2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly
;
136 static void __free_pages_ok(struct page
*page
, unsigned int order
);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages
);
164 static char * const zone_names
[MAX_NR_ZONES
] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes
= 1024;
180 static unsigned long __meminitdata nr_kernel_pages
;
181 static unsigned long __meminitdata nr_all_pages
;
182 static unsigned long __meminitdata dma_reserve
;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
206 static int __meminitdata nr_nodemap_entries
;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
209 static unsigned long __initdata required_kernelcore
;
210 static unsigned long __initdata required_movablecore
;
211 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone
);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
220 int nr_online_nodes __read_mostly
= 1;
221 EXPORT_SYMBOL(nr_node_ids
);
222 EXPORT_SYMBOL(nr_online_nodes
);
225 int page_group_by_mobility_disabled __read_mostly
;
227 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
230 if (unlikely(page_group_by_mobility_disabled
))
231 migratetype
= MIGRATE_UNMOVABLE
;
233 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
234 PB_migrate
, PB_migrate_end
);
237 bool oom_killer_disabled __read_mostly
;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
244 unsigned long pfn
= page_to_pfn(page
);
247 seq
= zone_span_seqbegin(zone
);
248 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
250 else if (pfn
< zone
->zone_start_pfn
)
252 } while (zone_span_seqretry(zone
, seq
));
257 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
259 if (!pfn_valid_within(page_to_pfn(page
)))
261 if (zone
!= page_zone(page
))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone
*zone
, struct page
*page
)
271 if (page_outside_zone_boundaries(zone
, page
))
273 if (!page_is_consistent(zone
, page
))
279 static inline int bad_range(struct zone
*zone
, struct page
*page
)
285 static void bad_page(struct page
*page
)
287 static unsigned long resume
;
288 static unsigned long nr_shown
;
289 static unsigned long nr_unshown
;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page
)) {
293 reset_page_mapcount(page
); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown
== 60) {
302 if (time_before(jiffies
, resume
)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume
= jiffies
+ 60 * HZ
;
317 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
318 current
->comm
, page_to_pfn(page
));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page
); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE
);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page
*page
)
345 __free_pages_ok(page
, compound_order(page
));
348 void prep_compound_page(struct page
*page
, unsigned long order
)
351 int nr_pages
= 1 << order
;
353 set_compound_page_dtor(page
, free_compound_page
);
354 set_compound_order(page
, order
);
356 for (i
= 1; i
< nr_pages
; i
++) {
357 struct page
*p
= page
+ i
;
359 set_page_count(p
, 0);
360 p
->first_page
= page
;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 static inline void set_page_order(struct page
*page
, int order
)
407 set_page_private(page
, order
);
408 __SetPageBuddy(page
);
411 static inline void rmv_page_order(struct page
*page
)
413 __ClearPageBuddy(page
);
414 set_page_private(page
, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
437 return page_idx
^ (1 << order
);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
456 if (!pfn_valid_within(page_to_pfn(buddy
)))
459 if (page_zone_id(page
) != page_zone_id(buddy
))
462 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
463 VM_BUG_ON(page_count(buddy
) != 0);
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
493 static inline void __free_one_page(struct page
*page
,
494 struct zone
*zone
, unsigned int order
,
497 unsigned long page_idx
;
498 unsigned long combined_idx
;
499 unsigned long uninitialized_var(buddy_idx
);
502 if (unlikely(PageCompound(page
)))
503 if (unlikely(destroy_compound_page(page
, order
)))
506 VM_BUG_ON(migratetype
== -1);
508 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
510 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
511 VM_BUG_ON(bad_range(zone
, page
));
513 while (order
< MAX_ORDER
-1) {
514 buddy_idx
= __find_buddy_index(page_idx
, order
);
515 buddy
= page
+ (buddy_idx
- page_idx
);
516 if (!page_is_buddy(page
, buddy
, order
))
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy
->lru
);
521 zone
->free_area
[order
].nr_free
--;
522 rmv_page_order(buddy
);
523 combined_idx
= buddy_idx
& page_idx
;
524 page
= page
+ (combined_idx
- page_idx
);
525 page_idx
= combined_idx
;
528 set_page_order(page
, order
);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
539 struct page
*higher_page
, *higher_buddy
;
540 combined_idx
= buddy_idx
& page_idx
;
541 higher_page
= page
+ (combined_idx
- page_idx
);
542 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
543 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
544 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
545 list_add_tail(&page
->lru
,
546 &zone
->free_area
[order
].free_list
[migratetype
]);
551 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
553 zone
->free_area
[order
].nr_free
++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page
*page
)
563 __dec_zone_page_state(page
, NR_MLOCK
);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
567 static inline int free_pages_check(struct page
*page
)
569 if (unlikely(page_mapcount(page
) |
570 (page
->mapping
!= NULL
) |
571 (atomic_read(&page
->_count
) != 0) |
572 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
573 (mem_cgroup_bad_page_check(page
)))) {
577 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
578 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone
*zone
, int count
,
594 struct per_cpu_pages
*pcp
)
600 spin_lock(&zone
->lock
);
601 zone
->all_unreclaimable
= 0;
602 zone
->pages_scanned
= 0;
606 struct list_head
*list
;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
617 if (++migratetype
== MIGRATE_PCPTYPES
)
619 list
= &pcp
->lists
[migratetype
];
620 } while (list_empty(list
));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free
== MIGRATE_PCPTYPES
)
624 batch_free
= to_free
;
627 page
= list_entry(list
->prev
, struct page
, lru
);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page
->lru
);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page
, zone
, 0, page_private(page
));
632 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
633 } while (--to_free
&& --batch_free
&& !list_empty(list
));
635 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
636 spin_unlock(&zone
->lock
);
639 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
642 spin_lock(&zone
->lock
);
643 zone
->all_unreclaimable
= 0;
644 zone
->pages_scanned
= 0;
646 __free_one_page(page
, zone
, order
, migratetype
);
647 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
648 spin_unlock(&zone
->lock
);
651 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
656 trace_mm_page_free_direct(page
, order
);
657 kmemcheck_free_shadow(page
, order
);
660 page
->mapping
= NULL
;
661 for (i
= 0; i
< (1 << order
); i
++)
662 bad
+= free_pages_check(page
+ i
);
666 if (!PageHighMem(page
)) {
667 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
668 debug_check_no_obj_freed(page_address(page
),
671 arch_free_page(page
, order
);
672 kernel_map_pages(page
, 1 << order
, 0);
677 static void __free_pages_ok(struct page
*page
, unsigned int order
)
680 int wasMlocked
= __TestClearPageMlocked(page
);
682 if (!free_pages_prepare(page
, order
))
685 local_irq_save(flags
);
686 if (unlikely(wasMlocked
))
687 free_page_mlock(page
);
688 __count_vm_events(PGFREE
, 1 << order
);
689 free_one_page(page_zone(page
), page
, order
,
690 get_pageblock_migratetype(page
));
691 local_irq_restore(flags
);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
700 __ClearPageReserved(page
);
701 set_page_count(page
, 0);
702 set_page_refcounted(page
);
708 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
709 struct page
*p
= &page
[loop
];
711 if (loop
+ 1 < BITS_PER_LONG
)
713 __ClearPageReserved(p
);
714 set_page_count(p
, 0);
717 set_page_refcounted(page
);
718 __free_pages(page
, order
);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
737 static inline void expand(struct zone
*zone
, struct page
*page
,
738 int low
, int high
, struct free_area
*area
,
741 unsigned long size
= 1 << high
;
747 VM_BUG_ON(bad_range(zone
, &page
[size
]));
748 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
750 set_page_order(&page
[size
], high
);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page
*page
)
759 if (unlikely(page_mapcount(page
) |
760 (page
->mapping
!= NULL
) |
761 (atomic_read(&page
->_count
) != 0) |
762 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
763 (mem_cgroup_bad_page_check(page
)))) {
770 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
774 for (i
= 0; i
< (1 << order
); i
++) {
775 struct page
*p
= page
+ i
;
776 if (unlikely(check_new_page(p
)))
780 set_page_private(page
, 0);
781 set_page_refcounted(page
);
783 arch_alloc_page(page
, order
);
784 kernel_map_pages(page
, 1 << order
, 1);
786 if (gfp_flags
& __GFP_ZERO
)
787 prep_zero_page(page
, order
, gfp_flags
);
789 if (order
&& (gfp_flags
& __GFP_COMP
))
790 prep_compound_page(page
, order
);
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
800 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
803 unsigned int current_order
;
804 struct free_area
* area
;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
809 area
= &(zone
->free_area
[current_order
]);
810 if (list_empty(&area
->free_list
[migratetype
]))
813 page
= list_entry(area
->free_list
[migratetype
].next
,
815 list_del(&page
->lru
);
816 rmv_page_order(page
);
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
831 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
832 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
833 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
834 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone
*zone
,
843 struct page
*start_page
, struct page
*end_page
,
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
861 for (page
= start_page
; page
<= end_page
;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
865 if (!pfn_valid_within(page_to_pfn(page
))) {
870 if (!PageBuddy(page
)) {
875 order
= page_order(page
);
876 list_move(&page
->lru
,
877 &zone
->free_area
[order
].free_list
[migratetype
]);
879 pages_moved
+= 1 << order
;
885 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
888 unsigned long start_pfn
, end_pfn
;
889 struct page
*start_page
, *end_page
;
891 start_pfn
= page_to_pfn(page
);
892 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
893 start_page
= pfn_to_page(start_pfn
);
894 end_page
= start_page
+ pageblock_nr_pages
- 1;
895 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn
< zone
->zone_start_pfn
)
900 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
903 return move_freepages(zone
, start_page
, end_page
, migratetype
);
906 static void change_pageblock_range(struct page
*pageblock_page
,
907 int start_order
, int migratetype
)
909 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
911 while (nr_pageblocks
--) {
912 set_pageblock_migratetype(pageblock_page
, migratetype
);
913 pageblock_page
+= pageblock_nr_pages
;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page
*
919 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
921 struct free_area
* area
;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
929 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
930 migratetype
= fallbacks
[start_migratetype
][i
];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype
== MIGRATE_RESERVE
)
936 area
= &(zone
->free_area
[current_order
]);
937 if (list_empty(&area
->free_list
[migratetype
]))
940 page
= list_entry(area
->free_list
[migratetype
].next
,
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
951 start_migratetype
== MIGRATE_RECLAIMABLE
||
952 page_group_by_mobility_disabled
) {
954 pages
= move_freepages_block(zone
, page
,
957 /* Claim the whole block if over half of it is free */
958 if (pages
>= (1 << (pageblock_order
-1)) ||
959 page_group_by_mobility_disabled
)
960 set_pageblock_migratetype(page
,
963 migratetype
= start_migratetype
;
966 /* Remove the page from the freelists */
967 list_del(&page
->lru
);
968 rmv_page_order(page
);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order
>= pageblock_order
)
972 change_pageblock_range(page
, current_order
,
975 expand(zone
, page
, order
, current_order
, area
, migratetype
);
977 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
978 start_migratetype
, migratetype
);
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
997 page
= __rmqueue_smallest(zone
, order
, migratetype
);
999 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1000 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1008 migratetype
= MIGRATE_RESERVE
;
1013 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1023 unsigned long count
, struct list_head
*list
,
1024 int migratetype
, int cold
)
1028 spin_lock(&zone
->lock
);
1029 for (i
= 0; i
< count
; ++i
) {
1030 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1031 if (unlikely(page
== NULL
))
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1043 if (likely(cold
== 0))
1044 list_add(&page
->lru
, list
);
1046 list_add_tail(&page
->lru
, list
);
1047 set_page_private(page
, migratetype
);
1050 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1051 spin_unlock(&zone
->lock
);
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1066 unsigned long flags
;
1069 local_irq_save(flags
);
1070 if (pcp
->count
>= pcp
->batch
)
1071 to_drain
= pcp
->batch
;
1073 to_drain
= pcp
->count
;
1074 free_pcppages_bulk(zone
, to_drain
, pcp
);
1075 pcp
->count
-= to_drain
;
1076 local_irq_restore(flags
);
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1087 static void drain_pages(unsigned int cpu
)
1089 unsigned long flags
;
1092 for_each_populated_zone(zone
) {
1093 struct per_cpu_pageset
*pset
;
1094 struct per_cpu_pages
*pcp
;
1096 local_irq_save(flags
);
1097 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1101 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1104 local_irq_restore(flags
);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg
)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages
, NULL
, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone
*zone
)
1128 unsigned long pfn
, max_zone_pfn
;
1129 unsigned long flags
;
1131 struct list_head
*curr
;
1133 if (!zone
->spanned_pages
)
1136 spin_lock_irqsave(&zone
->lock
, flags
);
1138 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1139 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1140 if (pfn_valid(pfn
)) {
1141 struct page
*page
= pfn_to_page(pfn
);
1143 if (!swsusp_page_is_forbidden(page
))
1144 swsusp_unset_page_free(page
);
1147 for_each_migratetype_order(order
, t
) {
1148 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1151 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1152 for (i
= 0; i
< (1UL << order
); i
++)
1153 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1156 spin_unlock_irqrestore(&zone
->lock
, flags
);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page
*page
, int cold
)
1166 struct zone
*zone
= page_zone(page
);
1167 struct per_cpu_pages
*pcp
;
1168 unsigned long flags
;
1170 int wasMlocked
= __TestClearPageMlocked(page
);
1172 if (!free_pages_prepare(page
, 0))
1175 migratetype
= get_pageblock_migratetype(page
);
1176 set_page_private(page
, migratetype
);
1177 local_irq_save(flags
);
1178 if (unlikely(wasMlocked
))
1179 free_page_mlock(page
);
1180 __count_vm_event(PGFREE
);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype
>= MIGRATE_PCPTYPES
) {
1190 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1191 free_one_page(zone
, page
, 0, migratetype
);
1194 migratetype
= MIGRATE_MOVABLE
;
1197 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1199 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1201 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1203 if (pcp
->count
>= pcp
->high
) {
1204 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1205 pcp
->count
-= pcp
->batch
;
1209 local_irq_restore(flags
);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page
*page
, unsigned int order
)
1224 VM_BUG_ON(PageCompound(page
));
1225 VM_BUG_ON(!page_count(page
));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page
))
1233 split_page(virt_to_page(page
[0].shadow
), order
);
1236 for (i
= 1; i
< (1 << order
); i
++)
1237 set_page_refcounted(page
+ i
);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page
*page
)
1253 unsigned long watermark
;
1256 BUG_ON(!PageBuddy(page
));
1258 zone
= page_zone(page
);
1259 order
= page_order(page
);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark
= low_wmark_pages(zone
) + (1 << order
);
1263 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1266 /* Remove page from free list */
1267 list_del(&page
->lru
);
1268 zone
->free_area
[order
].nr_free
--;
1269 rmv_page_order(page
);
1270 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1272 /* Split into individual pages */
1273 set_page_refcounted(page
);
1274 split_page(page
, order
);
1276 if (order
>= pageblock_order
- 1) {
1277 struct page
*endpage
= page
+ (1 << order
) - 1;
1278 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1279 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1291 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1292 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1295 unsigned long flags
;
1297 int cold
= !!(gfp_flags
& __GFP_COLD
);
1300 if (likely(order
== 0)) {
1301 struct per_cpu_pages
*pcp
;
1302 struct list_head
*list
;
1304 local_irq_save(flags
);
1305 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1306 list
= &pcp
->lists
[migratetype
];
1307 if (list_empty(list
)) {
1308 pcp
->count
+= rmqueue_bulk(zone
, 0,
1311 if (unlikely(list_empty(list
)))
1316 page
= list_entry(list
->prev
, struct page
, lru
);
1318 page
= list_entry(list
->next
, struct page
, lru
);
1320 list_del(&page
->lru
);
1323 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1334 WARN_ON_ONCE(order
> 1);
1336 spin_lock_irqsave(&zone
->lock
, flags
);
1337 page
= __rmqueue(zone
, order
, migratetype
);
1338 spin_unlock(&zone
->lock
);
1341 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1344 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1345 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1346 local_irq_restore(flags
);
1348 VM_BUG_ON(bad_range(zone
, page
));
1349 if (prep_new_page(page
, order
, gfp_flags
))
1354 local_irq_restore(flags
);
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1373 static struct fail_page_alloc_attr
{
1374 struct fault_attr attr
;
1376 u32 ignore_gfp_highmem
;
1377 u32 ignore_gfp_wait
;
1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1382 struct dentry
*ignore_gfp_highmem_file
;
1383 struct dentry
*ignore_gfp_wait_file
;
1384 struct dentry
*min_order_file
;
1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1388 } fail_page_alloc
= {
1389 .attr
= FAULT_ATTR_INITIALIZER
,
1390 .ignore_gfp_wait
= 1,
1391 .ignore_gfp_highmem
= 1,
1395 static int __init
setup_fail_page_alloc(char *str
)
1397 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1399 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1401 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1403 if (order
< fail_page_alloc
.min_order
)
1405 if (gfp_mask
& __GFP_NOFAIL
)
1407 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1409 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1412 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1417 static int __init
fail_page_alloc_debugfs(void)
1419 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1423 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1427 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1429 fail_page_alloc
.ignore_gfp_wait_file
=
1430 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1431 &fail_page_alloc
.ignore_gfp_wait
);
1433 fail_page_alloc
.ignore_gfp_highmem_file
=
1434 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1435 &fail_page_alloc
.ignore_gfp_highmem
);
1436 fail_page_alloc
.min_order_file
=
1437 debugfs_create_u32("min-order", mode
, dir
,
1438 &fail_page_alloc
.min_order
);
1440 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1441 !fail_page_alloc
.ignore_gfp_highmem_file
||
1442 !fail_page_alloc
.min_order_file
) {
1444 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1445 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1446 debugfs_remove(fail_page_alloc
.min_order_file
);
1447 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1453 late_initcall(fail_page_alloc_debugfs
);
1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1457 #else /* CONFIG_FAIL_PAGE_ALLOC */
1459 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1467 * Return true if free pages are above 'mark'. This takes into account the order
1468 * of the allocation.
