2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency
= 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity
= 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency
= 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug
unsigned int sysctl_sched_child_runs_first
= 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield
;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity
= 5000000UL;
74 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
76 static const struct sched_class fair_sched_class
;
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
82 static inline struct task_struct
*task_of(struct sched_entity
*se
)
84 return container_of(se
, struct task_struct
, se
);
87 #ifdef CONFIG_FAIR_GROUP_SCHED
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
102 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
122 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
124 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
131 /* Do the two (enqueued) entities belong to the same group ? */
133 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
135 if (se
->cfs_rq
== pse
->cfs_rq
)
141 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
146 #else /* CONFIG_FAIR_GROUP_SCHED */
148 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
150 return container_of(cfs_rq
, struct rq
, cfs
);
153 #define entity_is_task(se) 1
155 #define for_each_sched_entity(se) \
156 for (; se; se = NULL)
158 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
160 return &task_rq(p
)->cfs
;
163 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
165 struct task_struct
*p
= task_of(se
);
166 struct rq
*rq
= task_rq(p
);
171 /* runqueue "owned" by this group */
172 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
177 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
179 return &cpu_rq(this_cpu
)->cfs
;
182 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
183 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
186 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
191 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
196 #endif /* CONFIG_FAIR_GROUP_SCHED */
199 /**************************************************************
200 * Scheduling class tree data structure manipulation methods:
203 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
205 s64 delta
= (s64
)(vruntime
- min_vruntime
);
207 min_vruntime
= vruntime
;
212 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
214 s64 delta
= (s64
)(vruntime
- min_vruntime
);
216 min_vruntime
= vruntime
;
221 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
223 return se
->vruntime
- cfs_rq
->min_vruntime
;
227 * Enqueue an entity into the rb-tree:
229 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
231 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
232 struct rb_node
*parent
= NULL
;
233 struct sched_entity
*entry
;
234 s64 key
= entity_key(cfs_rq
, se
);
238 * Find the right place in the rbtree:
242 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
244 * We dont care about collisions. Nodes with
245 * the same key stay together.
247 if (key
< entity_key(cfs_rq
, entry
)) {
248 link
= &parent
->rb_left
;
250 link
= &parent
->rb_right
;
256 * Maintain a cache of leftmost tree entries (it is frequently
260 cfs_rq
->rb_leftmost
= &se
->run_node
;
262 * maintain cfs_rq->min_vruntime to be a monotonic increasing
263 * value tracking the leftmost vruntime in the tree.
265 cfs_rq
->min_vruntime
=
266 max_vruntime(cfs_rq
->min_vruntime
, se
->vruntime
);
269 rb_link_node(&se
->run_node
, parent
, link
);
270 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
273 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
275 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
276 struct rb_node
*next_node
;
277 struct sched_entity
*next
;
279 next_node
= rb_next(&se
->run_node
);
280 cfs_rq
->rb_leftmost
= next_node
;
283 next
= rb_entry(next_node
,
284 struct sched_entity
, run_node
);
285 cfs_rq
->min_vruntime
=
286 max_vruntime(cfs_rq
->min_vruntime
,
291 if (cfs_rq
->next
== se
)
294 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
297 static inline struct rb_node
*first_fair(struct cfs_rq
*cfs_rq
)
299 return cfs_rq
->rb_leftmost
;
302 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
304 return rb_entry(first_fair(cfs_rq
), struct sched_entity
, run_node
);
307 static inline struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
309 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
314 return rb_entry(last
, struct sched_entity
, run_node
);
317 /**************************************************************
318 * Scheduling class statistics methods:
321 #ifdef CONFIG_SCHED_DEBUG
322 int sched_nr_latency_handler(struct ctl_table
*table
, int write
,
323 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
326 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
331 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
332 sysctl_sched_min_granularity
);
341 static inline unsigned long
342 calc_delta_weight(unsigned long delta
, struct sched_entity
*se
)
344 for_each_sched_entity(se
) {
345 delta
= calc_delta_mine(delta
,
346 se
->load
.weight
, &cfs_rq_of(se
)->load
);
355 static inline unsigned long
356 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
358 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
359 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
365 * The idea is to set a period in which each task runs once.
367 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
368 * this period because otherwise the slices get too small.
