Merge branch 'v2.6.36-rc8' into for-2.6.37/barrier
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blobed075d19db376493b16d415dc10568d68b4a85d8
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/smp_lock.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
68 static void md_print_devices(void);
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
75 * Default number of read corrections we'll attempt on an rdev
76 * before ejecting it from the array. We divide the read error
77 * count by 2 for every hour elapsed between read errors.
79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82 * is 1000 KB/sec, so the extra system load does not show up that much.
83 * Increase it if you want to have more _guaranteed_ speed. Note that
84 * the RAID driver will use the maximum available bandwidth if the IO
85 * subsystem is idle. There is also an 'absolute maximum' reconstruction
86 * speed limit - in case reconstruction slows down your system despite
87 * idle IO detection.
89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90 * or /sys/block/mdX/md/sync_speed_{min,max}
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
97 return mddev->sync_speed_min ?
98 mddev->sync_speed_min : sysctl_speed_limit_min;
101 static inline int speed_max(mddev_t *mddev)
103 return mddev->sync_speed_max ?
104 mddev->sync_speed_max : sysctl_speed_limit_max;
107 static struct ctl_table_header *raid_table_header;
109 static ctl_table raid_table[] = {
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = proc_dointvec,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = proc_dointvec,
127 static ctl_table raid_dir_table[] = {
129 .procname = "raid",
130 .maxlen = 0,
131 .mode = S_IRUGO|S_IXUGO,
132 .child = raid_table,
137 static ctl_table raid_root_table[] = {
139 .procname = "dev",
140 .maxlen = 0,
141 .mode = 0555,
142 .child = raid_dir_table,
147 static const struct block_device_operations md_fops;
149 static int start_readonly;
152 * We have a system wide 'event count' that is incremented
153 * on any 'interesting' event, and readers of /proc/mdstat
154 * can use 'poll' or 'select' to find out when the event
155 * count increases.
157 * Events are:
158 * start array, stop array, error, add device, remove device,
159 * start build, activate spare
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
165 atomic_inc(&md_event_count);
166 wake_up(&md_event_waiters);
168 EXPORT_SYMBOL_GPL(md_new_event);
170 /* Alternate version that can be called from interrupts
171 * when calling sysfs_notify isn't needed.
173 static void md_new_event_inintr(mddev_t *mddev)
175 atomic_inc(&md_event_count);
176 wake_up(&md_event_waiters);
180 * Enables to iterate over all existing md arrays
181 * all_mddevs_lock protects this list.
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
188 * iterates through all used mddevs in the system.
189 * We take care to grab the all_mddevs_lock whenever navigating
190 * the list, and to always hold a refcount when unlocked.
191 * Any code which breaks out of this loop while own
192 * a reference to the current mddev and must mddev_put it.
194 #define for_each_mddev(mddev,tmp) \
196 for (({ spin_lock(&all_mddevs_lock); \
197 tmp = all_mddevs.next; \
198 mddev = NULL;}); \
199 ({ if (tmp != &all_mddevs) \
200 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 spin_unlock(&all_mddevs_lock); \
202 if (mddev) mddev_put(mddev); \
203 mddev = list_entry(tmp, mddev_t, all_mddevs); \
204 tmp != &all_mddevs;}); \
205 ({ spin_lock(&all_mddevs_lock); \
206 tmp = tmp->next;}) \
210 /* Rather than calling directly into the personality make_request function,
211 * IO requests come here first so that we can check if the device is
212 * being suspended pending a reconfiguration.
213 * We hold a refcount over the call to ->make_request. By the time that
214 * call has finished, the bio has been linked into some internal structure
215 * and so is visible to ->quiesce(), so we don't need the refcount any more.
217 static int md_make_request(struct request_queue *q, struct bio *bio)
219 const int rw = bio_data_dir(bio);
220 mddev_t *mddev = q->queuedata;
221 int rv;
222 int cpu;
224 if (mddev == NULL || mddev->pers == NULL) {
225 bio_io_error(bio);
226 return 0;
228 rcu_read_lock();
229 if (mddev->suspended) {
230 DEFINE_WAIT(__wait);
231 for (;;) {
232 prepare_to_wait(&mddev->sb_wait, &__wait,
233 TASK_UNINTERRUPTIBLE);
234 if (!mddev->suspended)
235 break;
236 rcu_read_unlock();
237 schedule();
238 rcu_read_lock();
240 finish_wait(&mddev->sb_wait, &__wait);
242 atomic_inc(&mddev->active_io);
243 rcu_read_unlock();
245 rv = mddev->pers->make_request(mddev, bio);
247 cpu = part_stat_lock();
248 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
249 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
250 bio_sectors(bio));
251 part_stat_unlock();
253 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
254 wake_up(&mddev->sb_wait);
256 return rv;
259 /* mddev_suspend makes sure no new requests are submitted
260 * to the device, and that any requests that have been submitted
261 * are completely handled.
262 * Once ->stop is called and completes, the module will be completely
263 * unused.
265 void mddev_suspend(mddev_t *mddev)
267 BUG_ON(mddev->suspended);
268 mddev->suspended = 1;
269 synchronize_rcu();
270 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
271 mddev->pers->quiesce(mddev, 1);
273 EXPORT_SYMBOL_GPL(mddev_suspend);
275 void mddev_resume(mddev_t *mddev)
277 mddev->suspended = 0;
278 wake_up(&mddev->sb_wait);
279 mddev->pers->quiesce(mddev, 0);
281 EXPORT_SYMBOL_GPL(mddev_resume);
283 int mddev_congested(mddev_t *mddev, int bits)
285 return mddev->suspended;
287 EXPORT_SYMBOL(mddev_congested);
290 * Generic flush handling for md
293 static void md_end_flush(struct bio *bio, int err)
295 mdk_rdev_t *rdev = bio->bi_private;
296 mddev_t *mddev = rdev->mddev;
298 rdev_dec_pending(rdev, mddev);
300 if (atomic_dec_and_test(&mddev->flush_pending)) {
301 /* The pre-request flush has finished */
302 schedule_work(&mddev->flush_work);
304 bio_put(bio);
307 static void submit_flushes(mddev_t *mddev)
309 mdk_rdev_t *rdev;
311 rcu_read_lock();
312 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
313 if (rdev->raid_disk >= 0 &&
314 !test_bit(Faulty, &rdev->flags)) {
315 /* Take two references, one is dropped
316 * when request finishes, one after
317 * we reclaim rcu_read_lock
319 struct bio *bi;
320 atomic_inc(&rdev->nr_pending);
321 atomic_inc(&rdev->nr_pending);
322 rcu_read_unlock();
323 bi = bio_alloc(GFP_KERNEL, 0);
324 bi->bi_end_io = md_end_flush;
325 bi->bi_private = rdev;
326 bi->bi_bdev = rdev->bdev;
327 atomic_inc(&mddev->flush_pending);
328 submit_bio(WRITE_FLUSH, bi);
329 rcu_read_lock();
330 rdev_dec_pending(rdev, mddev);
332 rcu_read_unlock();
335 static void md_submit_flush_data(struct work_struct *ws)
337 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
338 struct bio *bio = mddev->flush_bio;
340 atomic_set(&mddev->flush_pending, 1);
342 if (bio->bi_size == 0)
343 /* an empty barrier - all done */
344 bio_endio(bio, 0);
345 else {
346 bio->bi_rw &= ~REQ_FLUSH;
347 if (mddev->pers->make_request(mddev, bio))
348 generic_make_request(bio);
350 if (atomic_dec_and_test(&mddev->flush_pending)) {
351 mddev->flush_bio = NULL;
352 wake_up(&mddev->sb_wait);
356 void md_flush_request(mddev_t *mddev, struct bio *bio)
358 spin_lock_irq(&mddev->write_lock);
359 wait_event_lock_irq(mddev->sb_wait,
360 !mddev->flush_bio,
361 mddev->write_lock, /*nothing*/);
362 mddev->flush_bio = bio;
363 spin_unlock_irq(&mddev->write_lock);
365 atomic_set(&mddev->flush_pending, 1);
366 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
368 submit_flushes(mddev);
370 if (atomic_dec_and_test(&mddev->flush_pending))
371 schedule_work(&mddev->flush_work);
373 EXPORT_SYMBOL(md_flush_request);
375 /* Support for plugging.
376 * This mirrors the plugging support in request_queue, but does not
377 * require having a whole queue
379 static void plugger_work(struct work_struct *work)
381 struct plug_handle *plug =
382 container_of(work, struct plug_handle, unplug_work);
383 plug->unplug_fn(plug);
385 static void plugger_timeout(unsigned long data)
387 struct plug_handle *plug = (void *)data;
388 kblockd_schedule_work(NULL, &plug->unplug_work);
390 void plugger_init(struct plug_handle *plug,
391 void (*unplug_fn)(struct plug_handle *))
393 plug->unplug_flag = 0;
394 plug->unplug_fn = unplug_fn;
395 init_timer(&plug->unplug_timer);
396 plug->unplug_timer.function = plugger_timeout;
397 plug->unplug_timer.data = (unsigned long)plug;
398 INIT_WORK(&plug->unplug_work, plugger_work);
400 EXPORT_SYMBOL_GPL(plugger_init);
402 void plugger_set_plug(struct plug_handle *plug)
404 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
405 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
407 EXPORT_SYMBOL_GPL(plugger_set_plug);
409 int plugger_remove_plug(struct plug_handle *plug)
411 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
412 del_timer(&plug->unplug_timer);
413 return 1;
414 } else
415 return 0;
417 EXPORT_SYMBOL_GPL(plugger_remove_plug);
420 static inline mddev_t *mddev_get(mddev_t *mddev)
422 atomic_inc(&mddev->active);
423 return mddev;
426 static void mddev_delayed_delete(struct work_struct *ws);
428 static void mddev_put(mddev_t *mddev)
430 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
431 return;
432 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
433 mddev->ctime == 0 && !mddev->hold_active) {
434 /* Array is not configured at all, and not held active,
435 * so destroy it */
436 list_del(&mddev->all_mddevs);
437 if (mddev->gendisk) {
438 /* we did a probe so need to clean up.
439 * Call schedule_work inside the spinlock
440 * so that flush_scheduled_work() after
441 * mddev_find will succeed in waiting for the
442 * work to be done.
444 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
445 schedule_work(&mddev->del_work);
446 } else
447 kfree(mddev);
449 spin_unlock(&all_mddevs_lock);
452 void mddev_init(mddev_t *mddev)
454 mutex_init(&mddev->open_mutex);
455 mutex_init(&mddev->reconfig_mutex);
456 mutex_init(&mddev->bitmap_info.mutex);
457 INIT_LIST_HEAD(&mddev->disks);
458 INIT_LIST_HEAD(&mddev->all_mddevs);
459 init_timer(&mddev->safemode_timer);
460 atomic_set(&mddev->active, 1);
461 atomic_set(&mddev->openers, 0);
462 atomic_set(&mddev->active_io, 0);
463 spin_lock_init(&mddev->write_lock);
464 atomic_set(&mddev->flush_pending, 0);
465 init_waitqueue_head(&mddev->sb_wait);
466 init_waitqueue_head(&mddev->recovery_wait);
467 mddev->reshape_position = MaxSector;
468 mddev->resync_min = 0;
469 mddev->resync_max = MaxSector;
470 mddev->level = LEVEL_NONE;
472 EXPORT_SYMBOL_GPL(mddev_init);
474 static mddev_t * mddev_find(dev_t unit)
476 mddev_t *mddev, *new = NULL;
478 retry:
479 spin_lock(&all_mddevs_lock);
481 if (unit) {
482 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
483 if (mddev->unit == unit) {
484 mddev_get(mddev);
485 spin_unlock(&all_mddevs_lock);
486 kfree(new);
487 return mddev;
490 if (new) {
491 list_add(&new->all_mddevs, &all_mddevs);
492 spin_unlock(&all_mddevs_lock);
493 new->hold_active = UNTIL_IOCTL;
494 return new;
496 } else if (new) {
497 /* find an unused unit number */
498 static int next_minor = 512;
499 int start = next_minor;
500 int is_free = 0;
501 int dev = 0;
502 while (!is_free) {
503 dev = MKDEV(MD_MAJOR, next_minor);
504 next_minor++;
505 if (next_minor > MINORMASK)
506 next_minor = 0;
507 if (next_minor == start) {
508 /* Oh dear, all in use. */
509 spin_unlock(&all_mddevs_lock);
510 kfree(new);
511 return NULL;
514 is_free = 1;
515 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
516 if (mddev->unit == dev) {
517 is_free = 0;
518 break;
521 new->unit = dev;
522 new->md_minor = MINOR(dev);
523 new->hold_active = UNTIL_STOP;
524 list_add(&new->all_mddevs, &all_mddevs);
525 spin_unlock(&all_mddevs_lock);
526 return new;
528 spin_unlock(&all_mddevs_lock);
530 new = kzalloc(sizeof(*new), GFP_KERNEL);
531 if (!new)
532 return NULL;
534 new->unit = unit;
535 if (MAJOR(unit) == MD_MAJOR)
536 new->md_minor = MINOR(unit);
537 else
538 new->md_minor = MINOR(unit) >> MdpMinorShift;
540 mddev_init(new);
542 goto retry;
545 static inline int mddev_lock(mddev_t * mddev)
547 return mutex_lock_interruptible(&mddev->reconfig_mutex);
550 static inline int mddev_is_locked(mddev_t *mddev)
552 return mutex_is_locked(&mddev->reconfig_mutex);
555 static inline int mddev_trylock(mddev_t * mddev)
557 return mutex_trylock(&mddev->reconfig_mutex);
560 static struct attribute_group md_redundancy_group;
562 static void mddev_unlock(mddev_t * mddev)
564 if (mddev->to_remove) {
565 /* These cannot be removed under reconfig_mutex as
566 * an access to the files will try to take reconfig_mutex
567 * while holding the file unremovable, which leads to
568 * a deadlock.
569 * So hold set sysfs_active while the remove in happeing,
570 * and anything else which might set ->to_remove or my
571 * otherwise change the sysfs namespace will fail with
572 * -EBUSY if sysfs_active is still set.
573 * We set sysfs_active under reconfig_mutex and elsewhere
574 * test it under the same mutex to ensure its correct value
575 * is seen.
577 struct attribute_group *to_remove = mddev->to_remove;
578 mddev->to_remove = NULL;
579 mddev->sysfs_active = 1;
580 mutex_unlock(&mddev->reconfig_mutex);
582 if (mddev->kobj.sd) {
583 if (to_remove != &md_redundancy_group)
584 sysfs_remove_group(&mddev->kobj, to_remove);
585 if (mddev->pers == NULL ||
586 mddev->pers->sync_request == NULL) {
587 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
588 if (mddev->sysfs_action)
589 sysfs_put(mddev->sysfs_action);
590 mddev->sysfs_action = NULL;
593 mddev->sysfs_active = 0;
594 } else
595 mutex_unlock(&mddev->reconfig_mutex);
597 md_wakeup_thread(mddev->thread);
600 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
602 mdk_rdev_t *rdev;
604 list_for_each_entry(rdev, &mddev->disks, same_set)
605 if (rdev->desc_nr == nr)
606 return rdev;
608 return NULL;
611 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
613 mdk_rdev_t *rdev;
615 list_for_each_entry(rdev, &mddev->disks, same_set)
616 if (rdev->bdev->bd_dev == dev)
617 return rdev;
619 return NULL;
622 static struct mdk_personality *find_pers(int level, char *clevel)
624 struct mdk_personality *pers;
625 list_for_each_entry(pers, &pers_list, list) {
626 if (level != LEVEL_NONE && pers->level == level)
627 return pers;
628 if (strcmp(pers->name, clevel)==0)
629 return pers;
631 return NULL;
634 /* return the offset of the super block in 512byte sectors */
635 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
637 sector_t num_sectors = bdev->bd_inode->i_size / 512;
638 return MD_NEW_SIZE_SECTORS(num_sectors);
641 static int alloc_disk_sb(mdk_rdev_t * rdev)
643 if (rdev->sb_page)
644 MD_BUG();
646 rdev->sb_page = alloc_page(GFP_KERNEL);
647 if (!rdev->sb_page) {
648 printk(KERN_ALERT "md: out of memory.\n");
649 return -ENOMEM;
652 return 0;
655 static void free_disk_sb(mdk_rdev_t * rdev)
657 if (rdev->sb_page) {
658 put_page(rdev->sb_page);
659 rdev->sb_loaded = 0;
660 rdev->sb_page = NULL;
661 rdev->sb_start = 0;
662 rdev->sectors = 0;
667 static void super_written(struct bio *bio, int error)
669 mdk_rdev_t *rdev = bio->bi_private;
670 mddev_t *mddev = rdev->mddev;
672 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
673 printk("md: super_written gets error=%d, uptodate=%d\n",
674 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
675 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
676 md_error(mddev, rdev);
679 if (atomic_dec_and_test(&mddev->pending_writes))
680 wake_up(&mddev->sb_wait);
681 bio_put(bio);
684 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
685 sector_t sector, int size, struct page *page)
687 /* write first size bytes of page to sector of rdev
688 * Increment mddev->pending_writes before returning
689 * and decrement it on completion, waking up sb_wait
690 * if zero is reached.
691 * If an error occurred, call md_error
693 struct bio *bio = bio_alloc(GFP_NOIO, 1);
695 bio->bi_bdev = rdev->bdev;
696 bio->bi_sector = sector;
697 bio_add_page(bio, page, size, 0);
698 bio->bi_private = rdev;
699 bio->bi_end_io = super_written;
701 atomic_inc(&mddev->pending_writes);
702 submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
703 bio);
706 void md_super_wait(mddev_t *mddev)
708 /* wait for all superblock writes that were scheduled to complete */
709 DEFINE_WAIT(wq);
710 for(;;) {
711 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
712 if (atomic_read(&mddev->pending_writes)==0)
713 break;
714 schedule();
716 finish_wait(&mddev->sb_wait, &wq);
719 static void bi_complete(struct bio *bio, int error)
721 complete((struct completion*)bio->bi_private);
724 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
725 struct page *page, int rw)
727 struct bio *bio = bio_alloc(GFP_NOIO, 1);
728 struct completion event;
729 int ret;
731 rw |= REQ_SYNC | REQ_UNPLUG;
733 bio->bi_bdev = bdev;
734 bio->bi_sector = sector;
735 bio_add_page(bio, page, size, 0);
736 init_completion(&event);
737 bio->bi_private = &event;
738 bio->bi_end_io = bi_complete;
739 submit_bio(rw, bio);
740 wait_for_completion(&event);
742 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
743 bio_put(bio);
744 return ret;
746 EXPORT_SYMBOL_GPL(sync_page_io);
748 static int read_disk_sb(mdk_rdev_t * rdev, int size)
750 char b[BDEVNAME_SIZE];
751 if (!rdev->sb_page) {
752 MD_BUG();
753 return -EINVAL;
755 if (rdev->sb_loaded)
756 return 0;
759 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
760 goto fail;
761 rdev->sb_loaded = 1;
762 return 0;
764 fail:
765 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
766 bdevname(rdev->bdev,b));
767 return -EINVAL;
770 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
772 return sb1->set_uuid0 == sb2->set_uuid0 &&
773 sb1->set_uuid1 == sb2->set_uuid1 &&
774 sb1->set_uuid2 == sb2->set_uuid2 &&
775 sb1->set_uuid3 == sb2->set_uuid3;
778 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
780 int ret;
781 mdp_super_t *tmp1, *tmp2;
783 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
784 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
786 if (!tmp1 || !tmp2) {
787 ret = 0;
788 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
789 goto abort;
792 *tmp1 = *sb1;
793 *tmp2 = *sb2;
796 * nr_disks is not constant
798 tmp1->nr_disks = 0;
799 tmp2->nr_disks = 0;
801 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
802 abort:
803 kfree(tmp1);
804 kfree(tmp2);
805 return ret;
809 static u32 md_csum_fold(u32 csum)
811 csum = (csum & 0xffff) + (csum >> 16);
812 return (csum & 0xffff) + (csum >> 16);
815 static unsigned int calc_sb_csum(mdp_super_t * sb)
817 u64 newcsum = 0;
818 u32 *sb32 = (u32*)sb;
819 int i;
820 unsigned int disk_csum, csum;
822 disk_csum = sb->sb_csum;
823 sb->sb_csum = 0;
825 for (i = 0; i < MD_SB_BYTES/4 ; i++)
826 newcsum += sb32[i];
827 csum = (newcsum & 0xffffffff) + (newcsum>>32);
830 #ifdef CONFIG_ALPHA
831 /* This used to use csum_partial, which was wrong for several
832 * reasons including that different results are returned on
833 * different architectures. It isn't critical that we get exactly
834 * the same return value as before (we always csum_fold before
835 * testing, and that removes any differences). However as we
836 * know that csum_partial always returned a 16bit value on
837 * alphas, do a fold to maximise conformity to previous behaviour.
839 sb->sb_csum = md_csum_fold(disk_csum);
840 #else
841 sb->sb_csum = disk_csum;
842 #endif
843 return csum;
848 * Handle superblock details.
849 * We want to be able to handle multiple superblock formats
850 * so we have a common interface to them all, and an array of
851 * different handlers.
852 * We rely on user-space to write the initial superblock, and support
853 * reading and updating of superblocks.
854 * Interface methods are:
855 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
856 * loads and validates a superblock on dev.
857 * if refdev != NULL, compare superblocks on both devices
858 * Return:
859 * 0 - dev has a superblock that is compatible with refdev
860 * 1 - dev has a superblock that is compatible and newer than refdev
861 * so dev should be used as the refdev in future
862 * -EINVAL superblock incompatible or invalid
863 * -othererror e.g. -EIO
865 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
866 * Verify that dev is acceptable into mddev.
867 * The first time, mddev->raid_disks will be 0, and data from
868 * dev should be merged in. Subsequent calls check that dev
869 * is new enough. Return 0 or -EINVAL
871 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
872 * Update the superblock for rdev with data in mddev
873 * This does not write to disc.
877 struct super_type {
878 char *name;
879 struct module *owner;
880 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
881 int minor_version);
882 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
883 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
884 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
885 sector_t num_sectors);
889 * Check that the given mddev has no bitmap.
891 * This function is called from the run method of all personalities that do not
892 * support bitmaps. It prints an error message and returns non-zero if mddev
893 * has a bitmap. Otherwise, it returns 0.
896 int md_check_no_bitmap(mddev_t *mddev)
898 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
899 return 0;
900 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
901 mdname(mddev), mddev->pers->name);
902 return 1;
904 EXPORT_SYMBOL(md_check_no_bitmap);
907 * load_super for 0.90.0
909 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
911 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
912 mdp_super_t *sb;
913 int ret;
916 * Calculate the position of the superblock (512byte sectors),
917 * it's at the end of the disk.
919 * It also happens to be a multiple of 4Kb.
921 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
923 ret = read_disk_sb(rdev, MD_SB_BYTES);
924 if (ret) return ret;
926 ret = -EINVAL;
928 bdevname(rdev->bdev, b);
929 sb = (mdp_super_t*)page_address(rdev->sb_page);
931 if (sb->md_magic != MD_SB_MAGIC) {
932 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
934 goto abort;
937 if (sb->major_version != 0 ||
938 sb->minor_version < 90 ||
939 sb->minor_version > 91) {
940 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
941 sb->major_version, sb->minor_version,
943 goto abort;
946 if (sb->raid_disks <= 0)
947 goto abort;
949 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
950 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
952 goto abort;
955 rdev->preferred_minor = sb->md_minor;
956 rdev->data_offset = 0;
957 rdev->sb_size = MD_SB_BYTES;
959 if (sb->level == LEVEL_MULTIPATH)
960 rdev->desc_nr = -1;
961 else
962 rdev->desc_nr = sb->this_disk.number;
964 if (!refdev) {
965 ret = 1;
966 } else {
967 __u64 ev1, ev2;
968 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
969 if (!uuid_equal(refsb, sb)) {
970 printk(KERN_WARNING "md: %s has different UUID to %s\n",
971 b, bdevname(refdev->bdev,b2));
972 goto abort;
974 if (!sb_equal(refsb, sb)) {
975 printk(KERN_WARNING "md: %s has same UUID"
976 " but different superblock to %s\n",
977 b, bdevname(refdev->bdev, b2));
978 goto abort;
980 ev1 = md_event(sb);
981 ev2 = md_event(refsb);
982 if (ev1 > ev2)
983 ret = 1;
984 else
985 ret = 0;
987 rdev->sectors = rdev->sb_start;
989 if (rdev->sectors < sb->size * 2 && sb->level > 1)
990 /* "this cannot possibly happen" ... */
991 ret = -EINVAL;
993 abort:
994 return ret;
998 * validate_super for 0.90.0
1000 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1002 mdp_disk_t *desc;
1003 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1004 __u64 ev1 = md_event(sb);
1006 rdev->raid_disk = -1;
1007 clear_bit(Faulty, &rdev->flags);
1008 clear_bit(In_sync, &rdev->flags);
1009 clear_bit(WriteMostly, &rdev->flags);
1011 if (mddev->raid_disks == 0) {
1012 mddev->major_version = 0;
1013 mddev->minor_version = sb->minor_version;
1014 mddev->patch_version = sb->patch_version;
1015 mddev->external = 0;
1016 mddev->chunk_sectors = sb->chunk_size >> 9;
1017 mddev->ctime = sb->ctime;
1018 mddev->utime = sb->utime;
1019 mddev->level = sb->level;
1020 mddev->clevel[0] = 0;
1021 mddev->layout = sb->layout;
1022 mddev->raid_disks = sb->raid_disks;
1023 mddev->dev_sectors = sb->size * 2;
1024 mddev->events = ev1;
1025 mddev->bitmap_info.offset = 0;
1026 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1028 if (mddev->minor_version >= 91) {
1029 mddev->reshape_position = sb->reshape_position;
1030 mddev->delta_disks = sb->delta_disks;
1031 mddev->new_level = sb->new_level;
1032 mddev->new_layout = sb->new_layout;
1033 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1034 } else {
1035 mddev->reshape_position = MaxSector;
1036 mddev->delta_disks = 0;
1037 mddev->new_level = mddev->level;
1038 mddev->new_layout = mddev->layout;
1039 mddev->new_chunk_sectors = mddev->chunk_sectors;
1042 if (sb->state & (1<<MD_SB_CLEAN))
1043 mddev->recovery_cp = MaxSector;
1044 else {
1045 if (sb->events_hi == sb->cp_events_hi &&
1046 sb->events_lo == sb->cp_events_lo) {
1047 mddev->recovery_cp = sb->recovery_cp;
1048 } else
1049 mddev->recovery_cp = 0;
1052 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1053 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1054 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1055 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1057 mddev->max_disks = MD_SB_DISKS;
1059 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1060 mddev->bitmap_info.file == NULL)
1061 mddev->bitmap_info.offset =
1062 mddev->bitmap_info.default_offset;
1064 } else if (mddev->pers == NULL) {
1065 /* Insist on good event counter while assembling, except
1066 * for spares (which don't need an event count) */
1067 ++ev1;
1068 if (sb->disks[rdev->desc_nr].state & (
1069 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1070 if (ev1 < mddev->events)
1071 return -EINVAL;
1072 } else if (mddev->bitmap) {
1073 /* if adding to array with a bitmap, then we can accept an
1074 * older device ... but not too old.