1470 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1471 int classzone_idx
, int alloc_flags
, long free_pages
)
1473 /* free_pages my go negative - that's OK */
1477 free_pages
-= (1 << order
) + 1;
1478 if (alloc_flags
& ALLOC_HIGH
)
1480 if (alloc_flags
& ALLOC_HARDER
)
1483 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1485 for (o
= 0; o
< order
; o
++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1489 /* Require fewer higher order pages to be free */
1492 if (free_pages
<= min
)
1498 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1499 int classzone_idx
, int alloc_flags
)
1501 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1502 zone_page_state(z
, NR_FREE_PAGES
));
1505 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1506 int classzone_idx
, int alloc_flags
)
1508 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1510 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1511 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1513 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1523 * that have to skip over a lot of full or unallowed zones.
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1540 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1542 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1543 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1545 zlc
= zonelist
->zlcache_ptr
;
1549 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1550 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1551 zlc
->last_full_zap
= jiffies
;
1554 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1555 &cpuset_current_mems_allowed
:
1556 &node_states
[N_HIGH_MEMORY
];
1557 return allowednodes
;
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1582 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1583 nodemask_t
*allowednodes
)
1585 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1586 int i
; /* index of *z in zonelist zones */
1587 int n
; /* node that zone *z is on */
1589 zlc
= zonelist
->zlcache_ptr
;
1593 i
= z
- zonelist
->_zonerefs
;
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1605 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1607 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1608 int i
; /* index of *z in zonelist zones */
1610 zlc
= zonelist
->zlcache_ptr
;
1614 i
= z
- zonelist
->_zonerefs
;
1616 set_bit(i
, zlc
->fullzones
);
1620 * clear all zones full, called after direct reclaim makes progress so that
1621 * a zone that was recently full is not skipped over for up to a second
1623 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1625 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1627 zlc
= zonelist
->zlcache_ptr
;
1631 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1634 #else /* CONFIG_NUMA */
1636 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1641 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1642 nodemask_t
*allowednodes
)
1647 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1651 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1654 #endif /* CONFIG_NUMA */
1657 * get_page_from_freelist goes through the zonelist trying to allocate
1660 static struct page
*
1661 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1662 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1663 struct zone
*preferred_zone
, int migratetype
)
1666 struct page
*page
= NULL
;
1669 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1670 int zlc_active
= 0; /* set if using zonelist_cache */
1671 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1673 classzone_idx
= zone_idx(preferred_zone
);
1676 * Scan zonelist, looking for a zone with enough free.
1677 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1679 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1680 high_zoneidx
, nodemask
) {
1681 if (NUMA_BUILD
&& zlc_active
&&
1682 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1684 if ((alloc_flags
& ALLOC_CPUSET
) &&
1685 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1688 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1689 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1693 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1694 if (zone_watermark_ok(zone
, order
, mark
,
1695 classzone_idx
, alloc_flags
))
1698 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1700 * we do zlc_setup if there are multiple nodes
1701 * and before considering the first zone allowed
1704 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1709 if (zone_reclaim_mode
== 0)
1710 goto this_zone_full
;
1713 * As we may have just activated ZLC, check if the first
1714 * eligible zone has failed zone_reclaim recently.
1716 if (NUMA_BUILD
&& zlc_active
&&
1717 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1720 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1722 case ZONE_RECLAIM_NOSCAN
:
1725 case ZONE_RECLAIM_FULL
:
1726 /* scanned but unreclaimable */
1729 /* did we reclaim enough */
1730 if (!zone_watermark_ok(zone
, order
, mark
,
1731 classzone_idx
, alloc_flags
))
1732 goto this_zone_full
;
1737 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1738 gfp_mask
, migratetype
);
1743 zlc_mark_zone_full(zonelist
, z
);
1746 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1747 /* Disable zlc cache for second zonelist scan */
1755 * Large machines with many possible nodes should not always dump per-node
1756 * meminfo in irq context.
1758 static inline bool should_suppress_show_mem(void)
1763 ret
= in_interrupt();
1768 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1769 DEFAULT_RATELIMIT_INTERVAL
,
1770 DEFAULT_RATELIMIT_BURST
);
1772 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1775 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1777 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1781 * This documents exceptions given to allocations in certain
1782 * contexts that are allowed to allocate outside current's set
1785 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1786 if (test_thread_flag(TIF_MEMDIE
) ||
1787 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1788 filter
&= ~SHOW_MEM_FILTER_NODES
;
1789 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1790 filter
&= ~SHOW_MEM_FILTER_NODES
;
1793 printk(KERN_WARNING
);
1794 va_start(args
, fmt
);
1799 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1800 current
->comm
, order
, gfp_mask
);
1803 if (!should_suppress_show_mem())
1808 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1809 unsigned long pages_reclaimed
)
1811 /* Do not loop if specifically requested */
1812 if (gfp_mask
& __GFP_NORETRY
)
1816 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1817 * means __GFP_NOFAIL, but that may not be true in other
1820 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1824 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1825 * specified, then we retry until we no longer reclaim any pages
1826 * (above), or we've reclaimed an order of pages at least as
1827 * large as the allocation's order. In both cases, if the
1828 * allocation still fails, we stop retrying.
1830 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1834 * Don't let big-order allocations loop unless the caller
1835 * explicitly requests that.
1837 if (gfp_mask
& __GFP_NOFAIL
)
1843 static inline struct page
*
1844 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1845 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1846 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1851 /* Acquire the OOM killer lock for the zones in zonelist */
1852 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1853 schedule_timeout_uninterruptible(1);
1858 * Go through the zonelist yet one more time, keep very high watermark
1859 * here, this is only to catch a parallel oom killing, we must fail if
1860 * we're still under heavy pressure.
1862 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1863 order
, zonelist
, high_zoneidx
,
1864 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1865 preferred_zone
, migratetype
);
1869 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1870 /* The OOM killer will not help higher order allocs */
1871 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1873 /* The OOM killer does not needlessly kill tasks for lowmem */
1874 if (high_zoneidx
< ZONE_NORMAL
)
1877 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1878 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1879 * The caller should handle page allocation failure by itself if
1880 * it specifies __GFP_THISNODE.
1881 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1883 if (gfp_mask
& __GFP_THISNODE
)
1886 /* Exhausted what can be done so it's blamo time */
1887 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1890 clear_zonelist_oom(zonelist
, gfp_mask
);
1894 #ifdef CONFIG_COMPACTION
1895 /* Try memory compaction for high-order allocations before reclaim */
1896 static struct page
*
1897 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1898 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1899 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1900 int migratetype
, unsigned long *did_some_progress
,
1901 bool sync_migration
)
1905 if (!order
|| compaction_deferred(preferred_zone
))
1908 current
->flags
|= PF_MEMALLOC
;
1909 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1910 nodemask
, sync_migration
);
1911 current
->flags
&= ~PF_MEMALLOC
;
1912 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1914 /* Page migration frees to the PCP lists but we want merging */
1915 drain_pages(get_cpu());
1918 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1919 order
, zonelist
, high_zoneidx
,
1920 alloc_flags
, preferred_zone
,
1923 preferred_zone
->compact_considered
= 0;
1924 preferred_zone
->compact_defer_shift
= 0;
1925 count_vm_event(COMPACTSUCCESS
);
1930 * It's bad if compaction run occurs and fails.
1931 * The most likely reason is that pages exist,
1932 * but not enough to satisfy watermarks.
1934 count_vm_event(COMPACTFAIL
);
1935 defer_compaction(preferred_zone
);
1943 static inline struct page
*
1944 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1945 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1946 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1947 int migratetype
, unsigned long *did_some_progress
,
1948 bool sync_migration
)
1952 #endif /* CONFIG_COMPACTION */
1954 /* The really slow allocator path where we enter direct reclaim */
1955 static inline struct page
*
1956 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1957 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1958 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1959 int migratetype
, unsigned long *did_some_progress
)
1961 struct page
*page
= NULL
;
1962 struct reclaim_state reclaim_state
;
1963 bool drained
= false;
1967 /* We now go into synchronous reclaim */
1968 cpuset_memory_pressure_bump();
1969 current
->flags
|= PF_MEMALLOC
;
1970 lockdep_set_current_reclaim_state(gfp_mask
);
1971 reclaim_state
.reclaimed_slab
= 0;
1972 current
->reclaim_state
= &reclaim_state
;
1974 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1976 current
->reclaim_state
= NULL
;
1977 lockdep_clear_current_reclaim_state();
1978 current
->flags
&= ~PF_MEMALLOC
;
1982 if (unlikely(!(*did_some_progress
)))
1985 /* After successful reclaim, reconsider all zones for allocation */
1987 zlc_clear_zones_full(zonelist
);
1990 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1991 zonelist
, high_zoneidx
,
1992 alloc_flags
, preferred_zone
,
1996 * If an allocation failed after direct reclaim, it could be because
1997 * pages are pinned on the per-cpu lists. Drain them and try again
1999 if (!page
&& !drained
) {
2009 * This is called in the allocator slow-path if the allocation request is of
2010 * sufficient urgency to ignore watermarks and take other desperate measures
2012 static inline struct page
*
2013 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
2014 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2015 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2021 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2022 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2023 preferred_zone
, migratetype
);
2025 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2026 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2027 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2033 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2034 enum zone_type high_zoneidx
,
2035 enum zone_type classzone_idx
)
2040 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2041 wakeup_kswapd(zone
, order
, classzone_idx
);
2045 gfp_to_alloc_flags(gfp_t gfp_mask
)
2047 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2048 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2050 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2051 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2054 * The caller may dip into page reserves a bit more if the caller
2055 * cannot run direct reclaim, or if the caller has realtime scheduling
2056 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2057 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2059 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2063 * Not worth trying to allocate harder for
2064 * __GFP_NOMEMALLOC even if it can't schedule.
