2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
19 #include <plat/ste_dma40.h>
21 #include "ste_dma40_ll.h"
23 #define D40_NAME "dma40"
25 #define D40_PHY_CHAN -1
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan) (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE (1 << 31)
46 #define D40_ALLOC_PHY (1 << 30)
47 #define D40_ALLOC_LOG_FREE 0
50 * enum 40_command - The different commands and/or statuses.
52 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
60 D40_DMA_SUSPEND_REQ
= 2,
65 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 * @base: Pointer to memory area when the pre_alloc_lli's are not large
68 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69 * pre_alloc_lli is used.
70 * @dma_addr: DMA address, if mapped
71 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73 * one buffer to one buffer.
79 /* Space for dst and src, plus an extra for padding */
80 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
84 * struct d40_desc - A descriptor is one DMA job.
86 * @lli_phy: LLI settings for physical channel. Both src and dst=
87 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89 * @lli_log: Same as above but for logical channels.
90 * @lli_pool: The pool with two entries pre-allocated.
91 * @lli_len: Number of llis of current descriptor.
92 * @lli_current: Number of transferred llis.
93 * @lcla_alloc: Number of LCLA entries allocated.
94 * @txd: DMA engine struct. Used for among other things for communication
97 * @is_in_client_list: true if the client owns this descriptor.
100 * This descriptor is used for both logical and physical transfers.
104 struct d40_phy_lli_bidir lli_phy
;
106 struct d40_log_lli_bidir lli_log
;
108 struct d40_lli_pool lli_pool
;
113 struct dma_async_tx_descriptor txd
;
114 struct list_head node
;
116 bool is_in_client_list
;
121 * struct d40_lcla_pool - LCLA pool settings and data.
123 * @base: The virtual address of LCLA. 18 bit aligned.
124 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125 * This pointer is only there for clean-up on error.
126 * @pages: The number of pages needed for all physical channels.
127 * Only used later for clean-up on error
128 * @lock: Lock to protect the content in this struct.
129 * @alloc_map: big map over which LCLA entry is own by which job.
131 struct d40_lcla_pool
{
134 void *base_unaligned
;
137 struct d40_desc
**alloc_map
;
141 * struct d40_phy_res - struct for handling eventlines mapped to physical
144 * @lock: A lock protection this entity.
145 * @num: The physical channel number of this entity.
146 * @allocated_src: Bit mapped to show which src event line's are mapped to
147 * this physical channel. Can also be free or physically allocated.
148 * @allocated_dst: Same as for src but is dst.
149 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
162 * struct d40_chan - Struct that describes a channel.
164 * @lock: A spinlock to protect this struct.
165 * @log_num: The logical number, if any of this channel.
166 * @completed: Starts with 1, after first interrupt it is set to dma engine's
168 * @pending_tx: The number of pending transfers. Used between interrupt handler
170 * @busy: Set to true when transfer is ongoing on this channel.
171 * @phy_chan: Pointer to physical channel which this instance runs on. If this
172 * point is NULL, then the channel is not allocated.
173 * @chan: DMA engine handle.
174 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175 * transfer and call client callback.
176 * @client: Cliented owned descriptor list.
177 * @active: Active descriptor.
178 * @queue: Queued jobs.
179 * @dma_cfg: The client configuration of this dma channel.
180 * @configured: whether the dma_cfg configuration is valid
181 * @base: Pointer to the device instance struct.
182 * @src_def_cfg: Default cfg register setting for src.
183 * @dst_def_cfg: Default cfg register setting for dst.
184 * @log_def: Default logical channel settings.
185 * @lcla: Space for one dst src pair for logical channel transfers.
186 * @lcpa: Pointer to dst and src lcpa settings.
187 * @runtime_addr: runtime configured address.
188 * @runtime_direction: runtime configured direction.
190 * This struct can either "be" a logical or a physical channel.
195 /* ID of the most recent completed transfer */
199 struct d40_phy_res
*phy_chan
;
200 struct dma_chan chan
;
201 struct tasklet_struct tasklet
;
202 struct list_head client
;
203 struct list_head pending_queue
;
204 struct list_head active
;
205 struct list_head queue
;
206 struct stedma40_chan_cfg dma_cfg
;
208 struct d40_base
*base
;
209 /* Default register configurations */
212 struct d40_def_lcsp log_def
;
213 struct d40_log_lli_full
*lcpa
;
214 /* Runtime reconfiguration */
215 dma_addr_t runtime_addr
;
216 enum dma_data_direction runtime_direction
;
220 * struct d40_base - The big global struct, one for each probe'd instance.
222 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
223 * @execmd_lock: Lock for execute command usage since several channels share
224 * the same physical register.
225 * @dev: The device structure.
226 * @virtbase: The virtual base address of the DMA's register.
227 * @rev: silicon revision detected.
228 * @clk: Pointer to the DMA clock structure.
229 * @phy_start: Physical memory start of the DMA registers.
230 * @phy_size: Size of the DMA register map.
231 * @irq: The IRQ number.
232 * @num_phy_chans: The number of physical channels. Read from HW. This
233 * is the number of available channels for this driver, not counting "Secure
234 * mode" allocated physical channels.
235 * @num_log_chans: The number of logical channels. Calculated from
237 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
238 * @dma_slave: dma_device channels that can do only do slave transfers.
239 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
240 * @log_chans: Room for all possible logical channels in system.
241 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
242 * to log_chans entries.
243 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
244 * to phy_chans entries.
245 * @plat_data: Pointer to provided platform_data which is the driver
247 * @phy_res: Vector containing all physical channels.
248 * @lcla_pool: lcla pool settings and data.
249 * @lcpa_base: The virtual mapped address of LCPA.
250 * @phy_lcpa: The physical address of the LCPA.
251 * @lcpa_size: The size of the LCPA area.
252 * @desc_slab: cache for descriptors.
255 spinlock_t interrupt_lock
;
256 spinlock_t execmd_lock
;
258 void __iomem
*virtbase
;
261 phys_addr_t phy_start
;
262 resource_size_t phy_size
;
266 struct dma_device dma_both
;
267 struct dma_device dma_slave
;
268 struct dma_device dma_memcpy
;
269 struct d40_chan
*phy_chans
;
270 struct d40_chan
*log_chans
;
271 struct d40_chan
**lookup_log_chans
;
272 struct d40_chan
**lookup_phy_chans
;
273 struct stedma40_platform_data
*plat_data
;
274 /* Physical half channels */
275 struct d40_phy_res
*phy_res
;
276 struct d40_lcla_pool lcla_pool
;
279 resource_size_t lcpa_size
;
280 struct kmem_cache
*desc_slab
;
284 * struct d40_interrupt_lookup - lookup table for interrupt handler
286 * @src: Interrupt mask register.
287 * @clr: Interrupt clear register.
288 * @is_error: true if this is an error interrupt.
289 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
290 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
292 struct d40_interrupt_lookup
{
300 * struct d40_reg_val - simple lookup struct
302 * @reg: The register.
303 * @val: The value that belongs to the register in reg.