370 * p = (nr <= nl) ? l : l*nr/nl
372 static u64
__sched_period(unsigned long nr_running
)
374 u64 period
= sysctl_sched_latency
;
375 unsigned long nr_latency
= sched_nr_latency
;
377 if (unlikely(nr_running
> nr_latency
)) {
378 period
= sysctl_sched_min_granularity
;
379 period
*= nr_running
;
386 * We calculate the wall-time slice from the period by taking a part
387 * proportional to the weight.
391 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
393 unsigned long nr_running
= cfs_rq
->nr_running
;
395 if (unlikely(!se
->on_rq
))
398 return calc_delta_weight(__sched_period(nr_running
), se
);
402 * We calculate the vruntime slice of a to be inserted task
406 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
408 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
412 * Update the current task's runtime statistics. Skip current tasks that
413 * are not in our scheduling class.
416 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
417 unsigned long delta_exec
)
419 unsigned long delta_exec_weighted
;
421 schedstat_set(curr
->exec_max
, max((u64
)delta_exec
, curr
->exec_max
));
423 curr
->sum_exec_runtime
+= delta_exec
;
424 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
425 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
426 curr
->vruntime
+= delta_exec_weighted
;
429 static void update_curr(struct cfs_rq
*cfs_rq
)
431 struct sched_entity
*curr
= cfs_rq
->curr
;
432 u64 now
= rq_of(cfs_rq
)->clock
;
433 unsigned long delta_exec
;
439 * Get the amount of time the current task was running
440 * since the last time we changed load (this cannot
441 * overflow on 32 bits):
443 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
445 __update_curr(cfs_rq
, curr
, delta_exec
);
446 curr
->exec_start
= now
;
448 if (entity_is_task(curr
)) {
449 struct task_struct
*curtask
= task_of(curr
);
451 cpuacct_charge(curtask
, delta_exec
);
452 account_group_exec_runtime(curtask
, delta_exec
);
457 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
459 schedstat_set(se
->wait_start
, rq_of(cfs_rq
)->clock
);
463 * Task is being enqueued - update stats:
465 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
471 if (se
!= cfs_rq
->curr
)
472 update_stats_wait_start(cfs_rq
, se
);
476 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
478 schedstat_set(se
->wait_max
, max(se
->wait_max
,
479 rq_of(cfs_rq
)->clock
- se
->wait_start
));
480 schedstat_set(se
->wait_count
, se
->wait_count
+ 1);
481 schedstat_set(se
->wait_sum
, se
->wait_sum
+
482 rq_of(cfs_rq
)->clock
- se
->wait_start
);
483 schedstat_set(se
->wait_start
, 0);
487 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
490 * Mark the end of the wait period if dequeueing a
493 if (se
!= cfs_rq
->curr
)
494 update_stats_wait_end(cfs_rq
, se
);
498 * We are picking a new current task - update its stats:
501 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
504 * We are starting a new run period:
506 se
->exec_start
= rq_of(cfs_rq
)->clock
;
509 /**************************************************
510 * Scheduling class queueing methods:
513 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
515 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
517 cfs_rq
->task_weight
+= weight
;
521 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
527 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
529 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
530 if (!parent_entity(se
))
531 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
532 if (entity_is_task(se
)) {
533 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
534 list_add(&se
->group_node
, &cfs_rq
->tasks
);
536 cfs_rq
->nr_running
++;
541 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
543 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
544 if (!parent_entity(se
))
545 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
546 if (entity_is_task(se
)) {
547 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
548 list_del_init(&se
->group_node
);
550 cfs_rq
->nr_running
--;
554 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
556 #ifdef CONFIG_SCHEDSTATS
557 if (se
->sleep_start
) {
558 u64 delta
= rq_of(cfs_rq
)->clock
- se
->sleep_start
;
559 struct task_struct
*tsk
= task_of(se
);
564 if (unlikely(delta
> se
->sleep_max
))
565 se
->sleep_max
= delta
;
568 se
->sum_sleep_runtime
+= delta
;
570 account_scheduler_latency(tsk
, delta
>> 10, 1);
572 if (se
->block_start
) {
573 u64 delta
= rq_of(cfs_rq
)->clock
- se
->block_start
;
574 struct task_struct
*tsk
= task_of(se
);
579 if (unlikely(delta
> se
->block_max
))
580 se
->block_max
= delta
;
583 se
->sum_sleep_runtime
+= delta
;
586 * Blocking time is in units of nanosecs, so shift by 20 to
587 * get a milliseconds-range estimation of the amount of
588 * time that the task spent sleeping:
590 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
592 profile_hits(SLEEP_PROFILING
, (void *)get_wchan(tsk
),
595 account_scheduler_latency(tsk
, delta
>> 10, 0);
600 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
602 #ifdef CONFIG_SCHED_DEBUG
603 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
608 if (d
> 3*sysctl_sched_latency
)
609 schedstat_inc(cfs_rq
, nr_spread_over
);
614 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
618 if (first_fair(cfs_rq
)) {
619 vruntime
= min_vruntime(cfs_rq
->min_vruntime
,
620 __pick_next_entity(cfs_rq
)->vruntime
);
622 vruntime
= cfs_rq
->min_vruntime
;
625 * The 'current' period is already promised to the current tasks,
626 * however the extra weight of the new task will slow them down a
627 * little, place the new task so that it fits in the slot that
628 * stays open at the end.
