4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock
);
39 static unsigned int nr_swapfiles
;
41 long total_swap_pages
;
42 static int swap_overflow
;
43 static int least_priority
;
45 static const char Bad_file
[] = "Bad swap file entry ";
46 static const char Unused_file
[] = "Unused swap file entry ";
47 static const char Bad_offset
[] = "Bad swap offset entry ";
48 static const char Unused_offset
[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list
= {-1, -1};
52 static struct swap_info_struct swap_info
[MAX_SWAPFILES
];
54 static DEFINE_MUTEX(swapon_mutex
);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
59 SWAP_MAP
= 0, /* ops for reference from swap users */
60 SWAP_CACHE
, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent
)
65 return ent
& SWAP_COUNT_MASK
;
68 static inline bool swap_has_cache(unsigned short ent
)
70 return !!(ent
& SWAP_HAS_CACHE
);
73 static inline unsigned short encode_swapmap(int count
, bool has_cache
)
75 unsigned short ret
= count
;
78 return SWAP_HAS_CACHE
| ret
;
82 /* returnes 1 if swap entry is freed */
84 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
86 int type
= si
- swap_info
;
87 swp_entry_t entry
= swp_entry(type
, offset
);
91 page
= find_get_page(&swapper_space
, entry
.val
);
95 * This function is called from scan_swap_map() and it's called
96 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97 * We have to use trylock for avoiding deadlock. This is a special
98 * case and you should use try_to_free_swap() with explicit lock_page()
99 * in usual operations.
101 if (trylock_page(page
)) {
102 ret
= try_to_free_swap(page
);
105 page_cache_release(page
);
110 * We need this because the bdev->unplug_fn can sleep and we cannot
111 * hold swap_lock while calling the unplug_fn. And swap_lock
112 * cannot be turned into a mutex.
114 static DECLARE_RWSEM(swap_unplug_sem
);
116 void swap_unplug_io_fn(struct backing_dev_info
*unused_bdi
, struct page
*page
)
120 down_read(&swap_unplug_sem
);
121 entry
.val
= page_private(page
);
122 if (PageSwapCache(page
)) {
123 struct block_device
*bdev
= swap_info
[swp_type(entry
)].bdev
;
124 struct backing_dev_info
*bdi
;
127 * If the page is removed from swapcache from under us (with a
128 * racy try_to_unuse/swapoff) we need an additional reference
129 * count to avoid reading garbage from page_private(page) above.
130 * If the WARN_ON triggers during a swapoff it maybe the race
131 * condition and it's harmless. However if it triggers without
132 * swapoff it signals a problem.
134 WARN_ON(page_count(page
) <= 1);
136 bdi
= bdev
->bd_inode
->i_mapping
->backing_dev_info
;
137 blk_run_backing_dev(bdi
, page
);
139 up_read(&swap_unplug_sem
);
143 * swapon tell device that all the old swap contents can be discarded,
144 * to allow the swap device to optimize its wear-levelling.
146 static int discard_swap(struct swap_info_struct
*si
)
148 struct swap_extent
*se
;
151 list_for_each_entry(se
, &si
->extent_list
, list
) {
152 sector_t start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
153 sector_t nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
155 if (se
->start_page
== 0) {
156 /* Do not discard the swap header page! */
157 start_block
+= 1 << (PAGE_SHIFT
- 9);
158 nr_blocks
-= 1 << (PAGE_SHIFT
- 9);
163 err
= blkdev_issue_discard(si
->bdev
, start_block
,
164 nr_blocks
, GFP_KERNEL
,
171 return err
; /* That will often be -EOPNOTSUPP */
175 * swap allocation tell device that a cluster of swap can now be discarded,
176 * to allow the swap device to optimize its wear-levelling.
178 static void discard_swap_cluster(struct swap_info_struct
*si
,
179 pgoff_t start_page
, pgoff_t nr_pages
)
181 struct swap_extent
*se
= si
->curr_swap_extent
;
182 int found_extent
= 0;
185 struct list_head
*lh
;
187 if (se
->start_page
<= start_page
&&
188 start_page
< se
->start_page
+ se
->nr_pages
) {
189 pgoff_t offset
= start_page
- se
->start_page
;
190 sector_t start_block
= se
->start_block
+ offset
;
191 sector_t nr_blocks
= se
->nr_pages
- offset
;
193 if (nr_blocks
> nr_pages
)
194 nr_blocks
= nr_pages
;
195 start_page
+= nr_blocks
;
196 nr_pages
-= nr_blocks
;
199 si
->curr_swap_extent
= se
;
201 start_block
<<= PAGE_SHIFT
- 9;
202 nr_blocks
<<= PAGE_SHIFT
- 9;
203 if (blkdev_issue_discard(si
->bdev
, start_block
,
210 if (lh
== &si
->extent_list
)
212 se
= list_entry(lh
, struct swap_extent
, list
);
216 static int wait_for_discard(void *word
)
222 #define SWAPFILE_CLUSTER 256
223 #define LATENCY_LIMIT 256
225 static inline unsigned long scan_swap_map(struct swap_info_struct
*si
,
228 unsigned long offset
;
229 unsigned long scan_base
;
230 unsigned long last_in_cluster
= 0;
231 int latency_ration
= LATENCY_LIMIT
;
232 int found_free_cluster
= 0;
235 * We try to cluster swap pages by allocating them sequentially
236 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
237 * way, however, we resort to first-free allocation, starting
238 * a new cluster. This prevents us from scattering swap pages
239 * all over the entire swap partition, so that we reduce
240 * overall disk seek times between swap pages. -- sct
241 * But we do now try to find an empty cluster. -Andrea
242 * And we let swap pages go all over an SSD partition. Hugh
245 si
->flags
+= SWP_SCANNING
;
246 scan_base
= offset
= si
->cluster_next
;
248 if (unlikely(!si
->cluster_nr
--)) {
249 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
250 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
253 if (si
->flags
& SWP_DISCARDABLE
) {
255 * Start range check on racing allocations, in case
256 * they overlap the cluster we eventually decide on
257 * (we scan without swap_lock to allow preemption).
258 * It's hardly conceivable that cluster_nr could be
259 * wrapped during our scan, but don't depend on it.
261 if (si
->lowest_alloc
)
263 si
->lowest_alloc
= si
->max
;
264 si
->highest_alloc
= 0;
266 spin_unlock(&swap_lock
);
269 * If seek is expensive, start searching for new cluster from
270 * start of partition, to minimize the span of allocated swap.
271 * But if seek is cheap, search from our current position, so
272 * that swap is allocated from all over the partition: if the
273 * Flash Translation Layer only remaps within limited zones,
274 * we don't want to wear out the first zone too quickly.