310 static struct device
*chan2dev(struct d40_chan
*d40c
)
312 return &d40c
->chan
.dev
->device
;
315 static bool chan_is_physical(struct d40_chan
*chan
)
317 return chan
->log_num
== D40_PHY_CHAN
;
320 static bool chan_is_logical(struct d40_chan
*chan
)
322 return !chan_is_physical(chan
);
325 static void __iomem
*chan_base(struct d40_chan
*chan
)
327 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
328 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
331 #define d40_err(dev, format, arg...) \
332 dev_err(dev, "[%s] " format, __func__, ## arg)
334 #define chan_err(d40c, format, arg...) \
335 d40_err(chan2dev(d40c), format, ## arg)
337 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
340 bool is_log
= chan_is_logical(d40c
);
345 align
= sizeof(struct d40_log_lli
);
347 align
= sizeof(struct d40_phy_lli
);
350 base
= d40d
->lli_pool
.pre_alloc_lli
;
351 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
352 d40d
->lli_pool
.base
= NULL
;
354 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
356 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
357 d40d
->lli_pool
.base
= base
;
359 if (d40d
->lli_pool
.base
== NULL
)
364 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
365 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
367 d40d
->lli_pool
.dma_addr
= 0;
369 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
370 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
372 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
377 if (dma_mapping_error(d40c
->base
->dev
,
378 d40d
->lli_pool
.dma_addr
)) {
379 kfree(d40d
->lli_pool
.base
);
380 d40d
->lli_pool
.base
= NULL
;
381 d40d
->lli_pool
.dma_addr
= 0;
389 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
391 if (d40d
->lli_pool
.dma_addr
)
392 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
393 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
395 kfree(d40d
->lli_pool
.base
);
396 d40d
->lli_pool
.base
= NULL
;
397 d40d
->lli_pool
.size
= 0;
398 d40d
->lli_log
.src
= NULL
;
399 d40d
->lli_log
.dst
= NULL
;
400 d40d
->lli_phy
.src
= NULL
;
401 d40d
->lli_phy
.dst
= NULL
;
404 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
405 struct d40_desc
*d40d
)
412 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
414 p
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
;
417 * Allocate both src and dst at the same time, therefore the half
418 * start on 1 since 0 can't be used since zero is used as end marker.
420 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
421 if (!d40c
->base
->lcla_pool
.alloc_map
[p
+ i
]) {
422 d40c
->base
->lcla_pool
.alloc_map
[p
+ i
] = d40d
;
429 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
434 static int d40_lcla_free_all(struct d40_chan
*d40c
,
435 struct d40_desc
*d40d
)
441 if (chan_is_physical(d40c
))
444 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
446 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
447 if (d40c
->base
->lcla_pool
.alloc_map
[d40c
->phy_chan
->num
*
448 D40_LCLA_LINK_PER_EVENT_GRP
+ i
] == d40d
) {
449 d40c
->base
->lcla_pool
.alloc_map
[d40c
->phy_chan
->num
*
450 D40_LCLA_LINK_PER_EVENT_GRP
+ i
] = NULL
;
452 if (d40d
->lcla_alloc
== 0) {
459 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
465 static void d40_desc_remove(struct d40_desc
*d40d
)
467 list_del(&d40d
->node
);
470 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
472 struct d40_desc
*desc
= NULL
;
474 if (!list_empty(&d40c
->client
)) {
478 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
)
479 if (async_tx_test_ack(&d
->txd
)) {
480 d40_pool_lli_free(d40c
, d
);
483 memset(desc
, 0, sizeof(*desc
));
489 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
492 INIT_LIST_HEAD(&desc
->node
);
497 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
500 d40_pool_lli_free(d40c
, d40d
);
501 d40_lcla_free_all(d40c
, d40d
);
502 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
505 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
507 list_add_tail(&desc
->node
, &d40c
->active
);
510 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
512 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
513 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
514 void __iomem
*base
= chan_base(chan
);
516 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
517 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
518 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
519 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
521 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
522 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
523 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
524 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
527 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
529 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
530 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
531 int lli_current
= desc
->lli_current
;
532 int lli_len
= desc
->lli_len
;
533 bool cyclic
= desc
->cyclic
;
534 int curr_lcla
= -EINVAL
;
539 * We may have partially running cyclic transfers, in case we did't get
540 * enough LCLA entries.
542 linkback
= cyclic
&& lli_current
== 0;
545 * For linkback, we need one LCLA even with only one link, because we
546 * can't link back to the one in LCPA space
548 if (linkback
|| (lli_len
- lli_current
> 1)) {
549 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
550 first_lcla
= curr_lcla
;
554 * For linkback, we normally load the LCPA in the loop since we need to
555 * link it to the second LCLA and not the first. However, if we
556 * couldn't even get a first LCLA, then we have to run in LCPA and
559 if (!linkback
|| curr_lcla
== -EINVAL
) {
560 unsigned int flags
= 0;
562 if (curr_lcla
== -EINVAL
)
563 flags
|= LLI_TERM_INT
;
565 d40_log_lli_lcpa_write(chan
->lcpa
,
566 &lli
->dst
[lli_current
],
567 &lli
->src
[lli_current
],
576 for (; lli_current
< lli_len
; lli_current
++) {
577 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
579 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
580 unsigned int flags
= 0;
583 if (lli_current
+ 1 < lli_len
)
584 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
586 next_lcla
= linkback
? first_lcla
: -EINVAL
;
588 if (cyclic
|| next_lcla
== -EINVAL
)
589 flags
|= LLI_TERM_INT
;
591 if (linkback
&& curr_lcla
== first_lcla
) {
592 /* First link goes in both LCPA and LCLA */
593 d40_log_lli_lcpa_write(chan
->lcpa
,
594 &lli
->dst
[lli_current
],
595 &lli
->src
[lli_current
],
600 * One unused LCLA in the cyclic case if the very first
603 d40_log_lli_lcla_write(lcla
,
604 &lli
->dst
[lli_current
],
605 &lli
->src
[lli_current
],
608 dma_sync_single_range_for_device(chan
->base
->dev
,
609 pool
->dma_addr
, lcla_offset
,
610 2 * sizeof(struct d40_log_lli
),
613 curr_lcla
= next_lcla
;
615 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
622 desc
->lli_current
= lli_current
;
625 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
627 if (chan_is_physical(d40c
)) {
628 d40_phy_lli_load(d40c
, d40d
);
629 d40d
->lli_current
= d40d
->lli_len
;
631 d40_log_lli_to_lcxa(d40c
, d40d
);
634 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
638 if (list_empty(&d40c
->active
))
641 d
= list_first_entry(&d40c
->active
,
647 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
649 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
652 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
656 if (list_empty(&d40c
->pending_queue
))
659 d
= list_first_entry(&d40c
->pending_queue
,
665 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
669 if (list_empty(&d40c
->queue
))
672 d
= list_first_entry(&d40c
->queue
,
678 static int d40_psize_2_burst_size(bool is_log
, int psize
)
681 if (psize
== STEDMA40_PSIZE_LOG_1
)
684 if (psize
== STEDMA40_PSIZE_PHY_1
)
692 * The dma only supports transmitting packages up to
693 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
694 * dma elements required to send the entire sg list
696 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
699 u32 max_w
= max(data_width1
, data_width2
);
700 u32 min_w
= min(data_width1
, data_width2
);
701 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
<< min_w
, 1 << max_w
);
703 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
704 seg_max
-= (1 << max_w
);
706 if (!IS_ALIGNED(size
, 1 << max_w
))
712 dmalen
= size
/ seg_max
;
713 if (dmalen
* seg_max
< size
)
719 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
720 u32 data_width1
, u32 data_width2
)
722 struct scatterlist
*sg
;
727 for_each_sg(sgl
, sg
, sg_len
, i
) {
728 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
729 data_width1
, data_width2
);
737 /* Support functions for logical channels */
739 static int d40_channel_execute_command(struct d40_chan
*d40c
,
740 enum d40_command command
)
744 void __iomem
*active_reg
;
749 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
751 if (d40c
->phy_chan
->num
% 2 == 0)
752 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
754 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
756 if (command
== D40_DMA_SUSPEND_REQ
) {
757 status
= (readl(active_reg
) &
758 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
759 D40_CHAN_POS(d40c
->phy_chan
->num
);
761 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
765 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
766 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
769 if (command
== D40_DMA_SUSPEND_REQ
) {
771 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
772 status
= (readl(active_reg
) &
773 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
774 D40_CHAN_POS(d40c
->phy_chan
->num
);
778 * Reduce the number of bus accesses while
779 * waiting for the DMA to suspend.