1076 if (ev1 < mddev->bitmap->events_cleared)
1077 return 0;
1078 } else {
1079 if (ev1 < mddev->events)
1080 /* just a hot-add of a new device, leave raid_disk at -1 */
1081 return 0;
1084 if (mddev->level != LEVEL_MULTIPATH) {
1085 desc = sb->disks + rdev->desc_nr;
1087 if (desc->state & (1<<MD_DISK_FAULTY))
1088 set_bit(Faulty, &rdev->flags);
1089 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1090 desc->raid_disk < mddev->raid_disks */) {
1091 set_bit(In_sync, &rdev->flags);
1092 rdev->raid_disk = desc->raid_disk;
1093 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1094 /* active but not in sync implies recovery up to
1095 * reshape position. We don't know exactly where
1096 * that is, so set to zero for now */
1097 if (mddev->minor_version >= 91) {
1098 rdev->recovery_offset = 0;
1099 rdev->raid_disk = desc->raid_disk;
1102 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1103 set_bit(WriteMostly, &rdev->flags);
1104 } else /* MULTIPATH are always insync */
1105 set_bit(In_sync, &rdev->flags);
1106 return 0;
1110 * sync_super for 0.90.0
1112 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1114 mdp_super_t *sb;
1115 mdk_rdev_t *rdev2;
1116 int next_spare = mddev->raid_disks;
1119 /* make rdev->sb match mddev data..
1121 * 1/ zero out disks
1122 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1123 * 3/ any empty disks < next_spare become removed
1125 * disks[0] gets initialised to REMOVED because
1126 * we cannot be sure from other fields if it has
1127 * been initialised or not.
1129 int i;
1130 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1132 rdev->sb_size = MD_SB_BYTES;
1134 sb = (mdp_super_t*)page_address(rdev->sb_page);
1136 memset(sb, 0, sizeof(*sb));
1138 sb->md_magic = MD_SB_MAGIC;
1139 sb->major_version = mddev->major_version;
1140 sb->patch_version = mddev->patch_version;
1141 sb->gvalid_words = 0; /* ignored */
1142 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1143 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1144 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1145 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1147 sb->ctime = mddev->ctime;
1148 sb->level = mddev->level;
1149 sb->size = mddev->dev_sectors / 2;
1150 sb->raid_disks = mddev->raid_disks;
1151 sb->md_minor = mddev->md_minor;
1152 sb->not_persistent = 0;
1153 sb->utime = mddev->utime;
1154 sb->state = 0;
1155 sb->events_hi = (mddev->events>>32);
1156 sb->events_lo = (u32)mddev->events;
1158 if (mddev->reshape_position == MaxSector)
1159 sb->minor_version = 90;
1160 else {
1161 sb->minor_version = 91;
1162 sb->reshape_position = mddev->reshape_position;
1163 sb->new_level = mddev->new_level;
1164 sb->delta_disks = mddev->delta_disks;
1165 sb->new_layout = mddev->new_layout;
1166 sb->new_chunk = mddev->new_chunk_sectors << 9;
1168 mddev->minor_version = sb->minor_version;
1169 if (mddev->in_sync)
1171 sb->recovery_cp = mddev->recovery_cp;
1172 sb->cp_events_hi = (mddev->events>>32);
1173 sb->cp_events_lo = (u32)mddev->events;
1174 if (mddev->recovery_cp == MaxSector)
1175 sb->state = (1<< MD_SB_CLEAN);
1176 } else
1177 sb->recovery_cp = 0;
1179 sb->layout = mddev->layout;
1180 sb->chunk_size = mddev->chunk_sectors << 9;
1182 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1183 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1185 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1186 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1187 mdp_disk_t *d;
1188 int desc_nr;
1189 int is_active = test_bit(In_sync, &rdev2->flags);
1191 if (rdev2->raid_disk >= 0 &&
1192 sb->minor_version >= 91)
1193 /* we have nowhere to store the recovery_offset,
1194 * but if it is not below the reshape_position,
1195 * we can piggy-back on that.
1197 is_active = 1;
1198 if (rdev2->raid_disk < 0 ||
1199 test_bit(Faulty, &rdev2->flags))
1200 is_active = 0;
1201 if (is_active)
1202 desc_nr = rdev2->raid_disk;
1203 else
1204 desc_nr = next_spare++;
1205 rdev2->desc_nr = desc_nr;
1206 d = &sb->disks[rdev2->desc_nr];
1207 nr_disks++;
1208 d->number = rdev2->desc_nr;
1209 d->major = MAJOR(rdev2->bdev->bd_dev);
1210 d->minor = MINOR(rdev2->bdev->bd_dev);
1211 if (is_active)
1212 d->raid_disk = rdev2->raid_disk;
1213 else
1214 d->raid_disk = rdev2->desc_nr; /* compatibility */
1215 if (test_bit(Faulty, &rdev2->flags))
1216 d->state = (1<<MD_DISK_FAULTY);
1217 else if (is_active) {
1218 d->state = (1<<MD_DISK_ACTIVE);
1219 if (test_bit(In_sync, &rdev2->flags))
1220 d->state |= (1<<MD_DISK_SYNC);
1221 active++;
1222 working++;
1223 } else {
1224 d->state = 0;
1225 spare++;
1226 working++;
1228 if (test_bit(WriteMostly, &rdev2->flags))
1229 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1231 /* now set the "removed" and "faulty" bits on any missing devices */
1232 for (i=0 ; i < mddev->raid_disks ; i++) {
1233 mdp_disk_t *d = &sb->disks[i];
1234 if (d->state == 0 && d->number == 0) {
1235 d->number = i;
1236 d->raid_disk = i;
1237 d->state = (1<<MD_DISK_REMOVED);
1238 d->state |= (1<<MD_DISK_FAULTY);
1239 failed++;
1242 sb->nr_disks = nr_disks;
1243 sb->active_disks = active;
1244 sb->working_disks = working;
1245 sb->failed_disks = failed;
1246 sb->spare_disks = spare;
1248 sb->this_disk = sb->disks[rdev->desc_nr];
1249 sb->sb_csum = calc_sb_csum(sb);
1253 * rdev_size_change for 0.90.0
1255 static unsigned long long
1256 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1258 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1259 return 0; /* component must fit device */
1260 if (rdev->mddev->bitmap_info.offset)
1261 return 0; /* can't move bitmap */
1262 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1263 if (!num_sectors || num_sectors > rdev->sb_start)
1264 num_sectors = rdev->sb_start;
1265 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1266 rdev->sb_page);
1267 md_super_wait(rdev->mddev);
1268 return num_sectors / 2; /* kB for sysfs */
1273 * version 1 superblock
1276 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1278 __le32 disk_csum;
1279 u32 csum;
1280 unsigned long long newcsum;
1281 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1282 __le32 *isuper = (__le32*)sb;
1283 int i;
1285 disk_csum = sb->sb_csum;
1286 sb->sb_csum = 0;
1287 newcsum = 0;
1288 for (i=0; size>=4; size -= 4 )
1289 newcsum += le32_to_cpu(*isuper++);
1291 if (size == 2)
1292 newcsum += le16_to_cpu(*(__le16*) isuper);
1294 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1295 sb->sb_csum = disk_csum;
1296 return cpu_to_le32(csum);
1299 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1301 struct mdp_superblock_1 *sb;
1302 int ret;
1303 sector_t sb_start;
1304 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1305 int bmask;
1308 * Calculate the position of the superblock in 512byte sectors.
1309 * It is always aligned to a 4K boundary and
1310 * depeding on minor_version, it can be:
1311 * 0: At least 8K, but less than 12K, from end of device
1312 * 1: At start of device
1313 * 2: 4K from start of device.
1315 switch(minor_version) {
1316 case 0:
1317 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1318 sb_start -= 8*2;
1319 sb_start &= ~(sector_t)(4*2-1);
1320 break;
1321 case 1:
1322 sb_start = 0;
1323 break;
1324 case 2:
1325 sb_start = 8;
1326 break;
1327 default:
1328 return -EINVAL;
1330 rdev->sb_start = sb_start;
1332 /* superblock is rarely larger than 1K, but it can be larger,
1333 * and it is safe to read 4k, so we do that
1335 ret = read_disk_sb(rdev, 4096);
1336 if (ret) return ret;
1339 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1341 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1342 sb->major_version != cpu_to_le32(1) ||
1343 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1344 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1345 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1346 return -EINVAL;
1348 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1349 printk("md: invalid superblock checksum on %s\n",
1350 bdevname(rdev->bdev,b));
1351 return -EINVAL;
1353 if (le64_to_cpu(sb->data_size) < 10) {
1354 printk("md: data_size too small on %s\n",
1355 bdevname(rdev->bdev,b));
1356 return -EINVAL;
1359 rdev->preferred_minor = 0xffff;
1360 rdev->data_offset = le64_to_cpu(sb->data_offset);
1361 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1363 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1364 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1365 if (rdev->sb_size & bmask)
1366 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1368 if (minor_version
1369 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1370 return -EINVAL;
1372 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1373 rdev->desc_nr = -1;
1374 else
1375 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1377 if (!refdev) {
1378 ret = 1;
1379 } else {
1380 __u64 ev1, ev2;
1381 struct mdp_superblock_1 *refsb =
1382 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1384 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1385 sb->level != refsb->level ||
1386 sb->layout != refsb->layout ||
1387 sb->chunksize != refsb->chunksize) {
1388 printk(KERN_WARNING "md: %s has strangely different"
1389 " superblock to %s\n",
1390 bdevname(rdev->bdev,b),
1391 bdevname(refdev->bdev,b2));
1392 return -EINVAL;
1394 ev1 = le64_to_cpu(sb->events);
1395 ev2 = le64_to_cpu(refsb->events);
1397 if (ev1 > ev2)
1398 ret = 1;
1399 else
1400 ret = 0;
1402 if (minor_version)
1403 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1404 le64_to_cpu(sb->data_offset);
1405 else
1406 rdev->sectors = rdev->sb_start;
1407 if (rdev->sectors < le64_to_cpu(sb->data_size))
1408 return -EINVAL;
1409 rdev->sectors = le64_to_cpu(sb->data_size);
1410 if (le64_to_cpu(sb->size) > rdev->sectors)
1411 return -EINVAL;
1412 return ret;
1415 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1417 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1418 __u64 ev1 = le64_to_cpu(sb->events);
1420 rdev->raid_disk = -1;
1421 clear_bit(Faulty, &rdev->flags);
1422 clear_bit(In_sync, &rdev->flags);
1423 clear_bit(WriteMostly, &rdev->flags);
1425 if (mddev->raid_disks == 0) {
1426 mddev->major_version = 1;
1427 mddev->patch_version = 0;
1428 mddev->external = 0;
1429 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1430 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1431 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1432 mddev->level = le32_to_cpu(sb->level);
1433 mddev->clevel[0] = 0;
1434 mddev->layout = le32_to_cpu(sb->layout);
1435 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1436 mddev->dev_sectors = le64_to_cpu(sb->size);
1437 mddev->events = ev1;
1438 mddev->bitmap_info.offset = 0;
1439 mddev->bitmap_info.default_offset = 1024 >> 9;
1441 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1442 memcpy(mddev->uuid, sb->set_uuid, 16);
1444 mddev->max_disks = (4096-256)/2;
1446 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1447 mddev->bitmap_info.file == NULL )
1448 mddev->bitmap_info.offset =
1449 (__s32)le32_to_cpu(sb->bitmap_offset);
1451 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1452 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1453 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1454 mddev->new_level = le32_to_cpu(sb->new_level);
1455 mddev->new_layout = le32_to_cpu(sb->new_layout);
1456 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1457 } else {
1458 mddev->reshape_position = MaxSector;
1459 mddev->delta_disks = 0;
1460 mddev->new_level = mddev->level;
1461 mddev->new_layout = mddev->layout;
1462 mddev->new_chunk_sectors = mddev->chunk_sectors;
1465 } else if (mddev->pers == NULL) {
1466 /* Insist of good event counter while assembling, except for
1467 * spares (which don't need an event count) */
1468 ++ev1;
1469 if (rdev->desc_nr >= 0 &&
1470 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1471 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1472 if (ev1 < mddev->events)
1473 return -EINVAL;
1474 } else if (mddev->bitmap) {
1475 /* If adding to array with a bitmap, then we can accept an
1476 * older device, but not too old.
1478 if (ev1 < mddev->bitmap->events_cleared)
1479 return 0;
1480 } else {
1481 if (ev1 < mddev->events)
1482 /* just a hot-add of a new device, leave raid_disk at -1 */
1483 return 0;
1485 if (mddev->level != LEVEL_MULTIPATH) {
1486 int role;
1487 if (rdev->desc_nr < 0 ||
1488 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1489 role = 0xffff;
1490 rdev->desc_nr = -1;
1491 } else
1492 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1493 switch(role) {
1494 case 0xffff: /* spare */
1495 break;
1496 case 0xfffe: /* faulty */
1497 set_bit(Faulty, &rdev->flags);
1498 break;
1499 default:
1500 if ((le32_to_cpu(sb->feature_map) &
1501 MD_FEATURE_RECOVERY_OFFSET))
1502 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1503 else
1504 set_bit(In_sync, &rdev->flags);
1505 rdev->raid_disk = role;
1506 break;
1508 if (sb->devflags & WriteMostly1)
1509 set_bit(WriteMostly, &rdev->flags);
1510 } else /* MULTIPATH are always insync */
1511 set_bit(In_sync, &rdev->flags);
1513 return 0;
1516 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1518 struct mdp_superblock_1 *sb;
1519 mdk_rdev_t *rdev2;
1520 int max_dev, i;
1521 /* make rdev->sb match mddev and rdev data. */
1523 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1525 sb->feature_map = 0;
1526 sb->pad0 = 0;
1527 sb->recovery_offset = cpu_to_le64(0);
1528 memset(sb->pad1, 0, sizeof(sb->pad1));
1529 memset(sb->pad2, 0, sizeof(sb->pad2));
1530 memset(sb->pad3, 0, sizeof(sb->pad3));
1532 sb->utime = cpu_to_le64((__u64)mddev->utime);
1533 sb->events = cpu_to_le64(mddev->events);
1534 if (mddev->in_sync)
1535 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1536 else
1537 sb->resync_offset = cpu_to_le64(0);
1539 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1541 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1542 sb->size = cpu_to_le64(mddev->dev_sectors);
1543 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1544 sb->level = cpu_to_le32(mddev->level);
1545 sb->layout = cpu_to_le32(mddev->layout);
1547 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1548 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1549 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1552 if (rdev->raid_disk >= 0 &&
1553 !test_bit(In_sync, &rdev->flags)) {
1554 sb->feature_map |=
1555 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1556 sb->recovery_offset =
1557 cpu_to_le64(rdev->recovery_offset);
1560 if (mddev->reshape_position != MaxSector) {
1561 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1562 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1563 sb->new_layout = cpu_to_le32(mddev->new_layout);
1564 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1565 sb->new_level = cpu_to_le32(mddev->new_level);
1566 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1569 max_dev = 0;
1570 list_for_each_entry(rdev2, &mddev->disks, same_set)
1571 if (rdev2->desc_nr+1 > max_dev)
1572 max_dev = rdev2->desc_nr+1;
1574 if (max_dev > le32_to_cpu(sb->max_dev)) {
1575 int bmask;
1576 sb->max_dev = cpu_to_le32(max_dev);
1577 rdev->sb_size = max_dev * 2 + 256;
1578 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1579 if (rdev->sb_size & bmask)
1580 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1581 } else
1582 max_dev = le32_to_cpu(sb->max_dev);
1584 for (i=0; i<max_dev;i++)
1585 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1587 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1588 i = rdev2->desc_nr;
1589 if (test_bit(Faulty, &rdev2->flags))
1590 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1591 else if (test_bit(In_sync, &rdev2->flags))
1592 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1593 else if (rdev2->raid_disk >= 0)
1594 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1595 else
1596 sb->dev_roles[i] = cpu_to_le16(0xffff);
1599 sb->sb_csum = calc_sb_1_csum(sb);
1602 static unsigned long long
1603 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1605 struct mdp_superblock_1 *sb;
1606 sector_t max_sectors;
1607 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1608 return 0; /* component must fit device */
1609 if (rdev->sb_start < rdev->data_offset) {
1610 /* minor versions 1 and 2; superblock before data */
1611 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1612 max_sectors -= rdev->data_offset;
1613 if (!num_sectors || num_sectors > max_sectors)
1614 num_sectors = max_sectors;
1615 } else if (rdev->mddev->bitmap_info.offset) {
1616 /* minor version 0 with bitmap we can't move */
1617 return 0;
1618 } else {
1619 /* minor version 0; superblock after data */
1620 sector_t sb_start;
1621 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1622 sb_start &= ~(sector_t)(4*2 - 1);
1623 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1624 if (!num_sectors || num_sectors > max_sectors)
1625 num_sectors = max_sectors;
1626 rdev->sb_start = sb_start;
1628 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1629 sb->data_size = cpu_to_le64(num_sectors);
1630 sb->super_offset = rdev->sb_start;
1631 sb->sb_csum = calc_sb_1_csum(sb);
1632 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1633 rdev->sb_page);
1634 md_super_wait(rdev->mddev);
1635 return num_sectors / 2; /* kB for sysfs */
1638 static struct super_type super_types[] = {
1639 [0] = {
1640 .name = "0.90.0",
1641 .owner = THIS_MODULE,
1642 .load_super = super_90_load,
1643 .validate_super = super_90_validate,
1644 .sync_super = super_90_sync,
1645 .rdev_size_change = super_90_rdev_size_change,
1647 [1] = {
1648 .name = "md-1",
1649 .owner = THIS_MODULE,
1650 .load_super = super_1_load,
1651 .validate_super = super_1_validate,
1652 .sync_super = super_1_sync,
1653 .rdev_size_change = super_1_rdev_size_change,
1657 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1659 mdk_rdev_t *rdev, *rdev2;
1661 rcu_read_lock();
1662 rdev_for_each_rcu(rdev, mddev1)
1663 rdev_for_each_rcu(rdev2, mddev2)
1664 if (rdev->bdev->bd_contains ==
1665 rdev2->bdev->bd_contains) {
1666 rcu_read_unlock();
1667 return 1;
1669 rcu_read_unlock();
1670 return 0;
1673 static LIST_HEAD(pending_raid_disks);
1676 * Try to register data integrity profile for an mddev
1678 * This is called when an array is started and after a disk has been kicked
1679 * from the array. It only succeeds if all working and active component devices
1680 * are integrity capable with matching profiles.
1682 int md_integrity_register(mddev_t *mddev)
1684 mdk_rdev_t *rdev, *reference = NULL;
1686 if (list_empty(&mddev->disks))
1687 return 0; /* nothing to do */
1688 if (blk_get_integrity(mddev->gendisk))
1689 return 0; /* already registered */
1690 list_for_each_entry(rdev, &mddev->disks, same_set) {
1691 /* skip spares and non-functional disks */
1692 if (test_bit(Faulty, &rdev->flags))
1693 continue;
1694 if (rdev->raid_disk < 0)
1695 continue;
1697 * If at least one rdev is not integrity capable, we can not
1698 * enable data integrity for the md device.
1700 if (!bdev_get_integrity(rdev->bdev))
1701 return -EINVAL;
1702 if (!reference) {
1703 /* Use the first rdev as the reference */
1704 reference = rdev;
1705 continue;
1707 /* does this rdev's profile match the reference profile? */
1708 if (blk_integrity_compare(reference->bdev->bd_disk,
1709 rdev->bdev->bd_disk) < 0)
1710 return -EINVAL;
1713 * All component devices are integrity capable and have matching
1714 * profiles, register the common profile for the md device.
1716 if (blk_integrity_register(mddev->gendisk,
1717 bdev_get_integrity(reference->bdev)) != 0) {
1718 printk(KERN_ERR "md: failed to register integrity for %s\n",
1719 mdname(mddev));
1720 return -EINVAL;
1722 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1723 mdname(mddev));
1724 return 0;
1726 EXPORT_SYMBOL(md_integrity_register);
1728 /* Disable data integrity if non-capable/non-matching disk is being added */
1729 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1731 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1732 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1734 if (!bi_mddev) /* nothing to do */
1735 return;
1736 if (rdev->raid_disk < 0) /* skip spares */
1737 return;
1738 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1739 rdev->bdev->bd_disk) >= 0)
1740 return;
1741 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1742 blk_integrity_unregister(mddev->gendisk);
1744 EXPORT_SYMBOL(md_integrity_add_rdev);
1746 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1748 char b[BDEVNAME_SIZE];
1749 struct kobject *ko;
1750 char *s;
1751 int err;
1753 if (rdev->mddev) {
1754 MD_BUG();
1755 return -EINVAL;
1758 /* prevent duplicates */
1759 if (find_rdev(mddev, rdev->bdev->bd_dev))
1760 return -EEXIST;
1762 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1763 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1764 rdev->sectors < mddev->dev_sectors)) {
1765 if (mddev->pers) {
1766 /* Cannot change size, so fail
1767 * If mddev->level <= 0, then we don't care
1768 * about aligning sizes (e.g. linear)
1770 if (mddev->level > 0)
1771 return -ENOSPC;
1772 } else
1773 mddev->dev_sectors = rdev->sectors;
1776 /* Verify rdev->desc_nr is unique.
1777 * If it is -1, assign a free number, else
1778 * check number is not in use
1780 if (rdev->desc_nr < 0) {
1781 int choice = 0;
1782 if (mddev->pers) choice = mddev->raid_disks;
1783 while (find_rdev_nr(mddev, choice))
1784 choice++;
1785 rdev->desc_nr = choice;
1786 } else {
1787 if (find_rdev_nr(mddev, rdev->desc_nr))
1788 return -EBUSY;
1790 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1791 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1792 mdname(mddev), mddev->max_disks);
1793 return -EBUSY;
1795 bdevname(rdev->bdev,b);
1796 while ( (s=strchr(b, '/')) != NULL)
1797 *s = '!';
1799 rdev->mddev = mddev;
1800 printk(KERN_INFO "md: bind<%s>\n", b);
1802 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1803 goto fail;
1805 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1806 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1807 /* failure here is OK */;
1808 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1810 list_add_rcu(&rdev->same_set, &mddev->disks);
1811 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1813 /* May as well allow recovery to be retried once */
1814 mddev->recovery_disabled = 0;
1816 return 0;
1818 fail:
1819 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1820 b, mdname(mddev));
1821 return err;
1824 static void md_delayed_delete(struct work_struct *ws)
1826 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1827 kobject_del(&rdev->kobj);
1828 kobject_put(&rdev->kobj);
1831 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1833 char b[BDEVNAME_SIZE];
1834 if (!rdev->mddev) {
1835 MD_BUG();
1836 return;
1838 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1839 list_del_rcu(&rdev->same_set);
1840 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1841 rdev->mddev = NULL;
1842 sysfs_remove_link(&rdev->kobj, "block");
1843 sysfs_put(rdev->sysfs_state);
1844 rdev->sysfs_state = NULL;
1845 /* We need to delay this, otherwise we can deadlock when
1846 * writing to 'remove' to "dev/state". We also need
1847 * to delay it due to rcu usage.
1849 synchronize_rcu();
1850 INIT_WORK(&rdev->del_work, md_delayed_delete);
1851 kobject_get(&rdev->kobj);
1852 schedule_work(&rdev->del_work);
1856 * prevent the device from being mounted, repartitioned or
1857 * otherwise reused by a RAID array (or any other kernel
1858 * subsystem), by bd_claiming the device.