276 if (!(si
->flags
& SWP_SOLIDSTATE
))
277 scan_base
= offset
= si
->lowest_bit
;
278 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
280 /* Locate the first empty (unaligned) cluster */
281 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
282 if (si
->swap_map
[offset
])
283 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
284 else if (offset
== last_in_cluster
) {
285 spin_lock(&swap_lock
);
286 offset
-= SWAPFILE_CLUSTER
- 1;
287 si
->cluster_next
= offset
;
288 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
289 found_free_cluster
= 1;
292 if (unlikely(--latency_ration
< 0)) {
294 latency_ration
= LATENCY_LIMIT
;
298 offset
= si
->lowest_bit
;
299 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
301 /* Locate the first empty (unaligned) cluster */
302 for (; last_in_cluster
< scan_base
; offset
++) {
303 if (si
->swap_map
[offset
])
304 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
305 else if (offset
== last_in_cluster
) {
306 spin_lock(&swap_lock
);
307 offset
-= SWAPFILE_CLUSTER
- 1;
308 si
->cluster_next
= offset
;
309 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
310 found_free_cluster
= 1;
313 if (unlikely(--latency_ration
< 0)) {
315 latency_ration
= LATENCY_LIMIT
;
320 spin_lock(&swap_lock
);
321 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
322 si
->lowest_alloc
= 0;
326 if (!(si
->flags
& SWP_WRITEOK
))
328 if (!si
->highest_bit
)
330 if (offset
> si
->highest_bit
)
331 scan_base
= offset
= si
->lowest_bit
;
333 /* reuse swap entry of cache-only swap if not hibernation. */
335 && cache
== SWAP_CACHE
336 && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
338 spin_unlock(&swap_lock
);
339 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
340 spin_lock(&swap_lock
);
341 /* entry was freed successfully, try to use this again */
344 goto scan
; /* check next one */
347 if (si
->swap_map
[offset
])
350 if (offset
== si
->lowest_bit
)
352 if (offset
== si
->highest_bit
)
355 if (si
->inuse_pages
== si
->pages
) {
356 si
->lowest_bit
= si
->max
;
359 if (cache
== SWAP_CACHE
) /* at usual swap-out via vmscan.c */
360 si
->swap_map
[offset
] = encode_swapmap(0, true);
361 else /* at suspend */
362 si
->swap_map
[offset
] = encode_swapmap(1, false);
363 si
->cluster_next
= offset
+ 1;
364 si
->flags
-= SWP_SCANNING
;
366 if (si
->lowest_alloc
) {
368 * Only set when SWP_DISCARDABLE, and there's a scan
369 * for a free cluster in progress or just completed.
371 if (found_free_cluster
) {
373 * To optimize wear-levelling, discard the
374 * old data of the cluster, taking care not to
375 * discard any of its pages that have already
376 * been allocated by racing tasks (offset has
377 * already stepped over any at the beginning).
379 if (offset
< si
->highest_alloc
&&
380 si
->lowest_alloc
<= last_in_cluster
)
381 last_in_cluster
= si
->lowest_alloc
- 1;
382 si
->flags
|= SWP_DISCARDING
;
383 spin_unlock(&swap_lock
);
385 if (offset
< last_in_cluster
)
386 discard_swap_cluster(si
, offset
,
387 last_in_cluster
- offset
+ 1);
389 spin_lock(&swap_lock
);
390 si
->lowest_alloc
= 0;
391 si
->flags
&= ~SWP_DISCARDING
;
393 smp_mb(); /* wake_up_bit advises this */
394 wake_up_bit(&si
->flags
, ilog2(SWP_DISCARDING
));
396 } else if (si
->flags
& SWP_DISCARDING
) {
398 * Delay using pages allocated by racing tasks
399 * until the whole discard has been issued. We
400 * could defer that delay until swap_writepage,
401 * but it's easier to keep this self-contained.
403 spin_unlock(&swap_lock
);
404 wait_on_bit(&si
->flags
, ilog2(SWP_DISCARDING
),
405 wait_for_discard
, TASK_UNINTERRUPTIBLE
);
406 spin_lock(&swap_lock
);
409 * Note pages allocated by racing tasks while
410 * scan for a free cluster is in progress, so
411 * that its final discard can exclude them.
413 if (offset
< si
->lowest_alloc
)
414 si
->lowest_alloc
= offset
;
415 if (offset
> si
->highest_alloc
)
416 si
->highest_alloc
= offset
;
422 spin_unlock(&swap_lock
);
423 while (++offset
<= si
->highest_bit
) {
424 if (!si
->swap_map
[offset
]) {
425 spin_lock(&swap_lock
);
428 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
429 spin_lock(&swap_lock
);
432 if (unlikely(--latency_ration
< 0)) {
434 latency_ration
= LATENCY_LIMIT
;
437 offset
= si
->lowest_bit
;
438 while (++offset
< scan_base
) {
439 if (!si
->swap_map
[offset
]) {
440 spin_lock(&swap_lock
);
443 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
444 spin_lock(&swap_lock
);
447 if (unlikely(--latency_ration
< 0)) {
449 latency_ration
= LATENCY_LIMIT
;
452 spin_lock(&swap_lock
);
455 si
->flags
-= SWP_SCANNING
;
459 swp_entry_t
get_swap_page(void)
461 struct swap_info_struct
*si
;
466 spin_lock(&swap_lock
);
467 if (nr_swap_pages
<= 0)
471 for (type
= swap_list
.next
; type
>= 0 && wrapped
< 2; type
= next
) {
472 si
= swap_info
+ type
;
475 (!wrapped
&& si
->prio
!= swap_info
[next
].prio
)) {
476 next
= swap_list
.head
;
480 if (!si
->highest_bit
)
482 if (!(si
->flags
& SWP_WRITEOK
))
485 swap_list
.next
= next
;
486 /* This is called for allocating swap entry for cache */
487 offset
= scan_swap_map(si
, SWAP_CACHE
);
489 spin_unlock(&swap_lock
);
490 return swp_entry(type
, offset
);
492 next
= swap_list
.next
;
497 spin_unlock(&swap_lock
);
498 return (swp_entry_t
) {0};
501 /* The only caller of this function is now susupend routine */
502 swp_entry_t
get_swap_page_of_type(int type
)
504 struct swap_info_struct
*si
;
507 spin_lock(&swap_lock
);
508 si
= swap_info
+ type
;
509 if (si
->flags
& SWP_WRITEOK
) {
511 /* This is called for allocating swap entry, not cache */
512 offset
= scan_swap_map(si
, SWAP_MAP
);
514 spin_unlock(&swap_lock
);
515 return swp_entry(type
, offset
);
519 spin_unlock(&swap_lock
);
520 return (swp_entry_t
) {0};
523 static struct swap_info_struct
* swap_info_get(swp_entry_t entry
)
525 struct swap_info_struct
* p
;
526 unsigned long offset
, type
;
530 type
= swp_type(entry
);
531 if (type
>= nr_swapfiles
)
533 p
= & swap_info
[type
];
534 if (!(p
->flags
& SWP_USED
))
536 offset
= swp_offset(entry
);
537 if (offset
>= p
->max
)
539 if (!p
->swap_map
[offset
])
541 spin_lock(&swap_lock
);
545 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
548 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
551 printk(KERN_ERR
"swap_free: %s%08lx\n", Unused_file
, entry
.val
);
554 printk(KERN_ERR
"swap_free: %s%08lx\n", Bad_file
, entry
.val
);
559 static int swap_entry_free(struct swap_info_struct
*p
,
560 swp_entry_t ent
, int cache
)
562 unsigned long offset
= swp_offset(ent
);
563 int count
= swap_count(p
->swap_map
[offset
]);
566 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
568 if (cache
== SWAP_MAP
) { /* dropping usage count of swap */
569 if (count
< SWAP_MAP_MAX
) {
571 p
->swap_map
[offset
] = encode_swapmap(count
, has_cache
);
573 } else { /* dropping swap cache flag */
574 VM_BUG_ON(!has_cache
);
575 p
->swap_map
[offset
] = encode_swapmap(count
, false);
579 count
= p
->swap_map
[offset
];
580 /* free if no reference */
582 if (offset
< p
->lowest_bit
)
583 p
->lowest_bit
= offset
;
584 if (offset
> p
->highest_bit
)
585 p
->highest_bit
= offset
;
586 if (p
->prio
> swap_info
[swap_list
.next
].prio
)
587 swap_list
.next
= p
- swap_info
;
591 if (!swap_count(count
))
592 mem_cgroup_uncharge_swap(ent
);
597 * Caller has made sure that the swapdevice corresponding to entry
598 * is still around or has not been recycled.
