PNP: work around Dell 1536/1546 BIOS MMCONFIG bug that breaks USB
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blobb91f3aa627fcc9152a20a50b957f481e3fbf6907
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_mutex
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * bdi->wb.list_lock
81 * sb_lock (fs/fs-writeback.c)
82 * ->mapping->tree_lock (__sync_single_inode)
84 * ->i_mmap_mutex
85 * ->anon_vma.lock (vma_adjust)
87 * ->anon_vma.lock
88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
90 * ->page_table_lock or pte_lock
91 * ->swap_lock (try_to_unmap_one)
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 * (code doesn't rely on that order, so you could switch it around)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
106 * ->i_mmap_mutex
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __delete_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
119 * if we're uptodate, flush out into the cleancache, otherwise
120 * invalidate any existing cleancache entries. We can't leave
121 * stale data around in the cleancache once our page is gone
123 if (PageUptodate(page) && PageMappedToDisk(page))
124 cleancache_put_page(page);
125 else
126 cleancache_flush_page(mapping, page);
128 radix_tree_delete(&mapping->page_tree, page->index);
129 page->mapping = NULL;
130 /* Leave page->index set: truncation lookup relies upon it */
131 mapping->nrpages--;
132 __dec_zone_page_state(page, NR_FILE_PAGES);
133 if (PageSwapBacked(page))
134 __dec_zone_page_state(page, NR_SHMEM);
135 BUG_ON(page_mapped(page));
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 dec_zone_page_state(page, NR_FILE_DIRTY);
146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
158 void delete_from_page_cache(struct page *page)
160 struct address_space *mapping = page->mapping;
161 void (*freepage)(struct page *);
163 BUG_ON(!PageLocked(page));
165 freepage = mapping->a_ops->freepage;
166 spin_lock_irq(&mapping->tree_lock);
167 __delete_from_page_cache(page);
168 spin_unlock_irq(&mapping->tree_lock);
169 mem_cgroup_uncharge_cache_page(page);
171 if (freepage)
172 freepage(page);
173 page_cache_release(page);
175 EXPORT_SYMBOL(delete_from_page_cache);
177 static int sleep_on_page(void *word)
179 io_schedule();
180 return 0;
183 static int sleep_on_page_killable(void *word)
185 sleep_on_page(word);
186 return fatal_signal_pending(current) ? -EINTR : 0;
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
193 * @end: offset in bytes where the range ends (inclusive)
194 * @sync_mode: enable synchronous operation
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback. The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 loff_t end, int sync_mode)
207 int ret;
208 struct writeback_control wbc = {
209 .sync_mode = sync_mode,
210 .nr_to_write = LONG_MAX,
211 .range_start = start,
212 .range_end = end,
215 if (!mapping_cap_writeback_dirty(mapping))
216 return 0;
218 ret = do_writepages(mapping, &wbc);
219 return ret;
222 static inline int __filemap_fdatawrite(struct address_space *mapping,
223 int sync_mode)
225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 int filemap_fdatawrite(struct address_space *mapping)
230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
232 EXPORT_SYMBOL(filemap_fdatawrite);
234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235 loff_t end)
237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
239 EXPORT_SYMBOL(filemap_fdatawrite_range);
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
248 int filemap_flush(struct address_space *mapping)
250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
252 EXPORT_SYMBOL(filemap_flush);
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 loff_t end_byte)
266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
272 if (end_byte < start_byte)
273 return 0;
275 pagevec_init(&pvec, 0);
276 while ((index <= end) &&
277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 PAGECACHE_TAG_WRITEBACK,
279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 unsigned i;
282 for (i = 0; i < nr_pages; i++) {
283 struct page *page = pvec.pages[i];
285 /* until radix tree lookup accepts end_index */
286 if (page->index > end)
287 continue;
289 wait_on_page_writeback(page);
290 if (TestClearPageError(page))
291 ret = -EIO;
293 pagevec_release(&pvec);
294 cond_resched();
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 ret = -EIO;
303 return ret;
305 EXPORT_SYMBOL(filemap_fdatawait_range);
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
314 int filemap_fdatawait(struct address_space *mapping)
316 loff_t i_size = i_size_read(mapping->host);
318 if (i_size == 0)
319 return 0;
321 return filemap_fdatawait_range(mapping, 0, i_size - 1);
323 EXPORT_SYMBOL(filemap_fdatawait);
325 int filemap_write_and_wait(struct address_space *mapping)
327 int err = 0;
329 if (mapping->nrpages) {
330 err = filemap_fdatawrite(mapping);
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
337 if (err != -EIO) {
338 int err2 = filemap_fdatawait(mapping);
339 if (!err)
340 err = err2;
343 return err;
345 EXPORT_SYMBOL(filemap_write_and_wait);
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
353 * Write out and wait upon file offsets lstart->lend, inclusive.
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
358 int filemap_write_and_wait_range(struct address_space *mapping,
359 loff_t lstart, loff_t lend)
361 int err = 0;
363 if (mapping->nrpages) {
364 err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 WB_SYNC_ALL);
366 /* See comment of filemap_write_and_wait() */
367 if (err != -EIO) {
368 int err2 = filemap_fdatawait_range(mapping,
369 lstart, lend);
370 if (!err)
371 err = err2;
374 return err;
376 EXPORT_SYMBOL(filemap_write_and_wait_range);
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
395 int error;
396 struct mem_cgroup *memcg = NULL;
398 VM_BUG_ON(!PageLocked(old));
399 VM_BUG_ON(!PageLocked(new));
400 VM_BUG_ON(new->mapping);
403 * This is not page migration, but prepare_migration and
404 * end_migration does enough work for charge replacement.
406 * In the longer term we probably want a specialized function
407 * for moving the charge from old to new in a more efficient
408 * manner.
410 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411 if (error)
412 return error;
414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415 if (!error) {
416 struct address_space *mapping = old->mapping;
417 void (*freepage)(struct page *);
419 pgoff_t offset = old->index;
420 freepage = mapping->a_ops->freepage;
422 page_cache_get(new);
423 new->mapping = mapping;
424 new->index = offset;
426 spin_lock_irq(&mapping->tree_lock);
427 __delete_from_page_cache(old);
428 error = radix_tree_insert(&mapping->page_tree, offset, new);
429 BUG_ON(error);
430 mapping->nrpages++;
431 __inc_zone_page_state(new, NR_FILE_PAGES);
432 if (PageSwapBacked(new))
433 __inc_zone_page_state(new, NR_SHMEM);
434 spin_unlock_irq(&mapping->tree_lock);
435 radix_tree_preload_end();
436 if (freepage)
437 freepage(old);
438 page_cache_release(old);
439 mem_cgroup_end_migration(memcg, old, new, true);
440 } else {
441 mem_cgroup_end_migration(memcg, old, new, false);
444 return error;
446 EXPORT_SYMBOL_GPL(replace_page_cache_page);
449 * add_to_page_cache_locked - add a locked page to the pagecache
450 * @page: page to add
451 * @mapping: the page's address_space
452 * @offset: page index
453 * @gfp_mask: page allocation mode
455 * This function is used to add a page to the pagecache. It must be locked.
456 * This function does not add the page to the LRU. The caller must do that.
458 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
459 pgoff_t offset, gfp_t gfp_mask)
461 int error;
463 VM_BUG_ON(!PageLocked(page));
464 VM_BUG_ON(PageSwapBacked(page));
466 error = mem_cgroup_cache_charge(page, current->mm,
467 gfp_mask & GFP_RECLAIM_MASK);
468 if (error)
469 goto out;
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (error == 0) {
473 page_cache_get(page);
474 page->mapping = mapping;
475 page->index = offset;
477 spin_lock_irq(&mapping->tree_lock);
478 error = radix_tree_insert(&mapping->page_tree, offset, page);
479 if (likely(!error)) {
480 mapping->nrpages++;
481 __inc_zone_page_state(page, NR_FILE_PAGES);
482 spin_unlock_irq(&mapping->tree_lock);
483 } else {
484 page->mapping = NULL;
485 /* Leave page->index set: truncation relies upon it */
486 spin_unlock_irq(&mapping->tree_lock);
487 mem_cgroup_uncharge_cache_page(page);
488 page_cache_release(page);
490 radix_tree_preload_end();
491 } else
492 mem_cgroup_uncharge_cache_page(page);
493 out:
494 return error;
496 EXPORT_SYMBOL(add_to_page_cache_locked);
498 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
499 pgoff_t offset, gfp_t gfp_mask)
501 int ret;
503 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
504 if (ret == 0)
505 lru_cache_add_file(page);
506 return ret;
508 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
510 #ifdef CONFIG_NUMA
511 struct page *__page_cache_alloc(gfp_t gfp)
513 int n;
514 struct page *page;
516 if (cpuset_do_page_mem_spread()) {
517 get_mems_allowed();
518 n = cpuset_mem_spread_node();
519 page = alloc_pages_exact_node(n, gfp, 0);
520 put_mems_allowed();
521 return page;
523 return alloc_pages(gfp, 0);
525 EXPORT_SYMBOL(__page_cache_alloc);
526 #endif
529 * In order to wait for pages to become available there must be
530 * waitqueues associated with pages. By using a hash table of
531 * waitqueues where the bucket discipline is to maintain all
532 * waiters on the same queue and wake all when any of the pages
533 * become available, and for the woken contexts to check to be
534 * sure the appropriate page became available, this saves space
535 * at a cost of "thundering herd" phenomena during rare hash
536 * collisions.