630 if (initial
&& sched_feat(START_DEBIT
))
631 vruntime
+= sched_vslice(cfs_rq
, se
);
634 /* sleeps upto a single latency don't count. */
635 if (sched_feat(NEW_FAIR_SLEEPERS
)) {
636 unsigned long thresh
= sysctl_sched_latency
;
639 * convert the sleeper threshold into virtual time
641 if (sched_feat(NORMALIZED_SLEEPER
))
642 thresh
= calc_delta_fair(thresh
, se
);
647 /* ensure we never gain time by being placed backwards. */
648 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
651 se
->vruntime
= vruntime
;
655 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int wakeup
)
658 * Update run-time statistics of the 'current'.
661 account_entity_enqueue(cfs_rq
, se
);
664 place_entity(cfs_rq
, se
, 0);
665 enqueue_sleeper(cfs_rq
, se
);
668 update_stats_enqueue(cfs_rq
, se
);
669 check_spread(cfs_rq
, se
);
670 if (se
!= cfs_rq
->curr
)
671 __enqueue_entity(cfs_rq
, se
);
675 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int sleep
)
678 * Update run-time statistics of the 'current'.
682 update_stats_dequeue(cfs_rq
, se
);
684 #ifdef CONFIG_SCHEDSTATS
685 if (entity_is_task(se
)) {
686 struct task_struct
*tsk
= task_of(se
);
688 if (tsk
->state
& TASK_INTERRUPTIBLE
)
689 se
->sleep_start
= rq_of(cfs_rq
)->clock
;
690 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
691 se
->block_start
= rq_of(cfs_rq
)->clock
;
696 if (se
!= cfs_rq
->curr
)
697 __dequeue_entity(cfs_rq
, se
);
698 account_entity_dequeue(cfs_rq
, se
);
702 * Preempt the current task with a newly woken task if needed:
705 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
707 unsigned long ideal_runtime
, delta_exec
;
709 ideal_runtime
= sched_slice(cfs_rq
, curr
);
710 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
711 if (delta_exec
> ideal_runtime
)
712 resched_task(rq_of(cfs_rq
)->curr
);
716 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
718 /* 'current' is not kept within the tree. */
721 * Any task has to be enqueued before it get to execute on
722 * a CPU. So account for the time it spent waiting on the
725 update_stats_wait_end(cfs_rq
, se
);
726 __dequeue_entity(cfs_rq
, se
);
729 update_stats_curr_start(cfs_rq
, se
);
731 #ifdef CONFIG_SCHEDSTATS
733 * Track our maximum slice length, if the CPU's load is at
734 * least twice that of our own weight (i.e. dont track it
735 * when there are only lesser-weight tasks around):
737 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
738 se
->slice_max
= max(se
->slice_max
,
739 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
742 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
745 static struct sched_entity
*
746 pick_next(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
748 struct rq
*rq
= rq_of(cfs_rq
);
749 u64 pair_slice
= rq
->clock
- cfs_rq
->pair_start
;
751 if (!cfs_rq
->next
|| pair_slice
> sysctl_sched_min_granularity
) {
752 cfs_rq
->pair_start
= rq
->clock
;
759 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
761 struct sched_entity
*se
= NULL
;
763 if (first_fair(cfs_rq
)) {
764 se
= __pick_next_entity(cfs_rq
);
765 se
= pick_next(cfs_rq
, se
);
766 set_next_entity(cfs_rq
, se
);
772 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
775 * If still on the runqueue then deactivate_task()
776 * was not called and update_curr() has to be done:
781 check_spread(cfs_rq
, prev
);
783 update_stats_wait_start(cfs_rq
, prev
);
784 /* Put 'current' back into the tree. */
785 __enqueue_entity(cfs_rq
, prev
);
791 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
794 * Update run-time statistics of the 'current'.
