2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
33 #ifdef CONFIG_UBIFS_FS_DEBUG
34 static int dbg_populate_lsave(struct ubifs_info
*c
);
36 #define dbg_populate_lsave(c) 0
40 * first_dirty_cnode - find first dirty cnode.
41 * @c: UBIFS file-system description object
42 * @nnode: nnode at which to start
44 * This function returns the first dirty cnode or %NULL if there is not one.
46 static struct ubifs_cnode
*first_dirty_cnode(struct ubifs_nnode
*nnode
)
52 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
53 struct ubifs_cnode
*cnode
;
55 cnode
= nnode
->nbranch
[i
].cnode
;
57 test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
58 if (cnode
->level
== 0)
60 nnode
= (struct ubifs_nnode
*)cnode
;
66 return (struct ubifs_cnode
*)nnode
;
71 * next_dirty_cnode - find next dirty cnode.
72 * @cnode: cnode from which to begin searching
74 * This function returns the next dirty cnode or %NULL if there is not one.
76 static struct ubifs_cnode
*next_dirty_cnode(struct ubifs_cnode
*cnode
)
78 struct ubifs_nnode
*nnode
;
82 nnode
= cnode
->parent
;
85 for (i
= cnode
->iip
+ 1; i
< UBIFS_LPT_FANOUT
; i
++) {
86 cnode
= nnode
->nbranch
[i
].cnode
;
87 if (cnode
&& test_bit(DIRTY_CNODE
, &cnode
->flags
)) {
88 if (cnode
->level
== 0)
89 return cnode
; /* cnode is a pnode */
90 /* cnode is a nnode */
91 return first_dirty_cnode((struct ubifs_nnode
*)cnode
);
94 return (struct ubifs_cnode
*)nnode
;
98 * get_cnodes_to_commit - create list of dirty cnodes to commit.
99 * @c: UBIFS file-system description object
101 * This function returns the number of cnodes to commit.
103 static int get_cnodes_to_commit(struct ubifs_info
*c
)
105 struct ubifs_cnode
*cnode
, *cnext
;
111 if (!test_bit(DIRTY_CNODE
, &c
->nroot
->flags
))
114 c
->lpt_cnext
= first_dirty_cnode(c
->nroot
);
115 cnode
= c
->lpt_cnext
;
120 ubifs_assert(!test_bit(COW_CNODE
, &cnode
->flags
));
121 __set_bit(COW_CNODE
, &cnode
->flags
);
122 cnext
= next_dirty_cnode(cnode
);
124 cnode
->cnext
= c
->lpt_cnext
;
127 cnode
->cnext
= cnext
;
131 dbg_cmt("committing %d cnodes", cnt
);
132 dbg_lp("committing %d cnodes", cnt
);
133 ubifs_assert(cnt
== c
->dirty_nn_cnt
+ c
->dirty_pn_cnt
);
138 * upd_ltab - update LPT LEB properties.
139 * @c: UBIFS file-system description object
141 * @free: amount of free space
142 * @dirty: amount of dirty space to add
144 static void upd_ltab(struct ubifs_info
*c
, int lnum
, int free
, int dirty
)
146 dbg_lp("LEB %d free %d dirty %d to %d +%d",
147 lnum
, c
->ltab
[lnum
- c
->lpt_first
].free
,
148 c
->ltab
[lnum
- c
->lpt_first
].dirty
, free
, dirty
);
149 ubifs_assert(lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
);
150 c
->ltab
[lnum
- c
->lpt_first
].free
= free
;
151 c
->ltab
[lnum
- c
->lpt_first
].dirty
+= dirty
;
155 * alloc_lpt_leb - allocate an LPT LEB that is empty.
156 * @c: UBIFS file-system description object
157 * @lnum: LEB number is passed and returned here
159 * This function finds the next empty LEB in the ltab starting from @lnum. If a
160 * an empty LEB is found it is returned in @lnum and the function returns %0.
161 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
162 * never to run out of space.
164 static int alloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
168 n
= *lnum
- c
->lpt_first
+ 1;
169 for (i
= n
; i
< c
->lpt_lebs
; i
++) {
170 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
172 if (c
->ltab
[i
].free
== c
->leb_size
) {
174 *lnum
= i
+ c
->lpt_first
;
179 for (i
= 0; i
< n
; i
++) {
180 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
182 if (c
->ltab
[i
].free
== c
->leb_size
) {
184 *lnum
= i
+ c
->lpt_first
;
192 * layout_cnodes - layout cnodes for commit.
193 * @c: UBIFS file-system description object
195 * This function returns %0 on success and a negative error code on failure.
197 static int layout_cnodes(struct ubifs_info
*c
)
199 int lnum
, offs
, len
, alen
, done_lsave
, done_ltab
, err
;
200 struct ubifs_cnode
*cnode
;
202 err
= dbg_chk_lpt_sz(c
, 0, 0);
205 cnode
= c
->lpt_cnext
;
208 lnum
= c
->nhead_lnum
;
209 offs
= c
->nhead_offs
;
210 /* Try to place lsave and ltab nicely */
211 done_lsave
= !c
->big_lpt
;
213 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
215 c
->lsave_lnum
= lnum
;
216 c
->lsave_offs
= offs
;
218 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
221 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
226 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
232 c
->dirty_nn_cnt
-= 1;
235 c
->dirty_pn_cnt
-= 1;
237 while (offs
+ len
> c
->leb_size
) {
238 alen
= ALIGN(offs
, c
->min_io_size
);
239 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
240 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
241 err
= alloc_lpt_leb(c
, &lnum
);
245 ubifs_assert(lnum
>= c
->lpt_first
&&
246 lnum
<= c
->lpt_last
);
247 /* Try to place lsave and ltab nicely */
250 c
->lsave_lnum
= lnum
;
251 c
->lsave_offs
= offs
;
253 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
261 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
267 cnode
->parent
->nbranch
[cnode
->iip
].lnum
= lnum
;
268 cnode
->parent
->nbranch
[cnode
->iip
].offs
= offs
;
274 dbg_chk_lpt_sz(c
, 1, len
);
275 cnode
= cnode
->cnext
;
276 } while (cnode
&& cnode
!= c
->lpt_cnext
);
278 /* Make sure to place LPT's save table */
280 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
281 alen
= ALIGN(offs
, c
->min_io_size
);
282 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
283 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
284 err
= alloc_lpt_leb(c
, &lnum
);
288 ubifs_assert(lnum
>= c
->lpt_first
&&
289 lnum
<= c
->lpt_last
);
292 c
->lsave_lnum
= lnum
;
293 c
->lsave_offs
= offs
;
295 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
298 /* Make sure to place LPT's own lprops table */
300 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
301 alen
= ALIGN(offs
, c
->min_io_size
);
302 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
303 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
304 err
= alloc_lpt_leb(c
, &lnum
);
308 ubifs_assert(lnum
>= c
->lpt_first
&&
309 lnum
<= c
->lpt_last
);
315 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
318 alen
= ALIGN(offs
, c
->min_io_size
);
319 upd_ltab(c
, lnum
, c
->leb_size
- alen
, alen
- offs
);
320 dbg_chk_lpt_sz(c
, 4, alen
- offs
);
321 err
= dbg_chk_lpt_sz(c
, 3, alen
);
327 ubifs_err("LPT out of space");
328 dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
329 "done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
330 dbg_dump_lpt_info(c
);
331 dbg_dump_lpt_lebs(c
);
337 * realloc_lpt_leb - allocate an LPT LEB that is empty.