783 if (status
== D40_DMA_STOP
||
784 status
== D40_DMA_SUSPENDED
)
788 if (i
== D40_SUSPEND_MAX_IT
) {
790 "unable to suspend the chl %d (log: %d) status %x\n",
791 d40c
->phy_chan
->num
, d40c
->log_num
,
799 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
803 static void d40_term_all(struct d40_chan
*d40c
)
805 struct d40_desc
*d40d
;
807 /* Release active descriptors */
808 while ((d40d
= d40_first_active_get(d40c
))) {
809 d40_desc_remove(d40d
);
810 d40_desc_free(d40c
, d40d
);
813 /* Release queued descriptors waiting for transfer */
814 while ((d40d
= d40_first_queued(d40c
))) {
815 d40_desc_remove(d40d
);
816 d40_desc_free(d40c
, d40d
);
819 /* Release pending descriptors */
820 while ((d40d
= d40_first_pending(d40c
))) {
821 d40_desc_remove(d40d
);
822 d40_desc_free(d40c
, d40d
);
825 d40c
->pending_tx
= 0;
829 static void __d40_config_set_event(struct d40_chan
*d40c
, bool enable
,
832 void __iomem
*addr
= chan_base(d40c
) + reg
;
836 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
837 | ~D40_EVENTLINE_MASK(event
), addr
);
842 * The hardware sometimes doesn't register the enable when src and dst
843 * event lines are active on the same logical channel. Retry to ensure
844 * it does. Usually only one retry is sufficient.
848 writel((D40_ACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
849 | ~D40_EVENTLINE_MASK(event
), addr
);
851 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
856 dev_dbg(chan2dev(d40c
),
857 "[%s] workaround enable S%cLNK (%d tries)\n",
858 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
864 static void d40_config_set_event(struct d40_chan
*d40c
, bool do_enable
)
868 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
870 /* Enable event line connected to device (or memcpy) */
871 if ((d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) ||
872 (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_PERIPH
)) {
873 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
875 __d40_config_set_event(d40c
, do_enable
, event
,
879 if (d40c
->dma_cfg
.dir
!= STEDMA40_PERIPH_TO_MEM
) {
880 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
882 __d40_config_set_event(d40c
, do_enable
, event
,
886 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
889 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
891 void __iomem
*chanbase
= chan_base(d40c
);
894 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
895 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
900 static u32
d40_get_prmo(struct d40_chan
*d40c
)
902 static const unsigned int phy_map
[] = {
903 [STEDMA40_PCHAN_BASIC_MODE
]
904 = D40_DREG_PRMO_PCHAN_BASIC
,
905 [STEDMA40_PCHAN_MODULO_MODE
]
906 = D40_DREG_PRMO_PCHAN_MODULO
,
907 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
908 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
910 static const unsigned int log_map
[] = {
911 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
912 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
913 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
914 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
915 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
916 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
919 if (chan_is_physical(d40c
))
920 return phy_map
[d40c
->dma_cfg
.mode_opt
];
922 return log_map
[d40c
->dma_cfg
.mode_opt
];
925 static void d40_config_write(struct d40_chan
*d40c
)
930 /* Odd addresses are even addresses + 4 */
931 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
932 /* Setup channel mode to logical or physical */
933 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
934 D40_CHAN_POS(d40c
->phy_chan
->num
);
935 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
937 /* Setup operational mode option register */
938 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
940 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
942 if (chan_is_logical(d40c
)) {
943 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
944 & D40_SREG_ELEM_LOG_LIDX_MASK
;
945 void __iomem
*chanbase
= chan_base(d40c
);
947 /* Set default config for CFG reg */
948 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
949 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
951 /* Set LIDX for lcla */
952 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
953 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
957 static u32
d40_residue(struct d40_chan
*d40c
)
961 if (chan_is_logical(d40c
))
962 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
963 >> D40_MEM_LCSP2_ECNT_POS
;
965 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
966 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
967 >> D40_SREG_ELEM_PHY_ECNT_POS
;
970 return num_elt
* (1 << d40c
->dma_cfg
.dst_info
.data_width
);
973 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
977 if (chan_is_logical(d40c
))
978 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
980 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
981 & D40_SREG_LNK_PHYS_LNK_MASK
;
986 static int d40_pause(struct d40_chan
*d40c
)
994 spin_lock_irqsave(&d40c
->lock
, flags
);
996 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
998 if (chan_is_logical(d40c
)) {
999 d40_config_set_event(d40c
, false);
1000 /* Resume the other logical channels if any */
1001 if (d40_chan_has_events(d40c
))
1002 res
= d40_channel_execute_command(d40c
,
1007 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1011 static int d40_resume(struct d40_chan
*d40c
)
1014 unsigned long flags
;
1019 spin_lock_irqsave(&d40c
->lock
, flags
);
1021 if (d40c
->base
->rev
== 0)
1022 if (chan_is_logical(d40c
)) {
1023 res
= d40_channel_execute_command(d40c
,
1024 D40_DMA_SUSPEND_REQ
);
1028 /* If bytes left to transfer or linked tx resume job */
1029 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
)) {
1031 if (chan_is_logical(d40c
))
1032 d40_config_set_event(d40c
, true);
1034 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1038 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1042 static int d40_terminate_all(struct d40_chan
*chan
)
1044 unsigned long flags
;
1047 ret
= d40_pause(chan
);
1048 if (!ret
&& chan_is_physical(chan
))
1049 ret
= d40_channel_execute_command(chan
, D40_DMA_STOP
);
1051 spin_lock_irqsave(&chan
->lock
, flags
);
1053 spin_unlock_irqrestore(&chan
->lock
, flags
);
1058 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1060 struct d40_chan
*d40c
= container_of(tx
->chan
,
1063 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1064 unsigned long flags
;
1066 spin_lock_irqsave(&d40c
->lock
, flags
);
1068 d40c
->chan
.cookie
++;
1070 if (d40c
->chan
.cookie
< 0)
1071 d40c
->chan
.cookie
= 1;
1073 d40d
->txd
.cookie
= d40c
->chan
.cookie
;
1075 d40_desc_queue(d40c
, d40d
);
1077 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1082 static int d40_start(struct d40_chan
*d40c
)
1084 if (d40c
->base
->rev
== 0) {
1087 if (chan_is_logical(d40c
)) {
1088 err
= d40_channel_execute_command(d40c
,
1089 D40_DMA_SUSPEND_REQ
);
1095 if (chan_is_logical(d40c
))
1096 d40_config_set_event(d40c
, true);
1098 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1101 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1103 struct d40_desc
*d40d
;
1106 /* Start queued jobs, if any */
1107 d40d
= d40_first_queued(d40c
);
1112 /* Remove from queue */
1113 d40_desc_remove(d40d
);
1115 /* Add to active queue */
1116 d40_desc_submit(d40c
, d40d
);
1118 /* Initiate DMA job */
1119 d40_desc_load(d40c
, d40d
);
1122 err
= d40_start(d40c
);
1131 /* called from interrupt context */
1132 static void dma_tc_handle(struct d40_chan
*d40c
)
1134 struct d40_desc
*d40d
;
1136 /* Get first active entry from list */
1137 d40d
= d40_first_active_get(d40c
);
1144 * If this was a paritially loaded list, we need to reloaded
1145 * it, and only when the list is completed. We need to check
1146 * for done because the interrupt will hit for every link, and
1147 * not just the last one.