600 void swap_free(swp_entry_t entry
)
602 struct swap_info_struct
* p
;
604 p
= swap_info_get(entry
);
606 swap_entry_free(p
, entry
, SWAP_MAP
);
607 spin_unlock(&swap_lock
);
612 * Called after dropping swapcache to decrease refcnt to swap entries.
614 void swapcache_free(swp_entry_t entry
, struct page
*page
)
616 struct swap_info_struct
*p
;
619 p
= swap_info_get(entry
);
621 ret
= swap_entry_free(p
, entry
, SWAP_CACHE
);
625 swapout
= true; /* the end of swap out */
627 swapout
= false; /* no more swap users! */
628 mem_cgroup_uncharge_swapcache(page
, entry
, swapout
);
630 spin_unlock(&swap_lock
);
636 * How many references to page are currently swapped out?
638 static inline int page_swapcount(struct page
*page
)
641 struct swap_info_struct
*p
;
644 entry
.val
= page_private(page
);
645 p
= swap_info_get(entry
);
647 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
648 spin_unlock(&swap_lock
);
654 * We can write to an anon page without COW if there are no other references
655 * to it. And as a side-effect, free up its swap: because the old content
656 * on disk will never be read, and seeking back there to write new content
657 * later would only waste time away from clustering.
659 int reuse_swap_page(struct page
*page
)
663 VM_BUG_ON(!PageLocked(page
));
664 count
= page_mapcount(page
);
665 if (count
<= 1 && PageSwapCache(page
)) {
666 count
+= page_swapcount(page
);
667 if (count
== 1 && !PageWriteback(page
)) {
668 delete_from_swap_cache(page
);
676 * If swap is getting full, or if there are no more mappings of this page,
677 * then try_to_free_swap is called to free its swap space.
679 int try_to_free_swap(struct page
*page
)
681 VM_BUG_ON(!PageLocked(page
));
683 if (!PageSwapCache(page
))
685 if (PageWriteback(page
))
687 if (page_swapcount(page
))
690 delete_from_swap_cache(page
);
696 * Free the swap entry like above, but also try to
697 * free the page cache entry if it is the last user.
699 int free_swap_and_cache(swp_entry_t entry
)
701 struct swap_info_struct
*p
;
702 struct page
*page
= NULL
;
704 if (non_swap_entry(entry
))
707 p
= swap_info_get(entry
);
709 if (swap_entry_free(p
, entry
, SWAP_MAP
) == SWAP_HAS_CACHE
) {
710 page
= find_get_page(&swapper_space
, entry
.val
);
711 if (page
&& !trylock_page(page
)) {
712 page_cache_release(page
);
716 spin_unlock(&swap_lock
);
720 * Not mapped elsewhere, or swap space full? Free it!
721 * Also recheck PageSwapCache now page is locked (above).
723 if (PageSwapCache(page
) && !PageWriteback(page
) &&
724 (!page_mapped(page
) || vm_swap_full())) {
725 delete_from_swap_cache(page
);
729 page_cache_release(page
);
734 #ifdef CONFIG_HIBERNATION
736 * Find the swap type that corresponds to given device (if any).
738 * @offset - number of the PAGE_SIZE-sized block of the device, starting
739 * from 0, in which the swap header is expected to be located.
741 * This is needed for the suspend to disk (aka swsusp).
743 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
745 struct block_device
*bdev
= NULL
;
749 bdev
= bdget(device
);
751 spin_lock(&swap_lock
);
752 for (i
= 0; i
< nr_swapfiles
; i
++) {
753 struct swap_info_struct
*sis
= swap_info
+ i
;
755 if (!(sis
->flags
& SWP_WRITEOK
))
760 *bdev_p
= bdgrab(sis
->bdev
);
762 spin_unlock(&swap_lock
);
765 if (bdev
== sis
->bdev
) {
766 struct swap_extent
*se
;
768 se
= list_entry(sis
->extent_list
.next
,
769 struct swap_extent
, list
);
770 if (se
->start_block
== offset
) {
772 *bdev_p
= bdgrab(sis
->bdev
);
774 spin_unlock(&swap_lock
);
780 spin_unlock(&swap_lock
);
788 * Return either the total number of swap pages of given type, or the number
789 * of free pages of that type (depending on @free)
791 * This is needed for software suspend
793 unsigned int count_swap_pages(int type
, int free
)
797 if (type
< nr_swapfiles
) {
798 spin_lock(&swap_lock
);
799 if (swap_info
[type
].flags
& SWP_WRITEOK
) {
800 n
= swap_info
[type
].pages
;
802 n
-= swap_info
[type
].inuse_pages
;
804 spin_unlock(&swap_lock
);
811 * No need to decide whether this PTE shares the swap entry with others,
812 * just let do_wp_page work it out if a write is requested later - to
813 * force COW, vm_page_prot omits write permission from any private vma.
815 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
816 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
818 struct mem_cgroup
*ptr
= NULL
;
823 if (mem_cgroup_try_charge_swapin(vma
->vm_mm
, page
, GFP_KERNEL
, &ptr
)) {
828 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
829 if (unlikely(!pte_same(*pte
, swp_entry_to_pte(entry
)))) {
831 mem_cgroup_cancel_charge_swapin(ptr
);
836 inc_mm_counter(vma
->vm_mm
, anon_rss
);
838 set_pte_at(vma
->vm_mm
, addr
, pte
,
839 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
840 page_add_anon_rmap(page
, vma
, addr
);
841 mem_cgroup_commit_charge_swapin(page
, ptr
);
844 * Move the page to the active list so it is not
845 * immediately swapped out again after swapon.