1860 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1862 int err = 0;
1863 struct block_device *bdev;
1864 char b[BDEVNAME_SIZE];
1866 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1867 if (IS_ERR(bdev)) {
1868 printk(KERN_ERR "md: could not open %s.\n",
1869 __bdevname(dev, b));
1870 return PTR_ERR(bdev);
1872 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1873 if (err) {
1874 printk(KERN_ERR "md: could not bd_claim %s.\n",
1875 bdevname(bdev, b));
1876 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1877 return err;
1879 if (!shared)
1880 set_bit(AllReserved, &rdev->flags);
1881 rdev->bdev = bdev;
1882 return err;
1885 static void unlock_rdev(mdk_rdev_t *rdev)
1887 struct block_device *bdev = rdev->bdev;
1888 rdev->bdev = NULL;
1889 if (!bdev)
1890 MD_BUG();
1891 bd_release(bdev);
1892 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1895 void md_autodetect_dev(dev_t dev);
1897 static void export_rdev(mdk_rdev_t * rdev)
1899 char b[BDEVNAME_SIZE];
1900 printk(KERN_INFO "md: export_rdev(%s)\n",
1901 bdevname(rdev->bdev,b));
1902 if (rdev->mddev)
1903 MD_BUG();
1904 free_disk_sb(rdev);
1905 #ifndef MODULE
1906 if (test_bit(AutoDetected, &rdev->flags))
1907 md_autodetect_dev(rdev->bdev->bd_dev);
1908 #endif
1909 unlock_rdev(rdev);
1910 kobject_put(&rdev->kobj);
1913 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1915 unbind_rdev_from_array(rdev);
1916 export_rdev(rdev);
1919 static void export_array(mddev_t *mddev)
1921 mdk_rdev_t *rdev, *tmp;
1923 rdev_for_each(rdev, tmp, mddev) {
1924 if (!rdev->mddev) {
1925 MD_BUG();
1926 continue;
1928 kick_rdev_from_array(rdev);
1930 if (!list_empty(&mddev->disks))
1931 MD_BUG();
1932 mddev->raid_disks = 0;
1933 mddev->major_version = 0;
1936 static void print_desc(mdp_disk_t *desc)
1938 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1939 desc->major,desc->minor,desc->raid_disk,desc->state);
1942 static void print_sb_90(mdp_super_t *sb)
1944 int i;
1946 printk(KERN_INFO
1947 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1948 sb->major_version, sb->minor_version, sb->patch_version,
1949 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1950 sb->ctime);
1951 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1952 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1953 sb->md_minor, sb->layout, sb->chunk_size);
1954 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1955 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1956 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1957 sb->failed_disks, sb->spare_disks,
1958 sb->sb_csum, (unsigned long)sb->events_lo);
1960 printk(KERN_INFO);
1961 for (i = 0; i < MD_SB_DISKS; i++) {
1962 mdp_disk_t *desc;
1964 desc = sb->disks + i;
1965 if (desc->number || desc->major || desc->minor ||
1966 desc->raid_disk || (desc->state && (desc->state != 4))) {
1967 printk(" D %2d: ", i);
1968 print_desc(desc);
1971 printk(KERN_INFO "md: THIS: ");
1972 print_desc(&sb->this_disk);
1975 static void print_sb_1(struct mdp_superblock_1 *sb)
1977 __u8 *uuid;
1979 uuid = sb->set_uuid;
1980 printk(KERN_INFO
1981 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1982 "md: Name: \"%s\" CT:%llu\n",
1983 le32_to_cpu(sb->major_version),
1984 le32_to_cpu(sb->feature_map),
1985 uuid,
1986 sb->set_name,
1987 (unsigned long long)le64_to_cpu(sb->ctime)
1988 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1990 uuid = sb->device_uuid;
1991 printk(KERN_INFO
1992 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1993 " RO:%llu\n"
1994 "md: Dev:%08x UUID: %pU\n"
1995 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1996 "md: (MaxDev:%u) \n",
1997 le32_to_cpu(sb->level),
1998 (unsigned long long)le64_to_cpu(sb->size),
1999 le32_to_cpu(sb->raid_disks),
2000 le32_to_cpu(sb->layout),
2001 le32_to_cpu(sb->chunksize),
2002 (unsigned long long)le64_to_cpu(sb->data_offset),
2003 (unsigned long long)le64_to_cpu(sb->data_size),
2004 (unsigned long long)le64_to_cpu(sb->super_offset),
2005 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2006 le32_to_cpu(sb->dev_number),
2007 uuid,
2008 sb->devflags,
2009 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2010 (unsigned long long)le64_to_cpu(sb->events),
2011 (unsigned long long)le64_to_cpu(sb->resync_offset),
2012 le32_to_cpu(sb->sb_csum),
2013 le32_to_cpu(sb->max_dev)
2017 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2019 char b[BDEVNAME_SIZE];
2020 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2021 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2022 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2023 rdev->desc_nr);
2024 if (rdev->sb_loaded) {
2025 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2026 switch (major_version) {
2027 case 0:
2028 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2029 break;
2030 case 1:
2031 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2032 break;
2034 } else
2035 printk(KERN_INFO "md: no rdev superblock!\n");
2038 static void md_print_devices(void)
2040 struct list_head *tmp;
2041 mdk_rdev_t *rdev;
2042 mddev_t *mddev;
2043 char b[BDEVNAME_SIZE];
2045 printk("\n");
2046 printk("md: **********************************\n");
2047 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2048 printk("md: **********************************\n");
2049 for_each_mddev(mddev, tmp) {
2051 if (mddev->bitmap)
2052 bitmap_print_sb(mddev->bitmap);
2053 else
2054 printk("%s: ", mdname(mddev));
2055 list_for_each_entry(rdev, &mddev->disks, same_set)
2056 printk("<%s>", bdevname(rdev->bdev,b));
2057 printk("\n");
2059 list_for_each_entry(rdev, &mddev->disks, same_set)
2060 print_rdev(rdev, mddev->major_version);
2062 printk("md: **********************************\n");
2063 printk("\n");
2067 static void sync_sbs(mddev_t * mddev, int nospares)
2069 /* Update each superblock (in-memory image), but
2070 * if we are allowed to, skip spares which already
2071 * have the right event counter, or have one earlier
2072 * (which would mean they aren't being marked as dirty
2073 * with the rest of the array)
2075 mdk_rdev_t *rdev;
2076 list_for_each_entry(rdev, &mddev->disks, same_set) {
2077 if (rdev->sb_events == mddev->events ||
2078 (nospares &&
2079 rdev->raid_disk < 0 &&
2080 rdev->sb_events+1 == mddev->events)) {
2081 /* Don't update this superblock */
2082 rdev->sb_loaded = 2;
2083 } else {
2084 super_types[mddev->major_version].
2085 sync_super(mddev, rdev);
2086 rdev->sb_loaded = 1;
2091 static void md_update_sb(mddev_t * mddev, int force_change)
2093 mdk_rdev_t *rdev;
2094 int sync_req;
2095 int nospares = 0;
2097 repeat:
2098 /* First make sure individual recovery_offsets are correct */
2099 list_for_each_entry(rdev, &mddev->disks, same_set) {
2100 if (rdev->raid_disk >= 0 &&
2101 mddev->delta_disks >= 0 &&
2102 !test_bit(In_sync, &rdev->flags) &&
2103 mddev->curr_resync_completed > rdev->recovery_offset)
2104 rdev->recovery_offset = mddev->curr_resync_completed;
2107 if (!mddev->persistent) {
2108 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2109 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2110 wake_up(&mddev->sb_wait);
2111 return;
2114 spin_lock_irq(&mddev->write_lock);
2116 mddev->utime = get_seconds();
2118 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2119 force_change = 1;
2120 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2121 /* just a clean<-> dirty transition, possibly leave spares alone,
2122 * though if events isn't the right even/odd, we will have to do
2123 * spares after all
2125 nospares = 1;
2126 if (force_change)
2127 nospares = 0;
2128 if (mddev->degraded)
2129 /* If the array is degraded, then skipping spares is both
2130 * dangerous and fairly pointless.
2131 * Dangerous because a device that was removed from the array
2132 * might have a event_count that still looks up-to-date,
2133 * so it can be re-added without a resync.
2134 * Pointless because if there are any spares to skip,
2135 * then a recovery will happen and soon that array won't
2136 * be degraded any more and the spare can go back to sleep then.
2138 nospares = 0;
2140 sync_req = mddev->in_sync;
2142 /* If this is just a dirty<->clean transition, and the array is clean
2143 * and 'events' is odd, we can roll back to the previous clean state */
2144 if (nospares
2145 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2146 && mddev->can_decrease_events
2147 && mddev->events != 1) {
2148 mddev->events--;
2149 mddev->can_decrease_events = 0;
2150 } else {
2151 /* otherwise we have to go forward and ... */
2152 mddev->events ++;
2153 mddev->can_decrease_events = nospares;
2156 if (!mddev->events) {
2158 * oops, this 64-bit counter should never wrap.
2159 * Either we are in around ~1 trillion A.C., assuming
2160 * 1 reboot per second, or we have a bug:
2162 MD_BUG();
2163 mddev->events --;
2165 sync_sbs(mddev, nospares);
2166 spin_unlock_irq(&mddev->write_lock);
2168 dprintk(KERN_INFO
2169 "md: updating %s RAID superblock on device (in sync %d)\n",
2170 mdname(mddev),mddev->in_sync);
2172 bitmap_update_sb(mddev->bitmap);
2173 list_for_each_entry(rdev, &mddev->disks, same_set) {
2174 char b[BDEVNAME_SIZE];
2175 dprintk(KERN_INFO "md: ");
2176 if (rdev->sb_loaded != 1)
2177 continue; /* no noise on spare devices */
2178 if (test_bit(Faulty, &rdev->flags))
2179 dprintk("(skipping faulty ");
2181 dprintk("%s ", bdevname(rdev->bdev,b));
2182 if (!test_bit(Faulty, &rdev->flags)) {
2183 md_super_write(mddev,rdev,
2184 rdev->sb_start, rdev->sb_size,
2185 rdev->sb_page);
2186 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2187 bdevname(rdev->bdev,b),
2188 (unsigned long long)rdev->sb_start);
2189 rdev->sb_events = mddev->events;
2191 } else
2192 dprintk(")\n");
2193 if (mddev->level == LEVEL_MULTIPATH)
2194 /* only need to write one superblock... */
2195 break;
2197 md_super_wait(mddev);
2198 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2200 spin_lock_irq(&mddev->write_lock);
2201 if (mddev->in_sync != sync_req ||
2202 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2203 /* have to write it out again */
2204 spin_unlock_irq(&mddev->write_lock);
2205 goto repeat;
2207 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2208 spin_unlock_irq(&mddev->write_lock);
2209 wake_up(&mddev->sb_wait);
2210 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2211 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2215 /* words written to sysfs files may, or may not, be \n terminated.
2216 * We want to accept with case. For this we use cmd_match.
2218 static int cmd_match(const char *cmd, const char *str)
2220 /* See if cmd, written into a sysfs file, matches
2221 * str. They must either be the same, or cmd can
2222 * have a trailing newline
2224 while (*cmd && *str && *cmd == *str) {
2225 cmd++;
2226 str++;
2228 if (*cmd == '\n')
2229 cmd++;
2230 if (*str || *cmd)
2231 return 0;
2232 return 1;
2235 struct rdev_sysfs_entry {
2236 struct attribute attr;
2237 ssize_t (*show)(mdk_rdev_t *, char *);
2238 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2241 static ssize_t
2242 state_show(mdk_rdev_t *rdev, char *page)
2244 char *sep = "";
2245 size_t len = 0;
2247 if (test_bit(Faulty, &rdev->flags)) {
2248 len+= sprintf(page+len, "%sfaulty",sep);
2249 sep = ",";
2251 if (test_bit(In_sync, &rdev->flags)) {
2252 len += sprintf(page+len, "%sin_sync",sep);
2253 sep = ",";
2255 if (test_bit(WriteMostly, &rdev->flags)) {
2256 len += sprintf(page+len, "%swrite_mostly",sep);
2257 sep = ",";
2259 if (test_bit(Blocked, &rdev->flags)) {
2260 len += sprintf(page+len, "%sblocked", sep);
2261 sep = ",";
2263 if (!test_bit(Faulty, &rdev->flags) &&
2264 !test_bit(In_sync, &rdev->flags)) {
2265 len += sprintf(page+len, "%sspare", sep);
2266 sep = ",";
2268 return len+sprintf(page+len, "\n");
2271 static ssize_t
2272 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2274 /* can write
2275 * faulty - simulates and error
2276 * remove - disconnects the device
2277 * writemostly - sets write_mostly
2278 * -writemostly - clears write_mostly
2279 * blocked - sets the Blocked flag
2280 * -blocked - clears the Blocked flag
2281 * insync - sets Insync providing device isn't active
2283 int err = -EINVAL;
2284 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2285 md_error(rdev->mddev, rdev);
2286 err = 0;
2287 } else if (cmd_match(buf, "remove")) {
2288 if (rdev->raid_disk >= 0)
2289 err = -EBUSY;
2290 else {
2291 mddev_t *mddev = rdev->mddev;
2292 kick_rdev_from_array(rdev);
2293 if (mddev->pers)
2294 md_update_sb(mddev, 1);
2295 md_new_event(mddev);
2296 err = 0;
2298 } else if (cmd_match(buf, "writemostly")) {
2299 set_bit(WriteMostly, &rdev->flags);
2300 err = 0;
2301 } else if (cmd_match(buf, "-writemostly")) {
2302 clear_bit(WriteMostly, &rdev->flags);
2303 err = 0;
2304 } else if (cmd_match(buf, "blocked")) {
2305 set_bit(Blocked, &rdev->flags);
2306 err = 0;
2307 } else if (cmd_match(buf, "-blocked")) {
2308 clear_bit(Blocked, &rdev->flags);
2309 wake_up(&rdev->blocked_wait);
2310 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2311 md_wakeup_thread(rdev->mddev->thread);
2313 err = 0;
2314 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2315 set_bit(In_sync, &rdev->flags);
2316 err = 0;
2318 if (!err)
2319 sysfs_notify_dirent_safe(rdev->sysfs_state);
2320 return err ? err : len;
2322 static struct rdev_sysfs_entry rdev_state =
2323 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2325 static ssize_t
2326 errors_show(mdk_rdev_t *rdev, char *page)
2328 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2331 static ssize_t
2332 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2334 char *e;
2335 unsigned long n = simple_strtoul(buf, &e, 10);
2336 if (*buf && (*e == 0 || *e == '\n')) {
2337 atomic_set(&rdev->corrected_errors, n);
2338 return len;
2340 return -EINVAL;
2342 static struct rdev_sysfs_entry rdev_errors =
2343 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2345 static ssize_t
2346 slot_show(mdk_rdev_t *rdev, char *page)
2348 if (rdev->raid_disk < 0)
2349 return sprintf(page, "none\n");
2350 else
2351 return sprintf(page, "%d\n", rdev->raid_disk);
2354 static ssize_t
2355 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2357 char *e;
2358 int err;
2359 char nm[20];
2360 int slot = simple_strtoul(buf, &e, 10);
2361 if (strncmp(buf, "none", 4)==0)
2362 slot = -1;
2363 else if (e==buf || (*e && *e!= '\n'))
2364 return -EINVAL;
2365 if (rdev->mddev->pers && slot == -1) {
2366 /* Setting 'slot' on an active array requires also
2367 * updating the 'rd%d' link, and communicating
2368 * with the personality with ->hot_*_disk.
2369 * For now we only support removing
2370 * failed/spare devices. This normally happens automatically,
2371 * but not when the metadata is externally managed.
2373 if (rdev->raid_disk == -1)
2374 return -EEXIST;
2375 /* personality does all needed checks */
2376 if (rdev->mddev->pers->hot_add_disk == NULL)
2377 return -EINVAL;
2378 err = rdev->mddev->pers->
2379 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2380 if (err)
2381 return err;
2382 sprintf(nm, "rd%d", rdev->raid_disk);
2383 sysfs_remove_link(&rdev->mddev->kobj, nm);
2384 rdev->raid_disk = -1;
2385 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2386 md_wakeup_thread(rdev->mddev->thread);
2387 } else if (rdev->mddev->pers) {
2388 mdk_rdev_t *rdev2;
2389 /* Activating a spare .. or possibly reactivating
2390 * if we ever get bitmaps working here.
2393 if (rdev->raid_disk != -1)
2394 return -EBUSY;
2396 if (rdev->mddev->pers->hot_add_disk == NULL)
2397 return -EINVAL;
2399 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2400 if (rdev2->raid_disk == slot)
2401 return -EEXIST;
2403 rdev->raid_disk = slot;
2404 if (test_bit(In_sync, &rdev->flags))
2405 rdev->saved_raid_disk = slot;
2406 else
2407 rdev->saved_raid_disk = -1;
2408 err = rdev->mddev->pers->
2409 hot_add_disk(rdev->mddev, rdev);
2410 if (err) {
2411 rdev->raid_disk = -1;
2412 return err;
2413 } else
2414 sysfs_notify_dirent_safe(rdev->sysfs_state);
2415 sprintf(nm, "rd%d", rdev->raid_disk);
2416 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2417 /* failure here is OK */;
2418 /* don't wakeup anyone, leave that to userspace. */
2419 } else {
2420 if (slot >= rdev->mddev->raid_disks)
2421 return -ENOSPC;
2422 rdev->raid_disk = slot;
2423 /* assume it is working */
2424 clear_bit(Faulty, &rdev->flags);
2425 clear_bit(WriteMostly, &rdev->flags);
2426 set_bit(In_sync, &rdev->flags);
2427 sysfs_notify_dirent_safe(rdev->sysfs_state);
2429 return len;
2433 static struct rdev_sysfs_entry rdev_slot =
2434 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2436 static ssize_t
2437 offset_show(mdk_rdev_t *rdev, char *page)
2439 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2442 static ssize_t
2443 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2445 char *e;
2446 unsigned long long offset = simple_strtoull(buf, &e, 10);
2447 if (e==buf || (*e && *e != '\n'))
2448 return -EINVAL;
2449 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2450 return -EBUSY;
2451 if (rdev->sectors && rdev->mddev->external)
2452 /* Must set offset before size, so overlap checks
2453 * can be sane */
2454 return -EBUSY;
2455 rdev->data_offset = offset;
2456 return len;
2459 static struct rdev_sysfs_entry rdev_offset =
2460 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2462 static ssize_t
2463 rdev_size_show(mdk_rdev_t *rdev, char *page)
2465 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2468 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2470 /* check if two start/length pairs overlap */
2471 if (s1+l1 <= s2)
2472 return 0;
2473 if (s2+l2 <= s1)
2474 return 0;
2475 return 1;
2478 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2480 unsigned long long blocks;
2481 sector_t new;
2483 if (strict_strtoull(buf, 10, &blocks) < 0)
2484 return -EINVAL;
2486 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2487 return -EINVAL; /* sector conversion overflow */
2489 new = blocks * 2;
2490 if (new != blocks * 2)
2491 return -EINVAL; /* unsigned long long to sector_t overflow */
2493 *sectors = new;
2494 return 0;
2497 static ssize_t
2498 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2500 mddev_t *my_mddev = rdev->mddev;
2501 sector_t oldsectors = rdev->sectors;
2502 sector_t sectors;
2504 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2505 return -EINVAL;
2506 if (my_mddev->pers && rdev->raid_disk >= 0) {
2507 if (my_mddev->persistent) {
2508 sectors = super_types[my_mddev->major_version].
2509 rdev_size_change(rdev, sectors);
2510 if (!sectors)
2511 return -EBUSY;
2512 } else if (!sectors)
2513 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2514 rdev->data_offset;
2516 if (sectors < my_mddev->dev_sectors)
2517 return -EINVAL; /* component must fit device */
2519 rdev->sectors = sectors;
2520 if (sectors > oldsectors && my_mddev->external) {
2521 /* need to check that all other rdevs with the same ->bdev
2522 * do not overlap. We need to unlock the mddev to avoid
2523 * a deadlock. We have already changed rdev->sectors, and if
2524 * we have to change it back, we will have the lock again.
2526 mddev_t *mddev;
2527 int overlap = 0;
2528 struct list_head *tmp;
2530 mddev_unlock(my_mddev);
2531 for_each_mddev(mddev, tmp) {
2532 mdk_rdev_t *rdev2;
2534 mddev_lock(mddev);
2535 list_for_each_entry(rdev2, &mddev->disks, same_set)
2536 if (test_bit(AllReserved, &rdev2->flags) ||
2537 (rdev->bdev == rdev2->bdev &&
2538 rdev != rdev2 &&
2539 overlaps(rdev->data_offset, rdev->sectors,
2540 rdev2->data_offset,
2541 rdev2->sectors))) {
2542 overlap = 1;
2543 break;
2545 mddev_unlock(mddev);
2546 if (overlap) {
2547 mddev_put(mddev);
2548 break;
2551 mddev_lock(my_mddev);
2552 if (overlap) {
2553 /* Someone else could have slipped in a size
2554 * change here, but doing so is just silly.
2555 * We put oldsectors back because we *know* it is
2556 * safe, and trust userspace not to race with
2557 * itself
2559 rdev->sectors = oldsectors;
2560 return -EBUSY;
2563 return len;
2566 static struct rdev_sysfs_entry rdev_size =
2567 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2570 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2572 unsigned long long recovery_start = rdev->recovery_offset;
2574 if (test_bit(In_sync, &rdev->flags) ||
2575 recovery_start == MaxSector)
2576 return sprintf(page, "none\n");
2578 return sprintf(page, "%llu\n", recovery_start);
2581 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2583 unsigned long long recovery_start;
2585 if (cmd_match(buf, "none"))
2586 recovery_start = MaxSector;
2587 else if (strict_strtoull(buf, 10, &recovery_start))
2588 return -EINVAL;
2590 if (rdev->mddev->pers &&
2591 rdev->raid_disk >= 0)
2592 return -EBUSY;
2594 rdev->recovery_offset = recovery_start;
2595 if (recovery_start == MaxSector)
2596 set_bit(In_sync, &rdev->flags);
2597 else
2598 clear_bit(In_sync, &rdev->flags);
2599 return len;
2602 static struct rdev_sysfs_entry rdev_recovery_start =
2603 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2605 static struct attribute *rdev_default_attrs[] = {
2606 &rdev_state.attr,
2607 &rdev_errors.attr,
2608 &rdev_slot.attr,
2609 &rdev_offset.attr,
2610 &rdev_size.attr,
2611 &rdev_recovery_start.attr,
2612 NULL,
2614 static ssize_t
2615 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2617 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2618 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2619 mddev_t *mddev = rdev->mddev;
2620 ssize_t rv;
2622 if (!entry->show)
2623 return -EIO;
2625 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2626 if (!rv) {
2627 if (rdev->mddev == NULL)
2628 rv = -EBUSY;
2629 else
2630 rv = entry->show(rdev, page);
2631 mddev_unlock(mddev);
2633 return rv;
2636 static ssize_t
2637 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2638 const char *page, size_t length)
2640 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2641 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2642 ssize_t rv;
2643 mddev_t *mddev = rdev->mddev;
2645 if (!entry->store)
2646 return -EIO;
2647 if (!capable(CAP_SYS_ADMIN))
2648 return -EACCES;
2649 rv = mddev ? mddev_lock(mddev): -EBUSY;
2650 if (!rv) {
2651 if (rdev->mddev == NULL)
2652 rv = -EBUSY;
2653 else
2654 rv = entry->store(rdev, page, length);
2655 mddev_unlock(mddev);
2657 return rv;
2660 static void rdev_free(struct kobject *ko)
2662 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2663 kfree(rdev);
2665 static const struct sysfs_ops rdev_sysfs_ops = {
2666 .show = rdev_attr_show,
2667 .store = rdev_attr_store,
2669 static struct kobj_type rdev_ktype = {
2670 .release = rdev_free,
2671 .sysfs_ops = &rdev_sysfs_ops,
2672 .default_attrs = rdev_default_attrs,
2675 void md_rdev_init(mdk_rdev_t *rdev)
2677 rdev->desc_nr = -1;
2678 rdev->saved_raid_disk = -1;
2679 rdev->raid_disk = -1;
2680 rdev->flags = 0;
2681 rdev->data_offset = 0;
2682 rdev->sb_events = 0;
2683 rdev->last_read_error.tv_sec = 0;
2684 rdev->last_read_error.tv_nsec = 0;
2685 atomic_set(&rdev->nr_pending, 0);
2686 atomic_set(&rdev->read_errors, 0);
2687 atomic_set(&rdev->corrected_errors, 0);
2689 INIT_LIST_HEAD(&rdev->same_set);
2690 init_waitqueue_head(&rdev->blocked_wait);
2692 EXPORT_SYMBOL_GPL(md_rdev_init);
2694 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2696 * mark the device faulty if:
2698 * - the device is nonexistent (zero size)
2699 * - the device has no valid superblock
2701 * a faulty rdev _never_ has rdev->sb set.
2703 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2705 char b[BDEVNAME_SIZE];
2706 int err;
2707 mdk_rdev_t *rdev;
2708 sector_t size;
2710 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2711 if (!rdev) {
2712 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2713 return ERR_PTR(-ENOMEM);
2716 md_rdev_init(rdev);
2717 if ((err = alloc_disk_sb(rdev)))
2718 goto abort_free;
2720 err = lock_rdev(rdev, newdev, super_format == -2);
2721 if (err)
2722 goto abort_free;
2724 kobject_init(&rdev->kobj, &rdev_ktype);
2726 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2727 if (!size) {
2728 printk(KERN_WARNING
2729 "md: %s has zero or unknown size, marking faulty!\n",
2730 bdevname(rdev->bdev,b));
2731 err = -EINVAL;
2732 goto abort_free;
2735 if (super_format >= 0) {
2736 err = super_types[super_format].
2737 load_super(rdev, NULL, super_minor);
2738 if (err == -EINVAL) {
2739 printk(KERN_WARNING
2740 "md: %s does not have a valid v%d.%d "
2741 "superblock, not importing!\n",
2742 bdevname(rdev->bdev,b),
2743 super_format, super_minor);
2744 goto abort_free;
2746 if (err < 0) {
2747 printk(KERN_WARNING
2748 "md: could not read %s's sb, not importing!\n",
2749 bdevname(rdev->bdev,b));
2750 goto abort_free;
2754 return rdev;
2756 abort_free:
2757 if (rdev->sb_page) {
2758 if (rdev->bdev)
2759 unlock_rdev(rdev);
2760 free_disk_sb(rdev);
2762 kfree(rdev);
2763 return ERR_PTR(err);
2767 * Check a full RAID array for plausibility
2771 static void analyze_sbs(mddev_t * mddev)
2773 int i;
2774 mdk_rdev_t *rdev, *freshest, *tmp;
2775 char b[BDEVNAME_SIZE];
2777 freshest = NULL;
2778 rdev_for_each(rdev, tmp, mddev)
2779 switch (super_types[mddev->major_version].
2780 load_super(rdev, freshest, mddev->minor_version)) {
2781 case 1:
2782 freshest = rdev;
2783 break;
2784 case 0:
2785 break;
2786 default:
2787 printk( KERN_ERR \
2788 "md: fatal superblock inconsistency in %s"
2789 " -- removing from array\n",
2790 bdevname(rdev->bdev,b));
2791 kick_rdev_from_array(rdev);
2795 super_types[mddev->major_version].