538 static wait_queue_head_t *page_waitqueue(struct page *page)
540 const struct zone *zone = page_zone(page);
542 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
545 static inline void wake_up_page(struct page *page, int bit)
547 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
550 void wait_on_page_bit(struct page *page, int bit_nr)
552 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
554 if (test_bit(bit_nr, &page->flags))
555 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
556 TASK_UNINTERRUPTIBLE);
558 EXPORT_SYMBOL(wait_on_page_bit);
560 int wait_on_page_bit_killable(struct page *page, int bit_nr)
562 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
564 if (!test_bit(bit_nr, &page->flags))
565 return 0;
567 return __wait_on_bit(page_waitqueue(page), &wait,
568 sleep_on_page_killable, TASK_KILLABLE);
572 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
573 * @page: Page defining the wait queue of interest
574 * @waiter: Waiter to add to the queue
576 * Add an arbitrary @waiter to the wait queue for the nominated @page.
578 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
580 wait_queue_head_t *q = page_waitqueue(page);
581 unsigned long flags;
583 spin_lock_irqsave(&q->lock, flags);
584 __add_wait_queue(q, waiter);
585 spin_unlock_irqrestore(&q->lock, flags);
587 EXPORT_SYMBOL_GPL(add_page_wait_queue);
590 * unlock_page - unlock a locked page
591 * @page: the page
593 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
594 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
595 * mechananism between PageLocked pages and PageWriteback pages is shared.
596 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
598 * The mb is necessary to enforce ordering between the clear_bit and the read
599 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
601 void unlock_page(struct page *page)
603 VM_BUG_ON(!PageLocked(page));
604 clear_bit_unlock(PG_locked, &page->flags);
605 smp_mb__after_clear_bit();
606 wake_up_page(page, PG_locked);
608 EXPORT_SYMBOL(unlock_page);
611 * end_page_writeback - end writeback against a page
612 * @page: the page
614 void end_page_writeback(struct page *page)
616 if (TestClearPageReclaim(page))
617 rotate_reclaimable_page(page);
619 if (!test_clear_page_writeback(page))
620 BUG();
622 smp_mb__after_clear_bit();
623 wake_up_page(page, PG_writeback);
625 EXPORT_SYMBOL(end_page_writeback);
628 * __lock_page - get a lock on the page, assuming we need to sleep to get it
629 * @page: the page to lock
631 void __lock_page(struct page *page)
633 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
635 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
636 TASK_UNINTERRUPTIBLE);
638 EXPORT_SYMBOL(__lock_page);
640 int __lock_page_killable(struct page *page)
642 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
644 return __wait_on_bit_lock(page_waitqueue(page), &wait,
645 sleep_on_page_killable, TASK_KILLABLE);
647 EXPORT_SYMBOL_GPL(__lock_page_killable);
649 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
650 unsigned int flags)
652 if (flags & FAULT_FLAG_ALLOW_RETRY) {
654 * CAUTION! In this case, mmap_sem is not released
655 * even though return 0.
657 if (flags & FAULT_FLAG_RETRY_NOWAIT)
658 return 0;
660 up_read(&mm->mmap_sem);
661 if (flags & FAULT_FLAG_KILLABLE)
662 wait_on_page_locked_killable(page);
663 else
664 wait_on_page_locked(page);
665 return 0;
666 } else {
667 if (flags & FAULT_FLAG_KILLABLE) {
668 int ret;
670 ret = __lock_page_killable(page);
671 if (ret) {
672 up_read(&mm->mmap_sem);
673 return 0;
675 } else
676 __lock_page(page);
677 return 1;
682 * find_get_page - find and get a page reference
683 * @mapping: the address_space to search
684 * @offset: the page index
686 * Is there a pagecache struct page at the given (mapping, offset) tuple?
687 * If yes, increment its refcount and return it; if no, return NULL.
689 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
691 void **pagep;
692 struct page *page;
694 rcu_read_lock();
695 repeat:
696 page = NULL;
697 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
698 if (pagep) {
699 page = radix_tree_deref_slot(pagep);
700 if (unlikely(!page))
701 goto out;
702 if (radix_tree_exception(page)) {
703 if (radix_tree_deref_retry(page))
704 goto repeat;
706 * Otherwise, shmem/tmpfs must be storing a swap entry
707 * here as an exceptional entry: so return it without
708 * attempting to raise page count.
710 goto out;
712 if (!page_cache_get_speculative(page))
713 goto repeat;
716 * Has the page moved?
717 * This is part of the lockless pagecache protocol. See
718 * include/linux/pagemap.h for details.
720 if (unlikely(page != *pagep)) {
721 page_cache_release(page);
722 goto repeat;
725 out:
726 rcu_read_unlock();
728 return page;
730 EXPORT_SYMBOL(find_get_page);
733 * find_lock_page - locate, pin and lock a pagecache page
734 * @mapping: the address_space to search
735 * @offset: the page index
737 * Locates the desired pagecache page, locks it, increments its reference
738 * count and returns its address.
740 * Returns zero if the page was not present. find_lock_page() may sleep.
742 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
744 struct page *page;
746 repeat:
747 page = find_get_page(mapping, offset);
748 if (page && !radix_tree_exception(page)) {
749 lock_page(page);
750 /* Has the page been truncated? */
751 if (unlikely(page->mapping != mapping)) {
752 unlock_page(page);
753 page_cache_release(page);
754 goto repeat;
756 VM_BUG_ON(page->index != offset);
758 return page;
760 EXPORT_SYMBOL(find_lock_page);
763 * find_or_create_page - locate or add a pagecache page
764 * @mapping: the page's address_space
765 * @index: the page's index into the mapping
766 * @gfp_mask: page allocation mode
768 * Locates a page in the pagecache. If the page is not present, a new page
769 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
770 * LRU list. The returned page is locked and has its reference count
771 * incremented.
773 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
774 * allocation!
776 * find_or_create_page() returns the desired page's address, or zero on
777 * memory exhaustion.
779 struct page *find_or_create_page(struct address_space *mapping,
780 pgoff_t index, gfp_t gfp_mask)
782 struct page *page;
783 int err;
784 repeat:
785 page = find_lock_page(mapping, index);
786 if (!page) {
787 page = __page_cache_alloc(gfp_mask);
788 if (!page)
789 return NULL;
791 * We want a regular kernel memory (not highmem or DMA etc)
792 * allocation for the radix tree nodes, but we need to honour
793 * the context-specific requirements the caller has asked for.
794 * GFP_RECLAIM_MASK collects those requirements.
796 err = add_to_page_cache_lru(page, mapping, index,
797 (gfp_mask & GFP_RECLAIM_MASK));
798 if (unlikely(err)) {
799 page_cache_release(page);
800 page = NULL;
801 if (err == -EEXIST)
802 goto repeat;
805 return page;
807 EXPORT_SYMBOL(find_or_create_page);
810 * find_get_pages - gang pagecache lookup
811 * @mapping: The address_space to search
812 * @start: The starting page index
813 * @nr_pages: The maximum number of pages
814 * @pages: Where the resulting pages are placed
816 * find_get_pages() will search for and return a group of up to
817 * @nr_pages pages in the mapping. The pages are placed at @pages.
818 * find_get_pages() takes a reference against the returned pages.
820 * The search returns a group of mapping-contiguous pages with ascending
821 * indexes. There may be holes in the indices due to not-present pages.