849 pte_unmap_unlock(pte
, ptl
);
854 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
855 unsigned long addr
, unsigned long end
,
856 swp_entry_t entry
, struct page
*page
)
858 pte_t swp_pte
= swp_entry_to_pte(entry
);
863 * We don't actually need pte lock while scanning for swp_pte: since
864 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
865 * page table while we're scanning; though it could get zapped, and on
866 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
867 * of unmatched parts which look like swp_pte, so unuse_pte must
868 * recheck under pte lock. Scanning without pte lock lets it be
869 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
871 pte
= pte_offset_map(pmd
, addr
);
874 * swapoff spends a _lot_ of time in this loop!
875 * Test inline before going to call unuse_pte.
877 if (unlikely(pte_same(*pte
, swp_pte
))) {
879 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
882 pte
= pte_offset_map(pmd
, addr
);
884 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
890 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
891 unsigned long addr
, unsigned long end
,
892 swp_entry_t entry
, struct page
*page
)
898 pmd
= pmd_offset(pud
, addr
);
900 next
= pmd_addr_end(addr
, end
);
901 if (pmd_none_or_clear_bad(pmd
))
903 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
906 } while (pmd
++, addr
= next
, addr
!= end
);
910 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
911 unsigned long addr
, unsigned long end
,
912 swp_entry_t entry
, struct page
*page
)
918 pud
= pud_offset(pgd
, addr
);
920 next
= pud_addr_end(addr
, end
);
921 if (pud_none_or_clear_bad(pud
))
923 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
926 } while (pud
++, addr
= next
, addr
!= end
);
930 static int unuse_vma(struct vm_area_struct
*vma
,
931 swp_entry_t entry
, struct page
*page
)
934 unsigned long addr
, end
, next
;
938 addr
= page_address_in_vma(page
, vma
);
942 end
= addr
+ PAGE_SIZE
;
944 addr
= vma
->vm_start
;
948 pgd
= pgd_offset(vma
->vm_mm
, addr
);
950 next
= pgd_addr_end(addr
, end
);
951 if (pgd_none_or_clear_bad(pgd
))
953 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
956 } while (pgd
++, addr
= next
, addr
!= end
);
960 static int unuse_mm(struct mm_struct
*mm
,
961 swp_entry_t entry
, struct page
*page
)
963 struct vm_area_struct
*vma
;
966 if (!down_read_trylock(&mm
->mmap_sem
)) {
968 * Activate page so shrink_inactive_list is unlikely to unmap
969 * its ptes while lock is dropped, so swapoff can make progress.
973 down_read(&mm
->mmap_sem
);
976 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
977 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
980 up_read(&mm
->mmap_sem
);
981 return (ret
< 0)? ret
: 0;
985 * Scan swap_map from current position to next entry still in use.
986 * Recycle to start on reaching the end, returning 0 when empty.
988 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
991 unsigned int max
= si
->max
;
992 unsigned int i
= prev
;
996 * No need for swap_lock here: we're just looking
997 * for whether an entry is in use, not modifying it; false
998 * hits are okay, and sys_swapoff() has already prevented new
999 * allocations from this area (while holding swap_lock).
1008 * No entries in use at top of swap_map,
1009 * loop back to start and recheck there.
1015 count
= si
->swap_map
[i
];
1016 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1023 * We completely avoid races by reading each swap page in advance,
1024 * and then search for the process using it. All the necessary
1025 * page table adjustments can then be made atomically.
1027 static int try_to_unuse(unsigned int type
)
1029 struct swap_info_struct
* si
= &swap_info
[type
];
1030 struct mm_struct
*start_mm
;
1031 unsigned short *swap_map
;
1032 unsigned short swcount
;
1037 int reset_overflow
= 0;
1041 * When searching mms for an entry, a good strategy is to
1042 * start at the first mm we freed the previous entry from
1043 * (though actually we don't notice whether we or coincidence
1044 * freed the entry). Initialize this start_mm with a hold.
1046 * A simpler strategy would be to start at the last mm we
1047 * freed the previous entry from; but that would take less
1048 * advantage of mmlist ordering, which clusters forked mms
1049 * together, child after parent. If we race with dup_mmap(), we
1050 * prefer to resolve parent before child, lest we miss entries
1051 * duplicated after we scanned child: using last mm would invert
1052 * that. Though it's only a serious concern when an overflowed
1053 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1055 start_mm
= &init_mm
;
1056 atomic_inc(&init_mm
.mm_users
);
1059 * Keep on scanning until all entries have gone. Usually,
1060 * one pass through swap_map is enough, but not necessarily:
1061 * there are races when an instance of an entry might be missed.
1063 while ((i
= find_next_to_unuse(si
, i
)) != 0) {
1064 if (signal_pending(current
)) {
1070 * Get a page for the entry, using the existing swap
1071 * cache page if there is one. Otherwise, get a clean
1072 * page and read the swap into it.
1074 swap_map
= &si
->swap_map
[i
];
1075 entry
= swp_entry(type
, i
);
1076 page
= read_swap_cache_async(entry
,
1077 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1080 * Either swap_duplicate() failed because entry
1081 * has been freed independently, and will not be
1082 * reused since sys_swapoff() already disabled
1083 * allocation from here, or alloc_page() failed.
1092 * Don't hold on to start_mm if it looks like exiting.
1094 if (atomic_read(&start_mm
->mm_users
) == 1) {
1096 start_mm
= &init_mm
;
1097 atomic_inc(&init_mm
.mm_users
);
1101 * Wait for and lock page. When do_swap_page races with
1102 * try_to_unuse, do_swap_page can handle the fault much
1103 * faster than try_to_unuse can locate the entry. This
1104 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105 * defer to do_swap_page in such a case - in some tests,
1106 * do_swap_page and try_to_unuse repeatedly compete.
1108 wait_on_page_locked(page
);
1109 wait_on_page_writeback(page
);
1111 wait_on_page_writeback(page
);
1114 * Remove all references to entry.
1115 * Whenever we reach init_mm, there's no address space
1116 * to search, but use it as a reminder to search shmem.
1119 swcount
= *swap_map
;
1120 if (swap_count(swcount
)) {
1121 if (start_mm
== &init_mm
)
1122 shmem
= shmem_unuse(entry
, page
);
1124 retval
= unuse_mm(start_mm
, entry
, page
);
1126 if (swap_count(*swap_map
)) {
1127 int set_start_mm
= (*swap_map
>= swcount
);
1128 struct list_head
*p
= &start_mm
->mmlist
;
1129 struct mm_struct
*new_start_mm
= start_mm
;
1130 struct mm_struct
*prev_mm
= start_mm
;
1131 struct mm_struct
*mm
;
1133 atomic_inc(&new_start_mm
->mm_users
);
1134 atomic_inc(&prev_mm
->mm_users
);
1135 spin_lock(&mmlist_lock
);
1136 while (swap_count(*swap_map
) && !retval
&& !shmem
&&
1137 (p
= p
->next
) != &start_mm
->mmlist
) {
1138 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1139 if (!atomic_inc_not_zero(&mm
->mm_users
))
1141 spin_unlock(&mmlist_lock
);
1147 swcount
= *swap_map
;
1148 if (!swap_count(swcount
)) /* any usage ? */
1150 else if (mm
== &init_mm
) {
1152 shmem
= shmem_unuse(entry
, page
);
1154 retval
= unuse_mm(mm
, entry
, page
);
1156 if (set_start_mm
&& *swap_map
< swcount
) {
1157 mmput(new_start_mm
);
1158 atomic_inc(&mm
->mm_users
);
1162 spin_lock(&mmlist_lock
);
1164 spin_unlock(&mmlist_lock
);
1167 start_mm
= new_start_mm
;
1170 /* page has already been unlocked and released */
1178 page_cache_release(page
);
1183 * How could swap count reach 0x7ffe ?