2796 validate_super(mddev, freshest);
2798 i = 0;
2799 rdev_for_each(rdev, tmp, mddev) {
2800 if (mddev->max_disks &&
2801 (rdev->desc_nr >= mddev->max_disks ||
2802 i > mddev->max_disks)) {
2803 printk(KERN_WARNING
2804 "md: %s: %s: only %d devices permitted\n",
2805 mdname(mddev), bdevname(rdev->bdev, b),
2806 mddev->max_disks);
2807 kick_rdev_from_array(rdev);
2808 continue;
2810 if (rdev != freshest)
2811 if (super_types[mddev->major_version].
2812 validate_super(mddev, rdev)) {
2813 printk(KERN_WARNING "md: kicking non-fresh %s"
2814 " from array!\n",
2815 bdevname(rdev->bdev,b));
2816 kick_rdev_from_array(rdev);
2817 continue;
2819 if (mddev->level == LEVEL_MULTIPATH) {
2820 rdev->desc_nr = i++;
2821 rdev->raid_disk = rdev->desc_nr;
2822 set_bit(In_sync, &rdev->flags);
2823 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2824 rdev->raid_disk = -1;
2825 clear_bit(In_sync, &rdev->flags);
2830 /* Read a fixed-point number.
2831 * Numbers in sysfs attributes should be in "standard" units where
2832 * possible, so time should be in seconds.
2833 * However we internally use a a much smaller unit such as
2834 * milliseconds or jiffies.
2835 * This function takes a decimal number with a possible fractional
2836 * component, and produces an integer which is the result of
2837 * multiplying that number by 10^'scale'.
2838 * all without any floating-point arithmetic.
2840 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2842 unsigned long result = 0;
2843 long decimals = -1;
2844 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2845 if (*cp == '.')
2846 decimals = 0;
2847 else if (decimals < scale) {
2848 unsigned int value;
2849 value = *cp - '0';
2850 result = result * 10 + value;
2851 if (decimals >= 0)
2852 decimals++;
2854 cp++;
2856 if (*cp == '\n')
2857 cp++;
2858 if (*cp)
2859 return -EINVAL;
2860 if (decimals < 0)
2861 decimals = 0;
2862 while (decimals < scale) {
2863 result *= 10;
2864 decimals ++;
2866 *res = result;
2867 return 0;
2871 static void md_safemode_timeout(unsigned long data);
2873 static ssize_t
2874 safe_delay_show(mddev_t *mddev, char *page)
2876 int msec = (mddev->safemode_delay*1000)/HZ;
2877 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2879 static ssize_t
2880 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2882 unsigned long msec;
2884 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2885 return -EINVAL;
2886 if (msec == 0)
2887 mddev->safemode_delay = 0;
2888 else {
2889 unsigned long old_delay = mddev->safemode_delay;
2890 mddev->safemode_delay = (msec*HZ)/1000;
2891 if (mddev->safemode_delay == 0)
2892 mddev->safemode_delay = 1;
2893 if (mddev->safemode_delay < old_delay)
2894 md_safemode_timeout((unsigned long)mddev);
2896 return len;
2898 static struct md_sysfs_entry md_safe_delay =
2899 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2901 static ssize_t
2902 level_show(mddev_t *mddev, char *page)
2904 struct mdk_personality *p = mddev->pers;
2905 if (p)
2906 return sprintf(page, "%s\n", p->name);
2907 else if (mddev->clevel[0])
2908 return sprintf(page, "%s\n", mddev->clevel);
2909 else if (mddev->level != LEVEL_NONE)
2910 return sprintf(page, "%d\n", mddev->level);
2911 else
2912 return 0;
2915 static ssize_t
2916 level_store(mddev_t *mddev, const char *buf, size_t len)
2918 char clevel[16];
2919 ssize_t rv = len;
2920 struct mdk_personality *pers;
2921 long level;
2922 void *priv;
2923 mdk_rdev_t *rdev;
2925 if (mddev->pers == NULL) {
2926 if (len == 0)
2927 return 0;
2928 if (len >= sizeof(mddev->clevel))
2929 return -ENOSPC;
2930 strncpy(mddev->clevel, buf, len);
2931 if (mddev->clevel[len-1] == '\n')
2932 len--;
2933 mddev->clevel[len] = 0;
2934 mddev->level = LEVEL_NONE;
2935 return rv;
2938 /* request to change the personality. Need to ensure:
2939 * - array is not engaged in resync/recovery/reshape
2940 * - old personality can be suspended
2941 * - new personality will access other array.
2944 if (mddev->sync_thread ||
2945 mddev->reshape_position != MaxSector ||
2946 mddev->sysfs_active)
2947 return -EBUSY;
2949 if (!mddev->pers->quiesce) {
2950 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2951 mdname(mddev), mddev->pers->name);
2952 return -EINVAL;
2955 /* Now find the new personality */
2956 if (len == 0 || len >= sizeof(clevel))
2957 return -EINVAL;
2958 strncpy(clevel, buf, len);
2959 if (clevel[len-1] == '\n')
2960 len--;
2961 clevel[len] = 0;
2962 if (strict_strtol(clevel, 10, &level))
2963 level = LEVEL_NONE;
2965 if (request_module("md-%s", clevel) != 0)
2966 request_module("md-level-%s", clevel);
2967 spin_lock(&pers_lock);
2968 pers = find_pers(level, clevel);
2969 if (!pers || !try_module_get(pers->owner)) {
2970 spin_unlock(&pers_lock);
2971 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
2972 return -EINVAL;
2974 spin_unlock(&pers_lock);
2976 if (pers == mddev->pers) {
2977 /* Nothing to do! */
2978 module_put(pers->owner);
2979 return rv;
2981 if (!pers->takeover) {
2982 module_put(pers->owner);
2983 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2984 mdname(mddev), clevel);
2985 return -EINVAL;
2988 list_for_each_entry(rdev, &mddev->disks, same_set)
2989 rdev->new_raid_disk = rdev->raid_disk;
2991 /* ->takeover must set new_* and/or delta_disks
2992 * if it succeeds, and may set them when it fails.
2994 priv = pers->takeover(mddev);
2995 if (IS_ERR(priv)) {
2996 mddev->new_level = mddev->level;
2997 mddev->new_layout = mddev->layout;
2998 mddev->new_chunk_sectors = mddev->chunk_sectors;
2999 mddev->raid_disks -= mddev->delta_disks;
3000 mddev->delta_disks = 0;
3001 module_put(pers->owner);
3002 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3003 mdname(mddev), clevel);
3004 return PTR_ERR(priv);
3007 /* Looks like we have a winner */
3008 mddev_suspend(mddev);
3009 mddev->pers->stop(mddev);
3011 if (mddev->pers->sync_request == NULL &&
3012 pers->sync_request != NULL) {
3013 /* need to add the md_redundancy_group */
3014 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3015 printk(KERN_WARNING
3016 "md: cannot register extra attributes for %s\n",
3017 mdname(mddev));
3018 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3020 if (mddev->pers->sync_request != NULL &&
3021 pers->sync_request == NULL) {
3022 /* need to remove the md_redundancy_group */
3023 if (mddev->to_remove == NULL)
3024 mddev->to_remove = &md_redundancy_group;
3027 if (mddev->pers->sync_request == NULL &&
3028 mddev->external) {
3029 /* We are converting from a no-redundancy array
3030 * to a redundancy array and metadata is managed
3031 * externally so we need to be sure that writes
3032 * won't block due to a need to transition
3033 * clean->dirty
3034 * until external management is started.
3036 mddev->in_sync = 0;
3037 mddev->safemode_delay = 0;
3038 mddev->safemode = 0;
3041 list_for_each_entry(rdev, &mddev->disks, same_set) {
3042 char nm[20];
3043 if (rdev->raid_disk < 0)
3044 continue;
3045 if (rdev->new_raid_disk > mddev->raid_disks)
3046 rdev->new_raid_disk = -1;
3047 if (rdev->new_raid_disk == rdev->raid_disk)
3048 continue;
3049 sprintf(nm, "rd%d", rdev->raid_disk);
3050 sysfs_remove_link(&mddev->kobj, nm);
3052 list_for_each_entry(rdev, &mddev->disks, same_set) {
3053 if (rdev->raid_disk < 0)
3054 continue;
3055 if (rdev->new_raid_disk == rdev->raid_disk)
3056 continue;
3057 rdev->raid_disk = rdev->new_raid_disk;
3058 if (rdev->raid_disk < 0)
3059 clear_bit(In_sync, &rdev->flags);
3060 else {
3061 char nm[20];
3062 sprintf(nm, "rd%d", rdev->raid_disk);
3063 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3064 printk("md: cannot register %s for %s after level change\n",
3065 nm, mdname(mddev));
3069 module_put(mddev->pers->owner);
3070 mddev->pers = pers;
3071 mddev->private = priv;
3072 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3073 mddev->level = mddev->new_level;
3074 mddev->layout = mddev->new_layout;
3075 mddev->chunk_sectors = mddev->new_chunk_sectors;
3076 mddev->delta_disks = 0;
3077 if (mddev->pers->sync_request == NULL) {
3078 /* this is now an array without redundancy, so
3079 * it must always be in_sync
3081 mddev->in_sync = 1;
3082 del_timer_sync(&mddev->safemode_timer);
3084 pers->run(mddev);
3085 mddev_resume(mddev);
3086 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3088 md_wakeup_thread(mddev->thread);
3089 sysfs_notify(&mddev->kobj, NULL, "level");
3090 md_new_event(mddev);
3091 return rv;
3094 static struct md_sysfs_entry md_level =
3095 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3098 static ssize_t
3099 layout_show(mddev_t *mddev, char *page)
3101 /* just a number, not meaningful for all levels */
3102 if (mddev->reshape_position != MaxSector &&
3103 mddev->layout != mddev->new_layout)
3104 return sprintf(page, "%d (%d)\n",
3105 mddev->new_layout, mddev->layout);
3106 return sprintf(page, "%d\n", mddev->layout);
3109 static ssize_t
3110 layout_store(mddev_t *mddev, const char *buf, size_t len)
3112 char *e;
3113 unsigned long n = simple_strtoul(buf, &e, 10);
3115 if (!*buf || (*e && *e != '\n'))
3116 return -EINVAL;
3118 if (mddev->pers) {
3119 int err;
3120 if (mddev->pers->check_reshape == NULL)
3121 return -EBUSY;
3122 mddev->new_layout = n;
3123 err = mddev->pers->check_reshape(mddev);
3124 if (err) {
3125 mddev->new_layout = mddev->layout;
3126 return err;
3128 } else {
3129 mddev->new_layout = n;
3130 if (mddev->reshape_position == MaxSector)
3131 mddev->layout = n;
3133 return len;
3135 static struct md_sysfs_entry md_layout =
3136 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3139 static ssize_t
3140 raid_disks_show(mddev_t *mddev, char *page)
3142 if (mddev->raid_disks == 0)
3143 return 0;
3144 if (mddev->reshape_position != MaxSector &&
3145 mddev->delta_disks != 0)
3146 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3147 mddev->raid_disks - mddev->delta_disks);
3148 return sprintf(page, "%d\n", mddev->raid_disks);
3151 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3153 static ssize_t
3154 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3156 char *e;
3157 int rv = 0;
3158 unsigned long n = simple_strtoul(buf, &e, 10);
3160 if (!*buf || (*e && *e != '\n'))
3161 return -EINVAL;
3163 if (mddev->pers)
3164 rv = update_raid_disks(mddev, n);
3165 else if (mddev->reshape_position != MaxSector) {
3166 int olddisks = mddev->raid_disks - mddev->delta_disks;
3167 mddev->delta_disks = n - olddisks;
3168 mddev->raid_disks = n;
3169 } else
3170 mddev->raid_disks = n;
3171 return rv ? rv : len;
3173 static struct md_sysfs_entry md_raid_disks =
3174 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3176 static ssize_t
3177 chunk_size_show(mddev_t *mddev, char *page)
3179 if (mddev->reshape_position != MaxSector &&
3180 mddev->chunk_sectors != mddev->new_chunk_sectors)
3181 return sprintf(page, "%d (%d)\n",
3182 mddev->new_chunk_sectors << 9,
3183 mddev->chunk_sectors << 9);
3184 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3187 static ssize_t
3188 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3190 char *e;
3191 unsigned long n = simple_strtoul(buf, &e, 10);
3193 if (!*buf || (*e && *e != '\n'))
3194 return -EINVAL;
3196 if (mddev->pers) {
3197 int err;
3198 if (mddev->pers->check_reshape == NULL)
3199 return -EBUSY;
3200 mddev->new_chunk_sectors = n >> 9;
3201 err = mddev->pers->check_reshape(mddev);
3202 if (err) {
3203 mddev->new_chunk_sectors = mddev->chunk_sectors;
3204 return err;
3206 } else {
3207 mddev->new_chunk_sectors = n >> 9;
3208 if (mddev->reshape_position == MaxSector)
3209 mddev->chunk_sectors = n >> 9;
3211 return len;
3213 static struct md_sysfs_entry md_chunk_size =
3214 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3216 static ssize_t
3217 resync_start_show(mddev_t *mddev, char *page)
3219 if (mddev->recovery_cp == MaxSector)
3220 return sprintf(page, "none\n");
3221 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3224 static ssize_t
3225 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3227 char *e;
3228 unsigned long long n = simple_strtoull(buf, &e, 10);
3230 if (mddev->pers)
3231 return -EBUSY;
3232 if (cmd_match(buf, "none"))
3233 n = MaxSector;
3234 else if (!*buf || (*e && *e != '\n'))
3235 return -EINVAL;
3237 mddev->recovery_cp = n;
3238 return len;
3240 static struct md_sysfs_entry md_resync_start =
3241 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3244 * The array state can be:
3246 * clear
3247 * No devices, no size, no level
3248 * Equivalent to STOP_ARRAY ioctl
3249 * inactive
3250 * May have some settings, but array is not active
3251 * all IO results in error
3252 * When written, doesn't tear down array, but just stops it
3253 * suspended (not supported yet)
3254 * All IO requests will block. The array can be reconfigured.
3255 * Writing this, if accepted, will block until array is quiescent
3256 * readonly
3257 * no resync can happen. no superblocks get written.
3258 * write requests fail
3259 * read-auto
3260 * like readonly, but behaves like 'clean' on a write request.
3262 * clean - no pending writes, but otherwise active.
3263 * When written to inactive array, starts without resync
3264 * If a write request arrives then
3265 * if metadata is known, mark 'dirty' and switch to 'active'.
3266 * if not known, block and switch to write-pending
3267 * If written to an active array that has pending writes, then fails.
3268 * active
3269 * fully active: IO and resync can be happening.
3270 * When written to inactive array, starts with resync
3272 * write-pending
3273 * clean, but writes are blocked waiting for 'active' to be written.
3275 * active-idle
3276 * like active, but no writes have been seen for a while (100msec).
3279 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3280 write_pending, active_idle, bad_word};
3281 static char *array_states[] = {
3282 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3283 "write-pending", "active-idle", NULL };
3285 static int match_word(const char *word, char **list)
3287 int n;
3288 for (n=0; list[n]; n++)
3289 if (cmd_match(word, list[n]))
3290 break;
3291 return n;
3294 static ssize_t
3295 array_state_show(mddev_t *mddev, char *page)
3297 enum array_state st = inactive;
3299 if (mddev->pers)
3300 switch(mddev->ro) {
3301 case 1:
3302 st = readonly;
3303 break;
3304 case 2:
3305 st = read_auto;
3306 break;
3307 case 0:
3308 if (mddev->in_sync)
3309 st = clean;
3310 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3311 st = write_pending;
3312 else if (mddev->safemode)
3313 st = active_idle;
3314 else
3315 st = active;
3317 else {
3318 if (list_empty(&mddev->disks) &&
3319 mddev->raid_disks == 0 &&
3320 mddev->dev_sectors == 0)
3321 st = clear;
3322 else
3323 st = inactive;
3325 return sprintf(page, "%s\n", array_states[st]);
3328 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3329 static int md_set_readonly(mddev_t * mddev, int is_open);
3330 static int do_md_run(mddev_t * mddev);
3331 static int restart_array(mddev_t *mddev);
3333 static ssize_t
3334 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3336 int err = -EINVAL;
3337 enum array_state st = match_word(buf, array_states);
3338 switch(st) {
3339 case bad_word:
3340 break;
3341 case clear:
3342 /* stopping an active array */
3343 if (atomic_read(&mddev->openers) > 0)
3344 return -EBUSY;
3345 err = do_md_stop(mddev, 0, 0);
3346 break;
3347 case inactive:
3348 /* stopping an active array */
3349 if (mddev->pers) {
3350 if (atomic_read(&mddev->openers) > 0)
3351 return -EBUSY;
3352 err = do_md_stop(mddev, 2, 0);
3353 } else
3354 err = 0; /* already inactive */
3355 break;
3356 case suspended:
3357 break; /* not supported yet */
3358 case readonly:
3359 if (mddev->pers)
3360 err = md_set_readonly(mddev, 0);
3361 else {
3362 mddev->ro = 1;
3363 set_disk_ro(mddev->gendisk, 1);
3364 err = do_md_run(mddev);
3366 break;
3367 case read_auto:
3368 if (mddev->pers) {
3369 if (mddev->ro == 0)
3370 err = md_set_readonly(mddev, 0);
3371 else if (mddev->ro == 1)
3372 err = restart_array(mddev);
3373 if (err == 0) {
3374 mddev->ro = 2;
3375 set_disk_ro(mddev->gendisk, 0);
3377 } else {
3378 mddev->ro = 2;
3379 err = do_md_run(mddev);
3381 break;
3382 case clean:
3383 if (mddev->pers) {
3384 restart_array(mddev);
3385 spin_lock_irq(&mddev->write_lock);
3386 if (atomic_read(&mddev->writes_pending) == 0) {
3387 if (mddev->in_sync == 0) {
3388 mddev->in_sync = 1;
3389 if (mddev->safemode == 1)
3390 mddev->safemode = 0;
3391 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3393 err = 0;
3394 } else
3395 err = -EBUSY;
3396 spin_unlock_irq(&mddev->write_lock);
3397 } else
3398 err = -EINVAL;
3399 break;
3400 case active:
3401 if (mddev->pers) {
3402 restart_array(mddev);
3403 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3404 wake_up(&mddev->sb_wait);
3405 err = 0;
3406 } else {
3407 mddev->ro = 0;
3408 set_disk_ro(mddev->gendisk, 0);
3409 err = do_md_run(mddev);
3411 break;
3412 case write_pending:
3413 case active_idle:
3414 /* these cannot be set */
3415 break;
3417 if (err)
3418 return err;
3419 else {
3420 sysfs_notify_dirent_safe(mddev->sysfs_state);
3421 return len;
3424 static struct md_sysfs_entry md_array_state =
3425 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3427 static ssize_t
3428 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3429 return sprintf(page, "%d\n",
3430 atomic_read(&mddev->max_corr_read_errors));
3433 static ssize_t
3434 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3436 char *e;
3437 unsigned long n = simple_strtoul(buf, &e, 10);
3439 if (*buf && (*e == 0 || *e == '\n')) {
3440 atomic_set(&mddev->max_corr_read_errors, n);
3441 return len;
3443 return -EINVAL;
3446 static struct md_sysfs_entry max_corr_read_errors =
3447 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3448 max_corrected_read_errors_store);
3450 static ssize_t
3451 null_show(mddev_t *mddev, char *page)
3453 return -EINVAL;
3456 static ssize_t
3457 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3459 /* buf must be %d:%d\n? giving major and minor numbers */
3460 /* The new device is added to the array.
3461 * If the array has a persistent superblock, we read the
3462 * superblock to initialise info and check validity.
3463 * Otherwise, only checking done is that in bind_rdev_to_array,
3464 * which mainly checks size.
3466 char *e;
3467 int major = simple_strtoul(buf, &e, 10);
3468 int minor;
3469 dev_t dev;
3470 mdk_rdev_t *rdev;
3471 int err;
3473 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3474 return -EINVAL;
3475 minor = simple_strtoul(e+1, &e, 10);
3476 if (*e && *e != '\n')
3477 return -EINVAL;
3478 dev = MKDEV(major, minor);
3479 if (major != MAJOR(dev) ||
3480 minor != MINOR(dev))
3481 return -EOVERFLOW;
3484 if (mddev->persistent) {
3485 rdev = md_import_device(dev, mddev->major_version,
3486 mddev->minor_version);
3487 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3488 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3489 mdk_rdev_t, same_set);
3490 err = super_types[mddev->major_version]
3491 .load_super(rdev, rdev0, mddev->minor_version);
3492 if (err < 0)
3493 goto out;
3495 } else if (mddev->external)
3496 rdev = md_import_device(dev, -2, -1);
3497 else
3498 rdev = md_import_device(dev, -1, -1);
3500 if (IS_ERR(rdev))
3501 return PTR_ERR(rdev);
3502 err = bind_rdev_to_array(rdev, mddev);
3503 out:
3504 if (err)
3505 export_rdev(rdev);
3506 return err ? err : len;
3509 static struct md_sysfs_entry md_new_device =
3510 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3512 static ssize_t
3513 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3515 char *end;
3516 unsigned long chunk, end_chunk;
3518 if (!mddev->bitmap)
3519 goto out;
3520 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3521 while (*buf) {
3522 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3523 if (buf == end) break;
3524 if (*end == '-') { /* range */
3525 buf = end + 1;
3526 end_chunk = simple_strtoul(buf, &end, 0);
3527 if (buf == end) break;
3529 if (*end && !isspace(*end)) break;
3530 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3531 buf = skip_spaces(end);
3533 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3534 out:
3535 return len;
3538 static struct md_sysfs_entry md_bitmap =
3539 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3541 static ssize_t
3542 size_show(mddev_t *mddev, char *page)
3544 return sprintf(page, "%llu\n",
3545 (unsigned long long)mddev->dev_sectors / 2);
3548 static int update_size(mddev_t *mddev, sector_t num_sectors);
3550 static ssize_t
3551 size_store(mddev_t *mddev, const char *buf, size_t len)
3553 /* If array is inactive, we can reduce the component size, but
3554 * not increase it (except from 0).
3555 * If array is active, we can try an on-line resize
3557 sector_t sectors;
3558 int err = strict_blocks_to_sectors(buf, &sectors);
3560 if (err < 0)
3561 return err;
3562 if (mddev->pers) {
3563 err = update_size(mddev, sectors);
3564 md_update_sb(mddev, 1);
3565 } else {
3566 if (mddev->dev_sectors == 0 ||
3567 mddev->dev_sectors > sectors)
3568 mddev->dev_sectors = sectors;
3569 else
3570 err = -ENOSPC;
3572 return err ? err : len;
3575 static struct md_sysfs_entry md_size =
3576 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3579 /* Metdata version.
3580 * This is one of
3581 * 'none' for arrays with no metadata (good luck...)
3582 * 'external' for arrays with externally managed metadata,
3583 * or N.M for internally known formats
3585 static ssize_t
3586 metadata_show(mddev_t *mddev, char *page)
3588 if (mddev->persistent)
3589 return sprintf(page, "%d.%d\n",
3590 mddev->major_version, mddev->minor_version);
3591 else if (mddev->external)
3592 return sprintf(page, "external:%s\n", mddev->metadata_type);
3593 else
3594 return sprintf(page, "none\n");
3597 static ssize_t
3598 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3600 int major, minor;
3601 char *e;
3602 /* Changing the details of 'external' metadata is
3603 * always permitted. Otherwise there must be
3604 * no devices attached to the array.
3606 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3608 else if (!list_empty(&mddev->disks))
3609 return -EBUSY;
3611 if (cmd_match(buf, "none")) {
3612 mddev->persistent = 0;
3613 mddev->external = 0;
3614 mddev->major_version = 0;
3615 mddev->minor_version = 90;
3616 return len;
3618 if (strncmp(buf, "external:", 9) == 0) {
3619 size_t namelen = len-9;
3620 if (namelen >= sizeof(mddev->metadata_type))
3621 namelen = sizeof(mddev->metadata_type)-1;
3622 strncpy(mddev->metadata_type, buf+9, namelen);
3623 mddev->metadata_type[namelen] = 0;
3624 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3625 mddev->metadata_type[--namelen] = 0;
3626 mddev->persistent = 0;
3627 mddev->external = 1;
3628 mddev->major_version = 0;
3629 mddev->minor_version = 90;
3630 return len;
3632 major = simple_strtoul(buf, &e, 10);
3633 if (e==buf || *e != '.')