823 * find_get_pages() returns the number of pages which were found.
825 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
826 unsigned int nr_pages, struct page **pages)
828 unsigned int i;
829 unsigned int ret;
830 unsigned int nr_found, nr_skip;
832 rcu_read_lock();
833 restart:
834 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
835 (void ***)pages, NULL, start, nr_pages);
836 ret = 0;
837 nr_skip = 0;
838 for (i = 0; i < nr_found; i++) {
839 struct page *page;
840 repeat:
841 page = radix_tree_deref_slot((void **)pages[i]);
842 if (unlikely(!page))
843 continue;
845 if (radix_tree_exception(page)) {
846 if (radix_tree_deref_retry(page)) {
848 * Transient condition which can only trigger
849 * when entry at index 0 moves out of or back
850 * to root: none yet gotten, safe to restart.
852 WARN_ON(start | i);
853 goto restart;
856 * Otherwise, shmem/tmpfs must be storing a swap entry
857 * here as an exceptional entry: so skip over it -
858 * we only reach this from invalidate_mapping_pages().
860 nr_skip++;
861 continue;
864 if (!page_cache_get_speculative(page))
865 goto repeat;
867 /* Has the page moved? */
868 if (unlikely(page != *((void **)pages[i]))) {
869 page_cache_release(page);
870 goto repeat;
873 pages[ret] = page;
874 ret++;
878 * If all entries were removed before we could secure them,
879 * try again, because callers stop trying once 0 is returned.
881 if (unlikely(!ret && nr_found > nr_skip))
882 goto restart;
883 rcu_read_unlock();
884 return ret;
888 * find_get_pages_contig - gang contiguous pagecache lookup
889 * @mapping: The address_space to search
890 * @index: The starting page index
891 * @nr_pages: The maximum number of pages
892 * @pages: Where the resulting pages are placed
894 * find_get_pages_contig() works exactly like find_get_pages(), except
895 * that the returned number of pages are guaranteed to be contiguous.
897 * find_get_pages_contig() returns the number of pages which were found.
899 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
900 unsigned int nr_pages, struct page **pages)
902 unsigned int i;
903 unsigned int ret;
904 unsigned int nr_found;
906 rcu_read_lock();
907 restart:
908 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
909 (void ***)pages, NULL, index, nr_pages);
910 ret = 0;
911 for (i = 0; i < nr_found; i++) {
912 struct page *page;
913 repeat:
914 page = radix_tree_deref_slot((void **)pages[i]);
915 if (unlikely(!page))
916 continue;
918 if (radix_tree_exception(page)) {
919 if (radix_tree_deref_retry(page)) {
921 * Transient condition which can only trigger
922 * when entry at index 0 moves out of or back
923 * to root: none yet gotten, safe to restart.
925 goto restart;
928 * Otherwise, shmem/tmpfs must be storing a swap entry
929 * here as an exceptional entry: so stop looking for
930 * contiguous pages.
932 break;
935 if (!page_cache_get_speculative(page))
936 goto repeat;
938 /* Has the page moved? */
939 if (unlikely(page != *((void **)pages[i]))) {
940 page_cache_release(page);
941 goto repeat;
945 * must check mapping and index after taking the ref.
946 * otherwise we can get both false positives and false
947 * negatives, which is just confusing to the caller.
949 if (page->mapping == NULL || page->index != index) {
950 page_cache_release(page);
951 break;
954 pages[ret] = page;
955 ret++;
956 index++;
958 rcu_read_unlock();
959 return ret;
961 EXPORT_SYMBOL(find_get_pages_contig);
964 * find_get_pages_tag - find and return pages that match @tag
965 * @mapping: the address_space to search
966 * @index: the starting page index
967 * @tag: the tag index
968 * @nr_pages: the maximum number of pages
969 * @pages: where the resulting pages are placed
971 * Like find_get_pages, except we only return pages which are tagged with
972 * @tag. We update @index to index the next page for the traversal.
974 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
975 int tag, unsigned int nr_pages, struct page **pages)
977 unsigned int i;
978 unsigned int ret;
979 unsigned int nr_found;
981 rcu_read_lock();
982 restart:
983 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
984 (void ***)pages, *index, nr_pages, tag);
985 ret = 0;
986 for (i = 0; i < nr_found; i++) {
987 struct page *page;
988 repeat:
989 page = radix_tree_deref_slot((void **)pages[i]);
990 if (unlikely(!page))
991 continue;
993 if (radix_tree_exception(page)) {
994 if (radix_tree_deref_retry(page)) {
996 * Transient condition which can only trigger
997 * when entry at index 0 moves out of or back
998 * to root: none yet gotten, safe to restart.
1000 goto restart;
1003 * This function is never used on a shmem/tmpfs
1004 * mapping, so a swap entry won't be found here.
1006 BUG();
1009 if (!page_cache_get_speculative(page))
1010 goto repeat;
1012 /* Has the page moved? */
1013 if (unlikely(page != *((void **)pages[i]))) {
1014 page_cache_release(page);
1015 goto repeat;
1018 pages[ret] = page;
1019 ret++;
1023 * If all entries were removed before we could secure them,
1024 * try again, because callers stop trying once 0 is returned.
1026 if (unlikely(!ret && nr_found))
1027 goto restart;
1028 rcu_read_unlock();
1030 if (ret)
1031 *index = pages[ret - 1]->index + 1;
1033 return ret;
1035 EXPORT_SYMBOL(find_get_pages_tag);
1038 * grab_cache_page_nowait - returns locked page at given index in given cache
1039 * @mapping: target address_space
1040 * @index: the page index
1042 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1043 * This is intended for speculative data generators, where the data can
1044 * be regenerated if the page couldn't be grabbed. This routine should
1045 * be safe to call while holding the lock for another page.
1047 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1048 * and deadlock against the caller's locked page.
1050 struct page *
1051 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1053 struct page *page = find_get_page(mapping, index);
1055 if (page) {
1056 if (trylock_page(page))
1057 return page;
1058 page_cache_release(page);
1059 return NULL;
1061 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1062 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1063 page_cache_release(page);
1064 page = NULL;
1066 return page;
1068 EXPORT_SYMBOL(grab_cache_page_nowait);
1071 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1072 * a _large_ part of the i/o request. Imagine the worst scenario:
1074 * ---R__________________________________________B__________
1075 * ^ reading here ^ bad block(assume 4k)
1077 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1078 * => failing the whole request => read(R) => read(R+1) =>
1079 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1080 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1081 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1083 * It is going insane. Fix it by quickly scaling down the readahead size.
1085 static void shrink_readahead_size_eio(struct file *filp,
1086 struct file_ra_state *ra)
1088 ra->ra_pages /= 4;
1092 * do_generic_file_read - generic file read routine
1093 * @filp: the file to read
1094 * @ppos: current file position
1095 * @desc: read_descriptor
1096 * @actor: read method
1098 * This is a generic file read routine, and uses the
1099 * mapping->a_ops->readpage() function for the actual low-level stuff.
1101 * This is really ugly. But the goto's actually try to clarify some
1102 * of the logic when it comes to error handling etc.
1104 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1105 read_descriptor_t *desc, read_actor_t actor)
1107 struct address_space *mapping = filp->f_mapping;
1108 struct inode *inode = mapping->host;
1109 struct file_ra_state *ra = &filp->f_ra;
1110 pgoff_t index;
1111 pgoff_t last_index;
1112 pgoff_t prev_index;
1113 unsigned long offset; /* offset into pagecache page */
1114 unsigned int prev_offset;
1115 int error;
1117 index = *ppos >> PAGE_CACHE_SHIFT;
1118 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1119 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1120 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1121 offset = *ppos & ~PAGE_CACHE_MASK;
1123 for (;;) {
1124 struct page *page;
1125 pgoff_t end_index;
1126 loff_t isize;
1127 unsigned long nr, ret;
1129 cond_resched();
1130 find_page:
1131 page = find_get_page(mapping, index);
1132 if (!page) {
1133 page_cache_sync_readahead(mapping,
1134 ra, filp,
1135 index, last_index - index);
1136 page = find_get_page(mapping, index);
1137 if (unlikely(page == NULL))
1138 goto no_cached_page;
1140 if (PageReadahead(page)) {
1141 page_cache_async_readahead(mapping,
1142 ra, filp, page,
1143 index, last_index - index);
1145 if (!PageUptodate(page)) {
1146 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1147 !mapping->a_ops->is_partially_uptodate)
1148 goto page_not_up_to_date;
1149 if (!trylock_page(page))
1150 goto page_not_up_to_date;
1151 /* Did it get truncated before we got the lock? */
1152 if (!page->mapping)
1153 goto page_not_up_to_date_locked;
1154 if (!mapping->a_ops->is_partially_uptodate(page,
1155 desc, offset))
1156 goto page_not_up_to_date_locked;
1157 unlock_page(page);
1159 page_ok:
1161 * i_size must be checked after we know the page is Uptodate.
