[ALSA] Fix resume of cs4231
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-i386 / system.h
blob772f85da1206af441de3d5df59892921931a8b51
1 #ifndef __ASM_SYSTEM_H
2 #define __ASM_SYSTEM_H
4 #include <linux/config.h>
5 #include <linux/kernel.h>
6 #include <asm/segment.h>
7 #include <asm/cpufeature.h>
8 #include <linux/bitops.h> /* for LOCK_PREFIX */
10 #ifdef __KERNEL__
12 struct task_struct; /* one of the stranger aspects of C forward declarations.. */
13 extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
15 #define switch_to(prev,next,last) do { \
16 unsigned long esi,edi; \
17 asm volatile("pushl %%ebp\n\t" \
18 "movl %%esp,%0\n\t" /* save ESP */ \
19 "movl %5,%%esp\n\t" /* restore ESP */ \
20 "movl $1f,%1\n\t" /* save EIP */ \
21 "pushl %6\n\t" /* restore EIP */ \
22 "jmp __switch_to\n" \
23 "1:\t" \
24 "popl %%ebp\n\t" \
25 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
26 "=a" (last),"=S" (esi),"=D" (edi) \
27 :"m" (next->thread.esp),"m" (next->thread.eip), \
28 "2" (prev), "d" (next)); \
29 } while (0)
31 #define _set_base(addr,base) do { unsigned long __pr; \
32 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
33 "rorl $16,%%edx\n\t" \
34 "movb %%dl,%2\n\t" \
35 "movb %%dh,%3" \
36 :"=&d" (__pr) \
37 :"m" (*((addr)+2)), \
38 "m" (*((addr)+4)), \
39 "m" (*((addr)+7)), \
40 "0" (base) \
41 ); } while(0)
43 #define _set_limit(addr,limit) do { unsigned long __lr; \
44 __asm__ __volatile__ ("movw %%dx,%1\n\t" \
45 "rorl $16,%%edx\n\t" \
46 "movb %2,%%dh\n\t" \
47 "andb $0xf0,%%dh\n\t" \
48 "orb %%dh,%%dl\n\t" \
49 "movb %%dl,%2" \
50 :"=&d" (__lr) \
51 :"m" (*(addr)), \
52 "m" (*((addr)+6)), \
53 "0" (limit) \
54 ); } while(0)
56 #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
57 #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1)>>12 )
59 static inline unsigned long _get_base(char * addr)
61 unsigned long __base;
62 __asm__("movb %3,%%dh\n\t"
63 "movb %2,%%dl\n\t"
64 "shll $16,%%edx\n\t"
65 "movw %1,%%dx"
66 :"=&d" (__base)
67 :"m" (*((addr)+2)),
68 "m" (*((addr)+4)),
69 "m" (*((addr)+7)));
70 return __base;
73 #define get_base(ldt) _get_base( ((char *)&(ldt)) )
76 * Load a segment. Fall back on loading the zero
77 * segment if something goes wrong..
79 #define loadsegment(seg,value) \
80 asm volatile("\n" \
81 "1:\t" \
82 "mov %0,%%" #seg "\n" \
83 "2:\n" \
84 ".section .fixup,\"ax\"\n" \
85 "3:\t" \
86 "pushl $0\n\t" \
87 "popl %%" #seg "\n\t" \
88 "jmp 2b\n" \
89 ".previous\n" \
90 ".section __ex_table,\"a\"\n\t" \
91 ".align 4\n\t" \
92 ".long 1b,3b\n" \
93 ".previous" \
94 : :"rm" (value))
97 * Save a segment register away
99 #define savesegment(seg, value) \
100 asm volatile("mov %%" #seg ",%0":"=rm" (value))
103 * Clear and set 'TS' bit respectively
105 #define clts() __asm__ __volatile__ ("clts")
106 #define read_cr0() ({ \
107 unsigned int __dummy; \
108 __asm__ __volatile__( \
109 "movl %%cr0,%0\n\t" \
110 :"=r" (__dummy)); \
111 __dummy; \
113 #define write_cr0(x) \
114 __asm__ __volatile__("movl %0,%%cr0": :"r" (x));
116 #define read_cr2() ({ \
117 unsigned int __dummy; \
118 __asm__ __volatile__( \
119 "movl %%cr2,%0\n\t" \
120 :"=r" (__dummy)); \
121 __dummy; \
123 #define write_cr2(x) \
124 __asm__ __volatile__("movl %0,%%cr2": :"r" (x));
126 #define read_cr3() ({ \
127 unsigned int __dummy; \
128 __asm__ ( \
129 "movl %%cr3,%0\n\t" \
130 :"=r" (__dummy)); \
131 __dummy; \
133 #define write_cr3(x) \