3634 return -EINVAL;
3635 buf = e+1;
3636 minor = simple_strtoul(buf, &e, 10);
3637 if (e==buf || (*e && *e != '\n') )
3638 return -EINVAL;
3639 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3640 return -ENOENT;
3641 mddev->major_version = major;
3642 mddev->minor_version = minor;
3643 mddev->persistent = 1;
3644 mddev->external = 0;
3645 return len;
3648 static struct md_sysfs_entry md_metadata =
3649 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3651 static ssize_t
3652 action_show(mddev_t *mddev, char *page)
3654 char *type = "idle";
3655 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3656 type = "frozen";
3657 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3658 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3659 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3660 type = "reshape";
3661 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3662 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3663 type = "resync";
3664 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3665 type = "check";
3666 else
3667 type = "repair";
3668 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3669 type = "recover";
3671 return sprintf(page, "%s\n", type);
3674 static ssize_t
3675 action_store(mddev_t *mddev, const char *page, size_t len)
3677 if (!mddev->pers || !mddev->pers->sync_request)
3678 return -EINVAL;
3680 if (cmd_match(page, "frozen"))
3681 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3682 else
3683 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3685 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3686 if (mddev->sync_thread) {
3687 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3688 md_unregister_thread(mddev->sync_thread);
3689 mddev->sync_thread = NULL;
3690 mddev->recovery = 0;
3692 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3693 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3694 return -EBUSY;
3695 else if (cmd_match(page, "resync"))
3696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3697 else if (cmd_match(page, "recover")) {
3698 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3700 } else if (cmd_match(page, "reshape")) {
3701 int err;
3702 if (mddev->pers->start_reshape == NULL)
3703 return -EINVAL;
3704 err = mddev->pers->start_reshape(mddev);
3705 if (err)
3706 return err;
3707 sysfs_notify(&mddev->kobj, NULL, "degraded");
3708 } else {
3709 if (cmd_match(page, "check"))
3710 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3711 else if (!cmd_match(page, "repair"))
3712 return -EINVAL;
3713 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3714 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3716 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3717 md_wakeup_thread(mddev->thread);
3718 sysfs_notify_dirent_safe(mddev->sysfs_action);
3719 return len;
3722 static ssize_t
3723 mismatch_cnt_show(mddev_t *mddev, char *page)
3725 return sprintf(page, "%llu\n",
3726 (unsigned long long) mddev->resync_mismatches);
3729 static struct md_sysfs_entry md_scan_mode =
3730 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3733 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3735 static ssize_t
3736 sync_min_show(mddev_t *mddev, char *page)
3738 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3739 mddev->sync_speed_min ? "local": "system");
3742 static ssize_t
3743 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3745 int min;
3746 char *e;
3747 if (strncmp(buf, "system", 6)==0) {
3748 mddev->sync_speed_min = 0;
3749 return len;
3751 min = simple_strtoul(buf, &e, 10);
3752 if (buf == e || (*e && *e != '\n') || min <= 0)
3753 return -EINVAL;
3754 mddev->sync_speed_min = min;
3755 return len;
3758 static struct md_sysfs_entry md_sync_min =
3759 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3761 static ssize_t
3762 sync_max_show(mddev_t *mddev, char *page)
3764 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3765 mddev->sync_speed_max ? "local": "system");
3768 static ssize_t
3769 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3771 int max;
3772 char *e;
3773 if (strncmp(buf, "system", 6)==0) {
3774 mddev->sync_speed_max = 0;
3775 return len;
3777 max = simple_strtoul(buf, &e, 10);
3778 if (buf == e || (*e && *e != '\n') || max <= 0)
3779 return -EINVAL;
3780 mddev->sync_speed_max = max;
3781 return len;
3784 static struct md_sysfs_entry md_sync_max =
3785 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3787 static ssize_t
3788 degraded_show(mddev_t *mddev, char *page)
3790 return sprintf(page, "%d\n", mddev->degraded);
3792 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3794 static ssize_t
3795 sync_force_parallel_show(mddev_t *mddev, char *page)
3797 return sprintf(page, "%d\n", mddev->parallel_resync);
3800 static ssize_t
3801 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3803 long n;
3805 if (strict_strtol(buf, 10, &n))
3806 return -EINVAL;
3808 if (n != 0 && n != 1)
3809 return -EINVAL;
3811 mddev->parallel_resync = n;
3813 if (mddev->sync_thread)
3814 wake_up(&resync_wait);
3816 return len;
3819 /* force parallel resync, even with shared block devices */
3820 static struct md_sysfs_entry md_sync_force_parallel =
3821 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3822 sync_force_parallel_show, sync_force_parallel_store);
3824 static ssize_t
3825 sync_speed_show(mddev_t *mddev, char *page)
3827 unsigned long resync, dt, db;
3828 if (mddev->curr_resync == 0)
3829 return sprintf(page, "none\n");
3830 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3831 dt = (jiffies - mddev->resync_mark) / HZ;
3832 if (!dt) dt++;
3833 db = resync - mddev->resync_mark_cnt;
3834 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3837 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3839 static ssize_t
3840 sync_completed_show(mddev_t *mddev, char *page)
3842 unsigned long max_sectors, resync;
3844 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3845 return sprintf(page, "none\n");
3847 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3848 max_sectors = mddev->resync_max_sectors;
3849 else
3850 max_sectors = mddev->dev_sectors;
3852 resync = mddev->curr_resync_completed;
3853 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3856 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3858 static ssize_t
3859 min_sync_show(mddev_t *mddev, char *page)
3861 return sprintf(page, "%llu\n",
3862 (unsigned long long)mddev->resync_min);
3864 static ssize_t
3865 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3867 unsigned long long min;
3868 if (strict_strtoull(buf, 10, &min))
3869 return -EINVAL;
3870 if (min > mddev->resync_max)
3871 return -EINVAL;
3872 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3873 return -EBUSY;
3875 /* Must be a multiple of chunk_size */
3876 if (mddev->chunk_sectors) {
3877 sector_t temp = min;
3878 if (sector_div(temp, mddev->chunk_sectors))
3879 return -EINVAL;
3881 mddev->resync_min = min;
3883 return len;
3886 static struct md_sysfs_entry md_min_sync =
3887 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3889 static ssize_t
3890 max_sync_show(mddev_t *mddev, char *page)
3892 if (mddev->resync_max == MaxSector)
3893 return sprintf(page, "max\n");
3894 else
3895 return sprintf(page, "%llu\n",
3896 (unsigned long long)mddev->resync_max);
3898 static ssize_t
3899 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3901 if (strncmp(buf, "max", 3) == 0)
3902 mddev->resync_max = MaxSector;
3903 else {
3904 unsigned long long max;
3905 if (strict_strtoull(buf, 10, &max))
3906 return -EINVAL;
3907 if (max < mddev->resync_min)
3908 return -EINVAL;
3909 if (max < mddev->resync_max &&
3910 mddev->ro == 0 &&
3911 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3912 return -EBUSY;
3914 /* Must be a multiple of chunk_size */
3915 if (mddev->chunk_sectors) {
3916 sector_t temp = max;
3917 if (sector_div(temp, mddev->chunk_sectors))
3918 return -EINVAL;
3920 mddev->resync_max = max;
3922 wake_up(&mddev->recovery_wait);
3923 return len;
3926 static struct md_sysfs_entry md_max_sync =
3927 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3929 static ssize_t
3930 suspend_lo_show(mddev_t *mddev, char *page)
3932 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3935 static ssize_t
3936 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3938 char *e;
3939 unsigned long long new = simple_strtoull(buf, &e, 10);
3941 if (mddev->pers == NULL ||
3942 mddev->pers->quiesce == NULL)
3943 return -EINVAL;
3944 if (buf == e || (*e && *e != '\n'))
3945 return -EINVAL;
3946 if (new >= mddev->suspend_hi ||
3947 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3948 mddev->suspend_lo = new;
3949 mddev->pers->quiesce(mddev, 2);
3950 return len;
3951 } else
3952 return -EINVAL;
3954 static struct md_sysfs_entry md_suspend_lo =
3955 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3958 static ssize_t
3959 suspend_hi_show(mddev_t *mddev, char *page)
3961 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3964 static ssize_t
3965 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3967 char *e;
3968 unsigned long long new = simple_strtoull(buf, &e, 10);
3970 if (mddev->pers == NULL ||
3971 mddev->pers->quiesce == NULL)
3972 return -EINVAL;
3973 if (buf == e || (*e && *e != '\n'))
3974 return -EINVAL;
3975 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3976 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3977 mddev->suspend_hi = new;
3978 mddev->pers->quiesce(mddev, 1);
3979 mddev->pers->quiesce(mddev, 0);
3980 return len;
3981 } else
3982 return -EINVAL;
3984 static struct md_sysfs_entry md_suspend_hi =
3985 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3987 static ssize_t
3988 reshape_position_show(mddev_t *mddev, char *page)
3990 if (mddev->reshape_position != MaxSector)
3991 return sprintf(page, "%llu\n",
3992 (unsigned long long)mddev->reshape_position);
3993 strcpy(page, "none\n");
3994 return 5;
3997 static ssize_t
3998 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4000 char *e;
4001 unsigned long long new = simple_strtoull(buf, &e, 10);
4002 if (mddev->pers)
4003 return -EBUSY;
4004 if (buf == e || (*e && *e != '\n'))
4005 return -EINVAL;
4006 mddev->reshape_position = new;
4007 mddev->delta_disks = 0;
4008 mddev->new_level = mddev->level;
4009 mddev->new_layout = mddev->layout;
4010 mddev->new_chunk_sectors = mddev->chunk_sectors;
4011 return len;
4014 static struct md_sysfs_entry md_reshape_position =
4015 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4016 reshape_position_store);
4018 static ssize_t
4019 array_size_show(mddev_t *mddev, char *page)
4021 if (mddev->external_size)
4022 return sprintf(page, "%llu\n",
4023 (unsigned long long)mddev->array_sectors/2);
4024 else
4025 return sprintf(page, "default\n");
4028 static ssize_t
4029 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4031 sector_t sectors;
4033 if (strncmp(buf, "default", 7) == 0) {
4034 if (mddev->pers)
4035 sectors = mddev->pers->size(mddev, 0, 0);
4036 else
4037 sectors = mddev->array_sectors;
4039 mddev->external_size = 0;
4040 } else {
4041 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4042 return -EINVAL;
4043 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4044 return -E2BIG;
4046 mddev->external_size = 1;
4049 mddev->array_sectors = sectors;
4050 set_capacity(mddev->gendisk, mddev->array_sectors);
4051 if (mddev->pers)
4052 revalidate_disk(mddev->gendisk);
4054 return len;
4057 static struct md_sysfs_entry md_array_size =
4058 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4059 array_size_store);
4061 static struct attribute *md_default_attrs[] = {
4062 &md_level.attr,
4063 &md_layout.attr,
4064 &md_raid_disks.attr,
4065 &md_chunk_size.attr,
4066 &md_size.attr,
4067 &md_resync_start.attr,
4068 &md_metadata.attr,
4069 &md_new_device.attr,
4070 &md_safe_delay.attr,
4071 &md_array_state.attr,
4072 &md_reshape_position.attr,
4073 &md_array_size.attr,
4074 &max_corr_read_errors.attr,
4075 NULL,
4078 static struct attribute *md_redundancy_attrs[] = {
4079 &md_scan_mode.attr,
4080 &md_mismatches.attr,
4081 &md_sync_min.attr,
4082 &md_sync_max.attr,
4083 &md_sync_speed.attr,
4084 &md_sync_force_parallel.attr,
4085 &md_sync_completed.attr,
4086 &md_min_sync.attr,
4087 &md_max_sync.attr,
4088 &md_suspend_lo.attr,
4089 &md_suspend_hi.attr,
4090 &md_bitmap.attr,
4091 &md_degraded.attr,
4092 NULL,
4094 static struct attribute_group md_redundancy_group = {
4095 .name = NULL,
4096 .attrs = md_redundancy_attrs,
4100 static ssize_t
4101 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4103 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4104 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4105 ssize_t rv;
4107 if (!entry->show)
4108 return -EIO;
4109 rv = mddev_lock(mddev);
4110 if (!rv) {
4111 rv = entry->show(mddev, page);
4112 mddev_unlock(mddev);
4114 return rv;
4117 static ssize_t
4118 md_attr_store(struct kobject *kobj, struct attribute *attr,
4119 const char *page, size_t length)
4121 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4122 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4123 ssize_t rv;
4125 if (!entry->store)
4126 return -EIO;
4127 if (!capable(CAP_SYS_ADMIN))
4128 return -EACCES;
4129 rv = mddev_lock(mddev);
4130 if (mddev->hold_active == UNTIL_IOCTL)
4131 mddev->hold_active = 0;
4132 if (!rv) {
4133 rv = entry->store(mddev, page, length);
4134 mddev_unlock(mddev);
4136 return rv;
4139 static void md_free(struct kobject *ko)
4141 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4143 if (mddev->sysfs_state)
4144 sysfs_put(mddev->sysfs_state);
4146 if (mddev->gendisk) {
4147 del_gendisk(mddev->gendisk);
4148 put_disk(mddev->gendisk);
4150 if (mddev->queue)
4151 blk_cleanup_queue(mddev->queue);
4153 kfree(mddev);
4156 static const struct sysfs_ops md_sysfs_ops = {
4157 .show = md_attr_show,
4158 .store = md_attr_store,
4160 static struct kobj_type md_ktype = {
4161 .release = md_free,
4162 .sysfs_ops = &md_sysfs_ops,
4163 .default_attrs = md_default_attrs,
4166 int mdp_major = 0;
4168 static void mddev_delayed_delete(struct work_struct *ws)
4170 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4172 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4173 kobject_del(&mddev->kobj);
4174 kobject_put(&mddev->kobj);
4177 static int md_alloc(dev_t dev, char *name)
4179 static DEFINE_MUTEX(disks_mutex);
4180 mddev_t *mddev = mddev_find(dev);
4181 struct gendisk *disk;
4182 int partitioned;
4183 int shift;
4184 int unit;
4185 int error;
4187 if (!mddev)
4188 return -ENODEV;
4190 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4191 shift = partitioned ? MdpMinorShift : 0;
4192 unit = MINOR(mddev->unit) >> shift;
4194 /* wait for any previous instance if this device
4195 * to be completed removed (mddev_delayed_delete).
4197 flush_scheduled_work();
4199 mutex_lock(&disks_mutex);
4200 error = -EEXIST;
4201 if (mddev->gendisk)
4202 goto abort;
4204 if (name) {
4205 /* Need to ensure that 'name' is not a duplicate.
4207 mddev_t *mddev2;
4208 spin_lock(&all_mddevs_lock);
4210 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4211 if (mddev2->gendisk &&
4212 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4213 spin_unlock(&all_mddevs_lock);
4214 goto abort;
4216 spin_unlock(&all_mddevs_lock);
4219 error = -ENOMEM;
4220 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4221 if (!mddev->queue)
4222 goto abort;
4223 mddev->queue->queuedata = mddev;
4225 /* Can be unlocked because the queue is new: no concurrency */
4226 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4228 blk_queue_make_request(mddev->queue, md_make_request);
4230 disk = alloc_disk(1 << shift);
4231 if (!disk) {
4232 blk_cleanup_queue(mddev->queue);
4233 mddev->queue = NULL;
4234 goto abort;
4236 disk->major = MAJOR(mddev->unit);
4237 disk->first_minor = unit << shift;
4238 if (name)
4239 strcpy(disk->disk_name, name);
4240 else if (partitioned)
4241 sprintf(disk->disk_name, "md_d%d", unit);
4242 else
4243 sprintf(disk->disk_name, "md%d", unit);
4244 disk->fops = &md_fops;
4245 disk->private_data = mddev;
4246 disk->queue = mddev->queue;
4247 /* Allow extended partitions. This makes the
4248 * 'mdp' device redundant, but we can't really
4249 * remove it now.
4251 disk->flags |= GENHD_FL_EXT_DEVT;
4252 add_disk(disk);
4253 mddev->gendisk = disk;
4254 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4255 &disk_to_dev(disk)->kobj, "%s", "md");
4256 if (error) {
4257 /* This isn't possible, but as kobject_init_and_add is marked
4258 * __must_check, we must do something with the result
4260 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4261 disk->disk_name);
4262 error = 0;
4264 if (mddev->kobj.sd &&
4265 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4266 printk(KERN_DEBUG "pointless warning\n");
4267 abort:
4268 mutex_unlock(&disks_mutex);
4269 if (!error && mddev->kobj.sd) {
4270 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4271 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4273 mddev_put(mddev);
4274 return error;
4277 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4279 md_alloc(dev, NULL);
4280 return NULL;
4283 static int add_named_array(const char *val, struct kernel_param *kp)
4285 /* val must be "md_*" where * is not all digits.
4286 * We allocate an array with a large free minor number, and
4287 * set the name to val. val must not already be an active name.
4289 int len = strlen(val);
4290 char buf[DISK_NAME_LEN];
4292 while (len && val[len-1] == '\n')
4293 len--;
4294 if (len >= DISK_NAME_LEN)
4295 return -E2BIG;
4296 strlcpy(buf, val, len+1);
4297 if (strncmp(buf, "md_", 3) != 0)
4298 return -EINVAL;
4299 return md_alloc(0, buf);
4302 static void md_safemode_timeout(unsigned long data)
4304 mddev_t *mddev = (mddev_t *) data;
4306 if (!atomic_read(&mddev->writes_pending)) {
4307 mddev->safemode = 1;
4308 if (mddev->external)
4309 sysfs_notify_dirent_safe(mddev->sysfs_state);
4311 md_wakeup_thread(mddev->thread);
4314 static int start_dirty_degraded;
4316 int md_run(mddev_t *mddev)
4318 int err;
4319 mdk_rdev_t *rdev;
4320 struct mdk_personality *pers;
4322 if (list_empty(&mddev->disks))
4323 /* cannot run an array with no devices.. */
4324 return -EINVAL;
4326 if (mddev->pers)
4327 return -EBUSY;
4328 /* Cannot run until previous stop completes properly */
4329 if (mddev->sysfs_active)
4330 return -EBUSY;
4333 * Analyze all RAID superblock(s)
4335 if (!mddev->raid_disks) {
4336 if (!mddev->persistent)
4337 return -EINVAL;
4338 analyze_sbs(mddev);
4341 if (mddev->level != LEVEL_NONE)
4342 request_module("md-level-%d", mddev->level);
4343 else if (mddev->clevel[0])
4344 request_module("md-%s", mddev->clevel);
4347 * Drop all container device buffers, from now on
4348 * the only valid external interface is through the md
4349 * device.
4351 list_for_each_entry(rdev, &mddev->disks, same_set) {
4352 if (test_bit(Faulty, &rdev->flags))
4353 continue;
4354 sync_blockdev(rdev->bdev);
4355 invalidate_bdev(rdev->bdev);
4357 /* perform some consistency tests on the device.
4358 * We don't want the data to overlap the metadata,
4359 * Internal Bitmap issues have been handled elsewhere.
4361 if (rdev->data_offset < rdev->sb_start) {
4362 if (mddev->dev_sectors &&
4363 rdev->data_offset + mddev->dev_sectors
4364 > rdev->sb_start) {
4365 printk("md: %s: data overlaps metadata\n",
4366 mdname(mddev));
4367 return -EINVAL;
4369 } else {
4370 if (rdev->sb_start + rdev->sb_size/512
4371 > rdev->data_offset) {
4372 printk("md: %s: metadata overlaps data\n",
4373 mdname(mddev));
4374 return -EINVAL;
4377 sysfs_notify_dirent_safe(rdev->sysfs_state);
4380 spin_lock(&pers_lock);
4381 pers = find_pers(mddev->level, mddev->clevel);
4382 if (!pers || !try_module_get(pers->owner)) {
4383 spin_unlock(&pers_lock);
4384 if (mddev->level != LEVEL_NONE)
4385 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4386 mddev->level);
4387 else
4388 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4389 mddev->clevel);
4390 return -EINVAL;
4392 mddev->pers = pers;
4393 spin_unlock(&pers_lock);
4394 if (mddev->level != pers->level) {
4395 mddev->level = pers->level;
4396 mddev->new_level = pers->level;
4398 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4400 if (mddev->reshape_position != MaxSector &&
4401 pers->start_reshape == NULL) {
4402 /* This personality cannot handle reshaping... */
4403 mddev->pers = NULL;
4404 module_put(pers->owner);
4405 return -EINVAL;
4408 if (pers->sync_request) {
4409 /* Warn if this is a potentially silly
4410 * configuration.
4412 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4413 mdk_rdev_t *rdev2;
4414 int warned = 0;
4416 list_for_each_entry(rdev, &mddev->disks, same_set)
4417 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4418 if (rdev < rdev2 &&
4419 rdev->bdev->bd_contains ==
4420 rdev2->bdev->bd_contains) {
4421 printk(KERN_WARNING
4422 "%s: WARNING: %s appears to be"
4423 " on the same physical disk as"
4424 " %s.\n",
4425 mdname(mddev),
4426 bdevname(rdev->bdev,b),
4427 bdevname(rdev2->bdev,b2));
4428 warned = 1;
4432 if (warned)
4433 printk(KERN_WARNING
4434 "True protection against single-disk"
4435 " failure might be compromised.\n");
4438 mddev->recovery = 0;
4439 /* may be over-ridden by personality */
4440 mddev->resync_max_sectors = mddev->dev_sectors;
4442 mddev->ok_start_degraded = start_dirty_degraded;
4444 if (start_readonly && mddev->ro == 0)
4445 mddev->ro = 2; /* read-only, but switch on first write */
4447 err = mddev->pers->run(mddev);
4448 if (err)
4449 printk(KERN_ERR "md: pers->run() failed ...\n");
4450 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4451 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4452 " but 'external_size' not in effect?\n", __func__);
4453 printk(KERN_ERR
4454 "md: invalid array_size %llu > default size %llu\n",
4455 (unsigned long long)mddev->array_sectors / 2,
4456 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4457 err = -EINVAL;
4458 mddev->pers->stop(mddev);
4460 if (err == 0 && mddev->pers->sync_request) {
4461 err = bitmap_create(mddev);
4462 if (err) {
4463 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4464 mdname(mddev), err);
4465 mddev->pers->stop(mddev);
4468 if (err) {
4469 module_put(mddev->pers->owner);
4470 mddev->pers = NULL;
4471 bitmap_destroy(mddev);
4472 return err;
4474 if (mddev->pers->sync_request) {
4475 if (mddev->kobj.sd &&
4476 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4477 printk(KERN_WARNING
4478 "md: cannot register extra attributes for %s\n",
4479 mdname(mddev));
4480 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4481 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4482 mddev->ro = 0;
4484 atomic_set(&mddev->writes_pending,0);
4485 atomic_set(&mddev->max_corr_read_errors,
4486 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4487 mddev->safemode = 0;
4488 mddev->safemode_timer.function = md_safemode_timeout;
4489 mddev->safemode_timer.data = (unsigned long) mddev;
4490 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4491 mddev->in_sync = 1;
4493 list_for_each_entry(rdev, &mddev->disks, same_set)
4494 if (rdev->raid_disk >= 0) {
4495 char nm[20];
4496 sprintf(nm, "rd%d", rdev->raid_disk);
4497 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4498 /* failure here is OK */;
4501 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4503 if (mddev->flags)
4504 md_update_sb(mddev, 0);
4506 md_wakeup_thread(mddev->thread);
4507 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4509 md_new_event(mddev);
4510 sysfs_notify_dirent_safe(mddev->sysfs_state);
4511 sysfs_notify_dirent_safe(mddev->sysfs_action);
4512 sysfs_notify(&mddev->kobj, NULL, "degraded");
4513 return 0;
4515 EXPORT_SYMBOL_GPL(md_run);
4517 static int do_md_run(mddev_t *mddev)
4519 int err;
4521 err = md_run(mddev);
4522 if (err)
4523 goto out;
4524 err = bitmap_load(mddev);
4525 if (err) {
4526 bitmap_destroy(mddev);
4527 goto out;
4529 set_capacity(mddev->gendisk, mddev->array_sectors);
4530 revalidate_disk(mddev->gendisk);
4531 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4532 out:
4533 return err;
4536 static int restart_array(mddev_t *mddev)
4538 struct gendisk *disk = mddev->gendisk;
4540 /* Complain if it has no devices */
4541 if (list_empty(&mddev->disks))
4542 return -ENXIO;
4543 if (!mddev->pers)
4544 return -EINVAL;
4545 if (!mddev->ro)
4546 return -EBUSY;
4547 mddev->safemode = 0;
4548 mddev->ro = 0;
4549 set_disk_ro(disk, 0);
4550 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4551 mdname(mddev));
4552 /* Kick recovery or resync if necessary */
4553 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4554 md_wakeup_thread(mddev->thread);
4555 md_wakeup_thread(mddev->sync_thread);
4556 sysfs_notify_dirent_safe(mddev->sysfs_state);
4557 return 0;
4560 /* similar to deny_write_access, but accounts for our holding a reference
4561 * to the file ourselves */
4562 static int deny_bitmap_write_access(struct file * file)
4564 struct inode *inode = file->f_mapping->host;
4566 spin_lock(&inode->i_lock);
4567 if (atomic_read(&inode->i_writecount) > 1) {
4568 spin_unlock(&inode->i_lock);
4569 return -ETXTBSY;
4571 atomic_set(&inode->i_writecount, -1);
4572 spin_unlock(&inode->i_lock);
4574 return 0;
4577 void restore_bitmap_write_access(struct file *file)
4579 struct inode *inode = file->f_mapping->host;
4581 spin_lock(&inode->i_lock);
4582 atomic_set(&inode->i_writecount, 1);
4583 spin_unlock(&inode->i_lock);
4586 static void md_clean(mddev_t *mddev)
4588 mddev->array_sectors = 0;
4589 mddev->external_size = 0;
4590 mddev->dev_sectors = 0;
4591 mddev->raid_disks = 0;
4592 mddev->recovery_cp = 0;
4593 mddev->resync_min = 0;
4594 mddev->resync_max = MaxSector;
4595 mddev->reshape_position = MaxSector;
4596 mddev->external = 0;
4597 mddev->persistent = 0;
4598 mddev->level = LEVEL_NONE;
4599 mddev->clevel[0] = 0;
4600 mddev->flags = 0;
4601 mddev->ro = 0;
4602 mddev->metadata_type[0] = 0;
4603 mddev->chunk_sectors = 0;
4604 mddev->ctime = mddev->utime = 0;
4605 mddev->layout = 0;
4606 mddev->max_disks = 0;
4607 mddev->events = 0;
4608 mddev->can_decrease_events = 0;
4609 mddev->delta_disks = 0;
4610 mddev->new_level = LEVEL_NONE;
4611 mddev->new_layout = 0;
4612 mddev->new_chunk_sectors = 0;
4613 mddev->curr_resync = 0;
4614 mddev->resync_mismatches = 0;
4615 mddev->suspend_lo = mddev->suspend_hi = 0;
4616 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4617 mddev->recovery = 0;
4618 mddev->in_sync = 0;
4619 mddev->degraded = 0;
4620 mddev->safemode = 0;
4621 mddev->bitmap_info.offset = 0;
4622 mddev->bitmap_info.default_offset = 0;
4623 mddev->bitmap_info.chunksize = 0;
4624 mddev->bitmap_info.daemon_sleep = 0;
4625 mddev->bitmap_info.max_write_behind = 0;
4626 mddev->plug = NULL;
4629 void md_stop_writes(mddev_t *mddev)
4631 if (mddev->sync_thread) {
4632 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4633 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4634 md_unregister_thread(mddev->sync_thread);
4635 mddev->sync_thread = NULL;
4638 del_timer_sync(&mddev->safemode_timer);
4640 bitmap_flush(mddev);
4641 md_super_wait(mddev);
4643 if (!mddev->in_sync || mddev->flags) {
4644 /* mark array as shutdown cleanly */
4645 mddev->in_sync = 1;
4646 md_update_sb(mddev, 1);
4649 EXPORT_SYMBOL_GPL(md_stop_writes);
4651 void md_stop(mddev_t *mddev)
4653 mddev->pers->stop(mddev);
4654 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4655 mddev->to_remove = &md_redundancy_group;
4656 module_put(mddev->pers->owner);
4657 mddev->pers = NULL;
4658 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4660 EXPORT_SYMBOL_GPL(md_stop);
4662 static int md_set_readonly(mddev_t *mddev, int is_open)
4664 int err = 0;
4665 mutex_lock(&mddev->open_mutex);
4666 if (atomic_read(&mddev->openers) > is_open) {
4667 printk("md: %s still in use.\n",mdname(mddev));
4668 err = -EBUSY;
4669 goto out;
4671 if (mddev->pers) {
4672 md_stop_writes(mddev);
4674 err = -ENXIO;
4675 if (mddev->ro==1)
4676 goto out;
4677 mddev->ro = 1;
4678 set_disk_ro(mddev->gendisk, 1);
4679 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4680 sysfs_notify_dirent_safe(mddev->sysfs_state);
4681 err = 0;
4683 out:
4684 mutex_unlock(&mddev->open_mutex);
4685 return err;
4688 /* mode:
4689 * 0 - completely stop and dis-assemble array
4690 * 2 - stop but do not disassemble array
4692 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4694 struct gendisk *disk = mddev->gendisk;
4695 mdk_rdev_t *rdev;
4697 mutex_lock(&mddev->open_mutex);
4698 if (atomic_read(&mddev->openers) > is_open ||
4699 mddev->sysfs_active) {
4700 printk("md: %s still in use.\n",mdname(mddev));
4701 mutex_unlock(&mddev->open_mutex);
4702 return -EBUSY;
4705 if (mddev->pers) {
4706 if (mddev->ro)
4707 set_disk_ro(disk, 0);
4709 md_stop_writes(mddev);
4710 md_stop(mddev);
4711 mddev->queue->merge_bvec_fn = NULL;
4712 mddev->queue->unplug_fn = NULL;
4713 mddev->queue->backing_dev_info.congested_fn = NULL;
4715 /* tell userspace to handle 'inactive' */
4716 sysfs_notify_dirent_safe(mddev->sysfs_state);
4718 list_for_each_entry(rdev, &mddev->disks, same_set)
4719 if (rdev->raid_disk >= 0) {
4720 char nm[20];
4721 sprintf(nm, "rd%d", rdev->raid_disk);
4722 sysfs_remove_link(&mddev->kobj, nm);
4725 set_capacity(disk, 0);
4726 mutex_unlock(&mddev->open_mutex);
4727 revalidate_disk(disk);
4729 if (mddev->ro)
4730 mddev->ro = 0;
4731 } else
4732 mutex_unlock(&mddev->open_mutex);
4734 * Free resources if final stop
4736 if (mode == 0) {
4737 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4739 bitmap_destroy(mddev);
4740 if (mddev->bitmap_info.file) {
4741 restore_bitmap_write_access(mddev->bitmap_info.file);
4742 fput(mddev->bitmap_info.file);
4743 mddev->bitmap_info.file = NULL;
4745 mddev->bitmap_info.offset = 0;
4747 export_array(mddev);
4749 md_clean(mddev);
4750 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4751 if (mddev->hold_active == UNTIL_STOP)
4752 mddev->hold_active = 0;
4754 blk_integrity_unregister(disk);
4755 md_new_event(mddev);
4756 sysfs_notify_dirent_safe(mddev->sysfs_state);
4757 return 0;
4760 #ifndef MODULE
4761 static void autorun_array(mddev_t *mddev)
4763 mdk_rdev_t *rdev;
4764 int err;
4766 if (list_empty(&mddev->disks))
4767 return;
4769 printk(KERN_INFO "md: running: ");
4771 list_for_each_entry(rdev, &mddev->disks, same_set) {
4772 char b[BDEVNAME_SIZE];
4773 printk("<%s>", bdevname(rdev->bdev,b));
4775 printk("\n");
4777 err = do_md_run(mddev);
4778 if (err) {
4779 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4780 do_md_stop(mddev, 0, 0);
4785 * lets try to run arrays based on all disks that have arrived
4786 * until now. (those are in pending_raid_disks)
4788 * the method: pick the first pending disk, collect all disks with
4789 * the same UUID, remove all from the pending list and put them into
4790 * the 'same_array' list. Then order this list based on superblock
4791 * update time (freshest comes first), kick out 'old' disks and
4792 * compare superblocks. If everything's fine then run it.