1163 * Checking i_size after the check allows us to calculate
1164 * the correct value for "nr", which means the zero-filled
1165 * part of the page is not copied back to userspace (unless
1166 * another truncate extends the file - this is desired though).
1169 isize = i_size_read(inode);
1170 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1171 if (unlikely(!isize || index > end_index)) {
1172 page_cache_release(page);
1173 goto out;
1176 /* nr is the maximum number of bytes to copy from this page */
1177 nr = PAGE_CACHE_SIZE;
1178 if (index == end_index) {
1179 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1180 if (nr <= offset) {
1181 page_cache_release(page);
1182 goto out;
1185 nr = nr - offset;
1187 /* If users can be writing to this page using arbitrary
1188 * virtual addresses, take care about potential aliasing
1189 * before reading the page on the kernel side.
1191 if (mapping_writably_mapped(mapping))
1192 flush_dcache_page(page);
1195 * When a sequential read accesses a page several times,
1196 * only mark it as accessed the first time.
1198 if (prev_index != index || offset != prev_offset)
1199 mark_page_accessed(page);
1200 prev_index = index;
1203 * Ok, we have the page, and it's up-to-date, so
1204 * now we can copy it to user space...
1206 * The actor routine returns how many bytes were actually used..
1207 * NOTE! This may not be the same as how much of a user buffer
1208 * we filled up (we may be padding etc), so we can only update
1209 * "pos" here (the actor routine has to update the user buffer
1210 * pointers and the remaining count).
1212 ret = actor(desc, page, offset, nr);
1213 offset += ret;
1214 index += offset >> PAGE_CACHE_SHIFT;
1215 offset &= ~PAGE_CACHE_MASK;
1216 prev_offset = offset;
1218 page_cache_release(page);
1219 if (ret == nr && desc->count)
1220 continue;
1221 goto out;
1223 page_not_up_to_date:
1224 /* Get exclusive access to the page ... */
1225 error = lock_page_killable(page);
1226 if (unlikely(error))
1227 goto readpage_error;
1229 page_not_up_to_date_locked:
1230 /* Did it get truncated before we got the lock? */
1231 if (!page->mapping) {
1232 unlock_page(page);
1233 page_cache_release(page);
1234 continue;
1237 /* Did somebody else fill it already? */
1238 if (PageUptodate(page)) {
1239 unlock_page(page);
1240 goto page_ok;
1243 readpage:
1245 * A previous I/O error may have been due to temporary
1246 * failures, eg. multipath errors.
1247 * PG_error will be set again if readpage fails.
1249 ClearPageError(page);
1250 /* Start the actual read. The read will unlock the page. */
1251 error = mapping->a_ops->readpage(filp, page);
1253 if (unlikely(error)) {
1254 if (error == AOP_TRUNCATED_PAGE) {
1255 page_cache_release(page);
1256 goto find_page;
1258 goto readpage_error;
1261 if (!PageUptodate(page)) {
1262 error = lock_page_killable(page);
1263 if (unlikely(error))
1264 goto readpage_error;
1265 if (!PageUptodate(page)) {
1266 if (page->mapping == NULL) {
1268 * invalidate_mapping_pages got it
1270 unlock_page(page);
1271 page_cache_release(page);
1272 goto find_page;
1274 unlock_page(page);
1275 shrink_readahead_size_eio(filp, ra);
1276 error = -EIO;
1277 goto readpage_error;
1279 unlock_page(page);
1282 goto page_ok;
1284 readpage_error:
1285 /* UHHUH! A synchronous read error occurred. Report it */
1286 desc->error = error;
1287 page_cache_release(page);
1288 goto out;
1290 no_cached_page:
1292 * Ok, it wasn't cached, so we need to create a new
1293 * page..
1295 page = page_cache_alloc_cold(mapping);
1296 if (!page) {
1297 desc->error = -ENOMEM;
1298 goto out;
1300 error = add_to_page_cache_lru(page, mapping,
1301 index, GFP_KERNEL);
1302 if (error) {
1303 page_cache_release(page);
1304 if (error == -EEXIST)
1305 goto find_page;
1306 desc->error = error;
1307 goto out;
1309 goto readpage;
1312 out:
1313 ra->prev_pos = prev_index;
1314 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1315 ra->prev_pos |= prev_offset;
1317 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1318 file_accessed(filp);
1321 int file_read_actor(read_descriptor_t *desc, struct page *page,
1322 unsigned long offset, unsigned long size)
1324 char *kaddr;
1325 unsigned long left, count = desc->count;
1327 if (size > count)
1328 size = count;
1331 * Faults on the destination of a read are common, so do it before
1332 * taking the kmap.
1334 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1335 kaddr = kmap_atomic(page, KM_USER0);
1336 left = __copy_to_user_inatomic(desc->arg.buf,
1337 kaddr + offset, size);
1338 kunmap_atomic(kaddr, KM_USER0);
1339 if (left == 0)
1340 goto success;
1343 /* Do it the slow way */
1344 kaddr = kmap(page);
1345 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1346 kunmap(page);
1348 if (left) {
1349 size -= left;
1350 desc->error = -EFAULT;
1352 success:
1353 desc->count = count - size;
1354 desc->written += size;
1355 desc->arg.buf += size;
1356 return size;
1360 * Performs necessary checks before doing a write
1361 * @iov: io vector request
1362 * @nr_segs: number of segments in the iovec
1363 * @count: number of bytes to write
1364 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1366 * Adjust number of segments and amount of bytes to write (nr_segs should be
1367 * properly initialized first). Returns appropriate error code that caller
1368 * should return or zero in case that write should be allowed.
1370 int generic_segment_checks(const struct iovec *iov,
1371 unsigned long *nr_segs, size_t *count, int access_flags)
1373 unsigned long seg;
1374 size_t cnt = 0;
1375 for (seg = 0; seg < *nr_segs; seg++) {
1376 const struct iovec *iv = &iov[seg];
1379 * If any segment has a negative length, or the cumulative
1380 * length ever wraps negative then return -EINVAL.
1382 cnt += iv->iov_len;
1383 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1384 return -EINVAL;
1385 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1386 continue;
1387 if (seg == 0)
1388 return -EFAULT;
1389 *nr_segs = seg;
1390 cnt -= iv->iov_len; /* This segment is no good */
1391 break;
1393 *count = cnt;
1394 return 0;
1396 EXPORT_SYMBOL(generic_segment_checks);
1399 * generic_file_aio_read - generic filesystem read routine
1400 * @iocb: kernel I/O control block
1401 * @iov: io vector request
1402 * @nr_segs: number of segments in the iovec
1403 * @pos: current file position
1405 * This is the "read()" routine for all filesystems
1406 * that can use the page cache directly.
1408 ssize_t
1409 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1410 unsigned long nr_segs, loff_t pos)
1412 struct file *filp = iocb->ki_filp;
1413 ssize_t retval;
1414 unsigned long seg = 0;
1415 size_t count;
1416 loff_t *ppos = &iocb->ki_pos;
1417 struct blk_plug plug;
1419 count = 0;
1420 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1421 if (retval)
1422 return retval;
1424 blk_start_plug(&plug);
1426 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1427 if (filp->f_flags & O_DIRECT) {
1428 loff_t size;
1429 struct address_space *mapping;
1430 struct inode *inode;
1432 mapping = filp->f_mapping;
1433 inode = mapping->host;
1434 if (!count)
1435 goto out; /* skip atime */
1436 size = i_size_read(inode);
1437 if (pos < size) {
1438 retval = filemap_write_and_wait_range(mapping, pos,
1439 pos + iov_length(iov, nr_segs) - 1);
1440 if (!retval) {
1441 retval = mapping->a_ops->direct_IO(READ, iocb,
1442 iov, pos, nr_segs);
1444 if (retval > 0) {
1445 *ppos = pos + retval;
1446 count -= retval;
1450 * Btrfs can have a short DIO read if we encounter
1451 * compressed extents, so if there was an error, or if
1452 * we've already read everything we wanted to, or if
1453 * there was a short read because we hit EOF, go ahead
1454 * and return. Otherwise fallthrough to buffered io for
1455 * the rest of the read.