338 * @c: UBIFS file-system description object
339 * @lnum: LEB number is passed and returned here
341 * This function duplicates exactly the results of the function alloc_lpt_leb.
342 * It is used during end commit to reallocate the same LEB numbers that were
343 * allocated by alloc_lpt_leb during start commit.
345 * This function finds the next LEB that was allocated by the alloc_lpt_leb
346 * function starting from @lnum. If a LEB is found it is returned in @lnum and
347 * the function returns %0. Otherwise the function returns -ENOSPC.
348 * Note however, that LPT is designed never to run out of space.
350 static int realloc_lpt_leb(struct ubifs_info
*c
, int *lnum
)
354 n
= *lnum
- c
->lpt_first
+ 1;
355 for (i
= n
; i
< c
->lpt_lebs
; i
++)
356 if (c
->ltab
[i
].cmt
) {
358 *lnum
= i
+ c
->lpt_first
;
362 for (i
= 0; i
< n
; i
++)
363 if (c
->ltab
[i
].cmt
) {
365 *lnum
= i
+ c
->lpt_first
;
372 * write_cnodes - write cnodes for commit.
373 * @c: UBIFS file-system description object
375 * This function returns %0 on success and a negative error code on failure.
377 static int write_cnodes(struct ubifs_info
*c
)
379 int lnum
, offs
, len
, from
, err
, wlen
, alen
, done_ltab
, done_lsave
;
380 struct ubifs_cnode
*cnode
;
381 void *buf
= c
->lpt_buf
;
383 cnode
= c
->lpt_cnext
;
386 lnum
= c
->nhead_lnum
;
387 offs
= c
->nhead_offs
;
389 /* Ensure empty LEB is unmapped */
391 err
= ubifs_leb_unmap(c
, lnum
);
395 /* Try to place lsave and ltab nicely */
396 done_lsave
= !c
->big_lpt
;
398 if (!done_lsave
&& offs
+ c
->lsave_sz
<= c
->leb_size
) {
400 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
402 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
405 if (offs
+ c
->ltab_sz
<= c
->leb_size
) {
407 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
409 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
412 /* Loop for each cnode */
418 while (offs
+ len
> c
->leb_size
) {
421 alen
= ALIGN(wlen
, c
->min_io_size
);
422 memset(buf
+ offs
, 0xff, alen
- wlen
);
423 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
,
424 alen
, UBI_SHORTTERM
);
428 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
429 err
= realloc_lpt_leb(c
, &lnum
);
433 ubifs_assert(lnum
>= c
->lpt_first
&&
434 lnum
<= c
->lpt_last
);
435 err
= ubifs_leb_unmap(c
, lnum
);
438 /* Try to place lsave and ltab nicely */
441 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
443 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
448 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
450 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
456 ubifs_pack_nnode(c
, buf
+ offs
,
457 (struct ubifs_nnode
*)cnode
);
459 ubifs_pack_pnode(c
, buf
+ offs
,
460 (struct ubifs_pnode
*)cnode
);
462 * The reason for the barriers is the same as in case of TNC.
463 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
464 * 'dirty_cow_pnode()' are the functions for which this is
467 clear_bit(DIRTY_CNODE
, &cnode
->flags
);
468 smp_mb__before_clear_bit();
469 clear_bit(COW_CNODE
, &cnode
->flags
);
470 smp_mb__after_clear_bit();
472 dbg_chk_lpt_sz(c
, 1, len
);
473 cnode
= cnode
->cnext
;
474 } while (cnode
&& cnode
!= c
->lpt_cnext
);
476 /* Make sure to place LPT's save table */
478 if (offs
+ c
->lsave_sz
> c
->leb_size
) {
480 alen
= ALIGN(wlen
, c
->min_io_size
);
481 memset(buf
+ offs
, 0xff, alen
- wlen
);
482 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
486 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
487 err
= realloc_lpt_leb(c
, &lnum
);
491 ubifs_assert(lnum
>= c
->lpt_first
&&
492 lnum
<= c
->lpt_last
);
493 err
= ubifs_leb_unmap(c
, lnum
);
498 ubifs_pack_lsave(c
, buf
+ offs
, c
->lsave
);
500 dbg_chk_lpt_sz(c
, 1, c
->lsave_sz
);
503 /* Make sure to place LPT's own lprops table */
505 if (offs
+ c
->ltab_sz
> c
->leb_size
) {
507 alen
= ALIGN(wlen
, c
->min_io_size
);
508 memset(buf
+ offs
, 0xff, alen
- wlen
);
509 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
,
513 dbg_chk_lpt_sz(c
, 2, c
->leb_size
- offs
);
514 err
= realloc_lpt_leb(c
, &lnum
);
518 ubifs_assert(lnum
>= c
->lpt_first
&&
519 lnum
<= c
->lpt_last
);
520 err
= ubifs_leb_unmap(c
, lnum
);
525 ubifs_pack_ltab(c
, buf
+ offs
, c
->ltab_cmt
);
527 dbg_chk_lpt_sz(c
, 1, c
->ltab_sz
);
530 /* Write remaining data in buffer */
532 alen
= ALIGN(wlen
, c
->min_io_size
);
533 memset(buf
+ offs
, 0xff, alen
- wlen
);
534 err
= ubifs_leb_write(c
, lnum
, buf
+ from
, from
, alen
, UBI_SHORTTERM
);
538 dbg_chk_lpt_sz(c
, 4, alen
- wlen
);
539 err
= dbg_chk_lpt_sz(c
, 3, ALIGN(offs
, c
->min_io_size
));
543 c
->nhead_lnum
= lnum
;
544 c
->nhead_offs
= ALIGN(offs
, c
->min_io_size
);
546 dbg_lp("LPT root is at %d:%d", c
->lpt_lnum
, c
->lpt_offs
);
547 dbg_lp("LPT head is at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
548 dbg_lp("LPT ltab is at %d:%d", c
->ltab_lnum
, c
->ltab_offs
);
550 dbg_lp("LPT lsave is at %d:%d", c
->lsave_lnum
, c
->lsave_offs
);
555 ubifs_err("LPT out of space mismatch");
556 dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
557 "%d, done_lsave %d", lnum
, offs
, len
, done_ltab
, done_lsave
);
558 dbg_dump_lpt_info(c
);
559 dbg_dump_lpt_lebs(c
);
565 * next_pnode_to_dirty - find next pnode to dirty.