2066 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2067 alloc_flags
|= ALLOC_HARDER
;
2069 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2070 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2072 alloc_flags
&= ~ALLOC_CPUSET
;
2073 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2074 alloc_flags
|= ALLOC_HARDER
;
2076 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2077 if (!in_interrupt() &&
2078 ((current
->flags
& PF_MEMALLOC
) ||
2079 unlikely(test_thread_flag(TIF_MEMDIE
))))
2080 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2086 static inline struct page
*
2087 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2088 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2089 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2092 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2093 struct page
*page
= NULL
;
2095 unsigned long pages_reclaimed
= 0;
2096 unsigned long did_some_progress
;
2097 bool sync_migration
= false;
2100 * In the slowpath, we sanity check order to avoid ever trying to
2101 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2102 * be using allocators in order of preference for an area that is
2105 if (order
>= MAX_ORDER
) {
2106 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2111 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2112 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2113 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2114 * using a larger set of nodes after it has established that the
2115 * allowed per node queues are empty and that nodes are
2118 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2122 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2123 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2124 zone_idx(preferred_zone
));
2127 * OK, we're below the kswapd watermark and have kicked background
2128 * reclaim. Now things get more complex, so set up alloc_flags according
2129 * to how we want to proceed.
2131 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2134 * Find the true preferred zone if the allocation is unconstrained by
2137 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2138 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2142 /* This is the last chance, in general, before the goto nopage. */
2143 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2144 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2145 preferred_zone
, migratetype
);
2149 /* Allocate without watermarks if the context allows */
2150 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2151 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2152 zonelist
, high_zoneidx
, nodemask
,
2153 preferred_zone
, migratetype
);
2158 /* Atomic allocations - we can't balance anything */
2162 /* Avoid recursion of direct reclaim */
2163 if (current
->flags
& PF_MEMALLOC
)
2166 /* Avoid allocations with no watermarks from looping endlessly */
2167 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2171 * Try direct compaction. The first pass is asynchronous. Subsequent
2172 * attempts after direct reclaim are synchronous
2174 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2175 zonelist
, high_zoneidx
,
2177 alloc_flags
, preferred_zone
,
2178 migratetype
, &did_some_progress
,
2182 sync_migration
= true;
2184 /* Try direct reclaim and then allocating */
2185 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2186 zonelist
, high_zoneidx
,
2188 alloc_flags
, preferred_zone
,
2189 migratetype
, &did_some_progress
);
2194 * If we failed to make any progress reclaiming, then we are
2195 * running out of options and have to consider going OOM
2197 if (!did_some_progress
) {
2198 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2199 if (oom_killer_disabled
)
2201 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2202 zonelist
, high_zoneidx
,
2203 nodemask
, preferred_zone
,
2208 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2210 * The oom killer is not called for high-order
2211 * allocations that may fail, so if no progress
2212 * is being made, there are no other options and
2213 * retrying is unlikely to help.
2215 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2218 * The oom killer is not called for lowmem
2219 * allocations to prevent needlessly killing
2222 if (high_zoneidx
< ZONE_NORMAL
)
2230 /* Check if we should retry the allocation */
2231 pages_reclaimed
+= did_some_progress
;
2232 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2233 /* Wait for some write requests to complete then retry */
2234 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2238 * High-order allocations do not necessarily loop after
2239 * direct reclaim and reclaim/compaction depends on compaction
2240 * being called after reclaim so call directly if necessary
2242 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2243 zonelist
, high_zoneidx
,
2245 alloc_flags
, preferred_zone
,
2246 migratetype
, &did_some_progress
,
2253 warn_alloc_failed(gfp_mask
, order
, NULL
);
2256 if (kmemcheck_enabled
)
2257 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2263 * This is the 'heart' of the zoned buddy allocator.
2266 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2267 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2269 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2270 struct zone
*preferred_zone
;
2272 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2274 gfp_mask
&= gfp_allowed_mask
;
2276 lockdep_trace_alloc(gfp_mask
);
2278 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2280 if (should_fail_alloc_page(gfp_mask
, order
))
2284 * Check the zones suitable for the gfp_mask contain at least one
2285 * valid zone. It's possible to have an empty zonelist as a result
2286 * of GFP_THISNODE and a memoryless node
2288 if (unlikely(!zonelist
->_zonerefs
->zone
))
2292 /* The preferred zone is used for statistics later */
2293 first_zones_zonelist(zonelist
, high_zoneidx
,
2294 nodemask
? : &cpuset_current_mems_allowed
,
2296 if (!preferred_zone
) {
2301 /* First allocation attempt */
2302 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2303 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2304 preferred_zone
, migratetype
);
2305 if (unlikely(!page
))
2306 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2307 zonelist
, high_zoneidx
, nodemask
,
2308 preferred_zone
, migratetype
);
2311 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2314 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2317 * Common helper functions.
2319 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2324 * __get_free_pages() returns a 32-bit address, which cannot represent
2327 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2329 page
= alloc_pages(gfp_mask
, order
);
2332 return (unsigned long) page_address(page
);
2334 EXPORT_SYMBOL(__get_free_pages
);
2336 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2338 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2340 EXPORT_SYMBOL(get_zeroed_page
);
2342 void __pagevec_free(struct pagevec
*pvec
)
2344 int i
= pagevec_count(pvec
);
2347 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2348 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2352 void __free_pages(struct page
*page
, unsigned int order
)
2354 if (put_page_testzero(page
)) {
2356 free_hot_cold_page(page
, 0);
2358 __free_pages_ok(page
, order
);
2362 EXPORT_SYMBOL(__free_pages
);
2364 void free_pages(unsigned long addr
, unsigned int order
)
2367 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2368 __free_pages(virt_to_page((void *)addr
), order
);
2372 EXPORT_SYMBOL(free_pages
);
2374 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2377 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2378 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2380 split_page(virt_to_page((void *)addr
), order
);
2381 while (used
< alloc_end
) {
2386 return (void *)addr
;
2390 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2391 * @size: the number of bytes to allocate
2392 * @gfp_mask: GFP flags for the allocation
2394 * This function is similar to alloc_pages(), except that it allocates the
2395 * minimum number of pages to satisfy the request. alloc_pages() can only
2396 * allocate memory in power-of-two pages.
2398 * This function is also limited by MAX_ORDER.
2400 * Memory allocated by this function must be released by free_pages_exact().
2402 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2404 unsigned int order
= get_order(size
);
2407 addr
= __get_free_pages(gfp_mask
, order
);
2408 return make_alloc_exact(addr
, order
, size
);
2410 EXPORT_SYMBOL(alloc_pages_exact
);
2413 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2415 * @nid: the preferred node ID where memory should be allocated
2416 * @size: the number of bytes to allocate
2417 * @gfp_mask: GFP flags for the allocation
2419 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2421 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2424 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2426 unsigned order
= get_order(size
);
2427 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2430 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2432 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2435 * free_pages_exact - release memory allocated via alloc_pages_exact()
2436 * @virt: the value returned by alloc_pages_exact.
2437 * @size: size of allocation, same value as passed to alloc_pages_exact().
2439 * Release the memory allocated by a previous call to alloc_pages_exact.
2441 void free_pages_exact(void *virt
, size_t size
)
2443 unsigned long addr
= (unsigned long)virt
;
2444 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2446 while (addr
< end
) {
2451 EXPORT_SYMBOL(free_pages_exact
);
2453 static unsigned int nr_free_zone_pages(int offset
)
2458 /* Just pick one node, since fallback list is circular */
2459 unsigned int sum
= 0;
2461 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2463 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2464 unsigned long size
= zone
->present_pages
;
2465 unsigned long high
= high_wmark_pages(zone
);
2474 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2476 unsigned int nr_free_buffer_pages(void)
2478 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2480 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2483 * Amount of free RAM allocatable within all zones
2485 unsigned int nr_free_pagecache_pages(void)
2487 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2490 static inline void show_node(struct zone
*zone
)
2493 printk("Node %d ", zone_to_nid(zone
));
2496 void si_meminfo(struct sysinfo
*val
)
2498 val
->totalram
= totalram_pages
;
2500 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2501 val
->bufferram
= nr_blockdev_pages();
2502 val
->totalhigh
= totalhigh_pages
;
2503 val
->freehigh
= nr_free_highpages();
2504 val
->mem_unit
= PAGE_SIZE
;
2507 EXPORT_SYMBOL(si_meminfo
);
2510 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2512 pg_data_t
*pgdat
= NODE_DATA(nid
);
2514 val
->totalram
= pgdat
->node_present_pages
;
2515 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2516 #ifdef CONFIG_HIGHMEM
2517 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2518 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2524 val
->mem_unit
= PAGE_SIZE
;
2529 * Determine whether the node should be displayed or not, depending on whether
2530 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2532 bool skip_free_areas_node(unsigned int flags
, int nid
)
2536 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2540 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2546 #define K(x) ((x) << (PAGE_SHIFT-10))
2549 * Show free area list (used inside shift_scroll-lock stuff)
2550 * We also calculate the percentage fragmentation. We do this by counting the
2551 * memory on each free list with the exception of the first item on the list.
2552 * Suppresses nodes that are not allowed by current's cpuset if
2553 * SHOW_MEM_FILTER_NODES is passed.
2555 void show_free_areas(unsigned int filter
)
2560 for_each_populated_zone(zone
) {
2561 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2564 printk("%s per-cpu:\n", zone
->name
);
2566 for_each_online_cpu(cpu
) {
2567 struct per_cpu_pageset
*pageset
;
2569 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2571 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2572 cpu
, pageset
->pcp
.high
,
2573 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2577 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2578 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2580 " dirty:%lu writeback:%lu unstable:%lu\n"
2581 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2582 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2583 global_page_state(NR_ACTIVE_ANON
),
2584 global_page_state(NR_INACTIVE_ANON
),
2585 global_page_state(NR_ISOLATED_ANON
),
2586 global_page_state(NR_ACTIVE_FILE
),
2587 global_page_state(NR_INACTIVE_FILE
),
2588 global_page_state(NR_ISOLATED_FILE
),
2589 global_page_state(NR_UNEVICTABLE
),
2590 global_page_state(NR_FILE_DIRTY
),
2591 global_page_state(NR_WRITEBACK
),
2592 global_page_state(NR_UNSTABLE_NFS
),
2593 global_page_state(NR_FREE_PAGES
),
2594 global_page_state(NR_SLAB_RECLAIMABLE
),
2595 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2596 global_page_state(NR_FILE_MAPPED
),
2597 global_page_state(NR_SHMEM
),
2598 global_page_state(NR_PAGETABLE
),
2599 global_page_state(NR_BOUNCE
));
2601 for_each_populated_zone(zone
) {
2604 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2612 " active_anon:%lukB"
2613 " inactive_anon:%lukB"
2614 " active_file:%lukB"
2615 " inactive_file:%lukB"
2616 " unevictable:%lukB"
2617 " isolated(anon):%lukB"
2618 " isolated(file):%lukB"
2625 " slab_reclaimable:%lukB"
2626 " slab_unreclaimable:%lukB"
2627 " kernel_stack:%lukB"
2631 " writeback_tmp:%lukB"
2632 " pages_scanned:%lu"
2633 " all_unreclaimable? %s"
2636 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2637 K(min_wmark_pages(zone
)),
2638 K(low_wmark_pages(zone
)),
2639 K(high_wmark_pages(zone
)),
2640 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2641 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2642 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2643 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2644 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2645 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2646 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2647 K(zone
->present_pages
),
2648 K(zone_page_state(zone
, NR_MLOCK
)),
2649 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2650 K(zone_page_state(zone
, NR_WRITEBACK
)),
2651 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2652 K(zone_page_state(zone
, NR_SHMEM
)),
2653 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2654 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2655 zone_page_state(zone
, NR_KERNEL_STACK
) *
2657 K(zone_page_state(zone
, NR_PAGETABLE
)),
2658 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2659 K(zone_page_state(zone
, NR_BOUNCE
)),
2660 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2661 zone
->pages_scanned
,
2662 (zone
->all_unreclaimable
? "yes" : "no")
2664 printk("lowmem_reserve[]:");
2665 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2666 printk(" %lu", zone
->lowmem_reserve
[i
]);
2670 for_each_populated_zone(zone
) {
2671 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2673 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2676 printk("%s: ", zone
->name
);
2678 spin_lock_irqsave(&zone
->lock
, flags
);
2679 for (order
= 0; order
< MAX_ORDER
; order
++) {
2680 nr
[order
] = zone
->free_area
[order
].nr_free
;
2681 total
+= nr
[order
] << order
;
2683 spin_unlock_irqrestore(&zone
->lock
, flags
);
2684 for (order
= 0; order
< MAX_ORDER
; order
++)
2685 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2686 printk("= %lukB\n", K(total
));
2689 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2691 show_swap_cache_info();
2694 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2696 zoneref
->zone
= zone
;
2697 zoneref
->zone_idx
= zone_idx(zone
);
2701 * Builds allocation fallback zone lists.
2703 * Add all populated zones of a node to the zonelist.
2705 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2706 int nr_zones
, enum zone_type zone_type
)
2710 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2715 zone
= pgdat
->node_zones
+ zone_type
;
2716 if (populated_zone(zone
)) {
2717 zoneref_set_zone(zone
,
2718 &zonelist
->_zonerefs
[nr_zones
++]);
2719 check_highest_zone(zone_type
);
2722 } while (zone_type
);
2729 * 0 = automatic detection of better ordering.
2730 * 1 = order by ([node] distance, -zonetype)
2731 * 2 = order by (-zonetype, [node] distance)
2733 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2734 * the same zonelist. So only NUMA can configure this param.
2736 #define ZONELIST_ORDER_DEFAULT 0
2737 #define ZONELIST_ORDER_NODE 1
2738 #define ZONELIST_ORDER_ZONE 2
2740 /* zonelist order in the kernel.
2741 * set_zonelist_order() will set this to NODE or ZONE.
2743 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2744 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2748 /* The value user specified ....changed by config */
2749 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2750 /* string for sysctl */
2751 #define NUMA_ZONELIST_ORDER_LEN 16
2752 char numa_zonelist_order
[16] = "default";
2755 * interface for configure zonelist ordering.
2756 * command line option "numa_zonelist_order"
2757 * = "[dD]efault - default, automatic configuration.