1457 if (retval < 0 || !count || *ppos >= size) {
1458 file_accessed(filp);
1459 goto out;
1464 count = retval;
1465 for (seg = 0; seg < nr_segs; seg++) {
1466 read_descriptor_t desc;
1467 loff_t offset = 0;
1470 * If we did a short DIO read we need to skip the section of the
1471 * iov that we've already read data into.
1473 if (count) {
1474 if (count > iov[seg].iov_len) {
1475 count -= iov[seg].iov_len;
1476 continue;
1478 offset = count;
1479 count = 0;
1482 desc.written = 0;
1483 desc.arg.buf = iov[seg].iov_base + offset;
1484 desc.count = iov[seg].iov_len - offset;
1485 if (desc.count == 0)
1486 continue;
1487 desc.error = 0;
1488 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1489 retval += desc.written;
1490 if (desc.error) {
1491 retval = retval ?: desc.error;
1492 break;
1494 if (desc.count > 0)
1495 break;
1497 out:
1498 blk_finish_plug(&plug);
1499 return retval;
1501 EXPORT_SYMBOL(generic_file_aio_read);
1503 static ssize_t
1504 do_readahead(struct address_space *mapping, struct file *filp,
1505 pgoff_t index, unsigned long nr)
1507 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1508 return -EINVAL;
1510 force_page_cache_readahead(mapping, filp, index, nr);
1511 return 0;
1514 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1516 ssize_t ret;
1517 struct file *file;
1519 ret = -EBADF;
1520 file = fget(fd);
1521 if (file) {
1522 if (file->f_mode & FMODE_READ) {
1523 struct address_space *mapping = file->f_mapping;
1524 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1525 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1526 unsigned long len = end - start + 1;
1527 ret = do_readahead(mapping, file, start, len);
1529 fput(file);
1531 return ret;
1533 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1534 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1536 return SYSC_readahead((int) fd, offset, (size_t) count);
1538 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1539 #endif
1541 #ifdef CONFIG_MMU
1543 * page_cache_read - adds requested page to the page cache if not already there
1544 * @file: file to read
1545 * @offset: page index
1547 * This adds the requested page to the page cache if it isn't already there,
1548 * and schedules an I/O to read in its contents from disk.
1550 static int page_cache_read(struct file *file, pgoff_t offset)
1552 struct address_space *mapping = file->f_mapping;
1553 struct page *page;
1554 int ret;
1556 do {
1557 page = page_cache_alloc_cold(mapping);
1558 if (!page)
1559 return -ENOMEM;
1561 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1562 if (ret == 0)
1563 ret = mapping->a_ops->readpage(file, page);
1564 else if (ret == -EEXIST)
1565 ret = 0; /* losing race to add is OK */
1567 page_cache_release(page);
1569 } while (ret == AOP_TRUNCATED_PAGE);
1571 return ret;
1574 #define MMAP_LOTSAMISS (100)
1577 * Synchronous readahead happens when we don't even find
1578 * a page in the page cache at all.
1580 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1581 struct file_ra_state *ra,
1582 struct file *file,
1583 pgoff_t offset)
1585 unsigned long ra_pages;
1586 struct address_space *mapping = file->f_mapping;
1588 /* If we don't want any read-ahead, don't bother */
1589 if (VM_RandomReadHint(vma))
1590 return;
1591 if (!ra->ra_pages)
1592 return;
1594 if (VM_SequentialReadHint(vma)) {
1595 page_cache_sync_readahead(mapping, ra, file, offset,
1596 ra->ra_pages);
1597 return;
1600 /* Avoid banging the cache line if not needed */
1601 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1602 ra->mmap_miss++;
1605 * Do we miss much more than hit in this file? If so,
1606 * stop bothering with read-ahead. It will only hurt.
1608 if (ra->mmap_miss > MMAP_LOTSAMISS)
1609 return;
1612 * mmap read-around
1614 ra_pages = max_sane_readahead(ra->ra_pages);
1615 ra->start = max_t(long, 0, offset - ra_pages / 2);
1616 ra->size = ra_pages;
1617 ra->async_size = ra_pages / 4;
1618 ra_submit(ra, mapping, file);
1622 * Asynchronous readahead happens when we find the page and PG_readahead,
1623 * so we want to possibly extend the readahead further..
1625 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1626 struct file_ra_state *ra,
1627 struct file *file,
1628 struct page *page,
1629 pgoff_t offset)
1631 struct address_space *mapping = file->f_mapping;
1633 /* If we don't want any read-ahead, don't bother */
1634 if (VM_RandomReadHint(vma))
1635 return;
1636 if (ra->mmap_miss > 0)
1637 ra->mmap_miss--;
1638 if (PageReadahead(page))
1639 page_cache_async_readahead(mapping, ra, file,
1640 page, offset, ra->ra_pages);
1644 * filemap_fault - read in file data for page fault handling
1645 * @vma: vma in which the fault was taken
1646 * @vmf: struct vm_fault containing details of the fault
1648 * filemap_fault() is invoked via the vma operations vector for a
1649 * mapped memory region to read in file data during a page fault.
1651 * The goto's are kind of ugly, but this streamlines the normal case of having
1652 * it in the page cache, and handles the special cases reasonably without
1653 * having a lot of duplicated code.
1655 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1657 int error;
1658 struct file *file = vma->vm_file;
1659 struct address_space *mapping = file->f_mapping;
1660 struct file_ra_state *ra = &file->f_ra;
1661 struct inode *inode = mapping->host;
1662 pgoff_t offset = vmf->pgoff;
1663 struct page *page;
1664 pgoff_t size;
1665 int ret = 0;
1667 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1668 if (offset >= size)
1669 return VM_FAULT_SIGBUS;
1672 * Do we have something in the page cache already?
1674 page = find_get_page(mapping, offset);
1675 if (likely(page)) {
1677 * We found the page, so try async readahead before
1678 * waiting for the lock.
1680 do_async_mmap_readahead(vma, ra, file, page, offset);
1681 } else {
1682 /* No page in the page cache at all */
1683 do_sync_mmap_readahead(vma, ra, file, offset);
1684 count_vm_event(PGMAJFAULT);
1685 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1686 ret = VM_FAULT_MAJOR;
1687 retry_find:
1688 page = find_get_page(mapping, offset);
1689 if (!page)
1690 goto no_cached_page;
1693 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1694 page_cache_release(page);
1695 return ret | VM_FAULT_RETRY;
1698 /* Did it get truncated? */
1699 if (unlikely(page->mapping != mapping)) {
1700 unlock_page(page);
1701 put_page(page);
1702 goto retry_find;
1704 VM_BUG_ON(page->index != offset);
1707 * We have a locked page in the page cache, now we need to check
1708 * that it's up-to-date. If not, it is going to be due to an error.
1710 if (unlikely(!PageUptodate(page)))
1711 goto page_not_uptodate;
1714 * Found the page and have a reference on it.
1715 * We must recheck i_size under page lock.
1717 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1718 if (unlikely(offset >= size)) {
1719 unlock_page(page);
1720 page_cache_release(page);
1721 return VM_FAULT_SIGBUS;
1724 vmf->page = page;
1725 return ret | VM_FAULT_LOCKED;
1727 no_cached_page:
1729 * We're only likely to ever get here if MADV_RANDOM is in
1730 * effect.
1732 error = page_cache_read(file, offset);
1735 * The page we want has now been added to the page cache.
1736 * In the unlikely event that someone removed it in the
1737 * meantime, we'll just come back here and read it again.
1739 if (error >= 0)
1740 goto retry_find;
1743 * An error return from page_cache_read can result if the
1744 * system is low on memory, or a problem occurs while trying
1745 * to schedule I/O.
1747 if (error == -ENOMEM)
1748 return VM_FAULT_OOM;
1749 return VM_FAULT_SIGBUS;
1751 page_not_uptodate:
1753 * Umm, take care of errors if the page isn't up-to-date.
1754 * Try to re-read it _once_. We do this synchronously,
1755 * because there really aren't any performance issues here
1756 * and we need to check for errors.