566 * @c: UBIFS file-system description object
569 * This function returns the next pnode to dirty or %NULL if there are no more
570 * pnodes. Note that pnodes that have never been written (lnum == 0) are
573 static struct ubifs_pnode
*next_pnode_to_dirty(struct ubifs_info
*c
,
574 struct ubifs_pnode
*pnode
)
576 struct ubifs_nnode
*nnode
;
579 /* Try to go right */
580 nnode
= pnode
->parent
;
581 for (iip
= pnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
582 if (nnode
->nbranch
[iip
].lnum
)
583 return ubifs_get_pnode(c
, nnode
, iip
);
586 /* Go up while can't go right */
588 iip
= nnode
->iip
+ 1;
589 nnode
= nnode
->parent
;
592 for (; iip
< UBIFS_LPT_FANOUT
; iip
++) {
593 if (nnode
->nbranch
[iip
].lnum
)
596 } while (iip
>= UBIFS_LPT_FANOUT
);
599 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
601 return (void *)nnode
;
603 /* Go down to level 1 */
604 while (nnode
->level
> 1) {
605 for (iip
= 0; iip
< UBIFS_LPT_FANOUT
; iip
++) {
606 if (nnode
->nbranch
[iip
].lnum
)
609 if (iip
>= UBIFS_LPT_FANOUT
) {
611 * Should not happen, but we need to keep going
616 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
618 return (void *)nnode
;
621 for (iip
= 0; iip
< UBIFS_LPT_FANOUT
; iip
++)
622 if (nnode
->nbranch
[iip
].lnum
)
624 if (iip
>= UBIFS_LPT_FANOUT
)
625 /* Should not happen, but we need to keep going if it does */
627 return ubifs_get_pnode(c
, nnode
, iip
);
631 * pnode_lookup - lookup a pnode in the LPT.
632 * @c: UBIFS file-system description object
633 * @i: pnode number (0 to main_lebs - 1)
635 * This function returns a pointer to the pnode on success or a negative
636 * error code on failure.
638 static struct ubifs_pnode
*pnode_lookup(struct ubifs_info
*c
, int i
)
640 int err
, h
, iip
, shft
;
641 struct ubifs_nnode
*nnode
;
644 err
= ubifs_read_nnode(c
, NULL
, 0);
648 i
<<= UBIFS_LPT_FANOUT_SHIFT
;
650 shft
= c
->lpt_hght
* UBIFS_LPT_FANOUT_SHIFT
;
651 for (h
= 1; h
< c
->lpt_hght
; h
++) {
652 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
653 shft
-= UBIFS_LPT_FANOUT_SHIFT
;
654 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
656 return ERR_CAST(nnode
);
658 iip
= ((i
>> shft
) & (UBIFS_LPT_FANOUT
- 1));
659 return ubifs_get_pnode(c
, nnode
, iip
);
663 * add_pnode_dirt - add dirty space to LPT LEB properties.
664 * @c: UBIFS file-system description object
665 * @pnode: pnode for which to add dirt
667 static void add_pnode_dirt(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
669 ubifs_add_lpt_dirt(c
, pnode
->parent
->nbranch
[pnode
->iip
].lnum
,
674 * do_make_pnode_dirty - mark a pnode dirty.
675 * @c: UBIFS file-system description object
676 * @pnode: pnode to mark dirty
678 static void do_make_pnode_dirty(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
)
680 /* Assumes cnext list is empty i.e. not called during commit */
681 if (!test_and_set_bit(DIRTY_CNODE
, &pnode
->flags
)) {
682 struct ubifs_nnode
*nnode
;
684 c
->dirty_pn_cnt
+= 1;
685 add_pnode_dirt(c
, pnode
);
686 /* Mark parent and ancestors dirty too */
687 nnode
= pnode
->parent
;
689 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
690 c
->dirty_nn_cnt
+= 1;
691 ubifs_add_nnode_dirt(c
, nnode
);
692 nnode
= nnode
->parent
;
700 * make_tree_dirty - mark the entire LEB properties tree dirty.
701 * @c: UBIFS file-system description object
703 * This function is used by the "small" LPT model to cause the entire LEB
704 * properties tree to be written. The "small" LPT model does not use LPT
705 * garbage collection because it is more efficient to write the entire tree
706 * (because it is small).
708 * This function returns %0 on success and a negative error code on failure.
710 static int make_tree_dirty(struct ubifs_info
*c
)
712 struct ubifs_pnode
*pnode
;
714 pnode
= pnode_lookup(c
, 0);
716 return PTR_ERR(pnode
);
719 do_make_pnode_dirty(c
, pnode
);
720 pnode
= next_pnode_to_dirty(c
, pnode
);
722 return PTR_ERR(pnode
);
728 * need_write_all - determine if the LPT area is running out of free space.
729 * @c: UBIFS file-system description object
731 * This function returns %1 if the LPT area is running out of free space and %0
734 static int need_write_all(struct ubifs_info
*c
)
739 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
740 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
741 free
+= c
->leb_size
- c
->nhead_offs
;
742 else if (c
->ltab
[i
].free
== c
->leb_size
)
744 else if (c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
747 /* Less than twice the size left */
748 if (free
<= c
->lpt_sz
* 2)
754 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
755 * @c: UBIFS file-system description object
757 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
758 * free space and so may be reused as soon as the next commit is completed.
759 * This function is called during start commit to mark LPT LEBs for trivial GC.
761 static void lpt_tgc_start(struct ubifs_info
*c
)
765 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
766 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
768 if (c
->ltab
[i
].dirty
> 0 &&
769 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
) {
771 c
->ltab
[i
].free
= c
->leb_size
;
772 c
->ltab
[i
].dirty
= 0;
773 dbg_lp("LEB %d", i
+ c
->lpt_first
);
779 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
780 * @c: UBIFS file-system description object
782 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
783 * free space and so may be reused as soon as the next commit is completed.
784 * This function is called after the commit is completed (master node has been
785 * written) and un-maps LPT LEBs that were marked for trivial GC.
787 static int lpt_tgc_end(struct ubifs_info
*c
)
791 for (i
= 0; i
< c
->lpt_lebs
; i
++)
792 if (c
->ltab
[i
].tgc
) {
793 err
= ubifs_leb_unmap(c
, i
+ c
->lpt_first
);
797 dbg_lp("LEB %d", i
+ c
->lpt_first
);
803 * populate_lsave - fill the lsave array with important LEB numbers.