134 __asm__ __volatile__("movl %0,%%cr3": :"r" (x));
136 #define read_cr4() ({ \
137 unsigned int __dummy; \
138 __asm__( \
139 "movl %%cr4,%0\n\t" \
140 :"=r" (__dummy)); \
141 __dummy; \
143 #define write_cr4(x) \
144 __asm__ __volatile__("movl %0,%%cr4": :"r" (x));
145 #define stts() write_cr0(8 | read_cr0())
147 #endif /* __KERNEL__ */
149 #define wbinvd() \
150 __asm__ __volatile__ ("wbinvd": : :"memory");
152 static inline unsigned long get_limit(unsigned long segment)
154 unsigned long __limit;
155 __asm__("lsll %1,%0"
156 :"=r" (__limit):"r" (segment));
157 return __limit+1;
160 #define nop() __asm__ __volatile__ ("nop")
162 #define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
164 #define tas(ptr) (xchg((ptr),1))
166 struct __xchg_dummy { unsigned long a[100]; };
167 #define __xg(x) ((struct __xchg_dummy *)(x))
170 #ifdef CONFIG_X86_CMPXCHG64
173 * The semantics of XCHGCMP8B are a bit strange, this is why
174 * there is a loop and the loading of %%eax and %%edx has to
175 * be inside. This inlines well in most cases, the cached
176 * cost is around ~38 cycles. (in the future we might want
177 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
178 * might have an implicit FPU-save as a cost, so it's not
179 * clear which path to go.)
181 * cmpxchg8b must be used with the lock prefix here to allow
182 * the instruction to be executed atomically, see page 3-102
183 * of the instruction set reference 24319102.pdf. We need
184 * the reader side to see the coherent 64bit value.
186 static inline void __set_64bit (unsigned long long * ptr,
187 unsigned int low, unsigned int high)
189 __asm__ __volatile__ (
190 "\n1:\t"
191 "movl (%0), %%eax\n\t"
192 "movl 4(%0), %%edx\n\t"
193 "lock cmpxchg8b (%0)\n\t"
194 "jnz 1b"
195 : /* no outputs */
196 : "D"(ptr),
197 "b"(low),
198 "c"(high)
199 : "ax","dx","memory");
202 static inline void __set_64bit_constant (unsigned long long *ptr,
203 unsigned long long value)
205 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
207 #define ll_low(x) *(((unsigned int*)&(x))+0)
208 #define ll_high(x) *(((unsigned int*)&(x))+1)
210 static inline void __set_64bit_var (unsigned long long *ptr,
211 unsigned long long value)
213 __set_64bit(ptr,ll_low(value), ll_high(value));
216 #define set_64bit(ptr,value) \
217 (__builtin_constant_p(value) ? \
218 __set_64bit_constant(ptr, value) : \
219 __set_64bit_var(ptr, value) )
221 #define _set_64bit(ptr,value) \
222 (__builtin_constant_p(value) ? \
223 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
224 __set_64bit(ptr, ll_low(value), ll_high(value)) )
226 #endif
229 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
230 * Note 2: xchg has side effect, so that attribute volatile is necessary,
231 * but generally the primitive is invalid, *ptr is output argument. --ANK
233 static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
235 switch (size) {
236 case 1:
237 __asm__ __volatile__("xchgb %b0,%1"
238 :"=q" (x)
239 :"m" (*__xg(ptr)), "0" (x)
240 :"memory");
241 break;
242 case 2:
243 __asm__ __volatile__("xchgw %w0,%1"
244 :"=r" (x)
245 :"m" (*__xg(ptr)), "0" (x)
246 :"memory");
247 break;
248 case 4:
249 __asm__ __volatile__("xchgl %0,%1"
250 :"=r" (x)
251 :"m" (*__xg(ptr)), "0" (x)
252 :"memory");
253 break;
255 return x;
259 * Atomic compare and exchange. Compare OLD with MEM, if identical,
260 * store NEW in MEM. Return the initial value in MEM. Success is
261 * indicated by comparing RETURN with OLD.