1758 ClearPageError(page);
1759 error = mapping->a_ops->readpage(file, page);
1760 if (!error) {
1761 wait_on_page_locked(page);
1762 if (!PageUptodate(page))
1763 error = -EIO;
1765 page_cache_release(page);
1767 if (!error || error == AOP_TRUNCATED_PAGE)
1768 goto retry_find;
1770 /* Things didn't work out. Return zero to tell the mm layer so. */
1771 shrink_readahead_size_eio(file, ra);
1772 return VM_FAULT_SIGBUS;
1774 EXPORT_SYMBOL(filemap_fault);
1776 const struct vm_operations_struct generic_file_vm_ops = {
1777 .fault = filemap_fault,
1780 /* This is used for a general mmap of a disk file */
1782 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1784 struct address_space *mapping = file->f_mapping;
1786 if (!mapping->a_ops->readpage)
1787 return -ENOEXEC;
1788 file_accessed(file);
1789 vma->vm_ops = &generic_file_vm_ops;
1790 vma->vm_flags |= VM_CAN_NONLINEAR;
1791 return 0;
1795 * This is for filesystems which do not implement ->writepage.
1797 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1799 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1800 return -EINVAL;
1801 return generic_file_mmap(file, vma);
1803 #else
1804 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1806 return -ENOSYS;
1808 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1810 return -ENOSYS;
1812 #endif /* CONFIG_MMU */
1814 EXPORT_SYMBOL(generic_file_mmap);
1815 EXPORT_SYMBOL(generic_file_readonly_mmap);
1817 static struct page *__read_cache_page(struct address_space *mapping,
1818 pgoff_t index,
1819 int (*filler)(void *, struct page *),
1820 void *data,
1821 gfp_t gfp)
1823 struct page *page;
1824 int err;
1825 repeat:
1826 page = find_get_page(mapping, index);
1827 if (!page) {
1828 page = __page_cache_alloc(gfp | __GFP_COLD);
1829 if (!page)
1830 return ERR_PTR(-ENOMEM);
1831 err = add_to_page_cache_lru(page, mapping, index, gfp);
1832 if (unlikely(err)) {
1833 page_cache_release(page);
1834 if (err == -EEXIST)
1835 goto repeat;
1836 /* Presumably ENOMEM for radix tree node */
1837 return ERR_PTR(err);
1839 err = filler(data, page);
1840 if (err < 0) {
1841 page_cache_release(page);
1842 page = ERR_PTR(err);
1845 return page;
1848 static struct page *do_read_cache_page(struct address_space *mapping,
1849 pgoff_t index,
1850 int (*filler)(void *, struct page *),
1851 void *data,
1852 gfp_t gfp)
1855 struct page *page;
1856 int err;
1858 retry:
1859 page = __read_cache_page(mapping, index, filler, data, gfp);
1860 if (IS_ERR(page))
1861 return page;
1862 if (PageUptodate(page))
1863 goto out;
1865 lock_page(page);
1866 if (!page->mapping) {
1867 unlock_page(page);
1868 page_cache_release(page);
1869 goto retry;
1871 if (PageUptodate(page)) {
1872 unlock_page(page);
1873 goto out;
1875 err = filler(data, page);
1876 if (err < 0) {
1877 page_cache_release(page);
1878 return ERR_PTR(err);
1880 out:
1881 mark_page_accessed(page);
1882 return page;
1886 * read_cache_page_async - read into page cache, fill it if needed
1887 * @mapping: the page's address_space
1888 * @index: the page index
1889 * @filler: function to perform the read
1890 * @data: first arg to filler(data, page) function, often left as NULL
1892 * Same as read_cache_page, but don't wait for page to become unlocked
1893 * after submitting it to the filler.
1895 * Read into the page cache. If a page already exists, and PageUptodate() is
1896 * not set, try to fill the page but don't wait for it to become unlocked.
1898 * If the page does not get brought uptodate, return -EIO.
1900 struct page *read_cache_page_async(struct address_space *mapping,
1901 pgoff_t index,
1902 int (*filler)(void *, struct page *),
1903 void *data)
1905 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1907 EXPORT_SYMBOL(read_cache_page_async);
1909 static struct page *wait_on_page_read(struct page *page)
1911 if (!IS_ERR(page)) {
1912 wait_on_page_locked(page);
1913 if (!PageUptodate(page)) {
1914 page_cache_release(page);
1915 page = ERR_PTR(-EIO);
1918 return page;
1922 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1923 * @mapping: the page's address_space
1924 * @index: the page index
1925 * @gfp: the page allocator flags to use if allocating
1927 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1928 * any new page allocations done using the specified allocation flags.
1930 * If the page does not get brought uptodate, return -EIO.
1932 struct page *read_cache_page_gfp(struct address_space *mapping,
1933 pgoff_t index,
1934 gfp_t gfp)
1936 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1938 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1940 EXPORT_SYMBOL(read_cache_page_gfp);
1943 * read_cache_page - read into page cache, fill it if needed
1944 * @mapping: the page's address_space
1945 * @index: the page index
1946 * @filler: function to perform the read
1947 * @data: first arg to filler(data, page) function, often left as NULL
1949 * Read into the page cache. If a page already exists, and PageUptodate() is
1950 * not set, try to fill the page then wait for it to become unlocked.
1952 * If the page does not get brought uptodate, return -EIO.
1954 struct page *read_cache_page(struct address_space *mapping,
1955 pgoff_t index,
1956 int (*filler)(void *, struct page *),
1957 void *data)
1959 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1961 EXPORT_SYMBOL(read_cache_page);
1964 * The logic we want is
1966 * if suid or (sgid and xgrp)
1967 * remove privs
1969 int should_remove_suid(struct dentry *dentry)
1971 mode_t mode = dentry->d_inode->i_mode;
1972 int kill = 0;
1974 /* suid always must be killed */
1975 if (unlikely(mode & S_ISUID))
1976 kill = ATTR_KILL_SUID;
1979 * sgid without any exec bits is just a mandatory locking mark; leave
1980 * it alone. If some exec bits are set, it's a real sgid; kill it.
1982 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1983 kill |= ATTR_KILL_SGID;
1985 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1986 return kill;
1988 return 0;
1990 EXPORT_SYMBOL(should_remove_suid);
1992 static int __remove_suid(struct dentry *dentry, int kill)
1994 struct iattr newattrs;
1996 newattrs.ia_valid = ATTR_FORCE | kill;
1997 return notify_change(dentry, &newattrs);
2000 int file_remove_suid(struct file *file)
2002 struct dentry *dentry = file->f_path.dentry;
2003 struct inode *inode = dentry->d_inode;
2004 int killsuid;
2005 int killpriv;
2006 int error = 0;
2008 /* Fast path for nothing security related */
2009 if (IS_NOSEC(inode))
2010 return 0;
2012 killsuid = should_remove_suid(dentry);
2013 killpriv = security_inode_need_killpriv(dentry);
2015 if (killpriv < 0)
2016 return killpriv;
2017 if (killpriv)
2018 error = security_inode_killpriv(dentry);
2019 if (!error && killsuid)
2020 error = __remove_suid(dentry, killsuid);
2021 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2022 inode->i_flags |= S_NOSEC;
2024 return error;
2026 EXPORT_SYMBOL(file_remove_suid);
2028 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2029 const struct iovec *iov, size_t base, size_t bytes)
2031 size_t copied = 0, left = 0;
2033 while (bytes) {
2034 char __user *buf = iov->iov_base + base;
2035 int copy = min(bytes, iov->iov_len - base);
2037 base = 0;
2038 left = __copy_from_user_inatomic(vaddr, buf, copy);
2039 copied += copy;
2040 bytes -= copy;
2041 vaddr += copy;
2042 iov++;
2044 if (unlikely(left))
2045 break;
2047 return copied - left;
2051 * Copy as much as we can into the page and return the number of bytes which
2052 * were successfully copied. If a fault is encountered then return the number of
2053 * bytes which were copied.
2055 size_t iov_iter_copy_from_user_atomic(struct page *page,
2056 struct iov_iter *i, unsigned long offset, size_t bytes)
2058 char *kaddr;
2059 size_t copied;
2061 BUG_ON(!in_atomic());
2062 kaddr = kmap_atomic(page, KM_USER0);
2063 if (likely(i->nr_segs == 1)) {
2064 int left;
2065 char __user *buf = i->iov->iov_base + i->iov_offset;
2066 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2067 copied = bytes - left;
2068 } else {
2069 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2070 i->iov, i->iov_offset, bytes);
2072 kunmap_atomic(kaddr, KM_USER0);
2074 return copied;
2076 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2079 * This has the same sideeffects and return value as
2080 * iov_iter_copy_from_user_atomic().