1149 if (d40d
->lli_current
< d40d
->lli_len
1150 && !d40_tx_is_linked(d40c
)
1151 && !d40_residue(d40c
)) {
1152 d40_lcla_free_all(d40c
, d40d
);
1153 d40_desc_load(d40c
, d40d
);
1154 (void) d40_start(d40c
);
1156 if (d40d
->lli_current
== d40d
->lli_len
)
1157 d40d
->lli_current
= 0;
1160 d40_lcla_free_all(d40c
, d40d
);
1162 if (d40d
->lli_current
< d40d
->lli_len
) {
1163 d40_desc_load(d40c
, d40d
);
1165 (void) d40_start(d40c
);
1169 if (d40_queue_start(d40c
) == NULL
)
1174 tasklet_schedule(&d40c
->tasklet
);
1178 static void dma_tasklet(unsigned long data
)
1180 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1181 struct d40_desc
*d40d
;
1182 unsigned long flags
;
1183 dma_async_tx_callback callback
;
1184 void *callback_param
;
1186 spin_lock_irqsave(&d40c
->lock
, flags
);
1188 /* Get first active entry from list */
1189 d40d
= d40_first_active_get(d40c
);
1194 d40c
->completed
= d40d
->txd
.cookie
;
1197 * If terminating a channel pending_tx is set to zero.
1198 * This prevents any finished active jobs to return to the client.
1200 if (d40c
->pending_tx
== 0) {
1201 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1205 /* Callback to client */
1206 callback
= d40d
->txd
.callback
;
1207 callback_param
= d40d
->txd
.callback_param
;
1209 if (!d40d
->cyclic
) {
1210 if (async_tx_test_ack(&d40d
->txd
)) {
1211 d40_pool_lli_free(d40c
, d40d
);
1212 d40_desc_remove(d40d
);
1213 d40_desc_free(d40c
, d40d
);
1215 if (!d40d
->is_in_client_list
) {
1216 d40_desc_remove(d40d
);
1217 d40_lcla_free_all(d40c
, d40d
);
1218 list_add_tail(&d40d
->node
, &d40c
->client
);
1219 d40d
->is_in_client_list
= true;
1226 if (d40c
->pending_tx
)
1227 tasklet_schedule(&d40c
->tasklet
);
1229 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1231 if (callback
&& (d40d
->txd
.flags
& DMA_PREP_INTERRUPT
))
1232 callback(callback_param
);
1237 /* Rescue manoeuvre if receiving double interrupts */
1238 if (d40c
->pending_tx
> 0)
1240 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1243 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1245 static const struct d40_interrupt_lookup il
[] = {
1246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
1247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
1248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
1249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
1250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
1251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
1252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
1253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
1254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
1255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
1259 u32 regs
[ARRAY_SIZE(il
)];
1263 struct d40_chan
*d40c
;
1264 unsigned long flags
;
1265 struct d40_base
*base
= data
;
1267 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1269 /* Read interrupt status of both logical and physical channels */
1270 for (i
= 0; i
< ARRAY_SIZE(il
); i
++)
1271 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1275 chan
= find_next_bit((unsigned long *)regs
,
1276 BITS_PER_LONG
* ARRAY_SIZE(il
), chan
+ 1);
1278 /* No more set bits found? */
1279 if (chan
== BITS_PER_LONG
* ARRAY_SIZE(il
))
1282 row
= chan
/ BITS_PER_LONG
;
1283 idx
= chan
& (BITS_PER_LONG
- 1);
1286 writel(1 << idx
, base
->virtbase
+ il
[row
].clr
);
1288 if (il
[row
].offset
== D40_PHY_CHAN
)
1289 d40c
= base
->lookup_phy_chans
[idx
];
1291 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1292 spin_lock(&d40c
->lock
);
1294 if (!il
[row
].is_error
)
1295 dma_tc_handle(d40c
);
1297 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1298 chan
, il
[row
].offset
, idx
);
1300 spin_unlock(&d40c
->lock
);
1303 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1308 static int d40_validate_conf(struct d40_chan
*d40c
,
1309 struct stedma40_chan_cfg
*conf
)
1312 u32 dst_event_group
= D40_TYPE_TO_GROUP(conf
->dst_dev_type
);
1313 u32 src_event_group
= D40_TYPE_TO_GROUP(conf
->src_dev_type
);
1314 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1317 chan_err(d40c
, "Invalid direction.\n");
1321 if (conf
->dst_dev_type
!= STEDMA40_DEV_DST_MEMORY
&&
1322 d40c
->base
->plat_data
->dev_tx
[conf
->dst_dev_type
] == 0 &&
1323 d40c
->runtime_addr
== 0) {
1325 chan_err(d40c
, "Invalid TX channel address (%d)\n",
1326 conf
->dst_dev_type
);
1330 if (conf
->src_dev_type
!= STEDMA40_DEV_SRC_MEMORY
&&
1331 d40c
->base
->plat_data
->dev_rx
[conf
->src_dev_type
] == 0 &&
1332 d40c
->runtime_addr
== 0) {
1333 chan_err(d40c
, "Invalid RX channel address (%d)\n",
1334 conf
->src_dev_type
);
1338 if (conf
->dir
== STEDMA40_MEM_TO_PERIPH
&&
1339 dst_event_group
== STEDMA40_DEV_DST_MEMORY
) {
1340 chan_err(d40c
, "Invalid dst\n");
1344 if (conf
->dir
== STEDMA40_PERIPH_TO_MEM
&&
1345 src_event_group
== STEDMA40_DEV_SRC_MEMORY
) {
1346 chan_err(d40c
, "Invalid src\n");
1350 if (src_event_group
== STEDMA40_DEV_SRC_MEMORY
&&
1351 dst_event_group
== STEDMA40_DEV_DST_MEMORY
&& is_log
) {
1352 chan_err(d40c
, "No event line\n");
1356 if (conf
->dir
== STEDMA40_PERIPH_TO_PERIPH
&&
1357 (src_event_group
!= dst_event_group
)) {
1358 chan_err(d40c
, "Invalid event group\n");
1362 if (conf
->dir
== STEDMA40_PERIPH_TO_PERIPH
) {
1364 * DMAC HW supports it. Will be added to this driver,
1365 * in case any dma client requires it.