804 * @c: the UBIFS file-system description object
806 * This function is only called for the "big" model. It records a small number
807 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
808 * most important to least important): empty, freeable, freeable index, dirty
809 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
810 * their pnodes into memory. That will stop us from having to scan the LPT
811 * straight away. For the "small" model we assume that scanning the LPT is no
814 static void populate_lsave(struct ubifs_info
*c
)
816 struct ubifs_lprops
*lprops
;
817 struct ubifs_lpt_heap
*heap
;
820 ubifs_assert(c
->big_lpt
);
821 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
822 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
823 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
826 if (dbg_populate_lsave(c
))
829 list_for_each_entry(lprops
, &c
->empty_list
, list
) {
830 c
->lsave
[cnt
++] = lprops
->lnum
;
831 if (cnt
>= c
->lsave_cnt
)
834 list_for_each_entry(lprops
, &c
->freeable_list
, list
) {
835 c
->lsave
[cnt
++] = lprops
->lnum
;
836 if (cnt
>= c
->lsave_cnt
)
839 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
840 c
->lsave
[cnt
++] = lprops
->lnum
;
841 if (cnt
>= c
->lsave_cnt
)
844 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
845 for (i
= 0; i
< heap
->cnt
; i
++) {
846 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
847 if (cnt
>= c
->lsave_cnt
)
850 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
851 for (i
= 0; i
< heap
->cnt
; i
++) {
852 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
853 if (cnt
>= c
->lsave_cnt
)
856 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
857 for (i
= 0; i
< heap
->cnt
; i
++) {
858 c
->lsave
[cnt
++] = heap
->arr
[i
]->lnum
;
859 if (cnt
>= c
->lsave_cnt
)
862 /* Fill it up completely */
863 while (cnt
< c
->lsave_cnt
)
864 c
->lsave
[cnt
++] = c
->main_first
;
868 * nnode_lookup - lookup a nnode in the LPT.
869 * @c: UBIFS file-system description object
872 * This function returns a pointer to the nnode on success or a negative
873 * error code on failure.
875 static struct ubifs_nnode
*nnode_lookup(struct ubifs_info
*c
, int i
)
878 struct ubifs_nnode
*nnode
;
881 err
= ubifs_read_nnode(c
, NULL
, 0);
887 iip
= i
& (UBIFS_LPT_FANOUT
- 1);
888 i
>>= UBIFS_LPT_FANOUT_SHIFT
;
891 nnode
= ubifs_get_nnode(c
, nnode
, iip
);
899 * make_nnode_dirty - find a nnode and, if found, make it dirty.
900 * @c: UBIFS file-system description object
901 * @node_num: nnode number of nnode to make dirty
902 * @lnum: LEB number where nnode was written
903 * @offs: offset where nnode was written
905 * This function is used by LPT garbage collection. LPT garbage collection is
906 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
907 * simply involves marking all the nodes in the LEB being garbage-collected as
908 * dirty. The dirty nodes are written next commit, after which the LEB is free
911 * This function returns %0 on success and a negative error code on failure.
913 static int make_nnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
916 struct ubifs_nnode
*nnode
;
918 nnode
= nnode_lookup(c
, node_num
);
920 return PTR_ERR(nnode
);
922 struct ubifs_nbranch
*branch
;
924 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
925 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
926 return 0; /* nnode is obsolete */
927 } else if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
928 return 0; /* nnode is obsolete */
929 /* Assumes cnext list is empty i.e. not called during commit */
930 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
931 c
->dirty_nn_cnt
+= 1;
932 ubifs_add_nnode_dirt(c
, nnode
);
933 /* Mark parent and ancestors dirty too */
934 nnode
= nnode
->parent
;
936 if (!test_and_set_bit(DIRTY_CNODE
, &nnode
->flags
)) {
937 c
->dirty_nn_cnt
+= 1;
938 ubifs_add_nnode_dirt(c
, nnode
);
939 nnode
= nnode
->parent
;
948 * make_pnode_dirty - find a pnode and, if found, make it dirty.
949 * @c: UBIFS file-system description object
950 * @node_num: pnode number of pnode to make dirty
951 * @lnum: LEB number where pnode was written
952 * @offs: offset where pnode was written
954 * This function is used by LPT garbage collection. LPT garbage collection is
955 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
956 * simply involves marking all the nodes in the LEB being garbage-collected as
957 * dirty. The dirty nodes are written next commit, after which the LEB is free
960 * This function returns %0 on success and a negative error code on failure.
962 static int make_pnode_dirty(struct ubifs_info
*c
, int node_num
, int lnum
,
965 struct ubifs_pnode
*pnode
;
966 struct ubifs_nbranch
*branch
;
968 pnode
= pnode_lookup(c
, node_num
);
970 return PTR_ERR(pnode
);
971 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
972 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
974 do_make_pnode_dirty(c
, pnode
);
979 * make_ltab_dirty - make ltab node dirty.
980 * @c: UBIFS file-system description object
981 * @lnum: LEB number where ltab was written
982 * @offs: offset where ltab was written
984 * This function is used by LPT garbage collection. LPT garbage collection is
985 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
986 * simply involves marking all the nodes in the LEB being garbage-collected as
987 * dirty. The dirty nodes are written next commit, after which the LEB is free
990 * This function returns %0 on success and a negative error code on failure.
992 static int make_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
994 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
995 return 0; /* This ltab node is obsolete */
996 if (!(c
->lpt_drty_flgs
& LTAB_DIRTY
)) {
997 c
->lpt_drty_flgs
|= LTAB_DIRTY
;
998 ubifs_add_lpt_dirt(c
, c
->ltab_lnum
, c
->ltab_sz
);
1004 * make_lsave_dirty - make lsave node dirty.
1005 * @c: UBIFS file-system description object
1006 * @lnum: LEB number where lsave was written
1007 * @offs: offset where lsave was written
1009 * This function is used by LPT garbage collection. LPT garbage collection is
1010 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1011 * simply involves marking all the nodes in the LEB being garbage-collected as
1012 * dirty. The dirty nodes are written next commit, after which the LEB is free
1015 * This function returns %0 on success and a negative error code on failure.
1017 static int make_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1019 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1020 return 0; /* This lsave node is obsolete */
1021 if (!(c
->lpt_drty_flgs
& LSAVE_DIRTY
)) {
1022 c
->lpt_drty_flgs
|= LSAVE_DIRTY
;
1023 ubifs_add_lpt_dirt(c
, c
->lsave_lnum
, c
->lsave_sz
);
1029 * make_node_dirty - make node dirty.
1030 * @c: UBIFS file-system description object
1031 * @node_type: LPT node type
1032 * @node_num: node number
1033 * @lnum: LEB number where node was written
1034 * @offs: offset where node was written
1036 * This function is used by LPT garbage collection. LPT garbage collection is
1037 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1038 * simply involves marking all the nodes in the LEB being garbage-collected as
1039 * dirty. The dirty nodes are written next commit, after which the LEB is free
1042 * This function returns %0 on success and a negative error code on failure.