2081 * The difference is that it attempts to resolve faults.
2082 * Page must not be locked.
2084 size_t iov_iter_copy_from_user(struct page *page,
2085 struct iov_iter *i, unsigned long offset, size_t bytes)
2087 char *kaddr;
2088 size_t copied;
2090 kaddr = kmap(page);
2091 if (likely(i->nr_segs == 1)) {
2092 int left;
2093 char __user *buf = i->iov->iov_base + i->iov_offset;
2094 left = __copy_from_user(kaddr + offset, buf, bytes);
2095 copied = bytes - left;
2096 } else {
2097 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2098 i->iov, i->iov_offset, bytes);
2100 kunmap(page);
2101 return copied;
2103 EXPORT_SYMBOL(iov_iter_copy_from_user);
2105 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2107 BUG_ON(i->count < bytes);
2109 if (likely(i->nr_segs == 1)) {
2110 i->iov_offset += bytes;
2111 i->count -= bytes;
2112 } else {
2113 const struct iovec *iov = i->iov;
2114 size_t base = i->iov_offset;
2117 * The !iov->iov_len check ensures we skip over unlikely
2118 * zero-length segments (without overruning the iovec).
2120 while (bytes || unlikely(i->count && !iov->iov_len)) {
2121 int copy;
2123 copy = min(bytes, iov->iov_len - base);
2124 BUG_ON(!i->count || i->count < copy);
2125 i->count -= copy;
2126 bytes -= copy;
2127 base += copy;
2128 if (iov->iov_len == base) {
2129 iov++;
2130 base = 0;
2133 i->iov = iov;
2134 i->iov_offset = base;
2137 EXPORT_SYMBOL(iov_iter_advance);
2140 * Fault in the first iovec of the given iov_iter, to a maximum length
2141 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2142 * accessed (ie. because it is an invalid address).
2144 * writev-intensive code may want this to prefault several iovecs -- that
2145 * would be possible (callers must not rely on the fact that _only_ the
2146 * first iovec will be faulted with the current implementation).
2148 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2150 char __user *buf = i->iov->iov_base + i->iov_offset;
2151 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2152 return fault_in_pages_readable(buf, bytes);
2154 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2157 * Return the count of just the current iov_iter segment.
2159 size_t iov_iter_single_seg_count(struct iov_iter *i)
2161 const struct iovec *iov = i->iov;
2162 if (i->nr_segs == 1)
2163 return i->count;
2164 else
2165 return min(i->count, iov->iov_len - i->iov_offset);
2167 EXPORT_SYMBOL(iov_iter_single_seg_count);
2170 * Performs necessary checks before doing a write
2172 * Can adjust writing position or amount of bytes to write.
2173 * Returns appropriate error code that caller should return or
2174 * zero in case that write should be allowed.
2176 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2178 struct inode *inode = file->f_mapping->host;
2179 unsigned long limit = rlimit(RLIMIT_FSIZE);
2181 if (unlikely(*pos < 0))
2182 return -EINVAL;
2184 if (!isblk) {
2185 /* FIXME: this is for backwards compatibility with 2.4 */
2186 if (file->f_flags & O_APPEND)
2187 *pos = i_size_read(inode);
2189 if (limit != RLIM_INFINITY) {
2190 if (*pos >= limit) {
2191 send_sig(SIGXFSZ, current, 0);
2192 return -EFBIG;
2194 if (*count > limit - (typeof(limit))*pos) {
2195 *count = limit - (typeof(limit))*pos;
2201 * LFS rule
2203 if (unlikely(*pos + *count > MAX_NON_LFS &&
2204 !(file->f_flags & O_LARGEFILE))) {
2205 if (*pos >= MAX_NON_LFS) {
2206 return -EFBIG;
2208 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2209 *count = MAX_NON_LFS - (unsigned long)*pos;
2214 * Are we about to exceed the fs block limit ?
2216 * If we have written data it becomes a short write. If we have
2217 * exceeded without writing data we send a signal and return EFBIG.
2218 * Linus frestrict idea will clean these up nicely..
2220 if (likely(!isblk)) {
2221 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2222 if (*count || *pos > inode->i_sb->s_maxbytes) {
2223 return -EFBIG;
2225 /* zero-length writes at ->s_maxbytes are OK */
2228 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2229 *count = inode->i_sb->s_maxbytes - *pos;
2230 } else {
2231 #ifdef CONFIG_BLOCK
2232 loff_t isize;
2233 if (bdev_read_only(I_BDEV(inode)))
2234 return -EPERM;
2235 isize = i_size_read(inode);
2236 if (*pos >= isize) {
2237 if (*count || *pos > isize)
2238 return -ENOSPC;
2241 if (*pos + *count > isize)
2242 *count = isize - *pos;
2243 #else
2244 return -EPERM;
2245 #endif
2247 return 0;
2249 EXPORT_SYMBOL(generic_write_checks);
2251 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2252 loff_t pos, unsigned len, unsigned flags,
2253 struct page **pagep, void **fsdata)
2255 const struct address_space_operations *aops = mapping->a_ops;
2257 return aops->write_begin(file, mapping, pos, len, flags,
2258 pagep, fsdata);
2260 EXPORT_SYMBOL(pagecache_write_begin);
2262 int pagecache_write_end(struct file *file, struct address_space *mapping,
2263 loff_t pos, unsigned len, unsigned copied,
2264 struct page *page, void *fsdata)
2266 const struct address_space_operations *aops = mapping->a_ops;
2268 mark_page_accessed(page);
2269 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2271 EXPORT_SYMBOL(pagecache_write_end);
2273 ssize_t
2274 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2275 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2276 size_t count, size_t ocount)
2278 struct file *file = iocb->ki_filp;
2279 struct address_space *mapping = file->f_mapping;
2280 struct inode *inode = mapping->host;
2281 ssize_t written;
2282 size_t write_len;
2283 pgoff_t end;
2285 if (count != ocount)
2286 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2288 write_len = iov_length(iov, *nr_segs);
2289 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2291 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2292 if (written)
2293 goto out;
2296 * After a write we want buffered reads to be sure to go to disk to get
2297 * the new data. We invalidate clean cached page from the region we're
2298 * about to write. We do this *before* the write so that we can return
2299 * without clobbering -EIOCBQUEUED from ->direct_IO().
2301 if (mapping->nrpages) {
2302 written = invalidate_inode_pages2_range(mapping,
2303 pos >> PAGE_CACHE_SHIFT, end);
2305 * If a page can not be invalidated, return 0 to fall back
2306 * to buffered write.
2308 if (written) {
2309 if (written == -EBUSY)
2310 return 0;
2311 goto out;
2315 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2318 * Finally, try again to invalidate clean pages which might have been
2319 * cached by non-direct readahead, or faulted in by get_user_pages()
2320 * if the source of the write was an mmap'ed region of the file
2321 * we're writing. Either one is a pretty crazy thing to do,
2322 * so we don't support it 100%. If this invalidation
2323 * fails, tough, the write still worked...
2325 if (mapping->nrpages) {
2326 invalidate_inode_pages2_range(mapping,
2327 pos >> PAGE_CACHE_SHIFT, end);
2330 if (written > 0) {
2331 pos += written;
2332 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2333 i_size_write(inode, pos);
2334 mark_inode_dirty(inode);
2336 *ppos = pos;
2338 out:
2339 return written;
2341 EXPORT_SYMBOL(generic_file_direct_write);
2344 * Find or create a page at the given pagecache position. Return the locked
2345 * page. This function is specifically for buffered writes.
2347 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2348 pgoff_t index, unsigned flags)
2350 int status;
2351 struct page *page;
2352 gfp_t gfp_notmask = 0;
2353 if (flags & AOP_FLAG_NOFS)
2354 gfp_notmask = __GFP_FS;
2355 repeat:
2356 page = find_lock_page(mapping, index);
2357 if (page)
2358 goto found;
2360 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2361 if (!page)
2362 return NULL;
2363 status = add_to_page_cache_lru(page, mapping, index,
2364 GFP_KERNEL & ~gfp_notmask);
2365 if (unlikely(status)) {
2366 page_cache_release(page);
2367 if (status == -EEXIST)
2368 goto repeat;
2369 return NULL;
2371 found:
2372 wait_on_page_writeback(page);
2373 return page;
2375 EXPORT_SYMBOL(grab_cache_page_write_begin);
2377 static ssize_t generic_perform_write(struct file *file,
2378 struct iov_iter *i, loff_t pos)
2380 struct address_space *mapping = file->f_mapping;
2381 const struct address_space_operations *a_ops = mapping->a_ops;
2382 long status = 0;
2383 ssize_t written = 0;
2384 unsigned int flags = 0;
2387 * Copies from kernel address space cannot fail (NFSD is a big user).