798 #ifdef CONFIG_SCHED_HRTICK
800 * queued ticks are scheduled to match the slice, so don't bother
801 * validating it and just reschedule.
804 resched_task(rq_of(cfs_rq
)->curr
);
808 * don't let the period tick interfere with the hrtick preemption
810 if (!sched_feat(DOUBLE_TICK
) &&
811 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
815 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
816 check_preempt_tick(cfs_rq
, curr
);
819 /**************************************************
820 * CFS operations on tasks:
823 #ifdef CONFIG_SCHED_HRTICK
824 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
826 struct sched_entity
*se
= &p
->se
;
827 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
829 WARN_ON(task_rq(p
) != rq
);
831 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
832 u64 slice
= sched_slice(cfs_rq
, se
);
833 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
834 s64 delta
= slice
- ran
;
843 * Don't schedule slices shorter than 10000ns, that just
844 * doesn't make sense. Rely on vruntime for fairness.
847 delta
= max_t(s64
, 10000LL, delta
);
849 hrtick_start(rq
, delta
);
854 * called from enqueue/dequeue and updates the hrtick when the
855 * current task is from our class and nr_running is low enough
858 static void hrtick_update(struct rq
*rq
)
860 struct task_struct
*curr
= rq
->curr
;
862 if (curr
->sched_class
!= &fair_sched_class
)
865 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
866 hrtick_start_fair(rq
, curr
);
868 #else /* !CONFIG_SCHED_HRTICK */
870 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
874 static inline void hrtick_update(struct rq
*rq
)
880 * The enqueue_task method is called before nr_running is
881 * increased. Here we update the fair scheduling stats and
882 * then put the task into the rbtree:
884 static void enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
886 struct cfs_rq
*cfs_rq
;
887 struct sched_entity
*se
= &p
->se
;
889 for_each_sched_entity(se
) {
892 cfs_rq
= cfs_rq_of(se
);
893 enqueue_entity(cfs_rq
, se
, wakeup
);
901 * The dequeue_task method is called before nr_running is
902 * decreased. We remove the task from the rbtree and
903 * update the fair scheduling stats:
905 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int sleep
)
907 struct cfs_rq
*cfs_rq
;
908 struct sched_entity
*se
= &p
->se
;
910 for_each_sched_entity(se
) {
911 cfs_rq
= cfs_rq_of(se
);
912 dequeue_entity(cfs_rq
, se
, sleep
);
913 /* Don't dequeue parent if it has other entities besides us */
914 if (cfs_rq
->load
.weight
)
923 * sched_yield() support is very simple - we dequeue and enqueue.
925 * If compat_yield is turned on then we requeue to the end of the tree.
927 static void yield_task_fair(struct rq
*rq
)
929 struct task_struct
*curr
= rq
->curr
;
930 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
931 struct sched_entity
*rightmost
, *se
= &curr
->se
;
934 * Are we the only task in the tree?
936 if (unlikely(cfs_rq
->nr_running
== 1))
939 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
942 * Update run-time statistics of the 'current'.
949 * Find the rightmost entry in the rbtree:
951 rightmost
= __pick_last_entity(cfs_rq
);
953 * Already in the rightmost position?
955 if (unlikely(!rightmost
|| rightmost
->vruntime
< se
->vruntime
))
959 * Minimally necessary key value to be last in the tree:
960 * Upon rescheduling, sched_class::put_prev_task() will place
961 * 'current' within the tree based on its new key value.