1367 chan_err(d40c
, "periph to periph not supported\n");
1371 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1372 (1 << conf
->src_info
.data_width
) !=
1373 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1374 (1 << conf
->dst_info
.data_width
)) {
1376 * The DMAC hardware only supports
1377 * src (burst x width) == dst (burst x width)
1380 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1387 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
, bool is_src
,
1388 int log_event_line
, bool is_log
)
1390 unsigned long flags
;
1391 spin_lock_irqsave(&phy
->lock
, flags
);
1393 /* Physical interrupts are masked per physical full channel */
1394 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1395 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1396 phy
->allocated_dst
= D40_ALLOC_PHY
;
1397 phy
->allocated_src
= D40_ALLOC_PHY
;
1403 /* Logical channel */
1405 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1408 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1409 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1411 if (!(phy
->allocated_src
& (1 << log_event_line
))) {
1412 phy
->allocated_src
|= 1 << log_event_line
;
1417 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1420 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1421 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1423 if (!(phy
->allocated_dst
& (1 << log_event_line
))) {
1424 phy
->allocated_dst
|= 1 << log_event_line
;
1431 spin_unlock_irqrestore(&phy
->lock
, flags
);
1434 spin_unlock_irqrestore(&phy
->lock
, flags
);
1438 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1441 unsigned long flags
;
1442 bool is_free
= false;
1444 spin_lock_irqsave(&phy
->lock
, flags
);
1445 if (!log_event_line
) {
1446 phy
->allocated_dst
= D40_ALLOC_FREE
;
1447 phy
->allocated_src
= D40_ALLOC_FREE
;
1452 /* Logical channel */
1454 phy
->allocated_src
&= ~(1 << log_event_line
);
1455 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1456 phy
->allocated_src
= D40_ALLOC_FREE
;
1458 phy
->allocated_dst
&= ~(1 << log_event_line
);
1459 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1460 phy
->allocated_dst
= D40_ALLOC_FREE
;
1463 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1467 spin_unlock_irqrestore(&phy
->lock
, flags
);
1472 static int d40_allocate_channel(struct d40_chan
*d40c
)
1477 struct d40_phy_res
*phys
;
1482 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1484 phys
= d40c
->base
->phy_res
;
1486 if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1487 dev_type
= d40c
->dma_cfg
.src_dev_type
;
1488 log_num
= 2 * dev_type
;
1490 } else if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1491 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1492 /* dst event lines are used for logical memcpy */
1493 dev_type
= d40c
->dma_cfg
.dst_dev_type
;
1494 log_num
= 2 * dev_type
+ 1;
1499 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1500 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1503 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1504 /* Find physical half channel */
1505 for (i
= 0; i
< d40c
->base
->num_phy_chans
; i
++) {
1507 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1512 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1513 int phy_num
= j
+ event_group
* 2;
1514 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1515 if (d40_alloc_mask_set(&phys
[i
],
1524 d40c
->phy_chan
= &phys
[i
];
1525 d40c
->log_num
= D40_PHY_CHAN
;
1531 /* Find logical channel */
1532 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1533 int phy_num
= j
+ event_group
* 2;
1535 * Spread logical channels across all available physical rather
1536 * than pack every logical channel at the first available phy
1540 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1541 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1542 event_line
, is_log
))
1546 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
1547 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1548 event_line
, is_log
))
1556 d40c
->phy_chan
= &phys
[i
];
1557 d40c
->log_num
= log_num
;
1561 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
1563 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
1569 static int d40_config_memcpy(struct d40_chan
*d40c
)
1571 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
1573 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
1574 d40c
->dma_cfg
= *d40c
->base
->plat_data
->memcpy_conf_log
;
1575 d40c
->dma_cfg
.src_dev_type
= STEDMA40_DEV_SRC_MEMORY
;
1576 d40c
->dma_cfg
.dst_dev_type
= d40c
->base
->plat_data
->
1577 memcpy
[d40c
->chan
.chan_id
];
1579 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
1580 dma_has_cap(DMA_SLAVE
, cap
)) {
1581 d40c
->dma_cfg
= *d40c
->base
->plat_data
->memcpy_conf_phy
;
1583 chan_err(d40c
, "No memcpy\n");
1591 static int d40_free_dma(struct d40_chan
*d40c
)
1596 struct d40_phy_res
*phy
= d40c
->phy_chan
;
1599 struct d40_desc
*_d
;
1602 /* Terminate all queued and active transfers */
1605 /* Release client owned descriptors */
1606 if (!list_empty(&d40c
->client
))
1607 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
1608 d40_pool_lli_free(d40c
, d
);
1610 d40_desc_free(d40c
, d
);
1614 chan_err(d40c
, "phy == null\n");
1618 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1619 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1620 chan_err(d40c
, "channel already free\n");
1624 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1625 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1626 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
1628 } else if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1629 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
1632 chan_err(d40c
, "Unknown direction\n");
1636 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1638 chan_err(d40c
, "suspend failed\n");
1642 if (chan_is_logical(d40c
)) {
1643 /* Release logical channel, deactivate the event line */
1645 d40_config_set_event(d40c
, false);
1646 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
1649 * Check if there are more logical allocation
1650 * on this phy channel.
1652 if (!d40_alloc_mask_free(phy
, is_src
, event
)) {
1653 /* Resume the other logical channels if any */
1654 if (d40_chan_has_events(d40c
)) {
1655 res
= d40_channel_execute_command(d40c
,
1659 "Executing RUN command\n");
1666 (void) d40_alloc_mask_free(phy
, is_src
, 0);
1669 /* Release physical channel */
1670 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
1672 chan_err(d40c
, "Failed to stop channel\n");
1675 d40c
->phy_chan
= NULL
;
1676 d40c
->configured
= false;
1677 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
1682 static bool d40_is_paused(struct d40_chan
*d40c
)
1684 void __iomem
*chanbase
= chan_base(d40c
);
1685 bool is_paused
= false;
1686 unsigned long flags
;
1687 void __iomem
*active_reg
;
1691 spin_lock_irqsave(&d40c
->lock
, flags
);
1693 if (chan_is_physical(d40c
)) {
1694 if (d40c
->phy_chan
->num
% 2 == 0)
1695 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1697 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1699 status
= (readl(active_reg
) &
1700 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1701 D40_CHAN_POS(d40c
->phy_chan
->num
);
1702 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1708 if (d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
||
1709 d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_MEM
) {
1710 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dst_dev_type
);
1711 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1712 } else if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) {
1713 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.src_dev_type
);
1714 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1716 chan_err(d40c
, "Unknown direction\n");
1720 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
1721 D40_EVENTLINE_POS(event
);
1723 if (status
!= D40_DMA_RUN
)
1726 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1732 static u32
stedma40_residue(struct dma_chan
*chan
)
1734 struct d40_chan
*d40c
=
1735 container_of(chan
, struct d40_chan
, chan
);
1737 unsigned long flags
;
1739 spin_lock_irqsave(&d40c
->lock
, flags
);
1740 bytes_left
= d40_residue(d40c
);
1741 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1747 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
1748 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
1749 unsigned int sg_len
, dma_addr_t src_dev_addr
,
1750 dma_addr_t dst_dev_addr
)
1752 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
1753 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