2758 * = "[nN]ode - order by node locality, then by zone within node
2759 * = "[zZ]one - order by zone, then by locality within zone
2762 static int __parse_numa_zonelist_order(char *s
)
2764 if (*s
== 'd' || *s
== 'D') {
2765 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2766 } else if (*s
== 'n' || *s
== 'N') {
2767 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2768 } else if (*s
== 'z' || *s
== 'Z') {
2769 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2772 "Ignoring invalid numa_zonelist_order value: "
2779 static __init
int setup_numa_zonelist_order(char *s
)
2786 ret
= __parse_numa_zonelist_order(s
);
2788 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2792 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2795 * sysctl handler for numa_zonelist_order
2797 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2798 void __user
*buffer
, size_t *length
,
2801 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2803 static DEFINE_MUTEX(zl_order_mutex
);
2805 mutex_lock(&zl_order_mutex
);
2807 strcpy(saved_string
, (char*)table
->data
);
2808 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2812 int oldval
= user_zonelist_order
;
2813 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2815 * bogus value. restore saved string
2817 strncpy((char*)table
->data
, saved_string
,
2818 NUMA_ZONELIST_ORDER_LEN
);
2819 user_zonelist_order
= oldval
;
2820 } else if (oldval
!= user_zonelist_order
) {
2821 mutex_lock(&zonelists_mutex
);
2822 build_all_zonelists(NULL
);
2823 mutex_unlock(&zonelists_mutex
);
2827 mutex_unlock(&zl_order_mutex
);
2832 #define MAX_NODE_LOAD (nr_online_nodes)
2833 static int node_load
[MAX_NUMNODES
];
2836 * find_next_best_node - find the next node that should appear in a given node's fallback list
2837 * @node: node whose fallback list we're appending
2838 * @used_node_mask: nodemask_t of already used nodes
2840 * We use a number of factors to determine which is the next node that should
2841 * appear on a given node's fallback list. The node should not have appeared
2842 * already in @node's fallback list, and it should be the next closest node
2843 * according to the distance array (which contains arbitrary distance values
2844 * from each node to each node in the system), and should also prefer nodes
2845 * with no CPUs, since presumably they'll have very little allocation pressure
2846 * on them otherwise.
2847 * It returns -1 if no node is found.
2849 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2852 int min_val
= INT_MAX
;
2854 const struct cpumask
*tmp
= cpumask_of_node(0);
2856 /* Use the local node if we haven't already */
2857 if (!node_isset(node
, *used_node_mask
)) {
2858 node_set(node
, *used_node_mask
);
2862 for_each_node_state(n
, N_HIGH_MEMORY
) {
2864 /* Don't want a node to appear more than once */
2865 if (node_isset(n
, *used_node_mask
))
2868 /* Use the distance array to find the distance */
2869 val
= node_distance(node
, n
);
2871 /* Penalize nodes under us ("prefer the next node") */
2874 /* Give preference to headless and unused nodes */
2875 tmp
= cpumask_of_node(n
);
2876 if (!cpumask_empty(tmp
))
2877 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2879 /* Slight preference for less loaded node */
2880 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2881 val
+= node_load
[n
];
2883 if (val
< min_val
) {
2890 node_set(best_node
, *used_node_mask
);
2897 * Build zonelists ordered by node and zones within node.
2898 * This results in maximum locality--normal zone overflows into local
2899 * DMA zone, if any--but risks exhausting DMA zone.
2901 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2904 struct zonelist
*zonelist
;
2906 zonelist
= &pgdat
->node_zonelists
[0];
2907 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2909 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2911 zonelist
->_zonerefs
[j
].zone
= NULL
;
2912 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2916 * Build gfp_thisnode zonelists
2918 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2921 struct zonelist
*zonelist
;
2923 zonelist
= &pgdat
->node_zonelists
[1];
2924 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2925 zonelist
->_zonerefs
[j
].zone
= NULL
;
2926 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2930 * Build zonelists ordered by zone and nodes within zones.
2931 * This results in conserving DMA zone[s] until all Normal memory is
2932 * exhausted, but results in overflowing to remote node while memory
2933 * may still exist in local DMA zone.
2935 static int node_order
[MAX_NUMNODES
];
2937 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2940 int zone_type
; /* needs to be signed */
2942 struct zonelist
*zonelist
;
2944 zonelist
= &pgdat
->node_zonelists
[0];
2946 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2947 for (j
= 0; j
< nr_nodes
; j
++) {
2948 node
= node_order
[j
];
2949 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2950 if (populated_zone(z
)) {
2952 &zonelist
->_zonerefs
[pos
++]);
2953 check_highest_zone(zone_type
);
2957 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2958 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2961 static int default_zonelist_order(void)
2964 unsigned long low_kmem_size
,total_size
;
2968 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2969 * If they are really small and used heavily, the system can fall
2970 * into OOM very easily.
2971 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2973 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2976 for_each_online_node(nid
) {
2977 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2978 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2979 if (populated_zone(z
)) {
2980 if (zone_type
< ZONE_NORMAL
)
2981 low_kmem_size
+= z
->present_pages
;
2982 total_size
+= z
->present_pages
;
2983 } else if (zone_type
== ZONE_NORMAL
) {
2985 * If any node has only lowmem, then node order
2986 * is preferred to allow kernel allocations
2987 * locally; otherwise, they can easily infringe
2988 * on other nodes when there is an abundance of
2989 * lowmem available to allocate from.
2991 return ZONELIST_ORDER_NODE
;
2995 if (!low_kmem_size
|| /* there are no DMA area. */
2996 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2997 return ZONELIST_ORDER_NODE
;
2999 * look into each node's config.
3000 * If there is a node whose DMA/DMA32 memory is very big area on
3001 * local memory, NODE_ORDER may be suitable.
3003 average_size
= total_size
/
3004 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
3005 for_each_online_node(nid
) {
3008 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
3009 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
3010 if (populated_zone(z
)) {
3011 if (zone_type
< ZONE_NORMAL
)
3012 low_kmem_size
+= z
->present_pages
;
3013 total_size
+= z
->present_pages
;
3016 if (low_kmem_size
&&
3017 total_size
> average_size
&& /* ignore small node */
3018 low_kmem_size
> total_size
* 70/100)
3019 return ZONELIST_ORDER_NODE
;
3021 return ZONELIST_ORDER_ZONE
;
3024 static void set_zonelist_order(void)
3026 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3027 current_zonelist_order
= default_zonelist_order();
3029 current_zonelist_order
= user_zonelist_order
;
3032 static void build_zonelists(pg_data_t
*pgdat
)
3036 nodemask_t used_mask
;
3037 int local_node
, prev_node
;
3038 struct zonelist
*zonelist
;
3039 int order
= current_zonelist_order
;
3041 /* initialize zonelists */
3042 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3043 zonelist
= pgdat
->node_zonelists
+ i
;
3044 zonelist
->_zonerefs
[0].zone
= NULL
;
3045 zonelist
->_zonerefs
[0].zone_idx
= 0;
3048 /* NUMA-aware ordering of nodes */
3049 local_node
= pgdat
->node_id
;
3050 load
= nr_online_nodes
;
3051 prev_node
= local_node
;
3052 nodes_clear(used_mask
);
3054 memset(node_order
, 0, sizeof(node_order
));
3057 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3058 int distance
= node_distance(local_node
, node
);
3061 * If another node is sufficiently far away then it is better
3062 * to reclaim pages in a zone before going off node.
3064 if (distance
> RECLAIM_DISTANCE
)
3065 zone_reclaim_mode
= 1;
3068 * We don't want to pressure a particular node.
3069 * So adding penalty to the first node in same
3070 * distance group to make it round-robin.
3072 if (distance
!= node_distance(local_node
, prev_node
))
3073 node_load
[node
] = load
;
3077 if (order
== ZONELIST_ORDER_NODE
)
3078 build_zonelists_in_node_order(pgdat
, node
);
3080 node_order
[j
++] = node
; /* remember order */
3083 if (order
== ZONELIST_ORDER_ZONE
) {
3084 /* calculate node order -- i.e., DMA last! */
3085 build_zonelists_in_zone_order(pgdat
, j
);
3088 build_thisnode_zonelists(pgdat
);
3091 /* Construct the zonelist performance cache - see further mmzone.h */
3092 static void build_zonelist_cache(pg_data_t
*pgdat
)
3094 struct zonelist
*zonelist
;
3095 struct zonelist_cache
*zlc
;
3098 zonelist
= &pgdat
->node_zonelists
[0];
3099 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3100 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3101 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3102 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3105 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3107 * Return node id of node used for "local" allocations.
3108 * I.e., first node id of first zone in arg node's generic zonelist.
3109 * Used for initializing percpu 'numa_mem', which is used primarily
3110 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3112 int local_memory_node(int node
)
3116 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3117 gfp_zone(GFP_KERNEL
),
3124 #else /* CONFIG_NUMA */
3126 static void set_zonelist_order(void)
3128 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3131 static void build_zonelists(pg_data_t
*pgdat
)
3133 int node
, local_node
;
3135 struct zonelist
*zonelist
;
3137 local_node
= pgdat
->node_id
;
3139 zonelist
= &pgdat
->node_zonelists
[0];
3140 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3143 * Now we build the zonelist so that it contains the zones
3144 * of all the other nodes.
3145 * We don't want to pressure a particular node, so when
3146 * building the zones for node N, we make sure that the
3147 * zones coming right after the local ones are those from
3148 * node N+1 (modulo N)
3150 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3151 if (!node_online(node
))
3153 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3156 for (node
= 0; node
< local_node
; node
++) {
3157 if (!node_online(node
))
3159 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3163 zonelist
->_zonerefs
[j
].zone
= NULL
;
3164 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3167 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3168 static void build_zonelist_cache(pg_data_t
*pgdat
)
3170 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3173 #endif /* CONFIG_NUMA */
3176 * Boot pageset table. One per cpu which is going to be used for all
3177 * zones and all nodes. The parameters will be set in such a way
3178 * that an item put on a list will immediately be handed over to
3179 * the buddy list. This is safe since pageset manipulation is done
3180 * with interrupts disabled.
3182 * The boot_pagesets must be kept even after bootup is complete for
3183 * unused processors and/or zones. They do play a role for bootstrapping
3184 * hotplugged processors.
3186 * zoneinfo_show() and maybe other functions do
3187 * not check if the processor is online before following the pageset pointer.
3188 * Other parts of the kernel may not check if the zone is available.
3190 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3191 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3192 static void setup_zone_pageset(struct zone
*zone
);
3195 * Global mutex to protect against size modification of zonelists
3196 * as well as to serialize pageset setup for the new populated zone.
3198 DEFINE_MUTEX(zonelists_mutex
);
3200 /* return values int ....just for stop_machine() */
3201 static __init_refok
int __build_all_zonelists(void *data
)
3207 memset(node_load
, 0, sizeof(node_load
));
3209 for_each_online_node(nid
) {
3210 pg_data_t
*pgdat
= NODE_DATA(nid
);
3212 build_zonelists(pgdat
);
3213 build_zonelist_cache(pgdat
);
3217 * Initialize the boot_pagesets that are going to be used
3218 * for bootstrapping processors. The real pagesets for
3219 * each zone will be allocated later when the per cpu
3220 * allocator is available.
3222 * boot_pagesets are used also for bootstrapping offline
3223 * cpus if the system is already booted because the pagesets
3224 * are needed to initialize allocators on a specific cpu too.
3225 * F.e. the percpu allocator needs the page allocator which
3226 * needs the percpu allocator in order to allocate its pagesets
3227 * (a chicken-egg dilemma).
3229 for_each_possible_cpu(cpu
) {
3230 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3232 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3234 * We now know the "local memory node" for each node--
3235 * i.e., the node of the first zone in the generic zonelist.
3236 * Set up numa_mem percpu variable for on-line cpus. During
3237 * boot, only the boot cpu should be on-line; we'll init the
3238 * secondary cpus' numa_mem as they come on-line. During
3239 * node/memory hotplug, we'll fixup all on-line cpus.
3241 if (cpu_online(cpu
))
3242 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3250 * Called with zonelists_mutex held always
3251 * unless system_state == SYSTEM_BOOTING.
3253 void __ref
build_all_zonelists(void *data
)
3255 set_zonelist_order();
3257 if (system_state
== SYSTEM_BOOTING
) {
3258 __build_all_zonelists(NULL
);
3259 mminit_verify_zonelist();
3260 cpuset_init_current_mems_allowed();
3262 /* we have to stop all cpus to guarantee there is no user
3264 #ifdef CONFIG_MEMORY_HOTPLUG
3266 setup_zone_pageset((struct zone
*)data
);
3268 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3269 /* cpuset refresh routine should be here */
3271 vm_total_pages
= nr_free_pagecache_pages();
3273 * Disable grouping by mobility if the number of pages in the
3274 * system is too low to allow the mechanism to work. It would be
3275 * more accurate, but expensive to check per-zone. This check is
3276 * made on memory-hotadd so a system can start with mobility
3277 * disabled and enable it later
3279 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3280 page_group_by_mobility_disabled
= 1;
3282 page_group_by_mobility_disabled
= 0;
3284 printk("Built %i zonelists in %s order, mobility grouping %s. "
3285 "Total pages: %ld\n",
3287 zonelist_order_name
[current_zonelist_order
],
3288 page_group_by_mobility_disabled
? "off" : "on",
3291 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3296 * Helper functions to size the waitqueue hash table.
3297 * Essentially these want to choose hash table sizes sufficiently
3298 * large so that collisions trying to wait on pages are rare.
3299 * But in fact, the number of active page waitqueues on typical
3300 * systems is ridiculously low, less than 200. So this is even
3301 * conservative, even though it seems large.
3303 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3304 * waitqueues, i.e. the size of the waitq table given the number of pages.
3306 #define PAGES_PER_WAITQUEUE 256
3308 #ifndef CONFIG_MEMORY_HOTPLUG
3309 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3311 unsigned long size
= 1;
3313 pages
/= PAGES_PER_WAITQUEUE
;
3315 while (size
< pages
)
3319 * Once we have dozens or even hundreds of threads sleeping
3320 * on IO we've got bigger problems than wait queue collision.
3321 * Limit the size of the wait table to a reasonable size.
3323 size
= min(size
, 4096UL);
3325 return max(size
, 4UL);
3329 * A zone's size might be changed by hot-add, so it is not possible to determine
3330 * a suitable size for its wait_table. So we use the maximum size now.
3332 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3334 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3335 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3336 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3338 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3339 * or more by the traditional way. (See above). It equals:
3341 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3342 * ia64(16K page size) : = ( 8G + 4M)byte.