4794 * If "unit" is allocated, then bump its reference count
4796 static void autorun_devices(int part)
4798 mdk_rdev_t *rdev0, *rdev, *tmp;
4799 mddev_t *mddev;
4800 char b[BDEVNAME_SIZE];
4802 printk(KERN_INFO "md: autorun ...\n");
4803 while (!list_empty(&pending_raid_disks)) {
4804 int unit;
4805 dev_t dev;
4806 LIST_HEAD(candidates);
4807 rdev0 = list_entry(pending_raid_disks.next,
4808 mdk_rdev_t, same_set);
4810 printk(KERN_INFO "md: considering %s ...\n",
4811 bdevname(rdev0->bdev,b));
4812 INIT_LIST_HEAD(&candidates);
4813 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4814 if (super_90_load(rdev, rdev0, 0) >= 0) {
4815 printk(KERN_INFO "md: adding %s ...\n",
4816 bdevname(rdev->bdev,b));
4817 list_move(&rdev->same_set, &candidates);
4820 * now we have a set of devices, with all of them having
4821 * mostly sane superblocks. It's time to allocate the
4822 * mddev.
4824 if (part) {
4825 dev = MKDEV(mdp_major,
4826 rdev0->preferred_minor << MdpMinorShift);
4827 unit = MINOR(dev) >> MdpMinorShift;
4828 } else {
4829 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4830 unit = MINOR(dev);
4832 if (rdev0->preferred_minor != unit) {
4833 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4834 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4835 break;
4838 md_probe(dev, NULL, NULL);
4839 mddev = mddev_find(dev);
4840 if (!mddev || !mddev->gendisk) {
4841 if (mddev)
4842 mddev_put(mddev);
4843 printk(KERN_ERR
4844 "md: cannot allocate memory for md drive.\n");
4845 break;
4847 if (mddev_lock(mddev))
4848 printk(KERN_WARNING "md: %s locked, cannot run\n",
4849 mdname(mddev));
4850 else if (mddev->raid_disks || mddev->major_version
4851 || !list_empty(&mddev->disks)) {
4852 printk(KERN_WARNING
4853 "md: %s already running, cannot run %s\n",
4854 mdname(mddev), bdevname(rdev0->bdev,b));
4855 mddev_unlock(mddev);
4856 } else {
4857 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4858 mddev->persistent = 1;
4859 rdev_for_each_list(rdev, tmp, &candidates) {
4860 list_del_init(&rdev->same_set);
4861 if (bind_rdev_to_array(rdev, mddev))
4862 export_rdev(rdev);
4864 autorun_array(mddev);
4865 mddev_unlock(mddev);
4867 /* on success, candidates will be empty, on error
4868 * it won't...
4870 rdev_for_each_list(rdev, tmp, &candidates) {
4871 list_del_init(&rdev->same_set);
4872 export_rdev(rdev);
4874 mddev_put(mddev);
4876 printk(KERN_INFO "md: ... autorun DONE.\n");
4878 #endif /* !MODULE */
4880 static int get_version(void __user * arg)
4882 mdu_version_t ver;
4884 ver.major = MD_MAJOR_VERSION;
4885 ver.minor = MD_MINOR_VERSION;
4886 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4888 if (copy_to_user(arg, &ver, sizeof(ver)))
4889 return -EFAULT;
4891 return 0;
4894 static int get_array_info(mddev_t * mddev, void __user * arg)
4896 mdu_array_info_t info;
4897 int nr,working,insync,failed,spare;
4898 mdk_rdev_t *rdev;
4900 nr=working=insync=failed=spare=0;
4901 list_for_each_entry(rdev, &mddev->disks, same_set) {
4902 nr++;
4903 if (test_bit(Faulty, &rdev->flags))
4904 failed++;
4905 else {
4906 working++;
4907 if (test_bit(In_sync, &rdev->flags))
4908 insync++;
4909 else
4910 spare++;
4914 info.major_version = mddev->major_version;
4915 info.minor_version = mddev->minor_version;
4916 info.patch_version = MD_PATCHLEVEL_VERSION;
4917 info.ctime = mddev->ctime;
4918 info.level = mddev->level;
4919 info.size = mddev->dev_sectors / 2;
4920 if (info.size != mddev->dev_sectors / 2) /* overflow */
4921 info.size = -1;
4922 info.nr_disks = nr;
4923 info.raid_disks = mddev->raid_disks;
4924 info.md_minor = mddev->md_minor;
4925 info.not_persistent= !mddev->persistent;
4927 info.utime = mddev->utime;
4928 info.state = 0;
4929 if (mddev->in_sync)
4930 info.state = (1<<MD_SB_CLEAN);
4931 if (mddev->bitmap && mddev->bitmap_info.offset)
4932 info.state = (1<<MD_SB_BITMAP_PRESENT);
4933 info.active_disks = insync;
4934 info.working_disks = working;
4935 info.failed_disks = failed;
4936 info.spare_disks = spare;
4938 info.layout = mddev->layout;
4939 info.chunk_size = mddev->chunk_sectors << 9;
4941 if (copy_to_user(arg, &info, sizeof(info)))
4942 return -EFAULT;
4944 return 0;
4947 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4949 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4950 char *ptr, *buf = NULL;
4951 int err = -ENOMEM;
4953 if (md_allow_write(mddev))
4954 file = kmalloc(sizeof(*file), GFP_NOIO);
4955 else
4956 file = kmalloc(sizeof(*file), GFP_KERNEL);
4958 if (!file)
4959 goto out;
4961 /* bitmap disabled, zero the first byte and copy out */
4962 if (!mddev->bitmap || !mddev->bitmap->file) {
4963 file->pathname[0] = '\0';
4964 goto copy_out;
4967 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4968 if (!buf)
4969 goto out;
4971 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4972 if (IS_ERR(ptr))
4973 goto out;
4975 strcpy(file->pathname, ptr);
4977 copy_out:
4978 err = 0;
4979 if (copy_to_user(arg, file, sizeof(*file)))
4980 err = -EFAULT;
4981 out:
4982 kfree(buf);
4983 kfree(file);
4984 return err;
4987 static int get_disk_info(mddev_t * mddev, void __user * arg)
4989 mdu_disk_info_t info;
4990 mdk_rdev_t *rdev;
4992 if (copy_from_user(&info, arg, sizeof(info)))
4993 return -EFAULT;
4995 rdev = find_rdev_nr(mddev, info.number);
4996 if (rdev) {
4997 info.major = MAJOR(rdev->bdev->bd_dev);
4998 info.minor = MINOR(rdev->bdev->bd_dev);
4999 info.raid_disk = rdev->raid_disk;
5000 info.state = 0;
5001 if (test_bit(Faulty, &rdev->flags))
5002 info.state |= (1<<MD_DISK_FAULTY);
5003 else if (test_bit(In_sync, &rdev->flags)) {
5004 info.state |= (1<<MD_DISK_ACTIVE);
5005 info.state |= (1<<MD_DISK_SYNC);
5007 if (test_bit(WriteMostly, &rdev->flags))
5008 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5009 } else {
5010 info.major = info.minor = 0;
5011 info.raid_disk = -1;
5012 info.state = (1<<MD_DISK_REMOVED);
5015 if (copy_to_user(arg, &info, sizeof(info)))
5016 return -EFAULT;
5018 return 0;
5021 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5023 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5024 mdk_rdev_t *rdev;
5025 dev_t dev = MKDEV(info->major,info->minor);
5027 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5028 return -EOVERFLOW;
5030 if (!mddev->raid_disks) {
5031 int err;
5032 /* expecting a device which has a superblock */
5033 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5034 if (IS_ERR(rdev)) {
5035 printk(KERN_WARNING
5036 "md: md_import_device returned %ld\n",
5037 PTR_ERR(rdev));
5038 return PTR_ERR(rdev);
5040 if (!list_empty(&mddev->disks)) {
5041 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5042 mdk_rdev_t, same_set);
5043 err = super_types[mddev->major_version]
5044 .load_super(rdev, rdev0, mddev->minor_version);
5045 if (err < 0) {
5046 printk(KERN_WARNING
5047 "md: %s has different UUID to %s\n",
5048 bdevname(rdev->bdev,b),
5049 bdevname(rdev0->bdev,b2));
5050 export_rdev(rdev);
5051 return -EINVAL;
5054 err = bind_rdev_to_array(rdev, mddev);
5055 if (err)
5056 export_rdev(rdev);
5057 return err;
5061 * add_new_disk can be used once the array is assembled
5062 * to add "hot spares". They must already have a superblock
5063 * written
5065 if (mddev->pers) {
5066 int err;
5067 if (!mddev->pers->hot_add_disk) {
5068 printk(KERN_WARNING
5069 "%s: personality does not support diskops!\n",
5070 mdname(mddev));
5071 return -EINVAL;
5073 if (mddev->persistent)
5074 rdev = md_import_device(dev, mddev->major_version,
5075 mddev->minor_version);
5076 else
5077 rdev = md_import_device(dev, -1, -1);
5078 if (IS_ERR(rdev)) {
5079 printk(KERN_WARNING
5080 "md: md_import_device returned %ld\n",
5081 PTR_ERR(rdev));
5082 return PTR_ERR(rdev);
5084 /* set save_raid_disk if appropriate */
5085 if (!mddev->persistent) {
5086 if (info->state & (1<<MD_DISK_SYNC) &&
5087 info->raid_disk < mddev->raid_disks)
5088 rdev->raid_disk = info->raid_disk;
5089 else
5090 rdev->raid_disk = -1;
5091 } else
5092 super_types[mddev->major_version].
5093 validate_super(mddev, rdev);
5094 rdev->saved_raid_disk = rdev->raid_disk;
5096 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5097 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5098 set_bit(WriteMostly, &rdev->flags);
5099 else
5100 clear_bit(WriteMostly, &rdev->flags);
5102 rdev->raid_disk = -1;
5103 err = bind_rdev_to_array(rdev, mddev);
5104 if (!err && !mddev->pers->hot_remove_disk) {
5105 /* If there is hot_add_disk but no hot_remove_disk
5106 * then added disks for geometry changes,
5107 * and should be added immediately.
5109 super_types[mddev->major_version].
5110 validate_super(mddev, rdev);
5111 err = mddev->pers->hot_add_disk(mddev, rdev);
5112 if (err)
5113 unbind_rdev_from_array(rdev);
5115 if (err)
5116 export_rdev(rdev);
5117 else
5118 sysfs_notify_dirent_safe(rdev->sysfs_state);
5120 md_update_sb(mddev, 1);
5121 if (mddev->degraded)
5122 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5124 md_wakeup_thread(mddev->thread);
5125 return err;
5128 /* otherwise, add_new_disk is only allowed
5129 * for major_version==0 superblocks
5131 if (mddev->major_version != 0) {
5132 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5133 mdname(mddev));
5134 return -EINVAL;
5137 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5138 int err;
5139 rdev = md_import_device(dev, -1, 0);
5140 if (IS_ERR(rdev)) {
5141 printk(KERN_WARNING
5142 "md: error, md_import_device() returned %ld\n",
5143 PTR_ERR(rdev));
5144 return PTR_ERR(rdev);
5146 rdev->desc_nr = info->number;
5147 if (info->raid_disk < mddev->raid_disks)
5148 rdev->raid_disk = info->raid_disk;
5149 else
5150 rdev->raid_disk = -1;
5152 if (rdev->raid_disk < mddev->raid_disks)
5153 if (info->state & (1<<MD_DISK_SYNC))
5154 set_bit(In_sync, &rdev->flags);
5156 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5157 set_bit(WriteMostly, &rdev->flags);
5159 if (!mddev->persistent) {
5160 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5161 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5162 } else
5163 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5164 rdev->sectors = rdev->sb_start;
5166 err = bind_rdev_to_array(rdev, mddev);
5167 if (err) {
5168 export_rdev(rdev);
5169 return err;
5173 return 0;
5176 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5178 char b[BDEVNAME_SIZE];
5179 mdk_rdev_t *rdev;
5181 rdev = find_rdev(mddev, dev);
5182 if (!rdev)
5183 return -ENXIO;
5185 if (rdev->raid_disk >= 0)
5186 goto busy;
5188 kick_rdev_from_array(rdev);
5189 md_update_sb(mddev, 1);
5190 md_new_event(mddev);
5192 return 0;
5193 busy:
5194 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5195 bdevname(rdev->bdev,b), mdname(mddev));
5196 return -EBUSY;
5199 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5201 char b[BDEVNAME_SIZE];
5202 int err;
5203 mdk_rdev_t *rdev;
5205 if (!mddev->pers)
5206 return -ENODEV;
5208 if (mddev->major_version != 0) {
5209 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5210 " version-0 superblocks.\n",
5211 mdname(mddev));
5212 return -EINVAL;
5214 if (!mddev->pers->hot_add_disk) {
5215 printk(KERN_WARNING
5216 "%s: personality does not support diskops!\n",
5217 mdname(mddev));
5218 return -EINVAL;
5221 rdev = md_import_device(dev, -1, 0);
5222 if (IS_ERR(rdev)) {
5223 printk(KERN_WARNING
5224 "md: error, md_import_device() returned %ld\n",
5225 PTR_ERR(rdev));
5226 return -EINVAL;
5229 if (mddev->persistent)
5230 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5231 else
5232 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5234 rdev->sectors = rdev->sb_start;
5236 if (test_bit(Faulty, &rdev->flags)) {
5237 printk(KERN_WARNING
5238 "md: can not hot-add faulty %s disk to %s!\n",
5239 bdevname(rdev->bdev,b), mdname(mddev));
5240 err = -EINVAL;
5241 goto abort_export;
5243 clear_bit(In_sync, &rdev->flags);
5244 rdev->desc_nr = -1;
5245 rdev->saved_raid_disk = -1;
5246 err = bind_rdev_to_array(rdev, mddev);
5247 if (err)
5248 goto abort_export;
5251 * The rest should better be atomic, we can have disk failures
5252 * noticed in interrupt contexts ...
5255 rdev->raid_disk = -1;
5257 md_update_sb(mddev, 1);
5260 * Kick recovery, maybe this spare has to be added to the
5261 * array immediately.
5263 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5264 md_wakeup_thread(mddev->thread);
5265 md_new_event(mddev);
5266 return 0;
5268 abort_export:
5269 export_rdev(rdev);
5270 return err;
5273 static int set_bitmap_file(mddev_t *mddev, int fd)
5275 int err;
5277 if (mddev->pers) {
5278 if (!mddev->pers->quiesce)
5279 return -EBUSY;
5280 if (mddev->recovery || mddev->sync_thread)
5281 return -EBUSY;
5282 /* we should be able to change the bitmap.. */
5286 if (fd >= 0) {
5287 if (mddev->bitmap)
5288 return -EEXIST; /* cannot add when bitmap is present */
5289 mddev->bitmap_info.file = fget(fd);
5291 if (mddev->bitmap_info.file == NULL) {
5292 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5293 mdname(mddev));
5294 return -EBADF;
5297 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5298 if (err) {
5299 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5300 mdname(mddev));
5301 fput(mddev->bitmap_info.file);
5302 mddev->bitmap_info.file = NULL;
5303 return err;
5305 mddev->bitmap_info.offset = 0; /* file overrides offset */
5306 } else if (mddev->bitmap == NULL)
5307 return -ENOENT; /* cannot remove what isn't there */
5308 err = 0;
5309 if (mddev->pers) {
5310 mddev->pers->quiesce(mddev, 1);
5311 if (fd >= 0) {
5312 err = bitmap_create(mddev);
5313 if (!err)
5314 err = bitmap_load(mddev);
5316 if (fd < 0 || err) {
5317 bitmap_destroy(mddev);
5318 fd = -1; /* make sure to put the file */
5320 mddev->pers->quiesce(mddev, 0);
5322 if (fd < 0) {
5323 if (mddev->bitmap_info.file) {
5324 restore_bitmap_write_access(mddev->bitmap_info.file);
5325 fput(mddev->bitmap_info.file);
5327 mddev->bitmap_info.file = NULL;
5330 return err;
5334 * set_array_info is used two different ways
5335 * The original usage is when creating a new array.
5336 * In this usage, raid_disks is > 0 and it together with
5337 * level, size, not_persistent,layout,chunksize determine the
5338 * shape of the array.
5339 * This will always create an array with a type-0.90.0 superblock.
5340 * The newer usage is when assembling an array.
5341 * In this case raid_disks will be 0, and the major_version field is
5342 * use to determine which style super-blocks are to be found on the devices.
5343 * The minor and patch _version numbers are also kept incase the
5344 * super_block handler wishes to interpret them.
5346 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5349 if (info->raid_disks == 0) {
5350 /* just setting version number for superblock loading */
5351 if (info->major_version < 0 ||
5352 info->major_version >= ARRAY_SIZE(super_types) ||
5353 super_types[info->major_version].name == NULL) {
5354 /* maybe try to auto-load a module? */
5355 printk(KERN_INFO
5356 "md: superblock version %d not known\n",
5357 info->major_version);
5358 return -EINVAL;
5360 mddev->major_version = info->major_version;
5361 mddev->minor_version = info->minor_version;
5362 mddev->patch_version = info->patch_version;
5363 mddev->persistent = !info->not_persistent;
5364 /* ensure mddev_put doesn't delete this now that there
5365 * is some minimal configuration.
5367 mddev->ctime = get_seconds();
5368 return 0;
5370 mddev->major_version = MD_MAJOR_VERSION;
5371 mddev->minor_version = MD_MINOR_VERSION;
5372 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5373 mddev->ctime = get_seconds();
5375 mddev->level = info->level;
5376 mddev->clevel[0] = 0;
5377 mddev->dev_sectors = 2 * (sector_t)info->size;
5378 mddev->raid_disks = info->raid_disks;
5379 /* don't set md_minor, it is determined by which /dev/md* was
5380 * openned
5382 if (info->state & (1<<MD_SB_CLEAN))
5383 mddev->recovery_cp = MaxSector;
5384 else
5385 mddev->recovery_cp = 0;
5386 mddev->persistent = ! info->not_persistent;
5387 mddev->external = 0;
5389 mddev->layout = info->layout;
5390 mddev->chunk_sectors = info->chunk_size >> 9;
5392 mddev->max_disks = MD_SB_DISKS;
5394 if (mddev->persistent)
5395 mddev->flags = 0;
5396 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5398 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5399 mddev->bitmap_info.offset = 0;
5401 mddev->reshape_position = MaxSector;
5404 * Generate a 128 bit UUID
5406 get_random_bytes(mddev->uuid, 16);
5408 mddev->new_level = mddev->level;
5409 mddev->new_chunk_sectors = mddev->chunk_sectors;
5410 mddev->new_layout = mddev->layout;
5411 mddev->delta_disks = 0;
5413 return 0;
5416 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5418 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5420 if (mddev->external_size)
5421 return;
5423 mddev->array_sectors = array_sectors;
5425 EXPORT_SYMBOL(md_set_array_sectors);
5427 static int update_size(mddev_t *mddev, sector_t num_sectors)
5429 mdk_rdev_t *rdev;
5430 int rv;
5431 int fit = (num_sectors == 0);
5433 if (mddev->pers->resize == NULL)
5434 return -EINVAL;
5435 /* The "num_sectors" is the number of sectors of each device that
5436 * is used. This can only make sense for arrays with redundancy.
5437 * linear and raid0 always use whatever space is available. We can only
5438 * consider changing this number if no resync or reconstruction is
5439 * happening, and if the new size is acceptable. It must fit before the
5440 * sb_start or, if that is <data_offset, it must fit before the size
5441 * of each device. If num_sectors is zero, we find the largest size
5442 * that fits.
5445 if (mddev->sync_thread)
5446 return -EBUSY;
5447 if (mddev->bitmap)
5448 /* Sorry, cannot grow a bitmap yet, just remove it,
5449 * grow, and re-add.
5451 return -EBUSY;
5452 list_for_each_entry(rdev, &mddev->disks, same_set) {
5453 sector_t avail = rdev->sectors;
5455 if (fit && (num_sectors == 0 || num_sectors > avail))
5456 num_sectors = avail;
5457 if (avail < num_sectors)
5458 return -ENOSPC;
5460 rv = mddev->pers->resize(mddev, num_sectors);
5461 if (!rv)
5462 revalidate_disk(mddev->gendisk);
5463 return rv;
5466 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5468 int rv;
5469 /* change the number of raid disks */
5470 if (mddev->pers->check_reshape == NULL)
5471 return -EINVAL;
5472 if (raid_disks <= 0 ||
5473 (mddev->max_disks && raid_disks >= mddev->max_disks))
5474 return -EINVAL;
5475 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5476 return -EBUSY;
5477 mddev->delta_disks = raid_disks - mddev->raid_disks;
5479 rv = mddev->pers->check_reshape(mddev);
5480 return rv;
5485 * update_array_info is used to change the configuration of an
5486 * on-line array.
5487 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5488 * fields in the info are checked against the array.
5489 * Any differences that cannot be handled will cause an error.
5490 * Normally, only one change can be managed at a time.