1044 static int make_node_dirty(struct ubifs_info
*c
, int node_type
, int node_num
,
1047 switch (node_type
) {
1048 case UBIFS_LPT_NNODE
:
1049 return make_nnode_dirty(c
, node_num
, lnum
, offs
);
1050 case UBIFS_LPT_PNODE
:
1051 return make_pnode_dirty(c
, node_num
, lnum
, offs
);
1052 case UBIFS_LPT_LTAB
:
1053 return make_ltab_dirty(c
, lnum
, offs
);
1054 case UBIFS_LPT_LSAVE
:
1055 return make_lsave_dirty(c
, lnum
, offs
);
1061 * get_lpt_node_len - return the length of a node based on its type.
1062 * @c: UBIFS file-system description object
1063 * @node_type: LPT node type
1065 static int get_lpt_node_len(const struct ubifs_info
*c
, int node_type
)
1067 switch (node_type
) {
1068 case UBIFS_LPT_NNODE
:
1070 case UBIFS_LPT_PNODE
:
1072 case UBIFS_LPT_LTAB
:
1074 case UBIFS_LPT_LSAVE
:
1081 * get_pad_len - return the length of padding in a buffer.
1082 * @c: UBIFS file-system description object
1084 * @len: length of buffer
1086 static int get_pad_len(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1090 if (c
->min_io_size
== 1)
1092 offs
= c
->leb_size
- len
;
1093 pad_len
= ALIGN(offs
, c
->min_io_size
) - offs
;
1098 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1099 * @c: UBIFS file-system description object
1101 * @node_num: node number is returned here
1103 static int get_lpt_node_type(const struct ubifs_info
*c
, uint8_t *buf
,
1106 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1107 int pos
= 0, node_type
;
1109 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1110 *node_num
= ubifs_unpack_bits(&addr
, &pos
, c
->pcnt_bits
);
1115 * is_a_node - determine if a buffer contains a node.
1116 * @c: UBIFS file-system description object
1118 * @len: length of buffer
1120 * This function returns %1 if the buffer contains a node or %0 if it does not.
1122 static int is_a_node(const struct ubifs_info
*c
, uint8_t *buf
, int len
)
1124 uint8_t *addr
= buf
+ UBIFS_LPT_CRC_BYTES
;
1125 int pos
= 0, node_type
, node_len
;
1126 uint16_t crc
, calc_crc
;
1128 if (len
< UBIFS_LPT_CRC_BYTES
+ (UBIFS_LPT_TYPE_BITS
+ 7) / 8)
1130 node_type
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_TYPE_BITS
);
1131 if (node_type
== UBIFS_LPT_NOT_A_NODE
)
1133 node_len
= get_lpt_node_len(c
, node_type
);
1134 if (!node_len
|| node_len
> len
)
1138 crc
= ubifs_unpack_bits(&addr
, &pos
, UBIFS_LPT_CRC_BITS
);
1139 calc_crc
= crc16(-1, buf
+ UBIFS_LPT_CRC_BYTES
,
1140 node_len
- UBIFS_LPT_CRC_BYTES
);
1141 if (crc
!= calc_crc
)
1147 * lpt_gc_lnum - garbage collect a LPT LEB.
1148 * @c: UBIFS file-system description object
1149 * @lnum: LEB number to garbage collect
1151 * LPT garbage collection is used only for the "big" LPT model
1152 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1153 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1154 * next commit, after which the LEB is free to be reused.
1156 * This function returns %0 on success and a negative error code on failure.
1158 static int lpt_gc_lnum(struct ubifs_info
*c
, int lnum
)
1160 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1161 void *buf
= c
->lpt_buf
;
1163 dbg_lp("LEB %d", lnum
);
1165 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1170 if (!is_a_node(c
, buf
, len
)) {
1173 pad_len
= get_pad_len(c
, buf
, len
);
1181 node_type
= get_lpt_node_type(c
, buf
, &node_num
);
1182 node_len
= get_lpt_node_len(c
, node_type
);
1183 offs
= c
->leb_size
- len
;
1184 ubifs_assert(node_len
!= 0);
1185 mutex_lock(&c
->lp_mutex
);
1186 err
= make_node_dirty(c
, node_type
, node_num
, lnum
, offs
);
1187 mutex_unlock(&c
->lp_mutex
);
1197 * lpt_gc - LPT garbage collection.
1198 * @c: UBIFS file-system description object
1200 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1201 * Returns %0 on success and a negative error code on failure.
1203 static int lpt_gc(struct ubifs_info
*c
)
1205 int i
, lnum
= -1, dirty
= 0;
1207 mutex_lock(&c
->lp_mutex
);
1208 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1209 ubifs_assert(!c
->ltab
[i
].tgc
);
1210 if (i
+ c
->lpt_first
== c
->nhead_lnum
||
1211 c
->ltab
[i
].free
+ c
->ltab
[i
].dirty
== c
->leb_size
)
1213 if (c
->ltab
[i
].dirty
> dirty
) {
1214 dirty
= c
->ltab
[i
].dirty
;
1215 lnum
= i
+ c
->lpt_first
;
1218 mutex_unlock(&c
->lp_mutex
);
1221 return lpt_gc_lnum(c
, lnum
);
1225 * ubifs_lpt_start_commit - UBIFS commit starts.
1226 * @c: the UBIFS file-system description object
1228 * This function has to be called when UBIFS starts the commit operation.
1229 * This function "freezes" all currently dirty LEB properties and does not
1230 * change them anymore. Further changes are saved and tracked separately
1231 * because they are not part of this commit. This function returns zero in case
1232 * of success and a negative error code in case of failure.
1234 int ubifs_lpt_start_commit(struct ubifs_info
*c
)
1240 mutex_lock(&c
->lp_mutex
);
1241 err
= dbg_chk_lpt_free_spc(c
);
1244 err
= dbg_check_ltab(c
);
1248 if (c
->check_lpt_free
) {
1250 * We ensure there is enough free space in
1251 * ubifs_lpt_post_commit() by marking nodes dirty. That
1252 * information is lost when we unmount, so we also need
1253 * to check free space once after mounting also.
1255 c
->check_lpt_free
= 0;
1256 while (need_write_all(c
)) {
1257 mutex_unlock(&c
->lp_mutex
);
1261 mutex_lock(&c
->lp_mutex
);
1267 if (!c
->dirty_pn_cnt
) {
1268 dbg_cmt("no cnodes to commit");
1273 if (!c
->big_lpt
&& need_write_all(c
)) {
1274 /* If needed, write everything */
1275 err
= make_tree_dirty(c
);
1284 cnt
= get_cnodes_to_commit(c
);
1285 ubifs_assert(cnt
!= 0);
1287 err
= layout_cnodes(c
);
1291 /* Copy the LPT's own lprops for end commit to write */
1292 memcpy(c
->ltab_cmt
, c
->ltab
,
1293 sizeof(struct ubifs_lpt_lprops
) * c
->lpt_lebs
);
1294 c
->lpt_drty_flgs
&= ~(LTAB_DIRTY
| LSAVE_DIRTY
);
1297 mutex_unlock(&c
->lp_mutex
);
1302 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1303 * @c: UBIFS file-system description object
1305 static void free_obsolete_cnodes(struct ubifs_info
*c
)
1307 struct ubifs_cnode
*cnode
, *cnext
;
1309 cnext
= c
->lpt_cnext
;
1314 cnext
= cnode
->cnext
;
1315 if (test_bit(OBSOLETE_CNODE
, &cnode
->flags
))
1318 cnode
->cnext
= NULL
;
1319 } while (cnext
!= c
->lpt_cnext
);
1320 c
->lpt_cnext
= NULL
;
1324 * ubifs_lpt_end_commit - finish the commit operation.