264 #ifdef CONFIG_X86_CMPXCHG
265 #define __HAVE_ARCH_CMPXCHG 1
266 #define cmpxchg(ptr,o,n)\
267 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
268 (unsigned long)(n),sizeof(*(ptr))))
269 #endif
271 static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
272 unsigned long new, int size)
274 unsigned long prev;
275 switch (size) {
276 case 1:
277 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
278 : "=a"(prev)
279 : "q"(new), "m"(*__xg(ptr)), "0"(old)
280 : "memory");
281 return prev;
282 case 2:
283 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
284 : "=a"(prev)
285 : "r"(new), "m"(*__xg(ptr)), "0"(old)
286 : "memory");
287 return prev;
288 case 4:
289 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
290 : "=a"(prev)
291 : "r"(new), "m"(*__xg(ptr)), "0"(old)
292 : "memory");
293 return prev;
295 return old;
298 #ifndef CONFIG_X86_CMPXCHG
300 * Building a kernel capable running on 80386. It may be necessary to
301 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
302 * a function for each of the sizes we support.
305 extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
306 extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
307 extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
309 static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
310 unsigned long new, int size)
312 switch (size) {
313 case 1:
314 return cmpxchg_386_u8(ptr, old, new);
315 case 2:
316 return cmpxchg_386_u16(ptr, old, new);
317 case 4:
318 return cmpxchg_386_u32(ptr, old, new);
320 return old;
323 #define cmpxchg(ptr,o,n) \
324 ({ \
325 __typeof__(*(ptr)) __ret; \
326 if (likely(boot_cpu_data.x86 > 3)) \
327 __ret = __cmpxchg((ptr), (unsigned long)(o), \
328 (unsigned long)(n), sizeof(*(ptr))); \
329 else \
330 __ret = cmpxchg_386((ptr), (unsigned long)(o), \
331 (unsigned long)(n), sizeof(*(ptr))); \
332 __ret; \
334 #endif
336 #ifdef CONFIG_X86_CMPXCHG64
338 static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
339 unsigned long long new)
341 unsigned long long prev;
342 __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
343 : "=A"(prev)
344 : "b"((unsigned long)new),
345 "c"((unsigned long)(new >> 32)),
346 "m"(*__xg(ptr)),
347 "0"(old)
348 : "memory");
349 return prev;
352 #define cmpxchg64(ptr,o,n)\
353 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
354 (unsigned long long)(n)))
356 #endif
358 #ifdef __KERNEL__
359 struct alt_instr {
360 __u8 *instr; /* original instruction */
361 __u8 *replacement;
362 __u8 cpuid; /* cpuid bit set for replacement */
363 __u8 instrlen; /* length of original instruction */
364 __u8 replacementlen; /* length of new instruction, <= instrlen */
365 __u8 pad;
367 #endif
370 * Alternative instructions for different CPU types or capabilities.
372 * This allows to use optimized instructions even on generic binary
373 * kernels.
375 * length of oldinstr must be longer or equal the length of newinstr
376 * It can be padded with nops as needed.
378 * For non barrier like inlines please define new variants
379 * without volatile and memory clobber.
381 #define alternative(oldinstr, newinstr, feature) \
382 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
383 ".section .altinstructions,\"a\"\n" \
384 " .align 4\n" \
385 " .long 661b\n" /* label */ \
386 " .long 663f\n" /* new instruction */ \
387 " .byte %c0\n" /* feature bit */ \
388 " .byte 662b-661b\n" /* sourcelen */ \
389 " .byte 664f-663f\n" /* replacementlen */ \
390 ".previous\n" \
391 ".section .altinstr_replacement,\"ax\"\n" \
392 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
393 ".previous" :: "i" (feature) : "memory")
396 * Alternative inline assembly with input.
398 * Pecularities:
399 * No memory clobber here.
400 * Argument numbers start with 1.
401 * Best is to use constraints that are fixed size (like (%1) ... "r")
402 * If you use variable sized constraints like "m" or "g" in the
403 * replacement maake sure to pad to the worst case length.
405 #define alternative_input(oldinstr, newinstr, feature, input...) \
406 asm volatile ("661:\n\t" oldinstr "\n662:\n" \
407 ".section .altinstructions,\"a\"\n" \
408 " .align 4\n" \
409 " .long 661b\n" /* label */ \
410 " .long 663f\n" /* new instruction */ \
411 " .byte %c0\n" /* feature bit */ \
412 " .byte 662b-661b\n" /* sourcelen */ \
413 " .byte 664f-663f\n" /* replacementlen */ \
414 ".previous\n" \
415 ".section .altinstr_replacement,\"ax\"\n" \
416 "663:\n\t" newinstr "\n664:\n" /* replacement */ \
417 ".previous" :: "i" (feature), ##input)
420 * Force strict CPU ordering.
421 * And yes, this is required on UP too when we're talking
422 * to devices.
424 * For now, "wmb()" doesn't actually do anything, as all
425 * Intel CPU's follow what Intel calls a *Processor Order*,
426 * in which all writes are seen in the program order even
427 * outside the CPU.