1754 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
1757 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
1760 chan
->log_def
.lcsp1
,
1761 src_info
->data_width
,
1762 dst_info
->data_width
);
1764 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
1767 chan
->log_def
.lcsp3
,
1768 dst_info
->data_width
,
1769 src_info
->data_width
);
1771 return ret
< 0 ? ret
: 0;
1775 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
1776 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
1777 unsigned int sg_len
, dma_addr_t src_dev_addr
,
1778 dma_addr_t dst_dev_addr
)
1780 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
1781 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
1782 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
1783 unsigned long flags
= 0;
1787 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
1789 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
1791 virt_to_phys(desc
->lli_phy
.src
),
1793 src_info
, dst_info
, flags
);
1795 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
1797 virt_to_phys(desc
->lli_phy
.dst
),
1799 dst_info
, src_info
, flags
);
1801 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
1802 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
1804 return ret
< 0 ? ret
: 0;
1808 static struct d40_desc
*
1809 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
1810 unsigned int sg_len
, unsigned long dma_flags
)
1812 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
1813 struct d40_desc
*desc
;
1816 desc
= d40_desc_get(chan
);
1820 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
1821 cfg
->dst_info
.data_width
);
1822 if (desc
->lli_len
< 0) {
1823 chan_err(chan
, "Unaligned size\n");
1827 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
1829 chan_err(chan
, "Could not allocate lli\n");
1834 desc
->lli_current
= 0;
1835 desc
->txd
.flags
= dma_flags
;
1836 desc
->txd
.tx_submit
= d40_tx_submit
;
1838 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
1843 d40_desc_free(chan
, desc
);
1848 d40_get_dev_addr(struct d40_chan
*chan
, enum dma_data_direction direction
)
1850 struct stedma40_platform_data
*plat
= chan
->base
->plat_data
;
1851 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
1852 dma_addr_t addr
= 0;
1854 if (chan
->runtime_addr
)
1855 return chan
->runtime_addr
;
1857 if (direction
== DMA_FROM_DEVICE
)
1858 addr
= plat
->dev_rx
[cfg
->src_dev_type
];
1859 else if (direction
== DMA_TO_DEVICE
)
1860 addr
= plat
->dev_tx
[cfg
->dst_dev_type
];
1865 static struct dma_async_tx_descriptor
*
1866 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
1867 struct scatterlist
*sg_dst
, unsigned int sg_len
,
1868 enum dma_data_direction direction
, unsigned long dma_flags
)
1870 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
1871 dma_addr_t src_dev_addr
= 0;
1872 dma_addr_t dst_dev_addr
= 0;
1873 struct d40_desc
*desc
;
1874 unsigned long flags
;
1877 if (!chan
->phy_chan
) {
1878 chan_err(chan
, "Cannot prepare unallocated channel\n");
1883 spin_lock_irqsave(&chan
->lock
, flags
);
1885 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
1889 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
1890 desc
->cyclic
= true;
1892 if (direction
!= DMA_NONE
) {
1893 dma_addr_t dev_addr
= d40_get_dev_addr(chan
, direction
);
1895 if (direction
== DMA_FROM_DEVICE
)
1896 src_dev_addr
= dev_addr
;
1897 else if (direction
== DMA_TO_DEVICE
)
1898 dst_dev_addr
= dev_addr
;
1901 if (chan_is_logical(chan
))
1902 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
1903 sg_len
, src_dev_addr
, dst_dev_addr
);
1905 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
1906 sg_len
, src_dev_addr
, dst_dev_addr
);
1909 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
1910 chan_is_logical(chan
) ? "log" : "phy", ret
);
1914 spin_unlock_irqrestore(&chan
->lock
, flags
);
1920 d40_desc_free(chan
, desc
);
1921 spin_unlock_irqrestore(&chan
->lock
, flags
);
1925 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
1927 struct stedma40_chan_cfg
*info
= data
;
1928 struct d40_chan
*d40c
=
1929 container_of(chan
, struct d40_chan
, chan
);
1933 err
= d40_validate_conf(d40c
, info
);
1935 d40c
->dma_cfg
= *info
;
1937 err
= d40_config_memcpy(d40c
);
1940 d40c
->configured
= true;
1944 EXPORT_SYMBOL(stedma40_filter
);
1946 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
1948 bool realtime
= d40c
->dma_cfg
.realtime
;
1949 bool highprio
= d40c
->dma_cfg
.high_priority
;
1950 u32 prioreg
= highprio
? D40_DREG_PSEG1
: D40_DREG_PCEG1
;
1951 u32 rtreg
= realtime
? D40_DREG_RSEG1
: D40_DREG_RCEG1
;
1952 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
1953 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
1954 u32 bit
= 1 << event
;
1956 /* Destination event lines are stored in the upper halfword */
1960 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
1961 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
1964 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
1966 if (d40c
->base
->rev
< 3)
1969 if ((d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
) ||
1970 (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_PERIPH
))
1971 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.src_dev_type
, true);
1973 if ((d40c
->dma_cfg
.dir
== STEDMA40_MEM_TO_PERIPH
) ||
1974 (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_PERIPH
))
1975 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dst_dev_type
, false);
1978 /* DMA ENGINE functions */
1979 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
1982 unsigned long flags
;
1983 struct d40_chan
*d40c
=
1984 container_of(chan
, struct d40_chan
, chan
);
1986 spin_lock_irqsave(&d40c
->lock
, flags
);
1988 d40c
->completed
= chan
->cookie
= 1;
1990 /* If no dma configuration is set use default configuration (memcpy) */
1991 if (!d40c
->configured
) {
1992 err
= d40_config_memcpy(d40c
);
1994 chan_err(d40c
, "Failed to configure memcpy channel\n");
1998 is_free_phy
= (d40c
->phy_chan
== NULL
);
2000 err
= d40_allocate_channel(d40c
);
2002 chan_err(d40c
, "Failed to allocate channel\n");
2006 /* Fill in basic CFG register values */
2007 d40_phy_cfg(&d40c
->dma_cfg
, &d40c
->src_def_cfg
,
2008 &d40c
->dst_def_cfg
, chan_is_logical(d40c
));
2010 d40_set_prio_realtime(d40c
);
2012 if (chan_is_logical(d40c
)) {
2013 d40_log_cfg(&d40c
->dma_cfg
,
2014 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2016 if (d40c
->dma_cfg
.dir
== STEDMA40_PERIPH_TO_MEM
)
2017 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2018 d40c
->dma_cfg
.src_dev_type
* D40_LCPA_CHAN_SIZE
;
2020 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2021 d40c
->dma_cfg
.dst_dev_type
*
2022 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2026 * Only write channel configuration to the DMA if the physical
2027 * resource is free. In case of multiple logical channels
2028 * on the same physical resource, only the first write is necessary.
2031 d40_config_write(d40c
);
2033 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2037 static void d40_free_chan_resources(struct dma_chan
*chan
)
2039 struct d40_chan
*d40c
=
2040 container_of(chan
, struct d40_chan
, chan
);
2042 unsigned long flags
;
2044 if (d40c
->phy_chan
== NULL
) {
2045 chan_err(d40c
, "Cannot free unallocated channel\n");
2050 spin_lock_irqsave(&d40c
->lock
, flags
);
2052 err
= d40_free_dma(d40c
);
2055 chan_err(d40c
, "Failed to free channel\n");
2056 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2059 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2063 unsigned long dma_flags
)
2065 struct scatterlist dst_sg
;
2066 struct scatterlist src_sg
;
2068 sg_init_table(&dst_sg
, 1);
2069 sg_init_table(&src_sg
, 1);
2071 sg_dma_address(&dst_sg
) = dst
;
2072 sg_dma_address(&src_sg
) = src
;
2074 sg_dma_len(&dst_sg
) = size
;
2075 sg_dma_len(&src_sg
) = size
;
2077 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1, DMA_NONE
, dma_flags
);
2080 static struct dma_async_tx_descriptor
*
2081 d40_prep_memcpy_sg(struct dma_chan
*chan
,
2082 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
2083 struct scatterlist
*src_sg
, unsigned int src_nents
,
2084 unsigned long dma_flags
)
2086 if (dst_nents
!= src_nents
)
2089 return d40_prep_sg(chan
, src_sg
, dst_sg
, src_nents
, DMA_NONE
, dma_flags
);
2092 static struct dma_async_tx_descriptor
*d40_prep_slave_sg(struct dma_chan
*chan
,
2093 struct scatterlist
*sgl
,
2094 unsigned int sg_len
,
2095 enum dma_data_direction direction
,
2096 unsigned long dma_flags
)
2098 if (direction
!= DMA_FROM_DEVICE
&& direction
!= DMA_TO_DEVICE
)
2101 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2104 static struct dma_async_tx_descriptor