1325 * @c: the UBIFS file-system description object
1327 * This function has to be called when the commit operation finishes. It
1328 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1329 * the media. Returns zero in case of success and a negative error code in case
1332 int ubifs_lpt_end_commit(struct ubifs_info
*c
)
1341 err
= write_cnodes(c
);
1345 mutex_lock(&c
->lp_mutex
);
1346 free_obsolete_cnodes(c
);
1347 mutex_unlock(&c
->lp_mutex
);
1353 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1354 * @c: UBIFS file-system description object
1356 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1357 * commit for the "big" LPT model.
1359 int ubifs_lpt_post_commit(struct ubifs_info
*c
)
1363 mutex_lock(&c
->lp_mutex
);
1364 err
= lpt_tgc_end(c
);
1368 while (need_write_all(c
)) {
1369 mutex_unlock(&c
->lp_mutex
);
1373 mutex_lock(&c
->lp_mutex
);
1376 mutex_unlock(&c
->lp_mutex
);
1381 * first_nnode - find the first nnode in memory.
1382 * @c: UBIFS file-system description object
1383 * @hght: height of tree where nnode found is returned here
1385 * This function returns a pointer to the nnode found or %NULL if no nnode is
1386 * found. This function is a helper to 'ubifs_lpt_free()'.
1388 static struct ubifs_nnode
*first_nnode(struct ubifs_info
*c
, int *hght
)
1390 struct ubifs_nnode
*nnode
;
1397 for (h
= 1; h
< c
->lpt_hght
; h
++) {
1399 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1400 if (nnode
->nbranch
[i
].nnode
) {
1402 nnode
= nnode
->nbranch
[i
].nnode
;
1414 * next_nnode - find the next nnode in memory.
1415 * @c: UBIFS file-system description object
1416 * @nnode: nnode from which to start.
1417 * @hght: height of tree where nnode is, is passed and returned here
1419 * This function returns a pointer to the nnode found or %NULL if no nnode is
1420 * found. This function is a helper to 'ubifs_lpt_free()'.
1422 static struct ubifs_nnode
*next_nnode(struct ubifs_info
*c
,
1423 struct ubifs_nnode
*nnode
, int *hght
)
1425 struct ubifs_nnode
*parent
;
1426 int iip
, h
, i
, found
;
1428 parent
= nnode
->parent
;
1431 if (nnode
->iip
== UBIFS_LPT_FANOUT
- 1) {
1435 for (iip
= nnode
->iip
+ 1; iip
< UBIFS_LPT_FANOUT
; iip
++) {
1436 nnode
= parent
->nbranch
[iip
].nnode
;
1444 for (h
= *hght
+ 1; h
< c
->lpt_hght
; h
++) {
1446 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1447 if (nnode
->nbranch
[i
].nnode
) {
1449 nnode
= nnode
->nbranch
[i
].nnode
;
1461 * ubifs_lpt_free - free resources owned by the LPT.
1462 * @c: UBIFS file-system description object
1463 * @wr_only: free only resources used for writing
1465 void ubifs_lpt_free(struct ubifs_info
*c
, int wr_only
)
1467 struct ubifs_nnode
*nnode
;
1470 /* Free write-only things first */
1472 free_obsolete_cnodes(c
); /* Leftover from a failed commit */
1484 /* Now free the rest */
1486 nnode
= first_nnode(c
, &hght
);
1488 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++)
1489 kfree(nnode
->nbranch
[i
].nnode
);
1490 nnode
= next_nnode(c
, nnode
, &hght
);
1492 for (i
= 0; i
< LPROPS_HEAP_CNT
; i
++)
1493 kfree(c
->lpt_heap
[i
].arr
);
1494 kfree(c
->dirty_idx
.arr
);
1497 kfree(c
->lpt_nod_buf
);
1500 #ifdef CONFIG_UBIFS_FS_DEBUG
1503 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1505 * @len: buffer length
1507 static int dbg_is_all_ff(uint8_t *buf
, int len
)
1511 for (i
= 0; i
< len
; i
++)
1518 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1519 * @c: the UBIFS file-system description object
1520 * @lnum: LEB number where nnode was written
1521 * @offs: offset where nnode was written
1523 static int dbg_is_nnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1525 struct ubifs_nnode
*nnode
;
1528 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1529 nnode
= first_nnode(c
, &hght
);
1530 for (; nnode
; nnode
= next_nnode(c
, nnode
, &hght
)) {
1531 struct ubifs_nbranch
*branch
;
1534 if (nnode
->parent
) {
1535 branch
= &nnode
->parent
->nbranch
[nnode
->iip
];
1536 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1538 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1542 if (c
->lpt_lnum
!= lnum
|| c
->lpt_offs
!= offs
)
1544 if (test_bit(DIRTY_CNODE
, &nnode
->flags
))
1553 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1554 * @c: the UBIFS file-system description object
1555 * @lnum: LEB number where pnode was written
1556 * @offs: offset where pnode was written
1558 static int dbg_is_pnode_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1562 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1563 for (i
= 0; i
< cnt
; i
++) {
1564 struct ubifs_pnode
*pnode
;
1565 struct ubifs_nbranch
*branch
;
1568 pnode
= pnode_lookup(c
, i
);
1570 return PTR_ERR(pnode
);
1571 branch
= &pnode
->parent
->nbranch
[pnode
->iip
];
1572 if (branch
->lnum
!= lnum
|| branch
->offs
!= offs
)
1574 if (test_bit(DIRTY_CNODE
, &pnode
->flags
))
1582 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1583 * @c: the UBIFS file-system description object
1584 * @lnum: LEB number where ltab node was written
1585 * @offs: offset where ltab node was written
1587 static int dbg_is_ltab_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1589 if (lnum
!= c
->ltab_lnum
|| offs
!= c
->ltab_offs
)
1591 return (c
->lpt_drty_flgs
& LTAB_DIRTY
) != 0;
1595 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1596 * @c: the UBIFS file-system description object
1597 * @lnum: LEB number where lsave node was written
1598 * @offs: offset where lsave node was written
1600 static int dbg_is_lsave_dirty(struct ubifs_info
*c
, int lnum
, int offs
)
1602 if (lnum
!= c
->lsave_lnum
|| offs
!= c
->lsave_offs
)
1604 return (c
->lpt_drty_flgs
& LSAVE_DIRTY
) != 0;
1608 * dbg_is_node_dirty - determine if a node is dirty.