1184 * There's no way to repeat a swap page within an mm
1185 * (except in shmem, where it's the shared object which takes
1186 * the reference count)?
1187 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1188 * short is too small....)
1189 * If that's wrong, then we should worry more about
1190 * exit_mmap() and do_munmap() cases described above:
1191 * we might be resetting SWAP_MAP_MAX too early here.
1192 * We know "Undead"s can happen, they're okay, so don't
1193 * report them; but do report if we reset SWAP_MAP_MAX.
1195 /* We might release the lock_page() in unuse_mm(). */
1196 if (!PageSwapCache(page
) || page_private(page
) != entry
.val
)
1199 if (swap_count(*swap_map
) == SWAP_MAP_MAX
) {
1200 spin_lock(&swap_lock
);
1201 *swap_map
= encode_swapmap(0, true);
1202 spin_unlock(&swap_lock
);
1207 * If a reference remains (rare), we would like to leave
1208 * the page in the swap cache; but try_to_unmap could
1209 * then re-duplicate the entry once we drop page lock,
1210 * so we might loop indefinitely; also, that page could
1211 * not be swapped out to other storage meanwhile. So:
1212 * delete from cache even if there's another reference,
1213 * after ensuring that the data has been saved to disk -
1214 * since if the reference remains (rarer), it will be
1215 * read from disk into another page. Splitting into two
1216 * pages would be incorrect if swap supported "shared
1217 * private" pages, but they are handled by tmpfs files.
1219 if (swap_count(*swap_map
) &&
1220 PageDirty(page
) && PageSwapCache(page
)) {
1221 struct writeback_control wbc
= {
1222 .sync_mode
= WB_SYNC_NONE
,
1225 swap_writepage(page
, &wbc
);
1227 wait_on_page_writeback(page
);
1231 * It is conceivable that a racing task removed this page from
1232 * swap cache just before we acquired the page lock at the top,
1233 * or while we dropped it in unuse_mm(). The page might even
1234 * be back in swap cache on another swap area: that we must not
1235 * delete, since it may not have been written out to swap yet.
1237 if (PageSwapCache(page
) &&
1238 likely(page_private(page
) == entry
.val
))
1239 delete_from_swap_cache(page
);
1242 * So we could skip searching mms once swap count went
1243 * to 1, we did not mark any present ptes as dirty: must
1244 * mark page dirty so shrink_page_list will preserve it.
1249 page_cache_release(page
);
1252 * Make sure that we aren't completely killing
1253 * interactive performance.
1259 if (reset_overflow
) {
1260 printk(KERN_WARNING
"swapoff: cleared swap entry overflow\n");
1267 * After a successful try_to_unuse, if no swap is now in use, we know
1268 * we can empty the mmlist. swap_lock must be held on entry and exit.
1269 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1270 * added to the mmlist just after page_duplicate - before would be racy.
1272 static void drain_mmlist(void)
1274 struct list_head
*p
, *next
;
1277 for (i
= 0; i
< nr_swapfiles
; i
++)
1278 if (swap_info
[i
].inuse_pages
)
1280 spin_lock(&mmlist_lock
);
1281 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1283 spin_unlock(&mmlist_lock
);
1287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1288 * corresponds to page offset `offset'.
1290 sector_t
map_swap_page(struct swap_info_struct
*sis
, pgoff_t offset
)
1292 struct swap_extent
*se
= sis
->curr_swap_extent
;
1293 struct swap_extent
*start_se
= se
;
1296 struct list_head
*lh
;
1298 if (se
->start_page
<= offset
&&
1299 offset
< (se
->start_page
+ se
->nr_pages
)) {
1300 return se
->start_block
+ (offset
- se
->start_page
);
1303 if (lh
== &sis
->extent_list
)
1305 se
= list_entry(lh
, struct swap_extent
, list
);
1306 sis
->curr_swap_extent
= se
;
1307 BUG_ON(se
== start_se
); /* It *must* be present */
1311 #ifdef CONFIG_HIBERNATION
1313 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1314 * corresponding to given index in swap_info (swap type).
1316 sector_t
swapdev_block(int swap_type
, pgoff_t offset
)
1318 struct swap_info_struct
*sis
;
1320 if (swap_type
>= nr_swapfiles
)
1323 sis
= swap_info
+ swap_type
;
1324 return (sis
->flags
& SWP_WRITEOK
) ? map_swap_page(sis
, offset
) : 0;
1326 #endif /* CONFIG_HIBERNATION */
1329 * Free all of a swapdev's extent information
1331 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1333 while (!list_empty(&sis
->extent_list
)) {
1334 struct swap_extent
*se
;
1336 se
= list_entry(sis
->extent_list
.next
,
1337 struct swap_extent
, list
);
1338 list_del(&se
->list
);
1344 * Add a block range (and the corresponding page range) into this swapdev's
1345 * extent list. The extent list is kept sorted in page order.
1347 * This function rather assumes that it is called in ascending page order.
1350 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1351 unsigned long nr_pages
, sector_t start_block
)
1353 struct swap_extent
*se
;
1354 struct swap_extent
*new_se
;
1355 struct list_head
*lh
;
1357 lh
= sis
->extent_list
.prev
; /* The highest page extent */
1358 if (lh
!= &sis
->extent_list
) {
1359 se
= list_entry(lh
, struct swap_extent
, list
);
1360 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1361 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1363 se
->nr_pages
+= nr_pages
;
1369 * No merge. Insert a new extent, preserving ordering.
1371 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1374 new_se
->start_page
= start_page
;
1375 new_se
->nr_pages
= nr_pages
;
1376 new_se
->start_block
= start_block
;
1378 list_add_tail(&new_se
->list
, &sis
->extent_list
);
1383 * A `swap extent' is a simple thing which maps a contiguous range of pages
1384 * onto a contiguous range of disk blocks. An ordered list of swap extents
1385 * is built at swapon time and is then used at swap_writepage/swap_readpage
1386 * time for locating where on disk a page belongs.
1388 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1389 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1390 * swap files identically.
1392 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1393 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1394 * swapfiles are handled *identically* after swapon time.
1396 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1397 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1398 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1399 * requirements, they are simply tossed out - we will never use those blocks
1402 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1403 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1404 * which will scribble on the fs.
1406 * The amount of disk space which a single swap extent represents varies.
