key_tfm
->key_tfm_list
);
1825 if (key_tfm
->key_tfm
)
1826 crypto_free_blkcipher(key_tfm
->key_tfm
);
1827 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1829 mutex_unlock(&key_tfm_list_mutex
);
1834 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1837 struct ecryptfs_key_tfm
*tmp_tfm
;
1840 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1842 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1843 if (key_tfm
!= NULL
)
1844 (*key_tfm
) = tmp_tfm
;
1847 printk(KERN_ERR
"Error attempting to allocate from "
1848 "ecryptfs_key_tfm_cache\n");
1851 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1852 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1853 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1854 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1855 tmp_tfm
->key_size
= key_size
;
1856 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1857 tmp_tfm
->cipher_name
,
1858 &tmp_tfm
->key_size
);
1860 printk(KERN_ERR
"Error attempting to initialize key TFM "
1861 "cipher with name = [%s]; rc = [%d]\n",
1862 tmp_tfm
->cipher_name
, rc
);
1863 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1864 if (key_tfm
!= NULL
)
1868 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1874 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1875 * @cipher_name: the name of the cipher to search for
1876 * @key_tfm: set to corresponding tfm if found
1878 * Searches for cached key_tfm matching @cipher_name
1879 * Must be called with &key_tfm_list_mutex held
1880 * Returns 1 if found, with @key_tfm set
1881 * Returns 0 if not found, with @key_tfm set to NULL
1883 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1885 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1887 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1889 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1890 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1892 (*key_tfm
) = tmp_key_tfm
;
1902 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1904 * @tfm: set to cached tfm found, or new tfm created
1905 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1906 * @cipher_name: the name of the cipher to search for and/or add
1908 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1909 * Searches for cached item first, and creates new if not found.
1910 * Returns 0 on success, non-zero if adding new cipher failed
1912 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher
**tfm
,
1913 struct mutex
**tfm_mutex
,
1916 struct ecryptfs_key_tfm
*key_tfm
;
1920 (*tfm_mutex
) = NULL
;
1922 mutex_lock(&key_tfm_list_mutex
);
1923 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1924 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1926 printk(KERN_ERR
"Error adding new key_tfm to list; "
1931 (*tfm
) = key_tfm
->key_tfm
;
1932 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1934 mutex_unlock(&key_tfm_list_mutex
);
1938 /* 64 characters forming a 6-bit target field */
1939 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1942 "klmnopqrstuvwxyz");
1944 /* We could either offset on every reverse map or just pad some 0x00's
1945 * at the front here */
1946 static const unsigned char filename_rev_map
[] = {
1947 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1948 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1949 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1950 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1951 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1952 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1953 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1954 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1955 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1956 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1957 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1958 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1959 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1960 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1961 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1966 * ecryptfs_encode_for_filename
1967 * @dst: Destination location for encoded filename
1968 * @dst_size: Size of the encoded filename in bytes
1969 * @src: Source location for the filename to encode
1970 * @src_size: Size of the source in bytes
1972 void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1973 unsigned char *src
, size_t src_size
)
1976 size_t block_num
= 0;
1977 size_t dst_offset
= 0;
1978 unsigned char last_block
[3];
1980 if (src_size
== 0) {
1984 num_blocks
= (src_size
/ 3);
1985 if ((src_size
% 3) == 0) {
1986 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1989 last_block
[2] = 0x00;
1990 switch (src_size
% 3) {
1992 last_block
[0] = src
[src_size
- 1];
1993 last_block
[1] = 0x00;
1996 last_block
[0] = src
[src_size
- 2];
1997 last_block
[1] = src
[src_size
- 1];
2000 (*dst_size
) = (num_blocks
* 4);
2003 while (block_num
< num_blocks
) {
2004 unsigned char *src_block
;
2005 unsigned char dst_block
[4];
2007 if (block_num
== (num_blocks
- 1))
2008 src_block
= last_block
;
2010 src_block
= &src
[block_num
* 3];
2011 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
2012 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
2013 | ((src_block
[1] >> 4) & 0x0F));
2014 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
2015 | ((src_block
[2] >> 6) & 0x03));
2016 dst_block
[3] = (src_block
[2] & 0x3F);
2017 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
2018 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
2019 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
2020 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
2028 * ecryptfs_decode_from_filename
2029 * @dst: If NULL, this function only sets @dst_size and returns. If
2030 * non-NULL, this function decodes the encoded octets in @src
2031 * into the memory that @dst points to.
2032 * @dst_size: Set to the size of the decoded string.
2033 * @src: The encoded set of octets to decode.
2034 * @src_size: The size of the encoded set of octets to decode.