1609 * @c: the UBIFS file-system description object
1610 * @node_type: node type
1611 * @lnum: LEB number where node was written
1612 * @offs: offset where node was written
1614 static int dbg_is_node_dirty(struct ubifs_info
*c
, int node_type
, int lnum
,
1617 switch (node_type
) {
1618 case UBIFS_LPT_NNODE
:
1619 return dbg_is_nnode_dirty(c
, lnum
, offs
);
1620 case UBIFS_LPT_PNODE
:
1621 return dbg_is_pnode_dirty(c
, lnum
, offs
);
1622 case UBIFS_LPT_LTAB
:
1623 return dbg_is_ltab_dirty(c
, lnum
, offs
);
1624 case UBIFS_LPT_LSAVE
:
1625 return dbg_is_lsave_dirty(c
, lnum
, offs
);
1631 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1632 * @c: the UBIFS file-system description object
1633 * @lnum: LEB number where node was written
1634 * @offs: offset where node was written
1636 * This function returns %0 on success and a negative error code on failure.
1638 static int dbg_check_ltab_lnum(struct ubifs_info
*c
, int lnum
)
1640 int err
, len
= c
->leb_size
, dirty
= 0, node_type
, node_num
, node_len
;
1644 if (!dbg_is_chk_lprops(c
))
1647 buf
= p
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
1649 ubifs_err("cannot allocate memory for ltab checking");
1653 dbg_lp("LEB %d", lnum
);
1655 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1660 if (!is_a_node(c
, p
, len
)) {
1663 pad_len
= get_pad_len(c
, p
, len
);
1670 if (!dbg_is_all_ff(p
, len
)) {
1671 dbg_msg("invalid empty space in LEB %d at %d",
1672 lnum
, c
->leb_size
- len
);
1675 i
= lnum
- c
->lpt_first
;
1676 if (len
!= c
->ltab
[i
].free
) {
1677 dbg_msg("invalid free space in LEB %d "
1678 "(free %d, expected %d)",
1679 lnum
, len
, c
->ltab
[i
].free
);
1682 if (dirty
!= c
->ltab
[i
].dirty
) {
1683 dbg_msg("invalid dirty space in LEB %d "
1684 "(dirty %d, expected %d)",
1685 lnum
, dirty
, c
->ltab
[i
].dirty
);
1690 node_type
= get_lpt_node_type(c
, p
, &node_num
);
1691 node_len
= get_lpt_node_len(c
, node_type
);
1692 ret
= dbg_is_node_dirty(c
, node_type
, lnum
, c
->leb_size
- len
);
1706 * dbg_check_ltab - check the free and dirty space in the ltab.
1707 * @c: the UBIFS file-system description object
1709 * This function returns %0 on success and a negative error code on failure.
1711 int dbg_check_ltab(struct ubifs_info
*c
)
1713 int lnum
, err
, i
, cnt
;
1715 if (!dbg_is_chk_lprops(c
))
1718 /* Bring the entire tree into memory */
1719 cnt
= DIV_ROUND_UP(c
->main_lebs
, UBIFS_LPT_FANOUT
);
1720 for (i
= 0; i
< cnt
; i
++) {
1721 struct ubifs_pnode
*pnode
;
1723 pnode
= pnode_lookup(c
, i
);
1725 return PTR_ERR(pnode
);
1730 err
= dbg_check_lpt_nodes(c
, (struct ubifs_cnode
*)c
->nroot
, 0, 0);
1734 /* Check each LEB */
1735 for (lnum
= c
->lpt_first
; lnum
<= c
->lpt_last
; lnum
++) {
1736 err
= dbg_check_ltab_lnum(c
, lnum
);
1738 dbg_err("failed at LEB %d", lnum
);
1743 dbg_lp("succeeded");
1748 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1749 * @c: the UBIFS file-system description object
1751 * This function returns %0 on success and a negative error code on failure.
1753 int dbg_chk_lpt_free_spc(struct ubifs_info
*c
)
1758 if (!dbg_is_chk_lprops(c
))
1761 for (i
= 0; i
< c
->lpt_lebs
; i
++) {
1762 if (c
->ltab
[i
].tgc
|| c
->ltab
[i
].cmt
)
1764 if (i
+ c
->lpt_first
== c
->nhead_lnum
)
1765 free
+= c
->leb_size
- c
->nhead_offs
;
1766 else if (c
->ltab
[i
].free
== c
->leb_size
)
1767 free
+= c
->leb_size
;
1769 if (free
< c
->lpt_sz
) {
1770 dbg_err("LPT space error: free %lld lpt_sz %lld",
1772 dbg_dump_lpt_info(c
);
1773 dbg_dump_lpt_lebs(c
);
1781 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1782 * @c: the UBIFS file-system description object
1783 * @action: what to do
1784 * @len: length written
1786 * This function returns %0 on success and a negative error code on failure.
1787 * The @action argument may be one of:
1788 * o %0 - LPT debugging checking starts, initialize debugging variables;
1789 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1790 * o %2 - switched to a different LEB and wasted @len bytes;
1791 * o %3 - check that we've written the right number of bytes.