963 se
->vruntime
= rightmost
->vruntime
+ 1;
967 * wake_idle() will wake a task on an idle cpu if task->cpu is
968 * not idle and an idle cpu is available. The span of cpus to
969 * search starts with cpus closest then further out as needed,
970 * so we always favor a closer, idle cpu.
971 * Domains may include CPUs that are not usable for migration,
972 * hence we need to mask them out (cpu_active_map)
974 * Returns the CPU we should wake onto.
976 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
977 static int wake_idle(int cpu
, struct task_struct
*p
)
980 struct sched_domain
*sd
;
984 * If it is idle, then it is the best cpu to run this task.
986 * This cpu is also the best, if it has more than one task already.
987 * Siblings must be also busy(in most cases) as they didn't already
988 * pickup the extra load from this cpu and hence we need not check
989 * sibling runqueue info. This will avoid the checks and cache miss
990 * penalities associated with that.
992 if (idle_cpu(cpu
) || cpu_rq(cpu
)->cfs
.nr_running
> 1)
995 for_each_domain(cpu
, sd
) {
996 if ((sd
->flags
& SD_WAKE_IDLE
)
997 || ((sd
->flags
& SD_WAKE_IDLE_FAR
)
998 && !task_hot(p
, task_rq(p
)->clock
, sd
))) {
999 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1000 cpus_and(tmp
, tmp
, cpu_active_map
);
1001 for_each_cpu_mask_nr(i
, tmp
) {
1003 if (i
!= task_cpu(p
)) {
1005 se
.nr_wakeups_idle
);
1016 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1017 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1025 #ifdef CONFIG_FAIR_GROUP_SCHED
1027 * effective_load() calculates the load change as seen from the root_task_group
1029 * Adding load to a group doesn't make a group heavier, but can cause movement
1030 * of group shares between cpus. Assuming the shares were perfectly aligned one
1031 * can calculate the shift in shares.
1033 * The problem is that perfectly aligning the shares is rather expensive, hence
1034 * we try to avoid doing that too often - see update_shares(), which ratelimits
1037 * We compensate this by not only taking the current delta into account, but
1038 * also considering the delta between when the shares were last adjusted and
1041 * We still saw a performance dip, some tracing learned us that between
1042 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1043 * significantly. Therefore try to bias the error in direction of failing
1044 * the affine wakeup.
1047 static long effective_load(struct task_group
*tg
, int cpu
,
1050 struct sched_entity
*se
= tg
->se
[cpu
];
1056 * By not taking the decrease of shares on the other cpu into
1057 * account our error leans towards reducing the affine wakeups.
1059 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1062 for_each_sched_entity(se
) {
1063 long S
, rw
, s
, a
, b
;
1067 * Instead of using this increment, also add the difference
1068 * between when the shares were last updated and now.
1070 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1074 S
= se
->my_q
->tg
->shares
;
1075 s
= se
->my_q
->shares
;
1076 rw
= se
->my_q
->rq_weight
;
1087 * Assume the group is already running and will
1088 * thus already be accounted for in the weight.
1090 * That is, moving shares between CPUs, does not
1091 * alter the group weight.
1101 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1102 unsigned long wl
, unsigned long wg
)
1110 wake_affine(struct sched_domain
*this_sd
, struct rq
*this_rq
,
1111 struct task_struct
*p
, int prev_cpu
, int this_cpu
, int sync
,
1112 int idx
, unsigned long load
, unsigned long this_load
,
1113 unsigned int imbalance
)
1115 struct task_struct
*curr
= this_rq
->curr
;
1116 struct task_group
*tg
;
1117 unsigned long tl
= this_load
;
1118 unsigned long tl_per_task
;
1119 unsigned long weight
;
1122 if (!(this_sd
->flags
& SD_WAKE_AFFINE
) || !sched_feat(AFFINE_WAKEUPS
))
1125 if (!sync
&& sched_feat(SYNC_WAKEUPS
) &&
1126 curr
->se
.avg_overlap
< sysctl_sched_migration_cost
&&
1127 p
->se
.avg_overlap
< sysctl_sched_migration_cost
)
1131 * If sync wakeup then subtract the (maximum possible)
1132 * effect of the currently running task from the load
1133 * of the current CPU:
1136 tg
= task_group(current
);
1137 weight
= current
->se
.load
.weight
;
1139 tl
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1140 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1144 weight
= p
->se
.load
.weight
;
1146 balanced
= 100*(tl
+ effective_load(tg
, this_cpu
, weight
, weight
)) <=
1147 imbalance
*(load
+ effective_load(tg
, prev_cpu
, 0, weight
));
1150 * If the currently running task will sleep within
1151 * a reasonable amount of time then attract this newly
1154 if (sync
&& balanced
)
1157 schedstat_inc(p
, se
.nr_wakeups_affine_attempts
);
1158 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1160 if (balanced
|| (tl
<= load
&& tl
+ target_load(prev_cpu
, idx
) <=
1163 * This domain has SD_WAKE_AFFINE and
1164 * p is cache cold in this domain, and
1165 * there is no bad imbalance.