3343 * powerpc (64K page size) : = (32G +16M)byte.
3345 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3352 * This is an integer logarithm so that shifts can be used later
3353 * to extract the more random high bits from the multiplicative
3354 * hash function before the remainder is taken.
3356 static inline unsigned long wait_table_bits(unsigned long size
)
3361 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3364 * Check if a pageblock contains reserved pages
3366 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3370 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3371 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3378 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3379 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3380 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3381 * higher will lead to a bigger reserve which will get freed as contiguous
3382 * blocks as reclaim kicks in
3384 static void setup_zone_migrate_reserve(struct zone
*zone
)
3386 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3388 unsigned long block_migratetype
;
3392 * Get the start pfn, end pfn and the number of blocks to reserve
3393 * We have to be careful to be aligned to pageblock_nr_pages to
3394 * make sure that we always check pfn_valid for the first page in
3397 start_pfn
= zone
->zone_start_pfn
;
3398 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3399 start_pfn
= roundup(start_pfn
, pageblock_nr_pages
);
3400 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3404 * Reserve blocks are generally in place to help high-order atomic
3405 * allocations that are short-lived. A min_free_kbytes value that
3406 * would result in more than 2 reserve blocks for atomic allocations
3407 * is assumed to be in place to help anti-fragmentation for the
3408 * future allocation of hugepages at runtime.
3410 reserve
= min(2, reserve
);
3412 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3413 if (!pfn_valid(pfn
))
3415 page
= pfn_to_page(pfn
);
3417 /* Watch out for overlapping nodes */
3418 if (page_to_nid(page
) != zone_to_nid(zone
))
3421 /* Blocks with reserved pages will never free, skip them. */
3422 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3423 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3426 block_migratetype
= get_pageblock_migratetype(page
);
3428 /* If this block is reserved, account for it */
3429 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3434 /* Suitable for reserving if this block is movable */
3435 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3436 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3437 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3443 * If the reserve is met and this is a previous reserved block,
3446 if (block_migratetype
== MIGRATE_RESERVE
) {
3447 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3448 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3454 * Initially all pages are reserved - free ones are freed
3455 * up by free_all_bootmem() once the early boot process is
3456 * done. Non-atomic initialization, single-pass.
3458 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3459 unsigned long start_pfn
, enum memmap_context context
)
3462 unsigned long end_pfn
= start_pfn
+ size
;
3466 if (highest_memmap_pfn
< end_pfn
- 1)
3467 highest_memmap_pfn
= end_pfn
- 1;
3469 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3470 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3472 * There can be holes in boot-time mem_map[]s
3473 * handed to this function. They do not
3474 * exist on hotplugged memory.
3476 if (context
== MEMMAP_EARLY
) {
3477 if (!early_pfn_valid(pfn
))
3479 if (!early_pfn_in_nid(pfn
, nid
))
3482 page
= pfn_to_page(pfn
);
3483 set_page_links(page
, zone
, nid
, pfn
);
3484 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3485 init_page_count(page
);
3486 reset_page_mapcount(page
);
3487 SetPageReserved(page
);
3489 * Mark the block movable so that blocks are reserved for
3490 * movable at startup. This will force kernel allocations
3491 * to reserve their blocks rather than leaking throughout
3492 * the address space during boot when many long-lived
3493 * kernel allocations are made. Later some blocks near
3494 * the start are marked MIGRATE_RESERVE by
3495 * setup_zone_migrate_reserve()
3497 * bitmap is created for zone's valid pfn range. but memmap
3498 * can be created for invalid pages (for alignment)
3499 * check here not to call set_pageblock_migratetype() against
3502 if ((z
->zone_start_pfn
<= pfn
)
3503 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3504 && !(pfn
& (pageblock_nr_pages
- 1)))
3505 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3507 INIT_LIST_HEAD(&page
->lru
);
3508 #ifdef WANT_PAGE_VIRTUAL
3509 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3510 if (!is_highmem_idx(zone
))
3511 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3516 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3519 for_each_migratetype_order(order
, t
) {
3520 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3521 zone
->free_area
[order
].nr_free
= 0;
3525 #ifndef __HAVE_ARCH_MEMMAP_INIT
3526 #define memmap_init(size, nid, zone, start_pfn) \
3527 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3530 static int zone_batchsize(struct zone
*zone
)
3536 * The per-cpu-pages pools are set to around 1000th of the
3537 * size of the zone. But no more than 1/2 of a meg.
3539 * OK, so we don't know how big the cache is. So guess.
3541 batch
= zone
->present_pages
/ 1024;
3542 if (batch
* PAGE_SIZE
> 512 * 1024)
3543 batch
= (512 * 1024) / PAGE_SIZE
;
3544 batch
/= 4; /* We effectively *= 4 below */
3549 * Clamp the batch to a 2^n - 1 value. Having a power
3550 * of 2 value was found to be more likely to have
3551 * suboptimal cache aliasing properties in some cases.
3553 * For example if 2 tasks are alternately allocating
3554 * batches of pages, one task can end up with a lot
3555 * of pages of one half of the possible page colors
3556 * and the other with pages of the other colors.
3558 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3563 /* The deferral and batching of frees should be suppressed under NOMMU
3566 * The problem is that NOMMU needs to be able to allocate large chunks
3567 * of contiguous memory as there's no hardware page translation to
3568 * assemble apparent contiguous memory from discontiguous pages.
3570 * Queueing large contiguous runs of pages for batching, however,
3571 * causes the pages to actually be freed in smaller chunks. As there
3572 * can be a significant delay between the individual batches being
3573 * recycled, this leads to the once large chunks of space being
3574 * fragmented and becoming unavailable for high-order allocations.
3580 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3582 struct per_cpu_pages
*pcp
;
3585 memset(p
, 0, sizeof(*p
));
3589 pcp
->high
= 6 * batch
;
3590 pcp
->batch
= max(1UL, 1 * batch
);
3591 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3592 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3596 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3597 * to the value high for the pageset p.
3600 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3603 struct per_cpu_pages
*pcp
;
3607 pcp
->batch
= max(1UL, high
/4);
3608 if ((high
/4) > (PAGE_SHIFT
* 8))
3609 pcp
->batch
= PAGE_SHIFT
* 8;
3612 static void setup_zone_pageset(struct zone
*zone
)
3616 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3618 for_each_possible_cpu(cpu
) {
3619 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3621 setup_pageset(pcp
, zone_batchsize(zone
));
3623 if (percpu_pagelist_fraction
)
3624 setup_pagelist_highmark(pcp
,
3625 (zone
->present_pages
/
3626 percpu_pagelist_fraction
));
3631 * Allocate per cpu pagesets and initialize them.
3632 * Before this call only boot pagesets were available.
3634 void __init
setup_per_cpu_pageset(void)
3638 for_each_populated_zone(zone
)
3639 setup_zone_pageset(zone
);
3642 static noinline __init_refok
3643 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3646 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3650 * The per-page waitqueue mechanism uses hashed waitqueues
3653 zone
->wait_table_hash_nr_entries
=
3654 wait_table_hash_nr_entries(zone_size_pages
);
3655 zone
->wait_table_bits
=
3656 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3657 alloc_size
= zone
->wait_table_hash_nr_entries
3658 * sizeof(wait_queue_head_t
);
3660 if (!slab_is_available()) {
3661 zone
->wait_table
= (wait_queue_head_t
*)
3662 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3665 * This case means that a zone whose size was 0 gets new memory
3666 * via memory hot-add.
3667 * But it may be the case that a new node was hot-added. In
3668 * this case vmalloc() will not be able to use this new node's
3669 * memory - this wait_table must be initialized to use this new
3670 * node itself as well.
3671 * To use this new node's memory, further consideration will be
3674 zone
->wait_table
= vmalloc(alloc_size
);
3676 if (!zone
->wait_table
)
3679 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3680 init_waitqueue_head(zone
->wait_table
+ i
);
3685 static int __zone_pcp_update(void *data
)
3687 struct zone
*zone
= data
;
3689 unsigned long batch
= zone_batchsize(zone
), flags
;
3691 for_each_possible_cpu(cpu
) {
3692 struct per_cpu_pageset
*pset
;
3693 struct per_cpu_pages
*pcp
;
3695 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3698 local_irq_save(flags
);
3699 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3700 setup_pageset(pset
, batch
);
3701 local_irq_restore(flags
);
3706 void zone_pcp_update(struct zone
*zone
)
3708 stop_machine(__zone_pcp_update
, zone
, NULL
);
3711 static __meminit
void zone_pcp_init(struct zone
*zone
)
3714 * per cpu subsystem is not up at this point. The following code
3715 * relies on the ability of the linker to provide the
3716 * offset of a (static) per cpu variable into the per cpu area.
3718 zone
->pageset
= &boot_pageset
;
3720 if (zone
->present_pages
)
3721 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3722 zone
->name
, zone
->present_pages
,
3723 zone_batchsize(zone
));
3726 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3727 unsigned long zone_start_pfn
,
3729 enum memmap_context context
)
3731 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3733 ret
= zone_wait_table_init(zone
, size
);
3736 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3738 zone
->zone_start_pfn
= zone_start_pfn
;
3740 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3741 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3743 (unsigned long)zone_idx(zone
),
3744 zone_start_pfn
, (zone_start_pfn
+ size
));
3746 zone_init_free_lists(zone
);
3751 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3753 * Basic iterator support. Return the first range of PFNs for a node
3754 * Note: nid == MAX_NUMNODES returns first region regardless of node
3756 static int __meminit
first_active_region_index_in_nid(int nid
)
3760 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3761 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3768 * Basic iterator support. Return the next active range of PFNs for a node
3769 * Note: nid == MAX_NUMNODES returns next region regardless of node
3771 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3773 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3774 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3780 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3782 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3783 * Architectures may implement their own version but if add_active_range()
3784 * was used and there are no special requirements, this is a convenient
3787 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3791 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3792 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3793 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3795 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3796 return early_node_map
[i
].nid
;
3798 /* This is a memory hole */
3801 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3803 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3807 nid
= __early_pfn_to_nid(pfn
);
3810 /* just returns 0 */
3814 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3815 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3819 nid
= __early_pfn_to_nid(pfn
);
3820 if (nid
>= 0 && nid
!= node
)
3826 /* Basic iterator support to walk early_node_map[] */
3827 #define for_each_active_range_index_in_nid(i, nid) \
3828 for (i = first_active_region_index_in_nid(nid); i != -1; \
3829 i = next_active_region_index_in_nid(i, nid))
3832 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3833 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3834 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3836 * If an architecture guarantees that all ranges registered with
3837 * add_active_ranges() contain no holes and may be freed, this
3838 * this function may be used instead of calling free_bootmem() manually.
3840 void __init
free_bootmem_with_active_regions(int nid
,
3841 unsigned long max_low_pfn
)
3845 for_each_active_range_index_in_nid(i
, nid
) {
3846 unsigned long size_pages
= 0;
3847 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3849 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3852 if (end_pfn
> max_low_pfn
)
3853 end_pfn
= max_low_pfn
;
3855 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3856 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3857 PFN_PHYS(early_node_map
[i
].start_pfn
),
3858 size_pages
<< PAGE_SHIFT
);
3862 #ifdef CONFIG_HAVE_MEMBLOCK
3864 * Basic iterator support. Return the last range of PFNs for a node
3865 * Note: nid == MAX_NUMNODES returns last region regardless of node
3867 static int __meminit
last_active_region_index_in_nid(int nid
)
3871 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3872 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3879 * Basic iterator support. Return the previous active range of PFNs for a node
3880 * Note: nid == MAX_NUMNODES returns next region regardless of node
3882 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3884 for (index
= index
- 1; index
>= 0; index
--)
3885 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3891 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3892 for (i = last_active_region_index_in_nid(nid); i != -1; \
3893 i = previous_active_region_index_in_nid(i, nid))
3895 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3896 u64 goal
, u64 limit
)
3900 /* Need to go over early_node_map to find out good range for node */
3901 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3903 u64 ei_start
, ei_last
;
3904 u64 final_start
, final_end
;
3906 ei_last
= early_node_map
[i
].end_pfn
;
3907 ei_last
<<= PAGE_SHIFT
;
3908 ei_start
= early_node_map
[i
].start_pfn
;
3909 ei_start
<<= PAGE_SHIFT
;
3911 final_start
= max(ei_start
, goal
);
3912 final_end
= min(ei_last
, limit
);
3914 if (final_start
>= final_end
)
3917 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3919 if (addr
== MEMBLOCK_ERROR
)
3925 return MEMBLOCK_ERROR
;
3929 int __init
add_from_early_node_map(struct range
*range
, int az
,
3930 int nr_range
, int nid
)
3935 /* need to go over early_node_map to find out good range for node */
3936 for_each_active_range_index_in_nid(i
, nid
) {
3937 start
= early_node_map
[i
].start_pfn
;
3938 end
= early_node_map
[i
].end_pfn
;
3939 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3944 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3949 for_each_active_range_index_in_nid(i
, nid
) {
3950 ret
= work_fn(early_node_map
[i
].start_pfn
,
3951 early_node_map
[i
].end_pfn
, data
);
3957 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3958 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3960 * If an architecture guarantees that all ranges registered with
3961 * add_active_ranges() contain no holes and may be freed, this
3962 * function may be used instead of calling memory_present() manually.