*
2105 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2106 size_t buf_len
, size_t period_len
,
2107 enum dma_data_direction direction
)
2109 unsigned int periods
= buf_len
/ period_len
;
2110 struct dma_async_tx_descriptor
*txd
;
2111 struct scatterlist
*sg
;
2114 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2115 for (i
= 0; i
< periods
; i
++) {
2116 sg_dma_address(&sg
[i
]) = dma_addr
;
2117 sg_dma_len(&sg
[i
]) = period_len
;
2118 dma_addr
+= period_len
;
2121 sg
[periods
].offset
= 0;
2122 sg
[periods
].length
= 0;
2123 sg
[periods
].page_link
=
2124 ((unsigned long)sg
| 0x01) & ~0x02;
2126 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2127 DMA_PREP_INTERRUPT
);
2134 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2135 dma_cookie_t cookie
,
2136 struct dma_tx_state
*txstate
)
2138 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2139 dma_cookie_t last_used
;
2140 dma_cookie_t last_complete
;
2143 if (d40c
->phy_chan
== NULL
) {
2144 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2148 last_complete
= d40c
->completed
;
2149 last_used
= chan
->cookie
;
2151 if (d40_is_paused(d40c
))
2154 ret
= dma_async_is_complete(cookie
, last_complete
, last_used
);
2156 dma_set_tx_state(txstate
, last_complete
, last_used
,
2157 stedma40_residue(chan
));
2162 static void d40_issue_pending(struct dma_chan
*chan
)
2164 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2165 unsigned long flags
;
2167 if (d40c
->phy_chan
== NULL
) {
2168 chan_err(d40c
, "Channel is not allocated!\n");
2172 spin_lock_irqsave(&d40c
->lock
, flags
);
2174 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2176 /* Busy means that queued jobs are already being processed */
2178 (void) d40_queue_start(d40c
);
2180 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2184 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2185 struct stedma40_half_channel_info
*info
,
2186 enum dma_slave_buswidth width
,
2189 enum stedma40_periph_data_width addr_width
;
2193 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
2194 addr_width
= STEDMA40_BYTE_WIDTH
;
2196 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
2197 addr_width
= STEDMA40_HALFWORD_WIDTH
;
2199 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
2200 addr_width
= STEDMA40_WORD_WIDTH
;
2202 case DMA_SLAVE_BUSWIDTH_8_BYTES
:
2203 addr_width
= STEDMA40_DOUBLEWORD_WIDTH
;
2206 dev_err(d40c
->base
->dev
,
2207 "illegal peripheral address width "
2213 if (chan_is_logical(d40c
)) {
2215 psize
= STEDMA40_PSIZE_LOG_16
;
2216 else if (maxburst
>= 8)
2217 psize
= STEDMA40_PSIZE_LOG_8
;
2218 else if (maxburst
>= 4)
2219 psize
= STEDMA40_PSIZE_LOG_4
;
2221 psize
= STEDMA40_PSIZE_LOG_1
;
2224 psize
= STEDMA40_PSIZE_PHY_16
;
2225 else if (maxburst
>= 8)
2226 psize
= STEDMA40_PSIZE_PHY_8
;
2227 else if (maxburst
>= 4)
2228 psize
= STEDMA40_PSIZE_PHY_4
;
2230 psize
= STEDMA40_PSIZE_PHY_1
;
2233 info
->data_width
= addr_width
;
2234 info
->psize
= psize
;
2235 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2240 /* Runtime reconfiguration extension */
2241 static int d40_set_runtime_config(struct dma_chan
*chan
,
2242 struct dma_slave_config
*config
)
2244 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2245 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2246 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2247 dma_addr_t config_addr
;
2248 u32 src_maxburst
, dst_maxburst
;
2251 src_addr_width
= config
->src_addr_width
;
2252 src_maxburst
= config
->src_maxburst
;
2253 dst_addr_width
= config
->dst_addr_width
;
2254 dst_maxburst
= config
->dst_maxburst
;
2256 if (config
->direction
== DMA_FROM_DEVICE
) {
2257 dma_addr_t dev_addr_rx
=
2258 d40c
->base
->plat_data
->dev_rx
[cfg
->src_dev_type
];
2260 config_addr
= config
->src_addr
;
2262 dev_dbg(d40c
->base
->dev
,
2263 "channel has a pre-wired RX address %08x "
2264 "overriding with %08x\n",
2265 dev_addr_rx
, config_addr
);
2266 if (cfg
->dir
!= STEDMA40_PERIPH_TO_MEM
)
2267 dev_dbg(d40c
->base
->dev
,
2268 "channel was not configured for peripheral "
2269 "to memory transfer (%d) overriding\n",
2271 cfg
->dir
= STEDMA40_PERIPH_TO_MEM
;
2273 /* Configure the memory side */
2274 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2275 dst_addr_width
= src_addr_width
;
2276 if (dst_maxburst
== 0)
2277 dst_maxburst
= src_maxburst
;
2279 } else if (config
->direction
== DMA_TO_DEVICE
) {
2280 dma_addr_t dev_addr_tx
=
2281 d40c
->base
->plat_data
->dev_tx
[cfg
->dst_dev_type
];
2283 config_addr
= config
->dst_addr
;
2285 dev_dbg(d40c
->base
->dev
,
2286 "channel has a pre-wired TX address %08x "
2287 "overriding with %08x\n",
2288 dev_addr_tx
, config_addr
);
2289 if (cfg
->dir
!= STEDMA40_MEM_TO_PERIPH
)
2290 dev_dbg(d40c
->base
->dev
,
2291 "channel was not configured for memory "
2292 "to peripheral transfer (%d) overriding\n",
2294 cfg
->dir
= STEDMA40_MEM_TO_PERIPH
;
2296 /* Configure the memory side */
2297 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2298 src_addr_width
= dst_addr_width
;
2299 if (src_maxburst
== 0)
2300 src_maxburst
= dst_maxburst
;
2302 dev_err(d40c
->base
->dev
,
2303 "unrecognized channel direction %d\n",
2308 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2309 dev_err(d40c
->base
->dev
,
2310 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2318 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2324 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2330 /* Fill in register values */
2331 if (chan_is_logical(d40c
))
2332 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2334 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
,
2335 &d40c
->dst_def_cfg
, false);
2337 /* These settings will take precedence later */
2338 d40c
->runtime_addr
= config_addr
;
2339 d40c
->runtime_direction
= config
->direction
;
2340 dev_dbg(d40c
->base
->dev
,
2341 "configured channel %s for %s, data width %d/%d, "
2342 "maxburst %d/%d elements, LE, no flow control\n",
2343 dma_chan_name(chan
),
2344 (config
->direction
== DMA_FROM_DEVICE
) ? "RX" : "TX",
2345 src_addr_width
, dst_addr_width
,
2346 src_maxburst
, dst_maxburst
);
2351 static int d40_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
2354 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2356 if (d40c
->phy_chan
== NULL
) {
2357 chan_err(d40c
, "Channel is not allocated!\n");
2362 case DMA_TERMINATE_ALL
:
2363 return d40_terminate_all(d40c
);
2365 return d40_pause(d40c
);
2367 return d40_resume(d40c
);
2368 case DMA_SLAVE_CONFIG
:
2369 return d40_set_runtime_config(chan
,
2370 (struct dma_slave_config
*) arg
);
2375 /* Other commands are unimplemented */
2379 /* Initialization functions */
2381 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2382 struct d40_chan
*chans
, int offset
,
2386 struct d40_chan
*d40c
;
2388 INIT_LIST_HEAD(&dma
->channels
);
2390 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2393 d40c
->chan
.device
= dma
;
2395 spin_lock_init(&d40c
->lock
);
2397 d40c
->log_num
= D40_PHY_CHAN
;
2399 INIT_LIST_HEAD(&d40c
->active
);
2400 INIT_LIST_HEAD(&d40c
->queue
);
2401 INIT_LIST_HEAD(&d40c
->pending_queue
);
2402 INIT_LIST_HEAD(&d40c
->client
);
2404 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2405 (unsigned long) d40c
);
2407 list_add_tail(&d40c
->chan
.device_node
,
2412 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2414 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
))
2415 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2417 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2418 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2421 * This controller can only access address at even
2422 * 32bit boundaries, i.e. 2^2
2424 dev
->copy_align
= 2;
2427 if (dma_has_cap(DMA_SG
, dev
->cap_mask
))
2428 dev
->device_prep_dma_sg
= d40_prep_memcpy_sg
;
2430 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2431 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2433 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2434 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2435 dev
->device_issue_pending
= d40_issue_pending
;
2436 dev
->device_tx_status
= d40_tx_status
;
2437 dev
->device_control
= d40_control
;
2438 dev
->dev
= base
->dev
;
2441 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2442 int num_reserved_chans
)
2446 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2447 0, base
->num_log_chans
);
2449 dma_cap_zero(base
->dma_slave
.cap_mask
);
2450 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2451 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2453 d40_ops_init(base
, &base
->dma_slave