1167 schedstat_inc(this_sd
, ttwu_move_affine
);
1168 schedstat_inc(p
, se
.nr_wakeups_affine
);
1175 static int select_task_rq_fair(struct task_struct
*p
, int sync
)
1177 struct sched_domain
*sd
, *this_sd
= NULL
;
1178 int prev_cpu
, this_cpu
, new_cpu
;
1179 unsigned long load
, this_load
;
1181 unsigned int imbalance
;
1184 prev_cpu
= task_cpu(p
);
1185 this_cpu
= smp_processor_id();
1186 this_rq
= cpu_rq(this_cpu
);
1189 if (prev_cpu
== this_cpu
)
1192 * 'this_sd' is the first domain that both
1193 * this_cpu and prev_cpu are present in:
1195 for_each_domain(this_cpu
, sd
) {
1196 if (cpu_isset(prev_cpu
, sd
->span
)) {
1202 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1206 * Check for affine wakeup and passive balancing possibilities.
1211 idx
= this_sd
->wake_idx
;
1213 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1215 load
= source_load(prev_cpu
, idx
);
1216 this_load
= target_load(this_cpu
, idx
);
1218 if (wake_affine(this_sd
, this_rq
, p
, prev_cpu
, this_cpu
, sync
, idx
,
1219 load
, this_load
, imbalance
))
1223 * Start passive balancing when half the imbalance_pct
1226 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1227 if (imbalance
*this_load
<= 100*load
) {
1228 schedstat_inc(this_sd
, ttwu_move_balance
);
1229 schedstat_inc(p
, se
.nr_wakeups_passive
);
1235 return wake_idle(new_cpu
, p
);
1237 #endif /* CONFIG_SMP */
1239 static unsigned long wakeup_gran(struct sched_entity
*se
)
1241 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1244 * More easily preempt - nice tasks, while not making it harder for
1247 if (sched_feat(ASYM_GRAN
))
1248 gran
= calc_delta_mine(gran
, NICE_0_LOAD
, &se
->load
);
1254 * Preempt the current task with a newly woken task if needed:
1256 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int sync
)
1258 struct task_struct
*curr
= rq
->curr
;
1259 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1260 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1263 if (unlikely(rt_prio(p
->prio
))) {
1264 update_rq_clock(rq
);
1265 update_curr(cfs_rq
);
1270 if (unlikely(se
== pse
))
1273 cfs_rq_of(pse
)->next
= pse
;
1276 * We can come here with TIF_NEED_RESCHED already set from new task
1279 if (test_tsk_need_resched(curr
))
1283 * Batch tasks do not preempt (their preemption is driven by
1286 if (unlikely(p
->policy
== SCHED_BATCH
))
1289 if (!sched_feat(WAKEUP_PREEMPT
))
1292 if (sched_feat(WAKEUP_OVERLAP
) && (sync
||
1293 (se
->avg_overlap
< sysctl_sched_migration_cost
&&
1294 pse
->avg_overlap
< sysctl_sched_migration_cost
))) {
1299 delta_exec
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1300 if (delta_exec
> wakeup_gran(pse
))
1304 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1306 struct task_struct
*p
;
1307 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1308 struct sched_entity
*se
;
1310 if (unlikely(!cfs_rq
->nr_running
))
1314 se
= pick_next_entity(cfs_rq
);
1315 cfs_rq
= group_cfs_rq(se
);
1319 hrtick_start_fair(rq
, p
);
1325 * Account for a descheduled task:
1327 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1329 struct sched_entity
*se
= &prev
->se
;
1330 struct cfs_rq
*cfs_rq
;
1332 for_each_sched_entity(se
) {
1333 cfs_rq
= cfs_rq_of(se
);
1334 put_prev_entity(cfs_rq
, se
);
1339 /**************************************************
1340 * Fair scheduling class load-balancing methods:
1344 * Load-balancing iterator. Note: while the runqueue stays locked
1345 * during the whole iteration, the current task might be
1346 * dequeued so the iterator has to be dequeue-safe. Here we
1347 * achieve that by always pre-iterating before returning
1350 static struct task_struct
*
1351 __load_balance_iterator(struct cfs_rq
*cfs_rq
, struct list_head
*next
)
1353 struct task_struct
*p
= NULL
;
1354 struct sched_entity
*se
;
1356 if (next
== &cfs_rq
->tasks
)
1359 se