3964 void __init
sparse_memory_present_with_active_regions(int nid
)
3968 for_each_active_range_index_in_nid(i
, nid
)
3969 memory_present(early_node_map
[i
].nid
,
3970 early_node_map
[i
].start_pfn
,
3971 early_node_map
[i
].end_pfn
);
3975 * get_pfn_range_for_nid - Return the start and end page frames for a node
3976 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3977 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3978 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3980 * It returns the start and end page frame of a node based on information
3981 * provided by an arch calling add_active_range(). If called for a node
3982 * with no available memory, a warning is printed and the start and end
3985 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3986 unsigned long *start_pfn
, unsigned long *end_pfn
)
3992 for_each_active_range_index_in_nid(i
, nid
) {
3993 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3994 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3997 if (*start_pfn
== -1UL)
4002 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4003 * assumption is made that zones within a node are ordered in monotonic
4004 * increasing memory addresses so that the "highest" populated zone is used
4006 static void __init
find_usable_zone_for_movable(void)
4009 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
4010 if (zone_index
== ZONE_MOVABLE
)
4013 if (arch_zone_highest_possible_pfn
[zone_index
] >
4014 arch_zone_lowest_possible_pfn
[zone_index
])
4018 VM_BUG_ON(zone_index
== -1);
4019 movable_zone
= zone_index
;
4023 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4024 * because it is sized independent of architecture. Unlike the other zones,
4025 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4026 * in each node depending on the size of each node and how evenly kernelcore
4027 * is distributed. This helper function adjusts the zone ranges
4028 * provided by the architecture for a given node by using the end of the
4029 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4030 * zones within a node are in order of monotonic increases memory addresses
4032 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4033 unsigned long zone_type
,
4034 unsigned long node_start_pfn
,
4035 unsigned long node_end_pfn
,
4036 unsigned long *zone_start_pfn
,
4037 unsigned long *zone_end_pfn
)
4039 /* Only adjust if ZONE_MOVABLE is on this node */
4040 if (zone_movable_pfn
[nid
]) {
4041 /* Size ZONE_MOVABLE */
4042 if (zone_type
== ZONE_MOVABLE
) {
4043 *zone_start_pfn
= zone_movable_pfn
[nid
];
4044 *zone_end_pfn
= min(node_end_pfn
,
4045 arch_zone_highest_possible_pfn
[movable_zone
]);
4047 /* Adjust for ZONE_MOVABLE starting within this range */
4048 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4049 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4050 *zone_end_pfn
= zone_movable_pfn
[nid
];
4052 /* Check if this whole range is within ZONE_MOVABLE */
4053 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4054 *zone_start_pfn
= *zone_end_pfn
;
4059 * Return the number of pages a zone spans in a node, including holes
4060 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4062 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4063 unsigned long zone_type
,
4064 unsigned long *ignored
)
4066 unsigned long node_start_pfn
, node_end_pfn
;
4067 unsigned long zone_start_pfn
, zone_end_pfn
;
4069 /* Get the start and end of the node and zone */
4070 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4071 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4072 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4073 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4074 node_start_pfn
, node_end_pfn
,
4075 &zone_start_pfn
, &zone_end_pfn
);
4077 /* Check that this node has pages within the zone's required range */
4078 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4081 /* Move the zone boundaries inside the node if necessary */
4082 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4083 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4085 /* Return the spanned pages */
4086 return zone_end_pfn
- zone_start_pfn
;
4090 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4091 * then all holes in the requested range will be accounted for.
4093 unsigned long __meminit
__absent_pages_in_range(int nid
,
4094 unsigned long range_start_pfn
,
4095 unsigned long range_end_pfn
)
4098 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4099 unsigned long start_pfn
;
4101 /* Find the end_pfn of the first active range of pfns in the node */
4102 i
= first_active_region_index_in_nid(nid
);
4106 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4108 /* Account for ranges before physical memory on this node */
4109 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4110 hole_pages
= prev_end_pfn
- range_start_pfn
;
4112 /* Find all holes for the zone within the node */
4113 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4115 /* No need to continue if prev_end_pfn is outside the zone */
4116 if (prev_end_pfn
>= range_end_pfn
)
4119 /* Make sure the end of the zone is not within the hole */
4120 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4121 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4123 /* Update the hole size cound and move on */
4124 if (start_pfn
> range_start_pfn
) {
4125 BUG_ON(prev_end_pfn
> start_pfn
);
4126 hole_pages
+= start_pfn
- prev_end_pfn
;
4128 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4131 /* Account for ranges past physical memory on this node */
4132 if (range_end_pfn
> prev_end_pfn
)
4133 hole_pages
+= range_end_pfn
-
4134 max(range_start_pfn
, prev_end_pfn
);
4140 * absent_pages_in_range - Return number of page frames in holes within a range
4141 * @start_pfn: The start PFN to start searching for holes
4142 * @end_pfn: The end PFN to stop searching for holes
4144 * It returns the number of pages frames in memory holes within a range.
4146 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4147 unsigned long end_pfn
)
4149 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4152 /* Return the number of page frames in holes in a zone on a node */
4153 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4154 unsigned long zone_type
,
4155 unsigned long *ignored
)
4157 unsigned long node_start_pfn
, node_end_pfn
;
4158 unsigned long zone_start_pfn
, zone_end_pfn
;
4160 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4161 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4163 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4166 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4167 node_start_pfn
, node_end_pfn
,
4168 &zone_start_pfn
, &zone_end_pfn
);
4169 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4173 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4174 unsigned long zone_type
,
4175 unsigned long *zones_size
)
4177 return zones_size
[zone_type
];
4180 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4181 unsigned long zone_type
,
4182 unsigned long *zholes_size
)
4187 return zholes_size
[zone_type
];
4192 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4193 unsigned long *zones_size
, unsigned long *zholes_size
)
4195 unsigned long realtotalpages
, totalpages
= 0;
4198 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4199 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4201 pgdat
->node_spanned_pages
= totalpages
;
4203 realtotalpages
= totalpages
;
4204 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4206 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4208 pgdat
->node_present_pages
= realtotalpages
;
4209 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4213 #ifndef CONFIG_SPARSEMEM
4215 * Calculate the size of the zone->blockflags rounded to an unsigned long
4216 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4217 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4218 * round what is now in bits to nearest long in bits, then return it in
4221 static unsigned long __init
usemap_size(unsigned long zonesize
)
4223 unsigned long usemapsize
;
4225 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4226 usemapsize
= usemapsize
>> pageblock_order
;
4227 usemapsize
*= NR_PAGEBLOCK_BITS
;
4228 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4230 return usemapsize
/ 8;
4233 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4234 struct zone
*zone
, unsigned long zonesize
)
4236 unsigned long usemapsize
= usemap_size(zonesize
);
4237 zone
->pageblock_flags
= NULL
;
4239 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4243 static inline void setup_usemap(struct pglist_data
*pgdat
,
4244 struct zone
*zone
, unsigned long zonesize
) {}
4245 #endif /* CONFIG_SPARSEMEM */
4247 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4249 /* Return a sensible default order for the pageblock size. */
4250 static inline int pageblock_default_order(void)
4252 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4253 return HUGETLB_PAGE_ORDER
;
4258 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4259 static inline void __init
set_pageblock_order(unsigned int order
)
4261 /* Check that pageblock_nr_pages has not already been setup */
4262 if (pageblock_order
)
4266 * Assume the largest contiguous order of interest is a huge page.
4267 * This value may be variable depending on boot parameters on IA64
4269 pageblock_order
= order
;
4271 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4274 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4275 * and pageblock_default_order() are unused as pageblock_order is set
4276 * at compile-time. See include/linux/pageblock-flags.h for the values of
4277 * pageblock_order based on the kernel config
4279 static inline int pageblock_default_order(unsigned int order
)
4283 #define set_pageblock_order(x) do {} while (0)
4285 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4288 * Set up the zone data structures:
4289 * - mark all pages reserved
4290 * - mark all memory queues empty
4291 * - clear the memory bitmaps
4293 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4294 unsigned long *zones_size
, unsigned long *zholes_size
)
4297 int nid
= pgdat
->node_id
;
4298 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4301 pgdat_resize_init(pgdat
);
4302 pgdat
->nr_zones
= 0;
4303 init_waitqueue_head(&pgdat
->kswapd_wait
);
4304 pgdat
->kswapd_max_order
= 0;
4305 pgdat_page_cgroup_init(pgdat
);
4307 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4308 struct zone
*zone
= pgdat
->node_zones
+ j
;
4309 unsigned long size
, realsize
, memmap_pages
;
4312 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4313 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4317 * Adjust realsize so that it accounts for how much memory
4318 * is used by this zone for memmap. This affects the watermark
4319 * and per-cpu initialisations
4322 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4323 if (realsize
>= memmap_pages
) {
4324 realsize
-= memmap_pages
;
4327 " %s zone: %lu pages used for memmap\n",
4328 zone_names
[j
], memmap_pages
);
4331 " %s zone: %lu pages exceeds realsize %lu\n",
4332 zone_names
[j
], memmap_pages
, realsize
);
4334 /* Account for reserved pages */
4335 if (j
== 0 && realsize
> dma_reserve
) {
4336 realsize
-= dma_reserve
;
4337 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4338 zone_names
[0], dma_reserve
);
4341 if (!is_highmem_idx(j
))
4342 nr_kernel_pages
+= realsize
;
4343 nr_all_pages
+= realsize
;
4345 zone
->spanned_pages
= size
;
4346 zone
->present_pages
= realsize
;
4349 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4351 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4353 zone
->name
= zone_names
[j
];
4354 spin_lock_init(&zone
->lock
);
4355 spin_lock_init(&zone
->lru_lock
);
4356 zone_seqlock_init(zone
);
4357 zone
->zone_pgdat
= pgdat
;
4359 zone_pcp_init(zone
);
4361 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4362 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4363 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4364 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4365 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4366 zap_zone_vm_stats(zone
);
4371 set_pageblock_order(pageblock_default_order());
4372 setup_usemap(pgdat
, zone
, size
);
4373 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4374 size
, MEMMAP_EARLY
);
4376 memmap_init(size
, nid
, j
, zone_start_pfn
);
4377 zone_start_pfn
+= size
;
4381 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4383 /* Skip empty nodes */
4384 if (!pgdat
->node_spanned_pages
)
4387 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4388 /* ia64 gets its own node_mem_map, before this, without bootmem */
4389 if (!pgdat
->node_mem_map
) {
4390 unsigned long size
, start
, end
;
4394 * The zone's endpoints aren't required to be MAX_ORDER
4395 * aligned but the node_mem_map endpoints must be in order
4396 * for the buddy allocator to function correctly.
4398 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4399 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4400 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4401 size
= (end
- start
) * sizeof(struct page
);
4402 map
= alloc_remap(pgdat
->node_id
, size
);
4404 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4405 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4407 #ifndef CONFIG_NEED_MULTIPLE_NODES
4409 * With no DISCONTIG, the global mem_map is just set as node 0's
4411 if (pgdat
== NODE_DATA(0)) {
4412 mem_map
= NODE_DATA(0)->node_mem_map
;
4413 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4414 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4415 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4416 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4419 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4422 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4423 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4425 pg_data_t
*pgdat
= NODE_DATA(nid
);
4427 pgdat
->node_id
= nid
;
4428 pgdat
->node_start_pfn
= node_start_pfn
;
4429 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4431 alloc_node_mem_map(pgdat
);
4432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4433 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4434 nid
, (unsigned long)pgdat
,
4435 (unsigned long)pgdat
->node_mem_map
);
4438 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4441 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4443 #if MAX_NUMNODES > 1
4445 * Figure out the number of possible node ids.
4447 static void __init
setup_nr_node_ids(void)
4450 unsigned int highest
= 0;
4452 for_each_node_mask(node
, node_possible_map
)
4454 nr_node_ids
= highest
+ 1;
4457 static inline void setup_nr_node_ids(void)
4463 * add_active_range - Register a range of PFNs backed by physical memory
4464 * @nid: The node ID the range resides on
4465 * @start_pfn: The start PFN of the available physical memory
4466 * @end_pfn: The end PFN of the available physical memory
4468 * These ranges are stored in an early_node_map[] and later used by
4469 * free_area_init_nodes() to calculate zone sizes and holes. If the
4470 * range spans a memory hole, it is up to the architecture to ensure
4471 * the memory is not freed by the bootmem allocator. If possible
4472 * the range being registered will be merged with existing ranges.
4474 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4475 unsigned long end_pfn
)
4479 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4480 "Entering add_active_range(%d, %#lx, %#lx) "
4481 "%d entries of %d used\n",
4482 nid
, start_pfn
, end_pfn
,
4483 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4485 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4487 /* Merge with existing active regions if possible */
4488 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4489 if (early_node_map
[i
].nid
!= nid
)
4492 /* Skip if an existing region covers this new one */
4493 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4494 end_pfn
<= early_node_map
[i
].end_pfn
)
4497 /* Merge forward if suitable */
4498 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4499 end_pfn
> early_node_map
[i
].end_pfn
) {
4500 early_node_map
[i
].end_pfn
= end_pfn
;
4504 /* Merge backward if suitable */
4505 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4506 end_pfn
>= early_node_map
[i
].start_pfn
) {
4507 early_node_map
[i
].start_pfn
= start_pfn
;
4512 /* Check that early_node_map is large enough */
4513 if (i
>= MAX_ACTIVE_REGIONS
) {
4514 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4515 MAX_ACTIVE_REGIONS
);
4519 early_node_map
[i
].nid
= nid
;
4520 early_node_map
[i
].start_pfn
= start_pfn
;
4521 early_node_map
[i
].end_pfn
= end_pfn
;
4522 nr_nodemap_entries
= i
+ 1;
4526 * remove_active_range - Shrink an existing registered range of PFNs
4527 * @nid: The node id the range is on that should be shrunk
4528 * @start_pfn: The new PFN of the range
4529 * @end_pfn: The new PFN of the range
4531 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4532 * The map is kept near the end physical page range that has already been
4533 * registered. This function allows an arch to shrink an existing registered
4536 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4537 unsigned long end_pfn
)
4542 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4543 nid
, start_pfn
, end_pfn
);
4545 /* Find the old active region end and shrink */
4546 for_each_active_range_index_in_nid(i
, nid
) {
4547 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4548 early_node_map
[i
].end_pfn
<= end_pfn
) {
4550 early_node_map
[i
].start_pfn
= 0;
4551 early_node_map
[i
].end_pfn
= 0;
4555 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4556 early_node_map
[i
].end_pfn
> start_pfn
) {
4557 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4558 early_node_map
[i
].end_pfn
= start_pfn
;
4559 if (temp_end_pfn
> end_pfn
)
4560 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4563 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4564 early_node_map
[i
].end_pfn
> end_pfn
&&
4565 early_node_map
[i
].start_pfn
< end_pfn
) {
4566 early_node_map
[i
].start_pfn
= end_pfn
;
4574 /* remove the blank ones */
4575 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4576 if (early_node_map
[i
].nid
!= nid
)
4578 if (early_node_map
[i
].end_pfn
)
4580 /* we found it, get rid of it */
4581 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4582 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4583 sizeof(early_node_map
[j
]));
4584 j
= nr_nodemap_entries
- 1;
4585 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4586 nr_nodemap_entries
--;
4591 * remove_all_active_ranges - Remove all currently registered regions
4593 * During discovery, it may be found that a table like SRAT is invalid
4594 * and an alternative discovery method must be used. This function removes
4595 * all currently registered regions.