2389 if (segment_eq(get_fs(), KERNEL_DS))
2390 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2392 do {
2393 struct page *page;
2394 unsigned long offset; /* Offset into pagecache page */
2395 unsigned long bytes; /* Bytes to write to page */
2396 size_t copied; /* Bytes copied from user */
2397 void *fsdata;
2399 offset = (pos & (PAGE_CACHE_SIZE - 1));
2400 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2401 iov_iter_count(i));
2403 again:
2406 * Bring in the user page that we will copy from _first_.
2407 * Otherwise there's a nasty deadlock on copying from the
2408 * same page as we're writing to, without it being marked
2409 * up-to-date.
2411 * Not only is this an optimisation, but it is also required
2412 * to check that the address is actually valid, when atomic
2413 * usercopies are used, below.
2415 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2416 status = -EFAULT;
2417 break;
2420 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2421 &page, &fsdata);
2422 if (unlikely(status))
2423 break;
2425 if (mapping_writably_mapped(mapping))
2426 flush_dcache_page(page);
2428 pagefault_disable();
2429 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2430 pagefault_enable();
2431 flush_dcache_page(page);
2433 mark_page_accessed(page);
2434 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2435 page, fsdata);
2436 if (unlikely(status < 0))
2437 break;
2438 copied = status;
2440 cond_resched();
2442 iov_iter_advance(i, copied);
2443 if (unlikely(copied == 0)) {
2445 * If we were unable to copy any data at all, we must
2446 * fall back to a single segment length write.
2448 * If we didn't fallback here, we could livelock
2449 * because not all segments in the iov can be copied at
2450 * once without a pagefault.
2452 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2453 iov_iter_single_seg_count(i));
2454 goto again;
2456 pos += copied;
2457 written += copied;
2459 balance_dirty_pages_ratelimited(mapping);
2461 } while (iov_iter_count(i));
2463 return written ? written : status;
2466 ssize_t
2467 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2468 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2469 size_t count, ssize_t written)
2471 struct file *file = iocb->ki_filp;
2472 ssize_t status;
2473 struct iov_iter i;
2475 iov_iter_init(&i, iov, nr_segs, count, written);
2476 status = generic_perform_write(file, &i, pos);
2478 if (likely(status >= 0)) {
2479 written += status;
2480 *ppos = pos + status;
2483 return written ? written : status;
2485 EXPORT_SYMBOL(generic_file_buffered_write);
2488 * __generic_file_aio_write - write data to a file
2489 * @iocb: IO state structure (file, offset, etc.)
2490 * @iov: vector with data to write
2491 * @nr_segs: number of segments in the vector
2492 * @ppos: position where to write
2494 * This function does all the work needed for actually writing data to a
2495 * file. It does all basic checks, removes SUID from the file, updates
2496 * modification times and calls proper subroutines depending on whether we
2497 * do direct IO or a standard buffered write.
2499 * It expects i_mutex to be grabbed unless we work on a block device or similar
2500 * object which does not need locking at all.
2502 * This function does *not* take care of syncing data in case of O_SYNC write.
2503 * A caller has to handle it. This is mainly due to the fact that we want to
2504 * avoid syncing under i_mutex.
2506 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2507 unsigned long nr_segs, loff_t *ppos)
2509 struct file *file = iocb->ki_filp;
2510 struct address_space * mapping = file->f_mapping;
2511 size_t ocount; /* original count */
2512 size_t count; /* after file limit checks */
2513 struct inode *inode = mapping->host;
2514 loff_t pos;
2515 ssize_t written;
2516 ssize_t err;
2518 ocount = 0;
2519 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2520 if (err)
2521 return err;
2523 count = ocount;
2524 pos = *ppos;
2526 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2528 /* We can write back this queue in page reclaim */
2529 current->backing_dev_info = mapping->backing_dev_info;
2530 written = 0;
2532 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2533 if (err)
2534 goto out;
2536 if (count == 0)
2537 goto out;
2539 err = file_remove_suid(file);
2540 if (err)
2541 goto out;
2543 file_update_time(file);
2545 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2546 if (unlikely(file->f_flags & O_DIRECT)) {
2547 loff_t endbyte;
2548 ssize_t written_buffered;
2550 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2551 ppos, count, ocount);
2552 if (written < 0 || written == count)
2553 goto out;
2555 * direct-io write to a hole: fall through to buffered I/O
2556 * for completing the rest of the request.
2558 pos += written;
2559 count -= written;
2560 written_buffered = generic_file_buffered_write(iocb, iov,
2561 nr_segs, pos, ppos, count,
2562 written);
2564 * If generic_file_buffered_write() retuned a synchronous error
2565 * then we want to return the number of bytes which were
2566 * direct-written, or the error code if that was zero. Note
2567 * that this differs from normal direct-io semantics, which
2568 * will return -EFOO even if some bytes were written.
2570 if (written_buffered < 0) {
2571 err = written_buffered;
2572 goto out;
2576 * We need to ensure that the page cache pages are written to
2577 * disk and invalidated to preserve the expected O_DIRECT
2578 * semantics.
2580 endbyte = pos + written_buffered - written - 1;
2581 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2582 if (err == 0) {
2583 written = written_buffered;
2584 invalidate_mapping_pages(mapping,
2585 pos >> PAGE_CACHE_SHIFT,
2586 endbyte >> PAGE_CACHE_SHIFT);
2587 } else {
2589 * We don't know how much we wrote, so just return
2590 * the number of bytes which were direct-written
2593 } else {
2594 written = generic_file_buffered_write(iocb, iov, nr_segs,
2595 pos, ppos, count, written);
2597 out:
2598 current->backing_dev_info = NULL;
2599 return written ? written : err;
2601 EXPORT_SYMBOL(__generic_file_aio_write);
2604 * generic_file_aio_write - write data to a file
2605 * @iocb: IO state structure
2606 * @iov: vector with data to write
2607 * @nr_segs: number of segments in the vector
2608 * @pos: position in file where to write
2610 * This is a wrapper around __generic_file_aio_write() to be used by most
2611 * filesystems. It takes care of syncing the file in case of O_SYNC file
2612 * and acquires i_mutex as needed.
2614 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2615 unsigned long nr_segs, loff_t pos)
2617 struct file *file = iocb->ki_filp;
2618 struct inode *inode = file->f_mapping->host;
2619 struct blk_plug plug;
2620 ssize_t ret;
2622 BUG_ON(iocb->ki_pos != pos);
2624 mutex_lock(&inode->i_mutex);
2625 blk_start_plug(&plug);
2626 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2627 mutex_unlock(&inode->i_mutex);
2629 if (ret > 0 || ret == -EIOCBQUEUED) {
2630 ssize_t err;
2632 err = generic_write_sync(file, pos, ret);
2633 if (err < 0 && ret > 0)
2634 ret = err;
2636 blk_finish_plug(&plug);
2637 return ret;
2639 EXPORT_SYMBOL(generic_file_aio_write);
2642 * try_to_release_page() - release old fs-specific metadata on a page
2644 * @page: the page which the kernel is trying to free
2645 * @gfp_mask: memory allocation flags (and I/O mode)
2647 * The address_space is to try to release any data against the page
2648 * (presumably at page->private). If the release was successful, return `1'.
2649 * Otherwise return zero.
2651 * This may also be called if PG_fscache is set on a page, indicating that the
2652 * page is known to the local caching routines.
2654 * The @gfp_mask argument specifies whether I/O may be performed to release
2655 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2658 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2660 struct address_space * const mapping = page->mapping;
2662 BUG_ON(!PageLocked(page));
2663 if (PageWriteback(page))
2664 return 0;
2666 if (mapping && mapping->a_ops->releasepage)
2667 return mapping->a_ops->releasepage(page, gfp_mask);
2668 return try_to_free_buffers(page);
2671 EXPORT_SYMBOL(try_to_release_page);