1792 * o %4 - wasted @len bytes;
1794 int dbg_chk_lpt_sz(struct ubifs_info
*c
, int action
, int len
)
1796 struct ubifs_debug_info
*d
= c
->dbg
;
1797 long long chk_lpt_sz
, lpt_sz
;
1800 if (!dbg_is_chk_lprops(c
))
1807 d
->chk_lpt_lebs
= 0;
1808 d
->chk_lpt_wastage
= 0;
1809 if (c
->dirty_pn_cnt
> c
->pnode_cnt
) {
1810 dbg_err("dirty pnodes %d exceed max %d",
1811 c
->dirty_pn_cnt
, c
->pnode_cnt
);
1814 if (c
->dirty_nn_cnt
> c
->nnode_cnt
) {
1815 dbg_err("dirty nnodes %d exceed max %d",
1816 c
->dirty_nn_cnt
, c
->nnode_cnt
);
1821 d
->chk_lpt_sz
+= len
;
1824 d
->chk_lpt_sz
+= len
;
1825 d
->chk_lpt_wastage
+= len
;
1826 d
->chk_lpt_lebs
+= 1;
1829 chk_lpt_sz
= c
->leb_size
;
1830 chk_lpt_sz
*= d
->chk_lpt_lebs
;
1831 chk_lpt_sz
+= len
- c
->nhead_offs
;
1832 if (d
->chk_lpt_sz
!= chk_lpt_sz
) {
1833 dbg_err("LPT wrote %lld but space used was %lld",
1834 d
->chk_lpt_sz
, chk_lpt_sz
);
1837 if (d
->chk_lpt_sz
> c
->lpt_sz
) {
1838 dbg_err("LPT wrote %lld but lpt_sz is %lld",
1839 d
->chk_lpt_sz
, c
->lpt_sz
);
1842 if (d
->chk_lpt_sz2
&& d
->chk_lpt_sz
!= d
->chk_lpt_sz2
) {
1843 dbg_err("LPT layout size %lld but wrote %lld",
1844 d
->chk_lpt_sz
, d
->chk_lpt_sz2
);
1847 if (d
->chk_lpt_sz2
&& d
->new_nhead_offs
!= len
) {
1848 dbg_err("LPT new nhead offs: expected %d was %d",
1849 d
->new_nhead_offs
, len
);
1852 lpt_sz
= (long long)c
->pnode_cnt
* c
->pnode_sz
;
1853 lpt_sz
+= (long long)c
->nnode_cnt
* c
->nnode_sz
;
1854 lpt_sz
+= c
->ltab_sz
;
1856 lpt_sz
+= c
->lsave_sz
;
1857 if (d
->chk_lpt_sz
- d
->chk_lpt_wastage
> lpt_sz
) {
1858 dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1859 d
->chk_lpt_sz
, d
->chk_lpt_wastage
, lpt_sz
);
1863 dbg_dump_lpt_info(c
);
1864 dbg_dump_lpt_lebs(c
);
1867 d
->chk_lpt_sz2
= d
->chk_lpt_sz
;
1869 d
->chk_lpt_wastage
= 0;
1870 d
->chk_lpt_lebs
= 0;
1871 d
->new_nhead_offs
= len
;
1874 d
->chk_lpt_sz
+= len
;
1875 d
->chk_lpt_wastage
+= len
;
1883 * dbg_dump_lpt_leb - dump an LPT LEB.
1884 * @c: UBIFS file-system description object
1885 * @lnum: LEB number to dump
1887 * This function dumps an LEB from LPT area. Nodes in this area are very
1888 * different to nodes in the main area (e.g., they do not have common headers,
1889 * they do not have 8-byte alignments, etc), so we have a separate function to
1890 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1892 static void dump_lpt_leb(const struct ubifs_info
*c
, int lnum
)
1894 int err
, len
= c
->leb_size
, node_type
, node_num
, node_len
, offs
;
1897 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
1898 current
->pid
, lnum
);
1899 buf
= p
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
1901 ubifs_err("cannot allocate memory to dump LPT");
1905 err
= ubifs_leb_read(c
, lnum
, buf
, 0, c
->leb_size
, 1);
1910 offs
= c
->leb_size
- len
;
1911 if (!is_a_node(c
, p
, len
)) {
1914 pad_len
= get_pad_len(c
, p
, len
);
1916 printk(KERN_DEBUG
"LEB %d:%d, pad %d bytes\n",
1917 lnum
, offs
, pad_len
);
1923 printk(KERN_DEBUG
"LEB %d:%d, free %d bytes\n",
1928 node_type
= get_lpt_node_type(c
, p
, &node_num
);
1929 switch (node_type
) {
1930 case UBIFS_LPT_PNODE
:
1932 node_len
= c
->pnode_sz
;
1934 printk(KERN_DEBUG
"LEB %d:%d, pnode num %d\n",
1935 lnum
, offs
, node_num
);
1937 printk(KERN_DEBUG
"LEB %d:%d, pnode\n",
1941 case UBIFS_LPT_NNODE
:
1944 struct ubifs_nnode nnode
;
1946 node_len
= c
->nnode_sz
;
1948 printk(KERN_DEBUG
"LEB %d:%d, nnode num %d, ",
1949 lnum
, offs
, node_num
);
1951 printk(KERN_DEBUG
"LEB %d:%d, nnode, ",
1953 err
= ubifs_unpack_nnode(c
, p
, &nnode
);
1954 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
1955 printk(KERN_CONT
"%d:%d", nnode
.nbranch
[i
].lnum
,
1956 nnode
.nbranch
[i
].offs
);
1957 if (i
!= UBIFS_LPT_FANOUT
- 1)
1958 printk(KERN_CONT
", ");
1960 printk(KERN_CONT
"\n");
1963 case UBIFS_LPT_LTAB
:
1964 node_len
= c
->ltab_sz
;
1965 printk(KERN_DEBUG
"LEB %d:%d, ltab\n",
1968 case UBIFS_LPT_LSAVE
:
1969 node_len
= c
->lsave_sz
;
1970 printk(KERN_DEBUG
"LEB %d:%d, lsave len\n", lnum
, offs
);
1973 ubifs_err("LPT node type %d not recognized", node_type
);
1981 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
1982 current
->pid
, lnum
);
1989 * dbg_dump_lpt_lebs - dump LPT lebs.
1990 * @c: UBIFS file-system description object
1992 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1995 void dbg_dump_lpt_lebs(const struct ubifs_info
*c
)
1999 printk(KERN_DEBUG
"(pid %d) start dumping all LPT LEBs\n",
2001 for (i
= 0; i
< c
->lpt_lebs
; i
++)
2002 dump_lpt_leb(c
, i
+ c
->lpt_first
);
2003 printk(KERN_DEBUG
"(pid %d) finish dumping all LPT LEBs\n",
2008 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2009 * @c: UBIFS file-system description object
2011 * This is a debugging version for 'populate_lsave()' which populates lsave
2012 * with random LEBs instead of useful LEBs, which is good for test coverage.
2013 * Returns zero if lsave has not been populated (this debugging feature is
2014 * disabled) an non-zero if lsave has been populated.
2016 static int dbg_populate_lsave(struct ubifs_info
*c
)
2018 struct ubifs_lprops
*lprops
;
2019 struct ubifs_lpt_heap
*heap
;
2022 if (!dbg_is_chk_gen(c
))
2027 for (i
= 0; i
< c
->lsave_cnt
; i
++)
2028 c
->lsave
[i
] = c
->main_first
;
2030 list_for_each_entry(lprops
, &c
->empty_list
, list
)
2031 c
->lsave
[random32() % c
->lsave_cnt
] = lprops
->lnum
;
2032 list_for_each_entry(lprops
, &c
->freeable_list
, list
)
2033 c
->lsave
[random32() % c
->lsave_cnt
] = lprops
->lnum
;
2034 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
)
2035 c
->lsave
[random32() % c
->lsave_cnt
] = lprops
->lnum
;
2037 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
2038 for (i
= 0; i
< heap
->cnt
; i
++)
2039 c
->lsave
[random32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;
2040 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
2041 for (i
= 0; i
< heap
->cnt
; i
++)
2042 c
->lsave
[random32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;
2043 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
2044 for (i
= 0; i
< heap
->cnt
; i
++)
2045 c
->lsave
[random32() % c
->lsave_cnt
] = heap
->arr
[i
]->lnum
;
2050 #endif /* CONFIG_UBIFS_FS_DEBUG */