429 * I expect future Intel CPU's to have a weaker ordering,
430 * but I'd also expect them to finally get their act together
431 * and add some real memory barriers if so.
433 * Some non intel clones support out of order store. wmb() ceases to be a
434 * nop for these.
439 * Actually only lfence would be needed for mb() because all stores done
440 * by the kernel should be already ordered. But keep a full barrier for now.
443 #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
444 #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
447 * read_barrier_depends - Flush all pending reads that subsequents reads
448 * depend on.
450 * No data-dependent reads from memory-like regions are ever reordered
451 * over this barrier. All reads preceding this primitive are guaranteed
452 * to access memory (but not necessarily other CPUs' caches) before any
453 * reads following this primitive that depend on the data return by
454 * any of the preceding reads. This primitive is much lighter weight than
455 * rmb() on most CPUs, and is never heavier weight than is
456 * rmb().
458 * These ordering constraints are respected by both the local CPU
459 * and the compiler.
461 * Ordering is not guaranteed by anything other than these primitives,
462 * not even by data dependencies. See the documentation for
463 * memory_barrier() for examples and URLs to more information.
465 * For example, the following code would force ordering (the initial
466 * value of "a" is zero, "b" is one, and "p" is "&a"):
468 * <programlisting>
469 * CPU 0 CPU 1
471 * b = 2;
472 * memory_barrier();
473 * p = &b; q = p;
474 * read_barrier_depends();
475 * d = *q;
476 * </programlisting>
478 * because the read of "*q" depends on the read of "p" and these
479 * two reads are separated by a read_barrier_depends(). However,
480 * the following code, with the same initial values for "a" and "b":
482 * <programlisting>
483 * CPU 0 CPU 1
485 * a = 2;
486 * memory_barrier();
487 * b = 3; y = b;
488 * read_barrier_depends();
489 * x = a;
490 * </programlisting>
492 * does not enforce ordering, since there is no data dependency between
493 * the read of "a" and the read of "b". Therefore, on some CPUs, such
494 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
495 * in cases like thiswhere there are no data dependencies.
498 #define read_barrier_depends() do { } while(0)
500 #ifdef CONFIG_X86_OOSTORE
501 /* Actually there are no OOO store capable CPUs for now that do SSE,
502 but make it already an possibility. */
503 #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
504 #else
505 #define wmb() __asm__ __volatile__ ("": : :"memory")
506 #endif
508 #ifdef CONFIG_SMP
509 #define smp_mb() mb()
510 #define smp_rmb() rmb()
511 #define smp_wmb() wmb()
512 #define smp_read_barrier_depends() read_barrier_depends()
513 #define set_mb(var, value) do { xchg(&var, value); } while (0)
514 #else
515 #define smp_mb() barrier()
516 #define smp_rmb() barrier()
517 #define smp_wmb() barrier()
518 #define smp_read_barrier_depends() do { } while(0)
519 #define set_mb(var, value) do { var = value; barrier(); } while (0)
520 #endif
522 #define set_wmb(var, value) do { var = value; wmb(); } while (0)
524 /* interrupt control.. */
525 #define local_save_flags(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushfl ; popl %0":"=g" (x): /* no input */); } while (0)
526 #define local_irq_restore(x) do { typecheck(unsigned long,x); __asm__ __volatile__("pushl %0 ; popfl": /* no output */ :"g" (x):"memory", "cc"); } while (0)
527 #define local_irq_disable() __asm__ __volatile__("cli": : :"memory")
528 #define local_irq_enable() __asm__ __volatile__("sti": : :"memory")
529 /* used in the idle loop; sti takes one instruction cycle to complete */
530 #define safe_halt() __asm__ __volatile__("sti; hlt": : :"memory")
531 /* used when interrupts are already enabled or to shutdown the processor */
532 #define halt() __asm__ __volatile__("hlt": : :"memory")
534 #define irqs_disabled() \
535 ({ \
536 unsigned long flags; \
537 local_save_flags(flags); \
538 !(flags & (1<<9)); \
541 /* For spinlocks etc */
542 #define local_irq_save(x) __asm__ __volatile__("pushfl ; popl %0 ; cli":"=g" (x): /* no input */ :"memory")
545 * disable hlt during certain critical i/o operations
547 #define HAVE_DISABLE_HLT
548 void disable_hlt(void);
549 void enable_hlt(void);
551 extern int es7000_plat;
552 void cpu_idle_wait(void);
554 extern unsigned long arch_align_stack(unsigned long sp);
556 #endif