4597 void __init
remove_all_active_ranges(void)
4599 memset(early_node_map
, 0, sizeof(early_node_map
));
4600 nr_nodemap_entries
= 0;
4603 /* Compare two active node_active_regions */
4604 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4606 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4607 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4609 /* Done this way to avoid overflows */
4610 if (arange
->start_pfn
> brange
->start_pfn
)
4612 if (arange
->start_pfn
< brange
->start_pfn
)
4618 /* sort the node_map by start_pfn */
4619 void __init
sort_node_map(void)
4621 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4622 sizeof(struct node_active_region
),
4623 cmp_node_active_region
, NULL
);
4626 /* Find the lowest pfn for a node */
4627 static unsigned long __init
find_min_pfn_for_node(int nid
)
4630 unsigned long min_pfn
= ULONG_MAX
;
4632 /* Assuming a sorted map, the first range found has the starting pfn */
4633 for_each_active_range_index_in_nid(i
, nid
)
4634 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4636 if (min_pfn
== ULONG_MAX
) {
4638 "Could not find start_pfn for node %d\n", nid
);
4646 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4648 * It returns the minimum PFN based on information provided via
4649 * add_active_range().
4651 unsigned long __init
find_min_pfn_with_active_regions(void)
4653 return find_min_pfn_for_node(MAX_NUMNODES
);
4657 * early_calculate_totalpages()
4658 * Sum pages in active regions for movable zone.
4659 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4661 static unsigned long __init
early_calculate_totalpages(void)
4664 unsigned long totalpages
= 0;
4666 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4667 unsigned long pages
= early_node_map
[i
].end_pfn
-
4668 early_node_map
[i
].start_pfn
;
4669 totalpages
+= pages
;
4671 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4677 * Find the PFN the Movable zone begins in each node. Kernel memory
4678 * is spread evenly between nodes as long as the nodes have enough
4679 * memory. When they don't, some nodes will have more kernelcore than
4682 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4685 unsigned long usable_startpfn
;
4686 unsigned long kernelcore_node
, kernelcore_remaining
;
4687 /* save the state before borrow the nodemask */
4688 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4689 unsigned long totalpages
= early_calculate_totalpages();
4690 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4693 * If movablecore was specified, calculate what size of
4694 * kernelcore that corresponds so that memory usable for
4695 * any allocation type is evenly spread. If both kernelcore
4696 * and movablecore are specified, then the value of kernelcore
4697 * will be used for required_kernelcore if it's greater than
4698 * what movablecore would have allowed.
4700 if (required_movablecore
) {
4701 unsigned long corepages
;
4704 * Round-up so that ZONE_MOVABLE is at least as large as what
4705 * was requested by the user
4707 required_movablecore
=
4708 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4709 corepages
= totalpages
- required_movablecore
;
4711 required_kernelcore
= max(required_kernelcore
, corepages
);
4714 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4715 if (!required_kernelcore
)
4718 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4719 find_usable_zone_for_movable();
4720 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4723 /* Spread kernelcore memory as evenly as possible throughout nodes */
4724 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4725 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4727 * Recalculate kernelcore_node if the division per node
4728 * now exceeds what is necessary to satisfy the requested
4729 * amount of memory for the kernel
4731 if (required_kernelcore
< kernelcore_node
)
4732 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4735 * As the map is walked, we track how much memory is usable
4736 * by the kernel using kernelcore_remaining. When it is
4737 * 0, the rest of the node is usable by ZONE_MOVABLE
4739 kernelcore_remaining
= kernelcore_node
;
4741 /* Go through each range of PFNs within this node */
4742 for_each_active_range_index_in_nid(i
, nid
) {
4743 unsigned long start_pfn
, end_pfn
;
4744 unsigned long size_pages
;
4746 start_pfn
= max(early_node_map
[i
].start_pfn
,
4747 zone_movable_pfn
[nid
]);
4748 end_pfn
= early_node_map
[i
].end_pfn
;
4749 if (start_pfn
>= end_pfn
)
4752 /* Account for what is only usable for kernelcore */
4753 if (start_pfn
< usable_startpfn
) {
4754 unsigned long kernel_pages
;
4755 kernel_pages
= min(end_pfn
, usable_startpfn
)
4758 kernelcore_remaining
-= min(kernel_pages
,
4759 kernelcore_remaining
);
4760 required_kernelcore
-= min(kernel_pages
,
4761 required_kernelcore
);
4763 /* Continue if range is now fully accounted */
4764 if (end_pfn
<= usable_startpfn
) {
4767 * Push zone_movable_pfn to the end so
4768 * that if we have to rebalance
4769 * kernelcore across nodes, we will
4770 * not double account here
4772 zone_movable_pfn
[nid
] = end_pfn
;
4775 start_pfn
= usable_startpfn
;
4779 * The usable PFN range for ZONE_MOVABLE is from
4780 * start_pfn->end_pfn. Calculate size_pages as the
4781 * number of pages used as kernelcore
4783 size_pages
= end_pfn
- start_pfn
;
4784 if (size_pages
> kernelcore_remaining
)
4785 size_pages
= kernelcore_remaining
;
4786 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4789 * Some kernelcore has been met, update counts and
4790 * break if the kernelcore for this node has been
4793 required_kernelcore
-= min(required_kernelcore
,
4795 kernelcore_remaining
-= size_pages
;
4796 if (!kernelcore_remaining
)
4802 * If there is still required_kernelcore, we do another pass with one
4803 * less node in the count. This will push zone_movable_pfn[nid] further
4804 * along on the nodes that still have memory until kernelcore is
4808 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4811 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4812 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4813 zone_movable_pfn
[nid
] =
4814 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4817 /* restore the node_state */
4818 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4821 /* Any regular memory on that node ? */
4822 static void check_for_regular_memory(pg_data_t
*pgdat
)
4824 #ifdef CONFIG_HIGHMEM
4825 enum zone_type zone_type
;
4827 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4828 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4829 if (zone
->present_pages
)
4830 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4836 * free_area_init_nodes - Initialise all pg_data_t and zone data
4837 * @max_zone_pfn: an array of max PFNs for each zone
4839 * This will call free_area_init_node() for each active node in the system.
4840 * Using the page ranges provided by add_active_range(), the size of each
4841 * zone in each node and their holes is calculated. If the maximum PFN
4842 * between two adjacent zones match, it is assumed that the zone is empty.
4843 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4844 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4845 * starts where the previous one ended. For example, ZONE_DMA32 starts
4846 * at arch_max_dma_pfn.
4848 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4853 /* Sort early_node_map as initialisation assumes it is sorted */
4856 /* Record where the zone boundaries are */
4857 memset(arch_zone_lowest_possible_pfn
, 0,
4858 sizeof(arch_zone_lowest_possible_pfn
));
4859 memset(arch_zone_highest_possible_pfn
, 0,
4860 sizeof(arch_zone_highest_possible_pfn
));
4861 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4862 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4863 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4864 if (i
== ZONE_MOVABLE
)
4866 arch_zone_lowest_possible_pfn
[i
] =
4867 arch_zone_highest_possible_pfn
[i
-1];
4868 arch_zone_highest_possible_pfn
[i
] =
4869 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4871 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4872 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4874 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4875 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4876 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4878 /* Print out the zone ranges */
4879 printk("Zone PFN ranges:\n");
4880 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4881 if (i
== ZONE_MOVABLE
)
4883 printk(" %-8s ", zone_names
[i
]);
4884 if (arch_zone_lowest_possible_pfn
[i
] ==
4885 arch_zone_highest_possible_pfn
[i
])
4888 printk("%0#10lx -> %0#10lx\n",
4889 arch_zone_lowest_possible_pfn
[i
],
4890 arch_zone_highest_possible_pfn
[i
]);
4893 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4894 printk("Movable zone start PFN for each node\n");
4895 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4896 if (zone_movable_pfn
[i
])
4897 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4900 /* Print out the early_node_map[] */
4901 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4902 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4903 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4904 early_node_map
[i
].start_pfn
,
4905 early_node_map
[i
].end_pfn
);
4907 /* Initialise every node */
4908 mminit_verify_pageflags_layout();
4909 setup_nr_node_ids();
4910 for_each_online_node(nid
) {
4911 pg_data_t
*pgdat
= NODE_DATA(nid
);
4912 free_area_init_node(nid
, NULL
,
4913 find_min_pfn_for_node(nid
), NULL
);
4915 /* Any memory on that node */
4916 if (pgdat
->node_present_pages
)
4917 node_set_state(nid
, N_HIGH_MEMORY
);
4918 check_for_regular_memory(pgdat
);
4922 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4924 unsigned long long coremem
;
4928 coremem
= memparse(p
, &p
);
4929 *core
= coremem
>> PAGE_SHIFT
;
4931 /* Paranoid check that UL is enough for the coremem value */
4932 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4938 * kernelcore=size sets the amount of memory for use for allocations that
4939 * cannot be reclaimed or migrated.
4941 static int __init
cmdline_parse_kernelcore(char *p
)
4943 return cmdline_parse_core(p
, &required_kernelcore
);
4947 * movablecore=size sets the amount of memory for use for allocations that
4948 * can be reclaimed or migrated.
4950 static int __init
cmdline_parse_movablecore(char *p
)
4952 return cmdline_parse_core(p
, &required_movablecore
);
4955 early_param("kernelcore", cmdline_parse_kernelcore
);
4956 early_param("movablecore", cmdline_parse_movablecore
);
4958 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4961 * set_dma_reserve - set the specified number of pages reserved in the first zone
4962 * @new_dma_reserve: The number of pages to mark reserved
4964 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4965 * In the DMA zone, a significant percentage may be consumed by kernel image
4966 * and other unfreeable allocations which can skew the watermarks badly. This
4967 * function may optionally be used to account for unfreeable pages in the
4968 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4969 * smaller per-cpu batchsize.
4971 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4973 dma_reserve
= new_dma_reserve
;
4976 void __init
free_area_init(unsigned long *zones_size
)
4978 free_area_init_node(0, zones_size
,
4979 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4982 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4983 unsigned long action
, void *hcpu
)
4985 int cpu
= (unsigned long)hcpu
;
4987 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4991 * Spill the event counters of the dead processor
4992 * into the current processors event counters.
4993 * This artificially elevates the count of the current
4996 vm_events_fold_cpu(cpu
);
4999 * Zero the differential counters of the dead processor
5000 * so that the vm statistics are consistent.
5002 * This is only okay since the processor is dead and cannot
5003 * race with what we are doing.
5005 refresh_cpu_vm_stats(cpu
);
5010 void __init
page_alloc_init(void)
5012 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5016 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5017 * or min_free_kbytes changes.
5019 static void calculate_totalreserve_pages(void)
5021 struct pglist_data
*pgdat
;
5022 unsigned long reserve_pages
= 0;
5023 enum zone_type i
, j
;
5025 for_each_online_pgdat(pgdat
) {
5026 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5027 struct zone
*zone
= pgdat
->node_zones
+ i
;
5028 unsigned long max
= 0;
5030 /* Find valid and maximum lowmem_reserve in the zone */
5031 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5032 if (zone
->lowmem_reserve
[j
] > max
)
5033 max
= zone
->lowmem_reserve
[j
];
5036 /* we treat the high watermark as reserved pages. */
5037 max
+= high_wmark_pages(zone
);
5039 if (max
> zone
->present_pages
)
5040 max
= zone
->present_pages
;
5041 reserve_pages
+= max
;
5044 totalreserve_pages
= reserve_pages
;
5048 * setup_per_zone_lowmem_reserve - called whenever
5049 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5050 * has a correct pages reserved value, so an adequate number of
5051 * pages are left in the zone after a successful __alloc_pages().
5053 static void setup_per_zone_lowmem_reserve(void)
5055 struct pglist_data
*pgdat
;
5056 enum zone_type j
, idx
;
5058 for_each_online_pgdat(pgdat
) {
5059 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5060 struct zone
*zone
= pgdat
->node_zones
+ j
;
5061 unsigned long present_pages
= zone
->present_pages
;
5063 zone
->lowmem_reserve
[j
] = 0;
5067 struct zone
*lower_zone
;
5071 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5072 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5074 lower_zone
= pgdat
->node_zones
+ idx
;
5075 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5076 sysctl_lowmem_reserve_ratio
[idx
];
5077 present_pages
+= lower_zone
->present_pages
;
5082 /* update totalreserve_pages */
5083 calculate_totalreserve_pages();
5087 * setup_per_zone_wmarks - called when min_free_kbytes changes
5088 * or when memory is hot-{added|removed}
5090 * Ensures that the watermark[min,low,high] values for each zone are set
5091 * correctly with respect to min_free_kbytes.
5093 void setup_per_zone_wmarks(void)
5095 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5096 unsigned long lowmem_pages
= 0;
5098 unsigned long flags
;
5100 /* Calculate total number of !ZONE_HIGHMEM pages */
5101 for_each_zone(zone
) {
5102 if (!is_highmem(zone
))
5103 lowmem_pages
+= zone
->present_pages
;
5106 for_each_zone(zone
) {
5109 spin_lock_irqsave(&zone
->lock
, flags
);
5110 tmp
= (u64
)pages_min
* zone
->present_pages
;
5111 do_div(tmp
, lowmem_pages
);
5112 if (is_highmem(zone
)) {
5114 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5115 * need highmem pages, so cap pages_min to a small
5118 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5119 * deltas controls asynch page reclaim, and so should
5120 * not be capped for highmem.
5124 min_pages
= zone
->present_pages
/ 1024;
5125 if (min_pages
< SWAP_CLUSTER_MAX
)
5126 min_pages
= SWAP_CLUSTER_MAX
;
5127 if (min_pages
> 128)
5129 zone
->watermark
[WMARK_MIN
] = min_pages
;
5132 * If it's a lowmem zone, reserve a number of pages
5133 * proportionate to the zone's size.