1407 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1408 * extents in the list. To avoid much list walking, we cache the previous
1409 * search location in `curr_swap_extent', and start new searches from there.
1410 * This is extremely effective. The average number of iterations in
1411 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1413 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1415 struct inode
*inode
;
1416 unsigned blocks_per_page
;
1417 unsigned long page_no
;
1419 sector_t probe_block
;
1420 sector_t last_block
;
1421 sector_t lowest_block
= -1;
1422 sector_t highest_block
= 0;
1426 inode
= sis
->swap_file
->f_mapping
->host
;
1427 if (S_ISBLK(inode
->i_mode
)) {
1428 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1433 blkbits
= inode
->i_blkbits
;
1434 blocks_per_page
= PAGE_SIZE
>> blkbits
;
1437 * Map all the blocks into the extent list. This code doesn't try
1442 last_block
= i_size_read(inode
) >> blkbits
;
1443 while ((probe_block
+ blocks_per_page
) <= last_block
&&
1444 page_no
< sis
->max
) {
1445 unsigned block_in_page
;
1446 sector_t first_block
;
1448 first_block
= bmap(inode
, probe_block
);
1449 if (first_block
== 0)
1453 * It must be PAGE_SIZE aligned on-disk
1455 if (first_block
& (blocks_per_page
- 1)) {
1460 for (block_in_page
= 1; block_in_page
< blocks_per_page
;
1464 block
= bmap(inode
, probe_block
+ block_in_page
);
1467 if (block
!= first_block
+ block_in_page
) {
1474 first_block
>>= (PAGE_SHIFT
- blkbits
);
1475 if (page_no
) { /* exclude the header page */
1476 if (first_block
< lowest_block
)
1477 lowest_block
= first_block
;
1478 if (first_block
> highest_block
)
1479 highest_block
= first_block
;
1483 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1485 ret
= add_swap_extent(sis
, page_no
, 1, first_block
);
1490 probe_block
+= blocks_per_page
;
1495 *span
= 1 + highest_block
- lowest_block
;
1497 page_no
= 1; /* force Empty message */
1499 sis
->pages
= page_no
- 1;
1500 sis
->highest_bit
= page_no
- 1;
1502 sis
->curr_swap_extent
= list_entry(sis
->extent_list
.prev
,
1503 struct swap_extent
, list
);
1506 printk(KERN_ERR
"swapon: swapfile has holes\n");
1512 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1514 struct swap_info_struct
* p
= NULL
;
1515 unsigned short *swap_map
;
1516 struct file
*swap_file
, *victim
;
1517 struct address_space
*mapping
;
1518 struct inode
*inode
;
1523 if (!capable(CAP_SYS_ADMIN
))
1526 pathname
= getname(specialfile
);
1527 err
= PTR_ERR(pathname
);
1528 if (IS_ERR(pathname
))
1531 victim
= filp_open(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1533 err
= PTR_ERR(victim
);
1537 mapping
= victim
->f_mapping
;
1539 spin_lock(&swap_lock
);
1540 for (type
= swap_list
.head
; type
>= 0; type
= swap_info
[type
].next
) {
1541 p
= swap_info
+ type
;
1542 if (p
->flags
& SWP_WRITEOK
) {
1543 if (p
->swap_file
->f_mapping
== mapping
)
1550 spin_unlock(&swap_lock
);
1553 if (!security_vm_enough_memory(p
->pages
))
1554 vm_unacct_memory(p
->pages
);
1557 spin_unlock(&swap_lock
);
1561 swap_list
.head
= p
->next
;
1563 swap_info
[prev
].next
= p
->next
;
1565 if (type
== swap_list
.next
) {
1566 /* just pick something that's safe... */
1567 swap_list
.next
= swap_list
.head
;
1570 for (i
= p
->next
; i
>= 0; i
= swap_info
[i
].next
)
1571 swap_info
[i
].prio
= p
->prio
--;
1574 nr_swap_pages
-= p
->pages
;
1575 total_swap_pages
-= p
->pages
;
1576 p
->flags
&= ~SWP_WRITEOK
;
1577 spin_unlock(&swap_lock
);
1579 current
->flags
|= PF_OOM_ORIGIN
;
1580 err
= try_to_unuse(type
);
1581 current
->flags
&= ~PF_OOM_ORIGIN
;
1584 /* re-insert swap space back into swap_list */
1585 spin_lock(&swap_lock
);
1587 p
->prio
= --least_priority
;
1589 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
1590 if (p
->prio
>= swap_info
[i
].prio
)
1596 swap_list
.head
= swap_list
.next
= p
- swap_info
;
1598 swap_info
[prev
].next
= p
- swap_info
;
1599 nr_swap_pages
+= p
->pages
;
1600 total_swap_pages
+= p
->pages
;
1601 p
->flags
|= SWP_WRITEOK
;
1602 spin_unlock(&swap_lock
);
1606 /* wait for any unplug function to finish */
1607 down_write(&swap_unplug_sem
);
1608 up_write(&swap_unplug_sem
);
1610 destroy_swap_extents(p
);
1611 mutex_lock(&swapon_mutex
);
1612 spin_lock(&swap_lock
);
1615 /* wait for anyone still in scan_swap_map */
1616 p
->highest_bit
= 0; /* cuts scans short */
1617 while (p
->flags
>= SWP_SCANNING
) {
1618 spin_unlock(&swap_lock
);
1619 schedule_timeout_uninterruptible(1);
1620 spin_lock(&swap_lock
);
1623 swap_file
= p
->swap_file
;
1624 p
->swap_file
= NULL
;
1626 swap_map
= p
->swap_map
;
1629 spin_unlock(&swap_lock
);
1630 mutex_unlock(&swapon_mutex
);
1632 /* Destroy swap account informatin */
1633 swap_cgroup_swapoff(type
);
1635 inode
= mapping
->host
;
1636 if (S_ISBLK(inode
->i_mode
)) {
1637 struct block_device
*bdev
= I_BDEV(inode
);
1638 set_blocksize(bdev
, p
->old_block_size
);
1641 mutex_lock(&inode
->i_mutex
);
1642 inode
->i_flags
&= ~S_SWAPFILE
;
1643 mutex_unlock(&inode
->i_mutex
);
1645 filp_close(swap_file
, NULL
);
1649 filp_close(victim
, NULL
);
1654 #ifdef CONFIG_PROC_FS
1656 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
1658 struct swap_info_struct
*ptr
= swap_info
;
1662 mutex_lock(&swapon_mutex
);
1665 return SEQ_START_TOKEN
;
1667 for (i
= 0; i
< nr_swapfiles
; i
++, ptr
++) {
1668 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1677 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
1679 struct swap_info_struct
*ptr
;
1680 struct swap_info_struct
*endptr
= swap_info
+ nr_swapfiles
;
1682 if (v
== SEQ_START_TOKEN
)
1689 for (; ptr
< endptr
; ptr
++) {
1690 if (!(ptr
->flags
& SWP_USED
) || !ptr
->swap_map
)
1699 static void swap_stop(struct seq_file
*swap
, void *v
)
1701 mutex_unlock(&swapon_mutex
);
1704 static int swap_show(struct seq_file
*swap
, void *v
)
1706 struct swap_info_struct
*ptr
= v
;
1710 if (ptr
== SEQ_START_TOKEN
) {
1711 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1715 file
= ptr
->swap_file
;
1716 len
= seq_path(swap
, &file
->f_path
, " \t\n\\");
1717 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
1718 len
< 40 ? 40 - len
: 1, " ",
1719 S_ISBLK(file
->f_path
.dentry
->d_inode
->i_mode
) ?