5492 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5494 int rv = 0;
5495 int cnt = 0;
5496 int state = 0;
5498 /* calculate expected state,ignoring low bits */
5499 if (mddev->bitmap && mddev->bitmap_info.offset)
5500 state |= (1 << MD_SB_BITMAP_PRESENT);
5502 if (mddev->major_version != info->major_version ||
5503 mddev->minor_version != info->minor_version ||
5504 /* mddev->patch_version != info->patch_version || */
5505 mddev->ctime != info->ctime ||
5506 mddev->level != info->level ||
5507 /* mddev->layout != info->layout || */
5508 !mddev->persistent != info->not_persistent||
5509 mddev->chunk_sectors != info->chunk_size >> 9 ||
5510 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5511 ((state^info->state) & 0xfffffe00)
5513 return -EINVAL;
5514 /* Check there is only one change */
5515 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5516 cnt++;
5517 if (mddev->raid_disks != info->raid_disks)
5518 cnt++;
5519 if (mddev->layout != info->layout)
5520 cnt++;
5521 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5522 cnt++;
5523 if (cnt == 0)
5524 return 0;
5525 if (cnt > 1)
5526 return -EINVAL;
5528 if (mddev->layout != info->layout) {
5529 /* Change layout
5530 * we don't need to do anything at the md level, the
5531 * personality will take care of it all.
5533 if (mddev->pers->check_reshape == NULL)
5534 return -EINVAL;
5535 else {
5536 mddev->new_layout = info->layout;
5537 rv = mddev->pers->check_reshape(mddev);
5538 if (rv)
5539 mddev->new_layout = mddev->layout;
5540 return rv;
5543 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5544 rv = update_size(mddev, (sector_t)info->size * 2);
5546 if (mddev->raid_disks != info->raid_disks)
5547 rv = update_raid_disks(mddev, info->raid_disks);
5549 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5550 if (mddev->pers->quiesce == NULL)
5551 return -EINVAL;
5552 if (mddev->recovery || mddev->sync_thread)
5553 return -EBUSY;
5554 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5555 /* add the bitmap */
5556 if (mddev->bitmap)
5557 return -EEXIST;
5558 if (mddev->bitmap_info.default_offset == 0)
5559 return -EINVAL;
5560 mddev->bitmap_info.offset =
5561 mddev->bitmap_info.default_offset;
5562 mddev->pers->quiesce(mddev, 1);
5563 rv = bitmap_create(mddev);
5564 if (!rv)
5565 rv = bitmap_load(mddev);
5566 if (rv)
5567 bitmap_destroy(mddev);
5568 mddev->pers->quiesce(mddev, 0);
5569 } else {
5570 /* remove the bitmap */
5571 if (!mddev->bitmap)
5572 return -ENOENT;
5573 if (mddev->bitmap->file)
5574 return -EINVAL;
5575 mddev->pers->quiesce(mddev, 1);
5576 bitmap_destroy(mddev);
5577 mddev->pers->quiesce(mddev, 0);
5578 mddev->bitmap_info.offset = 0;
5581 md_update_sb(mddev, 1);
5582 return rv;
5585 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5587 mdk_rdev_t *rdev;
5589 if (mddev->pers == NULL)
5590 return -ENODEV;
5592 rdev = find_rdev(mddev, dev);
5593 if (!rdev)
5594 return -ENODEV;
5596 md_error(mddev, rdev);
5597 return 0;
5601 * We have a problem here : there is no easy way to give a CHS
5602 * virtual geometry. We currently pretend that we have a 2 heads
5603 * 4 sectors (with a BIG number of cylinders...). This drives
5604 * dosfs just mad... ;-)
5606 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5608 mddev_t *mddev = bdev->bd_disk->private_data;
5610 geo->heads = 2;
5611 geo->sectors = 4;
5612 geo->cylinders = mddev->array_sectors / 8;
5613 return 0;
5616 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5617 unsigned int cmd, unsigned long arg)
5619 int err = 0;
5620 void __user *argp = (void __user *)arg;
5621 mddev_t *mddev = NULL;
5622 int ro;
5624 if (!capable(CAP_SYS_ADMIN))
5625 return -EACCES;
5628 * Commands dealing with the RAID driver but not any
5629 * particular array:
5631 switch (cmd)
5633 case RAID_VERSION:
5634 err = get_version(argp);
5635 goto done;
5637 case PRINT_RAID_DEBUG:
5638 err = 0;
5639 md_print_devices();
5640 goto done;
5642 #ifndef MODULE
5643 case RAID_AUTORUN:
5644 err = 0;
5645 autostart_arrays(arg);
5646 goto done;
5647 #endif
5648 default:;
5652 * Commands creating/starting a new array:
5655 mddev = bdev->bd_disk->private_data;
5657 if (!mddev) {
5658 BUG();
5659 goto abort;
5662 err = mddev_lock(mddev);
5663 if (err) {
5664 printk(KERN_INFO
5665 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5666 err, cmd);
5667 goto abort;
5670 switch (cmd)
5672 case SET_ARRAY_INFO:
5674 mdu_array_info_t info;
5675 if (!arg)
5676 memset(&info, 0, sizeof(info));
5677 else if (copy_from_user(&info, argp, sizeof(info))) {
5678 err = -EFAULT;
5679 goto abort_unlock;
5681 if (mddev->pers) {
5682 err = update_array_info(mddev, &info);
5683 if (err) {
5684 printk(KERN_WARNING "md: couldn't update"
5685 " array info. %d\n", err);
5686 goto abort_unlock;
5688 goto done_unlock;
5690 if (!list_empty(&mddev->disks)) {
5691 printk(KERN_WARNING
5692 "md: array %s already has disks!\n",
5693 mdname(mddev));
5694 err = -EBUSY;
5695 goto abort_unlock;
5697 if (mddev->raid_disks) {
5698 printk(KERN_WARNING
5699 "md: array %s already initialised!\n",
5700 mdname(mddev));
5701 err = -EBUSY;
5702 goto abort_unlock;
5704 err = set_array_info(mddev, &info);
5705 if (err) {
5706 printk(KERN_WARNING "md: couldn't set"
5707 " array info. %d\n", err);
5708 goto abort_unlock;
5711 goto done_unlock;
5713 default:;
5717 * Commands querying/configuring an existing array:
5719 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5720 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5721 if ((!mddev->raid_disks && !mddev->external)
5722 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5723 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5724 && cmd != GET_BITMAP_FILE) {
5725 err = -ENODEV;
5726 goto abort_unlock;
5730 * Commands even a read-only array can execute:
5732 switch (cmd)
5734 case GET_ARRAY_INFO:
5735 err = get_array_info(mddev, argp);
5736 goto done_unlock;
5738 case GET_BITMAP_FILE:
5739 err = get_bitmap_file(mddev, argp);
5740 goto done_unlock;
5742 case GET_DISK_INFO:
5743 err = get_disk_info(mddev, argp);
5744 goto done_unlock;
5746 case RESTART_ARRAY_RW:
5747 err = restart_array(mddev);
5748 goto done_unlock;
5750 case STOP_ARRAY:
5751 err = do_md_stop(mddev, 0, 1);
5752 goto done_unlock;
5754 case STOP_ARRAY_RO:
5755 err = md_set_readonly(mddev, 1);
5756 goto done_unlock;
5758 case BLKROSET:
5759 if (get_user(ro, (int __user *)(arg))) {
5760 err = -EFAULT;
5761 goto done_unlock;
5763 err = -EINVAL;
5765 /* if the bdev is going readonly the value of mddev->ro
5766 * does not matter, no writes are coming
5768 if (ro)
5769 goto done_unlock;
5771 /* are we are already prepared for writes? */
5772 if (mddev->ro != 1)
5773 goto done_unlock;
5775 /* transitioning to readauto need only happen for
5776 * arrays that call md_write_start
5778 if (mddev->pers) {
5779 err = restart_array(mddev);
5780 if (err == 0) {
5781 mddev->ro = 2;
5782 set_disk_ro(mddev->gendisk, 0);
5785 goto done_unlock;
5789 * The remaining ioctls are changing the state of the
5790 * superblock, so we do not allow them on read-only arrays.
5791 * However non-MD ioctls (e.g. get-size) will still come through
5792 * here and hit the 'default' below, so only disallow
5793 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5795 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5796 if (mddev->ro == 2) {
5797 mddev->ro = 0;
5798 sysfs_notify_dirent_safe(mddev->sysfs_state);
5799 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5800 md_wakeup_thread(mddev->thread);
5801 } else {
5802 err = -EROFS;
5803 goto abort_unlock;
5807 switch (cmd)
5809 case ADD_NEW_DISK:
5811 mdu_disk_info_t info;
5812 if (copy_from_user(&info, argp, sizeof(info)))
5813 err = -EFAULT;
5814 else
5815 err = add_new_disk(mddev, &info);
5816 goto done_unlock;
5819 case HOT_REMOVE_DISK:
5820 err = hot_remove_disk(mddev, new_decode_dev(arg));
5821 goto done_unlock;
5823 case HOT_ADD_DISK:
5824 err = hot_add_disk(mddev, new_decode_dev(arg));
5825 goto done_unlock;
5827 case SET_DISK_FAULTY:
5828 err = set_disk_faulty(mddev, new_decode_dev(arg));
5829 goto done_unlock;
5831 case RUN_ARRAY:
5832 err = do_md_run(mddev);
5833 goto done_unlock;
5835 case SET_BITMAP_FILE:
5836 err = set_bitmap_file(mddev, (int)arg);
5837 goto done_unlock;
5839 default:
5840 err = -EINVAL;
5841 goto abort_unlock;
5844 done_unlock:
5845 abort_unlock:
5846 if (mddev->hold_active == UNTIL_IOCTL &&
5847 err != -EINVAL)
5848 mddev->hold_active = 0;
5849 mddev_unlock(mddev);
5851 return err;
5852 done:
5853 if (err)
5854 MD_BUG();
5855 abort:
5856 return err;
5858 #ifdef CONFIG_COMPAT
5859 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5860 unsigned int cmd, unsigned long arg)
5862 switch (cmd) {
5863 case HOT_REMOVE_DISK:
5864 case HOT_ADD_DISK:
5865 case SET_DISK_FAULTY:
5866 case SET_BITMAP_FILE:
5867 /* These take in integer arg, do not convert */
5868 break;
5869 default:
5870 arg = (unsigned long)compat_ptr(arg);
5871 break;
5874 return md_ioctl(bdev, mode, cmd, arg);
5876 #endif /* CONFIG_COMPAT */
5878 static int md_open(struct block_device *bdev, fmode_t mode)
5881 * Succeed if we can lock the mddev, which confirms that
5882 * it isn't being stopped right now.
5884 mddev_t *mddev = mddev_find(bdev->bd_dev);
5885 int err;
5887 lock_kernel();
5888 if (mddev->gendisk != bdev->bd_disk) {
5889 /* we are racing with mddev_put which is discarding this
5890 * bd_disk.
5892 mddev_put(mddev);
5893 /* Wait until bdev->bd_disk is definitely gone */
5894 flush_scheduled_work();
5895 /* Then retry the open from the top */
5896 unlock_kernel();
5897 return -ERESTARTSYS;
5899 BUG_ON(mddev != bdev->bd_disk->private_data);
5901 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5902 goto out;
5904 err = 0;
5905 atomic_inc(&mddev->openers);
5906 mutex_unlock(&mddev->open_mutex);
5908 check_disk_size_change(mddev->gendisk, bdev);
5909 out:
5910 unlock_kernel();
5911 return err;
5914 static int md_release(struct gendisk *disk, fmode_t mode)
5916 mddev_t *mddev = disk->private_data;
5918 BUG_ON(!mddev);
5919 lock_kernel();
5920 atomic_dec(&mddev->openers);
5921 mddev_put(mddev);
5922 unlock_kernel();
5924 return 0;
5926 static const struct block_device_operations md_fops =
5928 .owner = THIS_MODULE,
5929 .open = md_open,
5930 .release = md_release,
5931 .ioctl = md_ioctl,
5932 #ifdef CONFIG_COMPAT
5933 .compat_ioctl = md_compat_ioctl,
5934 #endif
5935 .getgeo = md_getgeo,
5938 static int md_thread(void * arg)
5940 mdk_thread_t *thread = arg;
5943 * md_thread is a 'system-thread', it's priority should be very
5944 * high. We avoid resource deadlocks individually in each
5945 * raid personality. (RAID5 does preallocation) We also use RR and
5946 * the very same RT priority as kswapd, thus we will never get
5947 * into a priority inversion deadlock.
5949 * we definitely have to have equal or higher priority than
5950 * bdflush, otherwise bdflush will deadlock if there are too
5951 * many dirty RAID5 blocks.
5954 allow_signal(SIGKILL);
5955 while (!kthread_should_stop()) {
5957 /* We need to wait INTERRUPTIBLE so that
5958 * we don't add to the load-average.
5959 * That means we need to be sure no signals are
5960 * pending
5962 if (signal_pending(current))
5963 flush_signals(current);
5965 wait_event_interruptible_timeout
5966 (thread->wqueue,
5967 test_bit(THREAD_WAKEUP, &thread->flags)
5968 || kthread_should_stop(),
5969 thread->timeout);
5971 clear_bit(THREAD_WAKEUP, &thread->flags);
5973 thread->run(thread->mddev);
5976 return 0;
5979 void md_wakeup_thread(mdk_thread_t *thread)
5981 if (thread) {
5982 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5983 set_bit(THREAD_WAKEUP, &thread->flags);
5984 wake_up(&thread->wqueue);
5988 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5989 const char *name)
5991 mdk_thread_t *thread;
5993 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5994 if (!thread)
5995 return NULL;
5997 init_waitqueue_head(&thread->wqueue);
5999 thread->run = run;
6000 thread->mddev = mddev;
6001 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6002 thread->tsk = kthread_run(md_thread, thread,
6003 "%s_%s",
6004 mdname(thread->mddev),
6005 name ?: mddev->pers->name);
6006 if (IS_ERR(thread->tsk)) {
6007 kfree(thread);
6008 return NULL;
6010 return thread;
6013 void md_unregister_thread(mdk_thread_t *thread)
6015 if (!thread)
6016 return;
6017 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6019 kthread_stop(thread->tsk);
6020 kfree(thread);
6023 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6025 if (!mddev) {
6026 MD_BUG();
6027 return;
6030 if (!rdev || test_bit(Faulty, &rdev->flags))
6031 return;
6033 if (mddev->external)
6034 set_bit(Blocked, &rdev->flags);
6036 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6037 mdname(mddev),
6038 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6039 __builtin_return_address(0),__builtin_return_address(1),
6040 __builtin_return_address(2),__builtin_return_address(3));
6042 if (!mddev->pers)
6043 return;
6044 if (!mddev->pers->error_handler)
6045 return;
6046 mddev->pers->error_handler(mddev,rdev);
6047 if (mddev->degraded)
6048 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6049 sysfs_notify_dirent_safe(rdev->sysfs_state);
6050 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6051 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6052 md_wakeup_thread(mddev->thread);
6053 if (mddev->event_work.func)
6054 schedule_work(&mddev->event_work);
6055 md_new_event_inintr(mddev);
6058 /* seq_file implementation /proc/mdstat */
6060 static void status_unused(struct seq_file *seq)
6062 int i = 0;
6063 mdk_rdev_t *rdev;
6065 seq_printf(seq, "unused devices: ");
6067 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6068 char b[BDEVNAME_SIZE];
6069 i++;
6070 seq_printf(seq, "%s ",
6071 bdevname(rdev->bdev,b));
6073 if (!i)
6074 seq_printf(seq, "<none>");
6076 seq_printf(seq, "\n");
6080 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6082 sector_t max_sectors, resync, res;
6083 unsigned long dt, db;
6084 sector_t rt;
6085 int scale;
6086 unsigned int per_milli;
6088 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6090 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6091 max_sectors = mddev->resync_max_sectors;
6092 else
6093 max_sectors = mddev->dev_sectors;
6096 * Should not happen.
6098 if (!max_sectors) {
6099 MD_BUG();
6100 return;
6102 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6103 * in a sector_t, and (max_sectors>>scale) will fit in a
6104 * u32, as those are the requirements for sector_div.
6105 * Thus 'scale' must be at least 10
6107 scale = 10;
6108 if (sizeof(sector_t) > sizeof(unsigned long)) {
6109 while ( max_sectors/2 > (1ULL<<(scale+32)))
6110 scale++;
6112 res = (resync>>scale)*1000;
6113 sector_div(res, (u32)((max_sectors>>scale)+1));
6115 per_milli = res;
6117 int i, x = per_milli/50, y = 20-x;
6118 seq_printf(seq, "[");
6119 for (i = 0; i < x; i++)
6120 seq_printf(seq, "=");
6121 seq_printf(seq, ">");
6122 for (i = 0; i < y; i++)
6123 seq_printf(seq, ".");
6124 seq_printf(seq, "] ");
6126 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6127 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6128 "reshape" :
6129 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6130 "check" :
6131 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6132 "resync" : "recovery"))),
6133 per_milli/10, per_milli % 10,
6134 (unsigned long long) resync/2,
6135 (unsigned long long) max_sectors/2);
6138 * dt: time from mark until now
6139 * db: blocks written from mark until now
6140 * rt: remaining time
6142 * rt is a sector_t, so could be 32bit or 64bit.
6143 * So we divide before multiply in case it is 32bit and close
6144 * to the limit.
6145 * We scale the divisor (db) by 32 to avoid loosing precision
6146 * near the end of resync when the number of remaining sectors
6147 * is close to 'db'.
6148 * We then divide rt by 32 after multiplying by db to compensate.
6149 * The '+1' avoids division by zero if db is very small.
6151 dt = ((jiffies - mddev->resync_mark) / HZ);
6152 if (!dt) dt++;
6153 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6154 - mddev->resync_mark_cnt;
6156 rt = max_sectors - resync; /* number of remaining sectors */
6157 sector_div(rt, db/32+1);
6158 rt *= dt;
6159 rt >>= 5;
6161 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6162 ((unsigned long)rt % 60)/6);
6164 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6167 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6169 struct list_head *tmp;
6170 loff_t l = *pos;
6171 mddev_t *mddev;
6173 if (l >= 0x10000)
6174 return NULL;
6175 if (!l--)
6176 /* header */
6177 return (void*)1;
6179 spin_lock(&all_mddevs_lock);
6180 list_for_each(tmp,&all_mddevs)
6181 if (!l--) {
6182 mddev = list_entry(tmp, mddev_t, all_mddevs);
6183 mddev_get(mddev);
6184 spin_unlock(&all_mddevs_lock);
6185 return mddev;
6187 spin_unlock(&all_mddevs_lock);
6188 if (!l--)
6189 return (void*)2;/* tail */
6190 return NULL;
6193 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6195 struct list_head *tmp;
6196 mddev_t *next_mddev, *mddev = v;
6198 ++*pos;
6199 if (v == (void*)2)
6200 return NULL;
6202 spin_lock(&all_mddevs_lock);
6203 if (v == (void*)1)
6204 tmp = all_mddevs.next;
6205 else
6206 tmp = mddev->all_mddevs.next;
6207 if (tmp != &all_mddevs)
6208 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6209 else {
6210 next_mddev = (void*)2;
6211 *pos = 0x10000;
6213 spin_unlock(&all_mddevs_lock);
6215 if (v != (void*)1)
6216 mddev_put(mddev);
6217 return next_mddev;
6221 static void md_seq_stop(struct seq_file *seq, void *v)
6223 mddev_t *mddev = v;
6225 if (mddev && v != (void*)1 && v != (void*)2)
6226 mddev_put(mddev);
6229 struct mdstat_info {
6230 int event;
6233 static int md_seq_show(struct seq_file *seq, void *v)
6235 mddev_t *mddev = v;
6236 sector_t sectors;
6237 mdk_rdev_t *rdev;
6238 struct mdstat_info *mi = seq->private;
6239 struct bitmap *bitmap;
6241 if (v == (void*)1) {
6242 struct mdk_personality *pers;
6243 seq_printf(seq, "Personalities : ");
6244 spin_lock(&pers_lock);
6245 list_for_each_entry(pers, &pers_list, list)
6246 seq_printf(seq, "[%s] ", pers->name);
6248 spin_unlock(&pers_lock);
6249 seq_printf(seq, "\n");
6250 mi->event = atomic_read(&md_event_count);
6251 return 0;
6253 if (v == (void*)2) {
6254 status_unused(seq);
6255 return 0;
6258 if (mddev_lock(mddev) < 0)
6259 return -EINTR;
6261 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6262 seq_printf(seq, "%s : %sactive", mdname(mddev),
6263 mddev->pers ? "" : "in");
6264 if (mddev->pers) {
6265 if (mddev->ro==1)
6266 seq_printf(seq, " (read-only)");
6267 if (mddev->ro==2)
6268 seq_printf(seq, " (auto-read-only)");
6269 seq_printf(seq, " %s", mddev->pers->name);
6272 sectors = 0;
6273 list_for_each_entry(rdev, &mddev->disks, same_set) {
6274 char b[BDEVNAME_SIZE];
6275 seq_printf(seq, " %s[%d]",
6276 bdevname(rdev->bdev,b), rdev->desc_nr);
6277 if (test_bit(WriteMostly, &rdev->flags))
6278 seq_printf(seq, "(W)");
6279 if (test_bit(Faulty, &rdev->flags)) {
6280 seq_printf(seq, "(F)");
6281 continue;
6282 } else if (rdev->raid_disk < 0)
6283 seq_printf(seq, "(S)"); /* spare */
6284 sectors += rdev->sectors;
6287 if (!list_empty(&mddev->disks)) {
6288 if (mddev->pers)
6289 seq_printf(seq, "\n %llu blocks",
6290 (unsigned long long)
6291 mddev->array_sectors / 2);
6292 else
6293 seq_printf(seq, "\n %llu blocks",
6294 (unsigned long long)sectors / 2);
6296 if (mddev->persistent) {
6297 if (mddev->major_version != 0 ||
6298 mddev->minor_version != 90) {
6299 seq_printf(seq," super %d.%d",
6300 mddev->major_version,
6301 mddev->minor_version);
6303 } else if (mddev->external)
6304 seq_printf(seq, " super external:%s",
6305 mddev->metadata_type);
6306 else
6307 seq_printf(seq, " super non-persistent");
6309 if (mddev->pers) {
6310 mddev->pers->status(seq, mddev);
6311 seq_printf(seq, "\n ");
6312 if (mddev->pers->sync_request) {
6313 if (mddev->curr_resync > 2) {
6314 status_resync(seq, mddev);
6315 seq_printf(seq, "\n ");
6316 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6317 seq_printf(seq, "\tresync=DELAYED\n ");
6318 else if (mddev->recovery_cp < MaxSector)
6319 seq_printf(seq, "\tresync=PENDING\n ");
6321 } else
6322 seq_printf(seq, "\n ");
6324 if ((bitmap = mddev->bitmap)) {
6325 unsigned long chunk_kb;
6326 unsigned long flags;
6327 spin_lock_irqsave(&bitmap->lock, flags);
6328 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6329 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6330 "%lu%s chunk",
6331 bitmap->pages - bitmap->missing_pages,
6332 bitmap->pages,
6333 (bitmap->pages - bitmap->missing_pages)
6334 << (PAGE_SHIFT - 10),
6335 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6336 chunk_kb ? "KB" : "B");
6337 if (bitmap->file) {
6338 seq_printf(seq, ", file: ");
6339 seq_path(seq, &bitmap->file->f_path, " \t\n");
6342 seq_printf(seq, "\n");
6343 spin_unlock_irqrestore(&bitmap->lock, flags);
6346 seq_printf(seq, "\n");
6348 mddev_unlock(mddev);
6350 return 0;
6353 static const struct seq_operations md_seq_ops = {
6354 .start = md_seq_start,
6355 .next = md_seq_next,
6356 .stop = md_seq_stop,
6357 .show = md_seq_show,
6360 static int md_seq_open(struct inode *inode, struct file *file)
6362 int error;
6363 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6364 if (mi == NULL)
6365 return -ENOMEM;
6367 error = seq_open(file, &md_seq_ops);
6368 if (error)
6369 kfree(mi);
6370 else {
6371 struct seq_file *p = file->private_data;
6372 p->private = mi;
6373 mi->event = atomic_read(&md_event_count);
6375 return error;
6378 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6380 struct seq_file *m = filp->private_data;
6381 struct mdstat_info *mi = m->private;
6382 int mask;
6384 poll_wait(filp, &md_event_waiters, wait);
6386 /* always allow read */
6387 mask = POLLIN | POLLRDNORM;
6389 if (mi->event != atomic_read(&md_event_count))
6390 mask |= POLLERR | POLLPRI;
6391 return mask;
6394 static const struct file_operations md_seq_fops = {
6395 .owner = THIS_MODULE,
6396 .open = md_seq_open,
6397 .read = seq_read,
6398 .llseek = seq_lseek,
6399 .release = seq_release_private,
6400 .poll = mdstat_poll,
6403 int register_md_personality(struct mdk_personality *p)
6405 spin_lock(&pers_lock);
6406 list_add_tail(&p->list, &pers_list);
6407 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6408 spin_unlock(&pers_lock);
6409 return 0;
6412 int unregister_md_personality(struct mdk_personality *p)
6414 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6415 spin_lock(&pers_lock);
6416 list_del_init(&p->list);
6417 spin_unlock(&pers_lock);
6418 return 0;
6421 static int is_mddev_idle(mddev_t *mddev, int init)
6423 mdk_rdev_t * rdev;
6424 int idle;
6425 int curr_events;
6427 idle = 1;
6428 rcu_read_lock();
6429 rdev_for_each_rcu(rdev, mddev) {
6430 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6431 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6432 (int)part_stat_read(&disk->part0, sectors[1]) -
6433 atomic_read(&disk->sync_io);
6434 /* sync IO will cause sync_io to increase before the disk_stats
6435 * as sync_io is counted when a request starts, and
6436 * disk_stats is counted when it completes.
6437 * So resync activity will cause curr_events to be smaller than
6438 * when there was no such activity.
6439 * non-sync IO will cause disk_stat to increase without
6440 * increasing sync_io so curr_events will (eventually)
6441 * be larger than it was before. Once it becomes
6442 * substantially larger, the test below will cause
6443 * the array to appear non-idle, and resync will slow
6444 * down.