5135 zone
->watermark
[WMARK_MIN
] = tmp
;
5138 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5139 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5140 setup_zone_migrate_reserve(zone
);
5141 spin_unlock_irqrestore(&zone
->lock
, flags
);
5144 /* update totalreserve_pages */
5145 calculate_totalreserve_pages();
5149 * The inactive anon list should be small enough that the VM never has to
5150 * do too much work, but large enough that each inactive page has a chance
5151 * to be referenced again before it is swapped out.
5153 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5154 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5155 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5156 * the anonymous pages are kept on the inactive list.
5159 * memory ratio inactive anon
5160 * -------------------------------------
5169 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5171 unsigned int gb
, ratio
;
5173 /* Zone size in gigabytes */
5174 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5176 ratio
= int_sqrt(10 * gb
);
5180 zone
->inactive_ratio
= ratio
;
5183 static void __meminit
setup_per_zone_inactive_ratio(void)
5188 calculate_zone_inactive_ratio(zone
);
5192 * Initialise min_free_kbytes.
5194 * For small machines we want it small (128k min). For large machines
5195 * we want it large (64MB max). But it is not linear, because network
5196 * bandwidth does not increase linearly with machine size. We use
5198 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5199 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5215 int __meminit
init_per_zone_wmark_min(void)
5217 unsigned long lowmem_kbytes
;
5219 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5221 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5222 if (min_free_kbytes
< 128)
5223 min_free_kbytes
= 128;
5224 if (min_free_kbytes
> 65536)
5225 min_free_kbytes
= 65536;
5226 setup_per_zone_wmarks();
5227 refresh_zone_stat_thresholds();
5228 setup_per_zone_lowmem_reserve();
5229 setup_per_zone_inactive_ratio();
5232 module_init(init_per_zone_wmark_min
)
5235 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5236 * that we can call two helper functions whenever min_free_kbytes
5239 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5240 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5242 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5244 setup_per_zone_wmarks();
5249 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5250 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5255 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5260 zone
->min_unmapped_pages
= (zone
->present_pages
*
5261 sysctl_min_unmapped_ratio
) / 100;
5265 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5266 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5271 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5276 zone
->min_slab_pages
= (zone
->present_pages
*
5277 sysctl_min_slab_ratio
) / 100;
5283 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5284 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5285 * whenever sysctl_lowmem_reserve_ratio changes.
5287 * The reserve ratio obviously has absolutely no relation with the
5288 * minimum watermarks. The lowmem reserve ratio can only make sense
5289 * if in function of the boot time zone sizes.
5291 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5292 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5294 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5295 setup_per_zone_lowmem_reserve();
5300 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5301 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5302 * can have before it gets flushed back to buddy allocator.
5305 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5306 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5312 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5313 if (!write
|| (ret
== -EINVAL
))
5315 for_each_populated_zone(zone
) {
5316 for_each_possible_cpu(cpu
) {
5318 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5319 setup_pagelist_highmark(
5320 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5326 int hashdist
= HASHDIST_DEFAULT
;
5329 static int __init
set_hashdist(char *str
)
5333 hashdist
= simple_strtoul(str
, &str
, 0);
5336 __setup("hashdist=", set_hashdist
);
5340 * allocate a large system hash table from bootmem
5341 * - it is assumed that the hash table must contain an exact power-of-2
5342 * quantity of entries
5343 * - limit is the number of hash buckets, not the total allocation size
5345 void *__init
alloc_large_system_hash(const char *tablename
,
5346 unsigned long bucketsize
,
5347 unsigned long numentries
,
5350 unsigned int *_hash_shift
,
5351 unsigned int *_hash_mask
,
5352 unsigned long limit
)
5354 unsigned long long max
= limit
;
5355 unsigned long log2qty
, size
;
5358 /* allow the kernel cmdline to have a say */
5360 /* round applicable memory size up to nearest megabyte */
5361 numentries
= nr_kernel_pages
;
5362 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5363 numentries
>>= 20 - PAGE_SHIFT
;
5364 numentries
<<= 20 - PAGE_SHIFT
;
5366 /* limit to 1 bucket per 2^scale bytes of low memory */
5367 if (scale
> PAGE_SHIFT
)
5368 numentries
>>= (scale
- PAGE_SHIFT
);
5370 numentries
<<= (PAGE_SHIFT
- scale
);
5372 /* Make sure we've got at least a 0-order allocation.. */
5373 if (unlikely(flags
& HASH_SMALL
)) {
5374 /* Makes no sense without HASH_EARLY */
5375 WARN_ON(!(flags
& HASH_EARLY
));
5376 if (!(numentries
>> *_hash_shift
)) {
5377 numentries
= 1UL << *_hash_shift
;
5378 BUG_ON(!numentries
);
5380 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5381 numentries
= PAGE_SIZE
/ bucketsize
;
5383 numentries
= roundup_pow_of_two(numentries
);
5385 /* limit allocation size to 1/16 total memory by default */
5387 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5388 do_div(max
, bucketsize
);
5391 if (numentries
> max
)
5394 log2qty
= ilog2(numentries
);
5397 size
= bucketsize
<< log2qty
;
5398 if (flags
& HASH_EARLY
)
5399 table
= alloc_bootmem_nopanic(size
);
5401 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5404 * If bucketsize is not a power-of-two, we may free
5405 * some pages at the end of hash table which
5406 * alloc_pages_exact() automatically does
5408 if (get_order(size
) < MAX_ORDER
) {
5409 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5410 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5413 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5416 panic("Failed to allocate %s hash table\n", tablename
);
5418 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5421 ilog2(size
) - PAGE_SHIFT
,
5425 *_hash_shift
= log2qty
;
5427 *_hash_mask
= (1 << log2qty
) - 1;
5432 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5433 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5436 #ifdef CONFIG_SPARSEMEM
5437 return __pfn_to_section(pfn
)->pageblock_flags
;
5439 return zone
->pageblock_flags
;
5440 #endif /* CONFIG_SPARSEMEM */
5443 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5445 #ifdef CONFIG_SPARSEMEM
5446 pfn
&= (PAGES_PER_SECTION
-1);
5447 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5449 pfn
= pfn
- zone
->zone_start_pfn
;
5450 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5451 #endif /* CONFIG_SPARSEMEM */
5455 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5456 * @page: The page within the block of interest
5457 * @start_bitidx: The first bit of interest to retrieve
5458 * @end_bitidx: The last bit of interest
5459 * returns pageblock_bits flags
5461 unsigned long get_pageblock_flags_group(struct page
*page
,
5462 int start_bitidx
, int end_bitidx
)
5465 unsigned long *bitmap
;
5466 unsigned long pfn
, bitidx
;
5467 unsigned long flags
= 0;
5468 unsigned long value
= 1;
5470 zone
= page_zone(page
);
5471 pfn
= page_to_pfn(page
);
5472 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5473 bitidx
= pfn_to_bitidx(zone
, pfn
);
5475 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5476 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5483 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5484 * @page: The page within the block of interest
5485 * @start_bitidx: The first bit of interest
5486 * @end_bitidx: The last bit of interest
5487 * @flags: The flags to set
5489 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5490 int start_bitidx
, int end_bitidx
)
5493 unsigned long *bitmap
;
5494 unsigned long pfn
, bitidx
;
5495 unsigned long value
= 1;
5497 zone
= page_zone(page
);
5498 pfn
= page_to_pfn(page
);
5499 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5500 bitidx
= pfn_to_bitidx(zone
, pfn
);
5501 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5502 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5504 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5506 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5508 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5512 * This is designed as sub function...plz see page_isolation.c also.
5513 * set/clear page block's type to be ISOLATE.
5514 * page allocater never alloc memory from ISOLATE block.
5518 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5520 unsigned long pfn
, iter
, found
;
5522 * For avoiding noise data, lru_add_drain_all() should be called
5523 * If ZONE_MOVABLE, the zone never contains immobile pages
5525 if (zone_idx(zone
) == ZONE_MOVABLE
)
5528 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5531 pfn
= page_to_pfn(page
);
5532 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5533 unsigned long check
= pfn
+ iter
;
5535 if (!pfn_valid_within(check
))
5538 page
= pfn_to_page(check
);
5539 if (!page_count(page
)) {
5540 if (PageBuddy(page
))
5541 iter
+= (1 << page_order(page
)) - 1;
5547 * If there are RECLAIMABLE pages, we need to check it.
5548 * But now, memory offline itself doesn't call shrink_slab()
5549 * and it still to be fixed.
5552 * If the page is not RAM, page_count()should be 0.
5553 * we don't need more check. This is an _used_ not-movable page.
5555 * The problematic thing here is PG_reserved pages. PG_reserved
5556 * is set to both of a memory hole page and a _used_ kernel
5565 bool is_pageblock_removable_nolock(struct page
*page
)
5567 struct zone
*zone
= page_zone(page
);
5568 return __count_immobile_pages(zone
, page
, 0);
5571 int set_migratetype_isolate(struct page
*page
)
5574 unsigned long flags
, pfn
;
5575 struct memory_isolate_notify arg
;
5579 zone
= page_zone(page
);
5581 spin_lock_irqsave(&zone
->lock
, flags
);
5583 pfn
= page_to_pfn(page
);
5584 arg
.start_pfn
= pfn
;
5585 arg
.nr_pages
= pageblock_nr_pages
;
5586 arg
.pages_found
= 0;
5589 * It may be possible to isolate a pageblock even if the
5590 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5591 * notifier chain is used by balloon drivers to return the
5592 * number of pages in a range that are held by the balloon
5593 * driver to shrink memory. If all the pages are accounted for
5594 * by balloons, are free, or on the LRU, isolation can continue.
5595 * Later, for example, when memory hotplug notifier runs, these
5596 * pages reported as "can be isolated" should be isolated(freed)
5597 * by the balloon driver through the memory notifier chain.
5599 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5600 notifier_ret
= notifier_to_errno(notifier_ret
);
5604 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5605 * We just check MOVABLE pages.
5607 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5611 * immobile means "not-on-lru" paes. If immobile is larger than
5612 * removable-by-driver pages reported by notifier, we'll fail.
5617 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5618 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5621 spin_unlock_irqrestore(&zone
->lock
, flags
);
5627 void unset_migratetype_isolate(struct page
*page
)
5630 unsigned long flags
;
5631 zone
= page_zone(page
);
5632 spin_lock_irqsave(&zone
->lock
, flags
);
5633 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5635 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5636 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5638 spin_unlock_irqrestore(&zone
->lock
, flags
);
5641 #ifdef CONFIG_MEMORY_HOTREMOVE
5643 * All pages in the range must be isolated before calling this.
5646 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5652 unsigned long flags
;
5653 /* find the first valid pfn */
5654 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5659 zone
= page_zone(pfn_to_page(pfn
));
5660 spin_lock_irqsave(&zone
->lock
, flags
);
5662 while (pfn
< end_pfn
) {
5663 if (!pfn_valid(pfn
)) {
5667 page
= pfn_to_page(pfn
);
5668 BUG_ON(page_count(page
));
5669 BUG_ON(!PageBuddy(page
));
5670 order
= page_order(page
);
5671 #ifdef CONFIG_DEBUG_VM
5672 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5673 pfn
, 1 << order
, end_pfn
);
5675 list_del(&page
->lru
);
5676 rmv_page_order(page
);
5677 zone
->free_area
[order
].nr_free
--;
5678 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5680 for (i
= 0; i
< (1 << order
); i
++)
5681 SetPageReserved((page
+i
));
5682 pfn
+= (1 << order
);
5684 spin_unlock_irqrestore(&zone
->lock
, flags
);
5688 #ifdef CONFIG_MEMORY_FAILURE
5689 bool is_free_buddy_page(struct page
*page
)
5691 struct zone
*zone
= page_zone(page
);
5692 unsigned long pfn
= page_to_pfn(page
);
5693 unsigned long flags
;
5696 spin_lock_irqsave(&zone
->lock
, flags
);
5697 for (order
= 0; order
< MAX_ORDER
; order
++) {
5698 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5700 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5703 spin_unlock_irqrestore(&zone
->lock
, flags
);
5705 return order
< MAX_ORDER
;
5709 static struct trace_print_flags pageflag_names
[] = {
5710 {1UL << PG_locked
, "locked" },
5711 {1UL << PG_error
, "error" },
5712 {1UL << PG_referenced
, "referenced" },
5713 {1UL << PG_uptodate
, "uptodate" },
5714 {1UL << PG_dirty
, "dirty" },
5715 {1UL << PG_lru
, "lru" },
5716 {1UL << PG_active
, "active" },
5717 {1UL << PG_slab
, "slab" },
5718 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5719 {1UL << PG_arch_1
, "arch_1" },
5720 {1UL << PG_reserved
, "reserved" },
5721 {1UL << PG_private
, "private" },
5722 {1UL << PG_private_2
, "private_2" },
5723 {1UL << PG_writeback
, "writeback" },
5724 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5725 {1UL << PG_head
, "head" },
5726 {1UL << PG_tail
, "tail" },
5728 {1UL << PG_compound
, "compound" },
5730 {1UL << PG_swapcache
, "swapcache" },
5731 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5732 {1UL << PG_reclaim
, "reclaim" },
5733 {1UL << PG_swapbacked
, "swapbacked" },
5734 {1UL << PG_unevictable
, "unevictable" },
5736 {1UL << PG_mlocked
, "mlocked" },
5738 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5739 {1UL << PG_uncached
, "uncached" },
5741 #ifdef CONFIG_MEMORY_FAILURE
5742 {1UL << PG_hwpoison
, "hwpoison" },
5747 static void dump_page_flags(unsigned long flags
)
5749 const char *delim
= "";
5753 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5755 /* remove zone id */
5756 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5758 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5760 mask
= pageflag_names
[i
].mask
;
5761 if ((flags
& mask
) != mask
)
5765 printk("%s%s", delim
, pageflag_names
[i
].name
);
5769 /* check for left over flags */
5771 printk("%s%#lx", delim
, flags
);
5776 void dump_page(struct page
*page
)
5779 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5780 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5781 page
->mapping
, page
->index
);
5782 dump_page_flags(page
->flags
);
5783 mem_cgroup_print_bad_page(page
);