2037 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
2038 const unsigned char *src
, size_t src_size
)
2040 u8 current_bit_offset
= 0;
2041 size_t src_byte_offset
= 0;
2042 size_t dst_byte_offset
= 0;
2045 /* Not exact; conservatively long. Every block of 4
2046 * encoded characters decodes into a block of 3
2047 * decoded characters. This segment of code provides
2048 * the caller with the maximum amount of allocated
2049 * space that @dst will need to point to in a
2050 * subsequent call. */
2051 (*dst_size
) = (((src_size
+ 1) * 3) / 4);
2054 while (src_byte_offset
< src_size
) {
2055 unsigned char src_byte
=
2056 filename_rev_map
[(int)src
[src_byte_offset
]];
2058 switch (current_bit_offset
) {
2060 dst
[dst_byte_offset
] = (src_byte
<< 2);
2061 current_bit_offset
= 6;
2064 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
2065 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
2067 current_bit_offset
= 4;
2070 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
2071 dst
[dst_byte_offset
] = (src_byte
<< 6);
2072 current_bit_offset
= 2;
2075 dst
[dst_byte_offset
++] |= (src_byte
);
2076 dst
[dst_byte_offset
] = 0;
2077 current_bit_offset
= 0;
2082 (*dst_size
) = dst_byte_offset
;
2088 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2089 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2090 * @name: The plaintext name
2091 * @length: The length of the plaintext
2092 * @encoded_name: The encypted name
2094 * Encrypts and encodes a filename into something that constitutes a
2095 * valid filename for a filesystem, with printable characters.
2097 * We assume that we have a properly initialized crypto context,
2098 * pointed to by crypt_stat->tfm.
2100 * Returns zero on success; non-zero on otherwise
2102 int ecryptfs_encrypt_and_encode_filename(
2103 char **encoded_name
,
2104 size_t *encoded_name_size
,
2105 struct ecryptfs_crypt_stat
*crypt_stat
,
2106 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
2107 const char *name
, size_t name_size
)
2109 size_t encoded_name_no_prefix_size
;
2112 (*encoded_name
) = NULL
;
2113 (*encoded_name_size
) = 0;
2114 if ((crypt_stat
&& (crypt_stat
->flags
& ECRYPTFS_ENCRYPT_FILENAMES
))
2115 || (mount_crypt_stat
&& (mount_crypt_stat
->flags
2116 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
))) {
2117 struct ecryptfs_filename
*filename
;
2119 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
2121 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2122 "to kzalloc [%zd] bytes\n", __func__
,
2127 filename
->filename
= (char *)name
;
2128 filename
->filename_size
= name_size
;
2129 rc
= ecryptfs_encrypt_filename(filename
, crypt_stat
,
2132 printk(KERN_ERR
"%s: Error attempting to encrypt "
2133 "filename; rc = [%d]\n", __func__
, rc
);
2137 ecryptfs_encode_for_filename(
2138 NULL
, &encoded_name_no_prefix_size
,
2139 filename
->encrypted_filename
,
2140 filename
->encrypted_filename_size
);
2141 if ((crypt_stat
&& (crypt_stat
->flags
2142 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2143 || (mount_crypt_stat
2144 && (mount_crypt_stat
->flags
2145 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)))
2146 (*encoded_name_size
) =
2147 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2148 + encoded_name_no_prefix_size
);
2150 (*encoded_name_size
) =
2151 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2152 + encoded_name_no_prefix_size
);
2153 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
2154 if (!(*encoded_name
)) {
2155 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2156 "to kzalloc [%zd] bytes\n", __func__
,
2157 (*encoded_name_size
));
2159 kfree(filename
->encrypted_filename
);
2163 if ((crypt_stat
&& (crypt_stat
->flags
2164 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK
))
2165 || (mount_crypt_stat
2166 && (mount_crypt_stat
->flags
2167 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))) {
2168 memcpy((*encoded_name
),
2169 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2170 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2171 ecryptfs_encode_for_filename(
2173 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2174 &encoded_name_no_prefix_size
,
2175 filename
->encrypted_filename
,
2176 filename
->encrypted_filename_size
);
2177 (*encoded_name_size
) =
2178 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2179 + encoded_name_no_prefix_size
);
2180 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2185 printk(KERN_ERR
"%s: Error attempting to encode "
2186 "encrypted filename; rc = [%d]\n", __func__
,
2188 kfree((*encoded_name
));
2189 (*encoded_name
) = NULL
;
2190 (*encoded_name_size
) = 0;
2192 kfree(filename
->encrypted_filename
);
2195 rc
= ecryptfs_copy_filename(encoded_name
,
2204 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2205 * @plaintext_name: The plaintext name
2206 * @plaintext_name_size: The plaintext name size
2207 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2208 * @name: The filename in cipher text
2209 * @name_size: The cipher text name size
2211 * Decrypts and decodes the filename.
2213 * Returns zero on error; non-zero otherwise
2215 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2216 size_t *plaintext_name_size
,
2217 struct dentry
*ecryptfs_dir_dentry
,
2218 const char *name
, size_t name_size
)
2220 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2221 &ecryptfs_superblock_to_private(
2222 ecryptfs_dir_dentry
->d_sb
)->mount_crypt_stat
;
2224 size_t decoded_name_size
;
2228 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2229 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2230 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2231 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2232 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2233 const char *orig_name
= name
;
2234 size_t orig_name_size
= name_size
;
2236 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2237 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2238 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2240 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2241 if (!decoded_name
) {
2242 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2243 "to kmalloc [%zd] bytes\n", __func__
,
2248 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2250 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2251 plaintext_name_size
,
2257 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2258 "from filename; copying through filename "
2259 "as-is\n", __func__
);
2260 rc
= ecryptfs_copy_filename(plaintext_name
,
2261 plaintext_name_size
,
2262 orig_name
, orig_name_size
);
2266 rc
= ecryptfs_copy_filename(plaintext_name
,
2267 plaintext_name_size
,
2272 kfree(decoded_name
);