6445 * If there is a lot of outstanding resync activity when
6446 * we set last_event to curr_events, then all that activity
6447 * completing might cause the array to appear non-idle
6448 * and resync will be slowed down even though there might
6449 * not have been non-resync activity. This will only
6450 * happen once though. 'last_events' will soon reflect
6451 * the state where there is little or no outstanding
6452 * resync requests, and further resync activity will
6453 * always make curr_events less than last_events.
6456 if (init || curr_events - rdev->last_events > 64) {
6457 rdev->last_events = curr_events;
6458 idle = 0;
6461 rcu_read_unlock();
6462 return idle;
6465 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6467 /* another "blocks" (512byte) blocks have been synced */
6468 atomic_sub(blocks, &mddev->recovery_active);
6469 wake_up(&mddev->recovery_wait);
6470 if (!ok) {
6471 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6472 md_wakeup_thread(mddev->thread);
6473 // stop recovery, signal do_sync ....
6478 /* md_write_start(mddev, bi)
6479 * If we need to update some array metadata (e.g. 'active' flag
6480 * in superblock) before writing, schedule a superblock update
6481 * and wait for it to complete.
6483 void md_write_start(mddev_t *mddev, struct bio *bi)
6485 int did_change = 0;
6486 if (bio_data_dir(bi) != WRITE)
6487 return;
6489 BUG_ON(mddev->ro == 1);
6490 if (mddev->ro == 2) {
6491 /* need to switch to read/write */
6492 mddev->ro = 0;
6493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6494 md_wakeup_thread(mddev->thread);
6495 md_wakeup_thread(mddev->sync_thread);
6496 did_change = 1;
6498 atomic_inc(&mddev->writes_pending);
6499 if (mddev->safemode == 1)
6500 mddev->safemode = 0;
6501 if (mddev->in_sync) {
6502 spin_lock_irq(&mddev->write_lock);
6503 if (mddev->in_sync) {
6504 mddev->in_sync = 0;
6505 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6506 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6507 md_wakeup_thread(mddev->thread);
6508 did_change = 1;
6510 spin_unlock_irq(&mddev->write_lock);
6512 if (did_change)
6513 sysfs_notify_dirent_safe(mddev->sysfs_state);
6514 wait_event(mddev->sb_wait,
6515 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6518 void md_write_end(mddev_t *mddev)
6520 if (atomic_dec_and_test(&mddev->writes_pending)) {
6521 if (mddev->safemode == 2)
6522 md_wakeup_thread(mddev->thread);
6523 else if (mddev->safemode_delay)
6524 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6528 /* md_allow_write(mddev)
6529 * Calling this ensures that the array is marked 'active' so that writes
6530 * may proceed without blocking. It is important to call this before
6531 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6532 * Must be called with mddev_lock held.
6534 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6535 * is dropped, so return -EAGAIN after notifying userspace.
6537 int md_allow_write(mddev_t *mddev)
6539 if (!mddev->pers)
6540 return 0;
6541 if (mddev->ro)
6542 return 0;
6543 if (!mddev->pers->sync_request)
6544 return 0;
6546 spin_lock_irq(&mddev->write_lock);
6547 if (mddev->in_sync) {
6548 mddev->in_sync = 0;
6549 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6550 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6551 if (mddev->safemode_delay &&
6552 mddev->safemode == 0)
6553 mddev->safemode = 1;
6554 spin_unlock_irq(&mddev->write_lock);
6555 md_update_sb(mddev, 0);
6556 sysfs_notify_dirent_safe(mddev->sysfs_state);
6557 } else
6558 spin_unlock_irq(&mddev->write_lock);
6560 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6561 return -EAGAIN;
6562 else
6563 return 0;
6565 EXPORT_SYMBOL_GPL(md_allow_write);
6567 void md_unplug(mddev_t *mddev)
6569 if (mddev->queue)
6570 blk_unplug(mddev->queue);
6571 if (mddev->plug)
6572 mddev->plug->unplug_fn(mddev->plug);
6575 #define SYNC_MARKS 10
6576 #define SYNC_MARK_STEP (3*HZ)
6577 void md_do_sync(mddev_t *mddev)
6579 mddev_t *mddev2;
6580 unsigned int currspeed = 0,
6581 window;
6582 sector_t max_sectors,j, io_sectors;
6583 unsigned long mark[SYNC_MARKS];
6584 sector_t mark_cnt[SYNC_MARKS];
6585 int last_mark,m;
6586 struct list_head *tmp;
6587 sector_t last_check;
6588 int skipped = 0;
6589 mdk_rdev_t *rdev;
6590 char *desc;
6592 /* just incase thread restarts... */
6593 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6594 return;
6595 if (mddev->ro) /* never try to sync a read-only array */
6596 return;
6598 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6599 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6600 desc = "data-check";
6601 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6602 desc = "requested-resync";
6603 else
6604 desc = "resync";
6605 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6606 desc = "reshape";
6607 else
6608 desc = "recovery";
6610 /* we overload curr_resync somewhat here.
6611 * 0 == not engaged in resync at all
6612 * 2 == checking that there is no conflict with another sync
6613 * 1 == like 2, but have yielded to allow conflicting resync to
6614 * commense
6615 * other == active in resync - this many blocks
6617 * Before starting a resync we must have set curr_resync to
6618 * 2, and then checked that every "conflicting" array has curr_resync
6619 * less than ours. When we find one that is the same or higher
6620 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6621 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6622 * This will mean we have to start checking from the beginning again.
6626 do {
6627 mddev->curr_resync = 2;
6629 try_again:
6630 if (kthread_should_stop())
6631 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6633 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6634 goto skip;
6635 for_each_mddev(mddev2, tmp) {
6636 if (mddev2 == mddev)
6637 continue;
6638 if (!mddev->parallel_resync
6639 && mddev2->curr_resync
6640 && match_mddev_units(mddev, mddev2)) {
6641 DEFINE_WAIT(wq);
6642 if (mddev < mddev2 && mddev->curr_resync == 2) {
6643 /* arbitrarily yield */
6644 mddev->curr_resync = 1;
6645 wake_up(&resync_wait);
6647 if (mddev > mddev2 && mddev->curr_resync == 1)
6648 /* no need to wait here, we can wait the next
6649 * time 'round when curr_resync == 2
6651 continue;
6652 /* We need to wait 'interruptible' so as not to
6653 * contribute to the load average, and not to
6654 * be caught by 'softlockup'
6656 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6657 if (!kthread_should_stop() &&
6658 mddev2->curr_resync >= mddev->curr_resync) {
6659 printk(KERN_INFO "md: delaying %s of %s"
6660 " until %s has finished (they"
6661 " share one or more physical units)\n",
6662 desc, mdname(mddev), mdname(mddev2));
6663 mddev_put(mddev2);
6664 if (signal_pending(current))
6665 flush_signals(current);
6666 schedule();
6667 finish_wait(&resync_wait, &wq);
6668 goto try_again;
6670 finish_wait(&resync_wait, &wq);
6673 } while (mddev->curr_resync < 2);
6675 j = 0;
6676 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6677 /* resync follows the size requested by the personality,
6678 * which defaults to physical size, but can be virtual size
6680 max_sectors = mddev->resync_max_sectors;
6681 mddev->resync_mismatches = 0;
6682 /* we don't use the checkpoint if there's a bitmap */
6683 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6684 j = mddev->resync_min;
6685 else if (!mddev->bitmap)
6686 j = mddev->recovery_cp;
6688 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6689 max_sectors = mddev->dev_sectors;
6690 else {
6691 /* recovery follows the physical size of devices */
6692 max_sectors = mddev->dev_sectors;
6693 j = MaxSector;
6694 rcu_read_lock();
6695 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6696 if (rdev->raid_disk >= 0 &&
6697 !test_bit(Faulty, &rdev->flags) &&
6698 !test_bit(In_sync, &rdev->flags) &&
6699 rdev->recovery_offset < j)
6700 j = rdev->recovery_offset;
6701 rcu_read_unlock();
6704 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6705 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6706 " %d KB/sec/disk.\n", speed_min(mddev));
6707 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6708 "(but not more than %d KB/sec) for %s.\n",
6709 speed_max(mddev), desc);
6711 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6713 io_sectors = 0;
6714 for (m = 0; m < SYNC_MARKS; m++) {
6715 mark[m] = jiffies;
6716 mark_cnt[m] = io_sectors;
6718 last_mark = 0;
6719 mddev->resync_mark = mark[last_mark];
6720 mddev->resync_mark_cnt = mark_cnt[last_mark];
6723 * Tune reconstruction:
6725 window = 32*(PAGE_SIZE/512);
6726 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6727 window/2,(unsigned long long) max_sectors/2);
6729 atomic_set(&mddev->recovery_active, 0);
6730 last_check = 0;
6732 if (j>2) {
6733 printk(KERN_INFO
6734 "md: resuming %s of %s from checkpoint.\n",
6735 desc, mdname(mddev));
6736 mddev->curr_resync = j;
6738 mddev->curr_resync_completed = mddev->curr_resync;
6740 while (j < max_sectors) {
6741 sector_t sectors;
6743 skipped = 0;
6745 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6746 ((mddev->curr_resync > mddev->curr_resync_completed &&
6747 (mddev->curr_resync - mddev->curr_resync_completed)
6748 > (max_sectors >> 4)) ||
6749 (j - mddev->curr_resync_completed)*2
6750 >= mddev->resync_max - mddev->curr_resync_completed
6751 )) {
6752 /* time to update curr_resync_completed */
6753 md_unplug(mddev);
6754 wait_event(mddev->recovery_wait,
6755 atomic_read(&mddev->recovery_active) == 0);
6756 mddev->curr_resync_completed =
6757 mddev->curr_resync;
6758 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6759 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6762 while (j >= mddev->resync_max && !kthread_should_stop()) {
6763 /* As this condition is controlled by user-space,
6764 * we can block indefinitely, so use '_interruptible'
6765 * to avoid triggering warnings.
6767 flush_signals(current); /* just in case */
6768 wait_event_interruptible(mddev->recovery_wait,
6769 mddev->resync_max > j
6770 || kthread_should_stop());
6773 if (kthread_should_stop())
6774 goto interrupted;
6776 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6777 currspeed < speed_min(mddev));
6778 if (sectors == 0) {
6779 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6780 goto out;
6783 if (!skipped) { /* actual IO requested */
6784 io_sectors += sectors;
6785 atomic_add(sectors, &mddev->recovery_active);
6788 j += sectors;
6789 if (j>1) mddev->curr_resync = j;
6790 mddev->curr_mark_cnt = io_sectors;
6791 if (last_check == 0)
6792 /* this is the earliers that rebuilt will be
6793 * visible in /proc/mdstat
6795 md_new_event(mddev);
6797 if (last_check + window > io_sectors || j == max_sectors)
6798 continue;
6800 last_check = io_sectors;
6802 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6803 break;
6805 repeat:
6806 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6807 /* step marks */
6808 int next = (last_mark+1) % SYNC_MARKS;
6810 mddev->resync_mark = mark[next];
6811 mddev->resync_mark_cnt = mark_cnt[next];
6812 mark[next] = jiffies;
6813 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6814 last_mark = next;
6818 if (kthread_should_stop())
6819 goto interrupted;
6823 * this loop exits only if either when we are slower than
6824 * the 'hard' speed limit, or the system was IO-idle for
6825 * a jiffy.
6826 * the system might be non-idle CPU-wise, but we only care
6827 * about not overloading the IO subsystem. (things like an
6828 * e2fsck being done on the RAID array should execute fast)
6830 md_unplug(mddev);
6831 cond_resched();
6833 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6834 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6836 if (currspeed > speed_min(mddev)) {
6837 if ((currspeed > speed_max(mddev)) ||
6838 !is_mddev_idle(mddev, 0)) {
6839 msleep(500);
6840 goto repeat;
6844 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6846 * this also signals 'finished resyncing' to md_stop
6848 out:
6849 md_unplug(mddev);
6851 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6853 /* tell personality that we are finished */
6854 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6856 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6857 mddev->curr_resync > 2) {
6858 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6859 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6860 if (mddev->curr_resync >= mddev->recovery_cp) {
6861 printk(KERN_INFO
6862 "md: checkpointing %s of %s.\n",
6863 desc, mdname(mddev));
6864 mddev->recovery_cp = mddev->curr_resync;
6866 } else
6867 mddev->recovery_cp = MaxSector;
6868 } else {
6869 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6870 mddev->curr_resync = MaxSector;
6871 rcu_read_lock();
6872 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6873 if (rdev->raid_disk >= 0 &&
6874 mddev->delta_disks >= 0 &&
6875 !test_bit(Faulty, &rdev->flags) &&
6876 !test_bit(In_sync, &rdev->flags) &&
6877 rdev->recovery_offset < mddev->curr_resync)
6878 rdev->recovery_offset = mddev->curr_resync;
6879 rcu_read_unlock();
6882 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6884 skip:
6885 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6886 /* We completed so min/max setting can be forgotten if used. */
6887 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6888 mddev->resync_min = 0;
6889 mddev->resync_max = MaxSector;
6890 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6891 mddev->resync_min = mddev->curr_resync_completed;
6892 mddev->curr_resync = 0;
6893 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6894 mddev->curr_resync_completed = 0;
6895 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6896 wake_up(&resync_wait);
6897 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6898 md_wakeup_thread(mddev->thread);
6899 return;
6901 interrupted:
6903 * got a signal, exit.
6905 printk(KERN_INFO
6906 "md: md_do_sync() got signal ... exiting\n");
6907 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6908 goto out;
6911 EXPORT_SYMBOL_GPL(md_do_sync);
6914 static int remove_and_add_spares(mddev_t *mddev)
6916 mdk_rdev_t *rdev;
6917 int spares = 0;
6919 mddev->curr_resync_completed = 0;
6921 list_for_each_entry(rdev, &mddev->disks, same_set)
6922 if (rdev->raid_disk >= 0 &&
6923 !test_bit(Blocked, &rdev->flags) &&
6924 (test_bit(Faulty, &rdev->flags) ||
6925 ! test_bit(In_sync, &rdev->flags)) &&
6926 atomic_read(&rdev->nr_pending)==0) {
6927 if (mddev->pers->hot_remove_disk(
6928 mddev, rdev->raid_disk)==0) {
6929 char nm[20];
6930 sprintf(nm,"rd%d", rdev->raid_disk);
6931 sysfs_remove_link(&mddev->kobj, nm);
6932 rdev->raid_disk = -1;
6936 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6937 list_for_each_entry(rdev, &mddev->disks, same_set) {
6938 if (rdev->raid_disk >= 0 &&
6939 !test_bit(In_sync, &rdev->flags) &&
6940 !test_bit(Blocked, &rdev->flags))
6941 spares++;
6942 if (rdev->raid_disk < 0
6943 && !test_bit(Faulty, &rdev->flags)) {
6944 rdev->recovery_offset = 0;
6945 if (mddev->pers->
6946 hot_add_disk(mddev, rdev) == 0) {
6947 char nm[20];
6948 sprintf(nm, "rd%d", rdev->raid_disk);
6949 if (sysfs_create_link(&mddev->kobj,
6950 &rdev->kobj, nm))
6951 /* failure here is OK */;
6952 spares++;
6953 md_new_event(mddev);
6954 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6955 } else
6956 break;
6960 return spares;
6963 * This routine is regularly called by all per-raid-array threads to
6964 * deal with generic issues like resync and super-block update.
6965 * Raid personalities that don't have a thread (linear/raid0) do not
6966 * need this as they never do any recovery or update the superblock.
6968 * It does not do any resync itself, but rather "forks" off other threads
6969 * to do that as needed.
6970 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6971 * "->recovery" and create a thread at ->sync_thread.
6972 * When the thread finishes it sets MD_RECOVERY_DONE
6973 * and wakeups up this thread which will reap the thread and finish up.
6974 * This thread also removes any faulty devices (with nr_pending == 0).
6976 * The overall approach is:
6977 * 1/ if the superblock needs updating, update it.
6978 * 2/ If a recovery thread is running, don't do anything else.
6979 * 3/ If recovery has finished, clean up, possibly marking spares active.
6980 * 4/ If there are any faulty devices, remove them.
6981 * 5/ If array is degraded, try to add spares devices
6982 * 6/ If array has spares or is not in-sync, start a resync thread.
6984 void md_check_recovery(mddev_t *mddev)
6986 mdk_rdev_t *rdev;
6989 if (mddev->bitmap)
6990 bitmap_daemon_work(mddev);
6992 if (mddev->ro)
6993 return;
6995 if (signal_pending(current)) {
6996 if (mddev->pers->sync_request && !mddev->external) {
6997 printk(KERN_INFO "md: %s in immediate safe mode\n",
6998 mdname(mddev));
6999 mddev->safemode = 2;
7001 flush_signals(current);
7004 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7005 return;
7006 if ( ! (
7007 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7008 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7009 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7010 (mddev->external == 0 && mddev->safemode == 1) ||
7011 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7012 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7014 return;
7016 if (mddev_trylock(mddev)) {
7017 int spares = 0;
7019 if (mddev->ro) {
7020 /* Only thing we do on a ro array is remove
7021 * failed devices.
7023 remove_and_add_spares(mddev);
7024 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7025 goto unlock;
7028 if (!mddev->external) {
7029 int did_change = 0;
7030 spin_lock_irq(&mddev->write_lock);
7031 if (mddev->safemode &&
7032 !atomic_read(&mddev->writes_pending) &&
7033 !mddev->in_sync &&
7034 mddev->recovery_cp == MaxSector) {
7035 mddev->in_sync = 1;
7036 did_change = 1;
7037 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7039 if (mddev->safemode == 1)
7040 mddev->safemode = 0;
7041 spin_unlock_irq(&mddev->write_lock);
7042 if (did_change)
7043 sysfs_notify_dirent_safe(mddev->sysfs_state);
7046 if (mddev->flags)
7047 md_update_sb(mddev, 0);
7049 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7050 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7051 /* resync/recovery still happening */
7052 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7053 goto unlock;
7055 if (mddev->sync_thread) {
7056 /* resync has finished, collect result */
7057 md_unregister_thread(mddev->sync_thread);
7058 mddev->sync_thread = NULL;
7059 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7060 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7061 /* success...*/
7062 /* activate any spares */
7063 if (mddev->pers->spare_active(mddev))
7064 sysfs_notify(&mddev->kobj, NULL,
7065 "degraded");
7067 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7068 mddev->pers->finish_reshape)
7069 mddev->pers->finish_reshape(mddev);
7070 md_update_sb(mddev, 1);
7072 /* if array is no-longer degraded, then any saved_raid_disk
7073 * information must be scrapped
7075 if (!mddev->degraded)
7076 list_for_each_entry(rdev, &mddev->disks, same_set)
7077 rdev->saved_raid_disk = -1;
7079 mddev->recovery = 0;
7080 /* flag recovery needed just to double check */
7081 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7082 sysfs_notify_dirent_safe(mddev->sysfs_action);
7083 md_new_event(mddev);
7084 goto unlock;
7086 /* Set RUNNING before clearing NEEDED to avoid
7087 * any transients in the value of "sync_action".
7089 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7090 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7091 /* Clear some bits that don't mean anything, but
7092 * might be left set
7094 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7095 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7097 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7098 goto unlock;
7099 /* no recovery is running.
7100 * remove any failed drives, then
7101 * add spares if possible.
7102 * Spare are also removed and re-added, to allow
7103 * the personality to fail the re-add.
7106 if (mddev->reshape_position != MaxSector) {
7107 if (mddev->pers->check_reshape == NULL ||
7108 mddev->pers->check_reshape(mddev) != 0)
7109 /* Cannot proceed */
7110 goto unlock;
7111 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7112 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7113 } else if ((spares = remove_and_add_spares(mddev))) {
7114 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7115 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7116 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7117 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7118 } else if (mddev->recovery_cp < MaxSector) {
7119 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7120 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7121 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7122 /* nothing to be done ... */
7123 goto unlock;
7125 if (mddev->pers->sync_request) {
7126 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7127 /* We are adding a device or devices to an array
7128 * which has the bitmap stored on all devices.
7129 * So make sure all bitmap pages get written
7131 bitmap_write_all(mddev->bitmap);
7133 mddev->sync_thread = md_register_thread(md_do_sync,
7134 mddev,
7135 "resync");
7136 if (!mddev->sync_thread) {
7137 printk(KERN_ERR "%s: could not start resync"
7138 " thread...\n",
7139 mdname(mddev));
7140 /* leave the spares where they are, it shouldn't hurt */
7141 mddev->recovery = 0;
7142 } else
7143 md_wakeup_thread(mddev->sync_thread);
7144 sysfs_notify_dirent_safe(mddev->sysfs_action);
7145 md_new_event(mddev);
7147 unlock:
7148 if (!mddev->sync_thread) {
7149 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7150 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7151 &mddev->recovery))
7152 if (mddev->sysfs_action)
7153 sysfs_notify_dirent_safe(mddev->sysfs_action);
7155 mddev_unlock(mddev);
7159 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7161 sysfs_notify_dirent_safe(rdev->sysfs_state);
7162 wait_event_timeout(rdev->blocked_wait,
7163 !test_bit(Blocked, &rdev->flags),
7164 msecs_to_jiffies(5000));
7165 rdev_dec_pending(rdev, mddev);
7167 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7169 static int md_notify_reboot(struct notifier_block *this,
7170 unsigned long code, void *x)
7172 struct list_head *tmp;
7173 mddev_t *mddev;
7175 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7177 printk(KERN_INFO "md: stopping all md devices.\n");
7179 for_each_mddev(mddev, tmp)
7180 if (mddev_trylock(mddev)) {
7181 /* Force a switch to readonly even array
7182 * appears to still be in use. Hence
7183 * the '100'.
7185 md_set_readonly(mddev, 100);
7186 mddev_unlock(mddev);
7189 * certain more exotic SCSI devices are known to be
7190 * volatile wrt too early system reboots. While the
7191 * right place to handle this issue is the given
7192 * driver, we do want to have a safe RAID driver ...
7194 mdelay(1000*1);
7196 return NOTIFY_DONE;
7199 static struct notifier_block md_notifier = {
7200 .notifier_call = md_notify_reboot,
7201 .next = NULL,
7202 .priority = INT_MAX, /* before any real devices */
7205 static void md_geninit(void)
7207 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7209 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7212 static int __init md_init(void)
7214 if (register_blkdev(MD_MAJOR, "md"))
7215 return -1;
7216 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7217 unregister_blkdev(MD_MAJOR, "md");
7218 return -1;
7220 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7221 md_probe, NULL, NULL);
7222 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7223 md_probe, NULL, NULL);
7225 register_reboot_notifier(&md_notifier);
7226 raid_table_header = register_sysctl_table(raid_root_table);
7228 md_geninit();
7229 return 0;
7233 #ifndef MODULE
7236 * Searches all registered partitions for autorun RAID arrays
7237 * at boot time.
7240 static LIST_HEAD(all_detected_devices);
7241 struct detected_devices_node {
7242 struct list_head list;
7243 dev_t dev;
7246 void md_autodetect_dev(dev_t dev)
7248 struct detected_devices_node *node_detected_dev;
7250 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7251 if (node_detected_dev) {
7252 node_detected_dev->dev = dev;
7253 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7254 } else {
7255 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7256 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7261 static void autostart_arrays(int part)
7263 mdk_rdev_t *rdev;
7264 struct detected_devices_node *node_detected_dev;
7265 dev_t dev;
7266 int i_scanned, i_passed;
7268 i_scanned = 0;
7269 i_passed = 0;
7271 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7273 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7274 i_scanned++;
7275 node_detected_dev = list_entry(all_detected_devices.next,
7276 struct detected_devices_node, list);
7277 list_del(&node_detected_dev->list);
7278 dev = node_detected_dev->dev;
7279 kfree(node_detected_dev);
7280 rdev = md_import_device(dev,0, 90);
7281 if (IS_ERR(rdev))
7282 continue;
7284 if (test_bit(Faulty, &rdev->flags)) {
7285 MD_BUG();
7286 continue;
7288 set_bit(AutoDetected, &rdev->flags);
7289 list_add(&rdev->same_set, &pending_raid_disks);
7290 i_passed++;
7293 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7294 i_scanned, i_passed);
7296 autorun_devices(part);
7299 #endif /* !MODULE */
7301 static __exit void md_exit(void)
7303 mddev_t *mddev;
7304 struct list_head *tmp;
7306 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7307 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7309 unregister_blkdev(MD_MAJOR,"md");
7310 unregister_blkdev(mdp_major, "mdp");
7311 unregister_reboot_notifier(&md_notifier);
7312 unregister_sysctl_table(raid_table_header);
7313 remove_proc_entry("mdstat", NULL);
7314 for_each_mddev(mddev, tmp) {
7315 export_array(mddev);
7316 mddev->hold_active = 0;
7320 subsys_initcall(md_init);
7321 module_exit(md_exit)
7323 static int get_ro(char *buffer, struct kernel_param *kp)
7325 return sprintf(buffer, "%d", start_readonly);
7327 static int set_ro(const char *val, struct kernel_param *kp)
7329 char *e;
7330 int num = simple_strtoul(val, &e, 10);
7331 if (*val && (*e == '\0' || *e == '\n')) {
7332 start_readonly = num;
7333 return 0;
7335 return -EINVAL;
7338 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7339 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7341 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7343 EXPORT_SYMBOL(register_md_personality);
7344 EXPORT_SYMBOL(unregister_md_personality);
7345 EXPORT_SYMBOL(md_error);
7346 EXPORT_SYMBOL(md_done_sync);
7347 EXPORT_SYMBOL(md_write_start);
7348 EXPORT_SYMBOL(md_write_end);
7349 EXPORT_SYMBOL(md_register_thread);
7350 EXPORT_SYMBOL(md_unregister_thread);
7351 EXPORT_SYMBOL(md_wakeup_thread);
7352 EXPORT_SYMBOL(md_check_recovery);
7353 MODULE_LICENSE("GPL");
7354 MODULE_DESCRIPTION("MD RAID framework");
7355 MODULE_ALIAS("md");
7356 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);