= list_entry(next
, struct sched_entity
, group_node
);
1361 cfs_rq
->balance_iterator
= next
->next
;
1366 static struct task_struct
*load_balance_start_fair(void *arg
)
1368 struct cfs_rq
*cfs_rq
= arg
;
1370 return __load_balance_iterator(cfs_rq
, cfs_rq
->tasks
.next
);
1373 static struct task_struct
*load_balance_next_fair(void *arg
)
1375 struct cfs_rq
*cfs_rq
= arg
;
1377 return __load_balance_iterator(cfs_rq
, cfs_rq
->balance_iterator
);
1380 static unsigned long
1381 __load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1382 unsigned long max_load_move
, struct sched_domain
*sd
,
1383 enum cpu_idle_type idle
, int *all_pinned
, int *this_best_prio
,
1384 struct cfs_rq
*cfs_rq
)
1386 struct rq_iterator cfs_rq_iterator
;
1388 cfs_rq_iterator
.start
= load_balance_start_fair
;
1389 cfs_rq_iterator
.next
= load_balance_next_fair
;
1390 cfs_rq_iterator
.arg
= cfs_rq
;
1392 return balance_tasks(this_rq
, this_cpu
, busiest
,
1393 max_load_move
, sd
, idle
, all_pinned
,
1394 this_best_prio
, &cfs_rq_iterator
);
1397 #ifdef CONFIG_FAIR_GROUP_SCHED
1398 static unsigned long
1399 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1400 unsigned long max_load_move
,
1401 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1402 int *all_pinned
, int *this_best_prio
)
1404 long rem_load_move
= max_load_move
;
1405 int busiest_cpu
= cpu_of(busiest
);
1406 struct task_group
*tg
;
1409 update_h_load(busiest_cpu
);
1411 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1412 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1413 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1414 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1415 u64 rem_load
, moved_load
;
1420 if (!busiest_cfs_rq
->task_weight
)
1423 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1424 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1426 moved_load
= __load_balance_fair(this_rq
, this_cpu
, busiest
,
1427 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1428 tg
->cfs_rq
[busiest_cpu
]);
1433 moved_load
*= busiest_h_load
;
1434 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1436 rem_load_move
-= moved_load
;
1437 if (rem_load_move
< 0)
1442 return max_load_move
- rem_load_move
;
1445 static unsigned long
1446 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1447 unsigned long max_load_move
,
1448 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1449 int *all_pinned
, int *this_best_prio
)
1451 return __load_balance_fair(this_rq
, this_cpu
, busiest
,
1452 max_load_move
, sd
, idle
, all_pinned
,
1453 this_best_prio
, &busiest
->cfs
);
1458 move_one_task_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1459 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1461 struct cfs_rq
*busy_cfs_rq
;
1462 struct rq_iterator cfs_rq_iterator
;
1464 cfs_rq_iterator
.start
= load_balance_start_fair
;
1465 cfs_rq_iterator
.next
= load_balance_next_fair
;
1467 for_each_leaf_cfs_rq(busiest
, busy_cfs_rq
) {
1469 * pass busy_cfs_rq argument into
1470 * load_balance_[start|next]_fair iterators
1472 cfs_rq_iterator
.arg
= busy_cfs_rq
;
1473 if (iter_move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
,
1480 #endif /* CONFIG_SMP */
1483 * scheduler tick hitting a task of our scheduling class:
1485 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
1487 struct cfs_rq
*cfs_rq
;
1488 struct sched_entity
*se
= &curr
->se
;
1490 for_each_sched_entity(se
) {
1491 cfs_rq
= cfs_rq_of(se
);
1492 entity_tick(cfs_rq
, se
, queued
);
1496 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1499 * Share the fairness runtime between parent and child, thus the
1500 * total amount of pressure for CPU stays equal - new tasks
1501 * get a chance to run but frequent forkers are not allowed to
1502 * monopolize the CPU. Note: the parent runqueue is locked,
1503 * the child is not running yet.