1720 "partition" : "file\t",
1721 ptr
->pages
<< (PAGE_SHIFT
- 10),
1722 ptr
->inuse_pages
<< (PAGE_SHIFT
- 10),
1727 static const struct seq_operations swaps_op
= {
1728 .start
= swap_start
,
1734 static int swaps_open(struct inode
*inode
, struct file
*file
)
1736 return seq_open(file
, &swaps_op
);
1739 static const struct file_operations proc_swaps_operations
= {
1742 .llseek
= seq_lseek
,
1743 .release
= seq_release
,
1746 static int __init
procswaps_init(void)
1748 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
1751 __initcall(procswaps_init
);
1752 #endif /* CONFIG_PROC_FS */
1754 #ifdef MAX_SWAPFILES_CHECK
1755 static int __init
max_swapfiles_check(void)
1757 MAX_SWAPFILES_CHECK();
1760 late_initcall(max_swapfiles_check
);
1764 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1766 * The swapon system call
1768 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
1770 struct swap_info_struct
* p
;
1772 struct block_device
*bdev
= NULL
;
1773 struct file
*swap_file
= NULL
;
1774 struct address_space
*mapping
;
1778 union swap_header
*swap_header
= NULL
;
1779 unsigned int nr_good_pages
= 0;
1782 unsigned long maxpages
= 1;
1783 unsigned long swapfilepages
;
1784 unsigned short *swap_map
= NULL
;
1785 struct page
*page
= NULL
;
1786 struct inode
*inode
= NULL
;
1789 if (!capable(CAP_SYS_ADMIN
))
1791 spin_lock(&swap_lock
);
1793 for (type
= 0 ; type
< nr_swapfiles
; type
++,p
++)
1794 if (!(p
->flags
& SWP_USED
))
1797 if (type
>= MAX_SWAPFILES
) {
1798 spin_unlock(&swap_lock
);
1801 if (type
>= nr_swapfiles
)
1802 nr_swapfiles
= type
+1;
1803 memset(p
, 0, sizeof(*p
));
1804 INIT_LIST_HEAD(&p
->extent_list
);
1805 p
->flags
= SWP_USED
;
1807 spin_unlock(&swap_lock
);
1808 name
= getname(specialfile
);
1809 error
= PTR_ERR(name
);
1814 swap_file
= filp_open(name
, O_RDWR
|O_LARGEFILE
, 0);
1815 error
= PTR_ERR(swap_file
);
1816 if (IS_ERR(swap_file
)) {
1821 p
->swap_file
= swap_file
;
1822 mapping
= swap_file
->f_mapping
;
1823 inode
= mapping
->host
;
1826 for (i
= 0; i
< nr_swapfiles
; i
++) {
1827 struct swap_info_struct
*q
= &swap_info
[i
];
1829 if (i
== type
|| !q
->swap_file
)
1831 if (mapping
== q
->swap_file
->f_mapping
)
1836 if (S_ISBLK(inode
->i_mode
)) {
1837 bdev
= I_BDEV(inode
);
1838 error
= bd_claim(bdev
, sys_swapon
);
1844 p
->old_block_size
= block_size(bdev
);
1845 error
= set_blocksize(bdev
, PAGE_SIZE
);
1849 } else if (S_ISREG(inode
->i_mode
)) {
1850 p
->bdev
= inode
->i_sb
->s_bdev
;
1851 mutex_lock(&inode
->i_mutex
);
1853 if (IS_SWAPFILE(inode
)) {
1861 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
1864 * Read the swap header.
1866 if (!mapping
->a_ops
->readpage
) {
1870 page
= read_mapping_page(mapping
, 0, swap_file
);
1872 error
= PTR_ERR(page
);
1875 swap_header
= kmap(page
);
1877 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
1878 printk(KERN_ERR
"Unable to find swap-space signature\n");
1883 /* swap partition endianess hack... */
1884 if (swab32(swap_header
->info
.version
) == 1) {
1885 swab32s(&swap_header
->info
.version
);
1886 swab32s(&swap_header
->info
.last_page
);
1887 swab32s(&swap_header
->info
.nr_badpages
);
1888 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
1889 swab32s(&swap_header
->info
.badpages
[i
]);
1891 /* Check the swap header's sub-version */
1892 if (swap_header
->info
.version
!= 1) {
1894 "Unable to handle swap header version %d\n",
1895 swap_header
->info
.version
);
1901 p
->cluster_next
= 1;
1904 * Find out how many pages are allowed for a single swap
1905 * device. There are two limiting factors: 1) the number of
1906 * bits for the swap offset in the swp_entry_t type and
1907 * 2) the number of bits in the a swap pte as defined by
1908 * the different architectures. In order to find the
1909 * largest possible bit mask a swap entry with swap type 0
1910 * and swap offset ~0UL is created, encoded to a swap pte,
1911 * decoded to a swp_entry_t again and finally the swap
1912 * offset is extracted. This will mask all the bits from
1913 * the initial ~0UL mask that can't be encoded in either
1914 * the swp_entry_t or the architecture definition of a
1917 maxpages
= swp_offset(pte_to_swp_entry(
1918 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1919 if (maxpages
> swap_header
->info
.last_page
)
1920 maxpages
= swap_header
->info
.last_page
;
1921 p
->highest_bit
= maxpages
- 1;
1926 if (swapfilepages
&& maxpages
> swapfilepages
) {
1928 "Swap area shorter than signature indicates\n");
1931 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
1933 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
1936 /* OK, set up the swap map and apply the bad block list */
1937 swap_map
= vmalloc(maxpages
* sizeof(short));
1943 memset(swap_map
, 0, maxpages
* sizeof(short));
1944 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
1945 int page_nr
= swap_header
->info
.badpages
[i
];
1946 if (page_nr
<= 0 || page_nr
>= swap_header
->info
.last_page
) {
1950 swap_map
[page_nr
] = SWAP_MAP_BAD
;
1953 error
= swap_cgroup_swapon(type
, maxpages
);
1957 nr_good_pages
= swap_header
->info
.last_page
-
1958 swap_header
->info
.nr_badpages
-
1959 1 /* header page */;
1961 if (nr_good_pages
) {
1962 swap_map
[0] = SWAP_MAP_BAD
;
1964 p
->pages
= nr_good_pages
;
1965 nr_extents
= setup_swap_extents(p
, &span
);
1966 if (nr_extents
< 0) {
1970 nr_good_pages
= p
->pages
;
1972 if (!nr_good_pages
) {
1973 printk(KERN_WARNING
"Empty swap-file\n");
1979 if (blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
1980 p
->flags
|= SWP_SOLIDSTATE
;
1981 p
->cluster_next
= 1 + (random32() % p
->highest_bit
);
1983 if (discard_swap(p
) == 0)
1984 p
->flags
|= SWP_DISCARDABLE
;
1987 mutex_lock(&swapon_mutex
);
1988 spin_lock(&swap_lock
);
1989 if (swap_flags
& SWAP_FLAG_PREFER
)
1991 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
1993 p
->prio
= --least_priority
;
1994 p
->swap_map
= swap_map
;
1995 p
->flags
|= SWP_WRITEOK
;
1996 nr_swap_pages
+= nr_good_pages
;
1997 total_swap_pages
+= nr_good_pages
;
1999 printk(KERN_INFO
"Adding %uk swap on %s. "
2000 "Priority:%d extents:%d across:%lluk %s%s\n",
2001 nr_good_pages
<<(PAGE_SHIFT
-10), name
, p
->prio
,
2002 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2003 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2004 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "");
2006 /* insert swap space into swap_list: */
2008 for (i
= swap_list
.head
; i
>= 0; i
= swap_info
[i
].next
) {
2009 if (p
->prio
>= swap_info
[i
].prio
) {
2016 swap_list
.head
= swap_list
.next
= p
- swap_info
;
2018 swap_info
[prev
].next
= p
- swap_info
;
2020 spin_unlock(&swap_lock
);
2021 mutex_unlock(&swapon_mutex
);
2026 set_blocksize(bdev
, p
->old_block_size
);
2029 destroy_swap_extents(p
);
2030 swap_cgroup_swapoff(type
);
2032 spin_lock(&swap_lock
);
2033 p
->swap_file
= NULL
;
2035 spin_unlock(&swap_lock
);
2038 filp_close(swap_file
, NULL
);
2040 if (page
&& !IS_ERR(page
)) {
2042 page_cache_release(page
);
2048 inode
->i_flags
|= S_SWAPFILE
;
2049 mutex_unlock(&inode
->i_mutex
);
2054 void si_swapinfo(struct sysinfo
*val
)
2057 unsigned long nr_to_be_unused
= 0;
2059 spin_lock(&swap_lock
);
2060 for (i
= 0; i
< nr_swapfiles
; i
++) {
2061 if (!(swap_info
[i
].flags
& SWP_USED
) ||
2062 (swap_info
[i
].flags
& SWP_WRITEOK
))
2064 nr_to_be_unused
+= swap_info
[i
].inuse_pages
;
2066 val
->freeswap
= nr_swap_pages
+ nr_to_be_unused
;
2067 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2068 spin_unlock(&swap_lock
);
2072 * Verify that a swap entry is valid and increment its swap map count.
2074 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2075 * "permanent", but will be reclaimed by the next swapoff.
2076 * Returns error code in following case.
2078 * - swp_entry is invalid -> EINVAL
2079 * - swp_entry is migration entry -> EINVAL
2080 * - swap-cache reference is requested but there is already one. -> EEXIST
2081 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2083 static int __swap_duplicate(swp_entry_t entry
, bool cache
)
2085 struct swap_info_struct
* p
;
2086 unsigned long offset
, type
;
2087 int result
= -EINVAL
;
2091 if (non_swap_entry(entry
))
2094 type
= swp_type(entry
);
2095 if (type
>= nr_swapfiles
)
2097 p
= type
+ swap_info
;
2098 offset
= swp_offset(entry
);
2100 spin_lock(&swap_lock
);
2102 if (unlikely(offset
>= p
->max
))
2105 count
= swap_count(p
->swap_map
[offset
]);
2106 has_cache
= swap_has_cache(p
->swap_map
[offset
]);
2108 if (cache
== SWAP_CACHE
) { /* called for swapcache/swapin-readahead */
2110 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2111 if (!has_cache
&& count
) {
2112 p
->swap_map
[offset
] = encode_swapmap(count
, true);
2114 } else if (has_cache
) /* someone added cache */
2116 else if (!count
) /* no users */
2119 } else if (count
|| has_cache
) {
2120 if (count
< SWAP_MAP_MAX
- 1) {
2121 p
->swap_map
[offset
] = encode_swapmap(count
+ 1,
2124 } else if (count
<= SWAP_MAP_MAX
) {
2125 if (swap_overflow
++ < 5)
2127 "swap_dup: swap entry overflow\n");
2128 p
->swap_map
[offset
] = encode_swapmap(SWAP_MAP_MAX
,
2133 result
= -ENOENT
; /* unused swap entry */
2135 spin_unlock(&swap_lock
);
2140 printk(KERN_ERR
"swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2144 * increase reference count of swap entry by 1.
2146 void swap_duplicate(swp_entry_t entry
)
2148 __swap_duplicate(entry
, SWAP_MAP
);
2152 * @entry: swap entry for which we allocate swap cache.
2154 * Called when allocating swap cache for exising swap entry,
2155 * This can return error codes. Returns 0 at success.
2156 * -EBUSY means there is a swap cache.
2157 * Note: return code is different from swap_duplicate().
2159 int swapcache_prepare(swp_entry_t entry
)
2161 return __swap_duplicate(entry
, SWAP_CACHE
);
2165 struct swap_info_struct
*
2166 get_swap_info_struct(unsigned type
)
2168 return &swap_info
[type
];
2172 * swap_lock prevents swap_map being freed. Don't grab an extra
2173 * reference on the swaphandle, it doesn't matter if it becomes unused.
2175 int valid_swaphandles(swp_entry_t entry
, unsigned long *offset
)
2177 struct swap_info_struct
*si
;
2178 int our_page_cluster
= page_cluster
;
2179 pgoff_t target
, toff
;
2183 if (!our_page_cluster
) /* no readahead */
2186 si
= &swap_info
[swp_type(entry
)];
2187 target
= swp_offset(entry
);
2188 base
= (target
>> our_page_cluster
) << our_page_cluster
;
2189 end
= base
+ (1 << our_page_cluster
);
2190 if (!base
) /* first page is swap header */
2193 spin_lock(&swap_lock
);
2194 if (end
> si
->max
) /* don't go beyond end of map */
2197 /* Count contiguous allocated slots above our target */
2198 for (toff
= target
; ++toff
< end
; nr_pages
++) {
2199 /* Don't read in free or bad pages */
2200 if (!si
->swap_map
[toff
])
2202 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2205 /* Count contiguous allocated slots below our target */
2206 for (toff
= target
; --toff
>= base
; nr_pages
++) {
2207 /* Don't read in free or bad pages */
2208 if (!si
->swap_map
[toff
])
2210 if (swap_count(si
->swap_map
[toff
]) == SWAP_MAP_BAD
)
2213 spin_unlock(&swap_lock
);
2216 * Indicate starting offset, and return number of pages to get:
2217 * if only 1, say 0, since there's then no readahead to be done.
2220 return nr_pages
? ++nr_pages
: 0;