1505 static void task_new_fair(struct rq
*rq
, struct task_struct
*p
)
1507 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1508 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
1509 int this_cpu
= smp_processor_id();
1511 sched_info_queued(p
);
1513 update_curr(cfs_rq
);
1514 place_entity(cfs_rq
, se
, 1);
1516 /* 'curr' will be NULL if the child belongs to a different group */
1517 if (sysctl_sched_child_runs_first
&& this_cpu
== task_cpu(p
) &&
1518 curr
&& curr
->vruntime
< se
->vruntime
) {
1520 * Upon rescheduling, sched_class::put_prev_task() will place
1521 * 'current' within the tree based on its new key value.
1523 swap(curr
->vruntime
, se
->vruntime
);
1524 resched_task(rq
->curr
);
1527 enqueue_task_fair(rq
, p
, 0);
1531 * Priority of the task has changed. Check to see if we preempt
1534 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
1535 int oldprio
, int running
)
1538 * Reschedule if we are currently running on this runqueue and
1539 * our priority decreased, or if we are not currently running on
1540 * this runqueue and our priority is higher than the current's
1543 if (p
->prio
> oldprio
)
1544 resched_task(rq
->curr
);
1546 check_preempt_curr(rq
, p
, 0);
1550 * We switched to the sched_fair class.
1552 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
1556 * We were most likely switched from sched_rt, so
1557 * kick off the schedule if running, otherwise just see
1558 * if we can still preempt the current task.
1561 resched_task(rq
->curr
);
1563 check_preempt_curr(rq
, p
, 0);
1566 /* Account for a task changing its policy or group.
1568 * This routine is mostly called to set cfs_rq->curr field when a task
1569 * migrates between groups/classes.
1571 static void set_curr_task_fair(struct rq
*rq
)
1573 struct sched_entity
*se
= &rq
->curr
->se
;
1575 for_each_sched_entity(se
)
1576 set_next_entity(cfs_rq_of(se
), se
);
1579 #ifdef CONFIG_FAIR_GROUP_SCHED
1580 static void moved_group_fair(struct task_struct
*p
)
1582 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
1584 update_curr(cfs_rq
);
1585 place_entity(cfs_rq
, &p
->se
, 1);
1590 * All the scheduling class methods:
1592 static const struct sched_class fair_sched_class
= {
1593 .next
= &idle_sched_class
,
1594 .enqueue_task
= enqueue_task_fair
,
1595 .dequeue_task
= dequeue_task_fair
,
1596 .yield_task
= yield_task_fair
,
1598 .select_task_rq
= select_task_rq_fair
,
1599 #endif /* CONFIG_SMP */
1601 .check_preempt_curr
= check_preempt_wakeup
,
1603 .pick_next_task
= pick_next_task_fair
,
1604 .put_prev_task
= put_prev_task_fair
,
1607 .load_balance
= load_balance_fair
,
1608 .move_one_task
= move_one_task_fair
,
1611 .set_curr_task
= set_curr_task_fair
,
1612 .task_tick
= task_tick_fair
,
1613 .task_new
= task_new_fair
,
1615 .prio_changed
= prio_changed_fair
,
1616 .switched_to
= switched_to_fair
,
1618 #ifdef CONFIG_FAIR_GROUP_SCHED
1619 .moved_group
= moved_group_fair
,
1623 #ifdef CONFIG_SCHED_DEBUG
1624 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
1626 struct cfs_rq
*cfs_rq
;
1629 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
1630 print_cfs_rq(m
, cpu
, cfs_rq
);