);
2455 err
= dma_async_device_register(&base
->dma_slave
);
2458 d40_err(base
->dev
, "Failed to register slave channels\n");
2462 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2463 base
->num_log_chans
, base
->plat_data
->memcpy_len
);
2465 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2466 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2467 dma_cap_set(DMA_SG
, base
->dma_memcpy
.cap_mask
);
2469 d40_ops_init(base
, &base
->dma_memcpy
);
2471 err
= dma_async_device_register(&base
->dma_memcpy
);
2475 "Failed to regsiter memcpy only channels\n");
2479 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2480 0, num_reserved_chans
);
2482 dma_cap_zero(base
->dma_both
.cap_mask
);
2483 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2484 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2485 dma_cap_set(DMA_SG
, base
->dma_both
.cap_mask
);
2486 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2488 d40_ops_init(base
, &base
->dma_both
);
2489 err
= dma_async_device_register(&base
->dma_both
);
2493 "Failed to register logical and physical capable channels\n");
2498 dma_async_device_unregister(&base
->dma_memcpy
);
2500 dma_async_device_unregister(&base
->dma_slave
);
2505 /* Initialization functions. */
2507 static int __init
d40_phy_res_init(struct d40_base
*base
)
2510 int num_phy_chans_avail
= 0;
2512 int odd_even_bit
= -2;
2514 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
2515 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
2517 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2518 base
->phy_res
[i
].num
= i
;
2519 odd_even_bit
+= 2 * ((i
% 2) == 0);
2520 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
2521 /* Mark security only channels as occupied */
2522 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
2523 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
2525 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
2526 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
2527 num_phy_chans_avail
++;
2529 spin_lock_init(&base
->phy_res
[i
].lock
);
2532 /* Mark disabled channels as occupied */
2533 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
2534 int chan
= base
->plat_data
->disabled_channels
[i
];
2536 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
2537 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
2538 num_phy_chans_avail
--;
2541 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
2542 num_phy_chans_avail
, base
->num_phy_chans
);
2544 /* Verify settings extended vs standard */
2545 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
2547 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2549 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
2550 (val
[0] & 0x3) != 1)
2552 "[%s] INFO: channel %d is misconfigured (%d)\n",
2553 __func__
, i
, val
[0] & 0x3);
2555 val
[0] = val
[0] >> 2;
2558 return num_phy_chans_avail
;
2561 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
2563 struct stedma40_platform_data
*plat_data
;
2564 struct clk
*clk
= NULL
;
2565 void __iomem
*virtbase
= NULL
;
2566 struct resource
*res
= NULL
;
2567 struct d40_base
*base
= NULL
;
2568 int num_log_chans
= 0;
2575 clk
= clk_get(&pdev
->dev
, NULL
);
2578 d40_err(&pdev
->dev
, "No matching clock found\n");
2584 /* Get IO for DMAC base address */
2585 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
2589 if (request_mem_region(res
->start
, resource_size(res
),
2590 D40_NAME
" I/O base") == NULL
)
2593 virtbase
= ioremap(res
->start
, resource_size(res
));
2597 /* This is just a regular AMBA PrimeCell ID actually */
2598 for (pid
= 0, i
= 0; i
< 4; i
++)
2599 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
2601 for (cid
= 0, i
= 0; i
< 4; i
++)
2602 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
2605 if (cid
!= AMBA_CID
) {
2606 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
2609 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
2610 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
2611 AMBA_MANF_BITS(pid
),
2617 * DB8500ed has revision 0
2619 * DB8500v1 has revision 2
2620 * DB8500v2 has revision 3
2622 rev
= AMBA_REV_BITS(pid
);
2624 /* The number of physical channels on this HW */
2625 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
2627 dev_info(&pdev
->dev
, "hardware revision: %d @ 0x%x\n",
2630 plat_data
= pdev
->dev
.platform_data
;
2632 /* Count the number of logical channels in use */
2633 for (i
= 0; i
< plat_data
->dev_len
; i
++)
2634 if (plat_data
->dev_rx
[i
] != 0)
2637 for (i
= 0; i
< plat_data
->dev_len
; i
++)
2638 if (plat_data
->dev_tx
[i
] != 0)
2641 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
2642 (num_phy_chans
+ num_log_chans
+ plat_data
->memcpy_len
) *
2643 sizeof(struct d40_chan
), GFP_KERNEL
);
2646 d40_err(&pdev
->dev
, "Out of memory\n");
2652 base
->num_phy_chans
= num_phy_chans
;
2653 base
->num_log_chans
= num_log_chans
;
2654 base
->phy_start
= res
->start
;
2655 base
->phy_size
= resource_size(res
);
2656 base
->virtbase
= virtbase
;
2657 base
->plat_data
= plat_data
;
2658 base
->dev
= &pdev
->dev
;
2659 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
2660 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
2662 base
->phy_res
= kzalloc(num_phy_chans
* sizeof(struct d40_phy_res
),
2667 base
->lookup_phy_chans
= kzalloc(num_phy_chans
*
2668 sizeof(struct d40_chan
*),
2670 if (!base
->lookup_phy_chans
)
2673 if (num_log_chans
+ plat_data
->memcpy_len
) {
2675 * The max number of logical channels are event lines for all
2676 * src devices and dst devices
2678 base
->lookup_log_chans
= kzalloc(plat_data
->dev_len
* 2 *
2679 sizeof(struct d40_chan
*),
2681 if (!base
->lookup_log_chans
)
2685 base
->lcla_pool
.alloc_map
= kzalloc(num_phy_chans
*
2686 sizeof(struct d40_desc
*) *
2687 D40_LCLA_LINK_PER_EVENT_GRP
,
2689 if (!base
->lcla_pool
.alloc_map
)
2692 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
2693 0, SLAB_HWCACHE_ALIGN
,
2695 if (base
->desc_slab
== NULL
)
2708 release_mem_region(res
->start
,
2709 resource_size(res
));
2714 kfree(base
->lcla_pool
.alloc_map
);
2715 kfree(base
->lookup_log_chans
);
2716 kfree(base
->lookup_phy_chans
);
2717 kfree(base
->phy_res
);
2724 static void __init
d40_hw_init(struct d40_base
*base
)
2727 static const struct d40_reg_val dma_init_reg
[] = {
2728 /* Clock every part of the DMA block from start */
2729 { .reg
= D40_DREG_GCC
, .val
= 0x0000ff01},
2731 /* Interrupts on all logical channels */
2732 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
2733 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
2734 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
2735 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
2736 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
2737 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
2738 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
2739 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
2740 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
2741 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
2742 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
2743 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
2746 u32 prmseo
[2] = {0, 0};
2747 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2751 for (i
= 0; i
< ARRAY_SIZE(dma_init_reg
); i
++)
2752 writel(dma_init_reg
[i
].val
,
2753 base
->virtbase
+ dma_init_reg
[i
].reg
);
2755 /* Configure all our dma channels to default settings */
2756 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
2758 activeo
[i
% 2] = activeo
[i
% 2] << 2;
2760 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
2762 activeo
[i
% 2] |= 3;
2766 /* Enable interrupt # */
2767 pcmis
= (pcmis
<< 1) | 1;
2769 /* Clear interrupt # */
2770 pcicr
= (pcicr
<< 1) | 1;
2772 /* Set channel to physical mode */
2773 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
2778 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
2779 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
2780 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
2781 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
2783 /* Write which interrupt to enable */
2784 writel(pcmis
, base
->virtbase
+ D40_DREG_PCMIS
);
2786 /* Write which interrupt to clear */
2787 writel(pcicr
, base
->virtbase
+ D40_DREG_PCICR
);
2791 static int __init
d40_lcla_allocate(struct d40_base
*base
)
2793 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
2794 unsigned long *page_list
;
2799 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2800 * To full fill this hardware requirement without wasting 256 kb
2801 * we allocate pages until we get an aligned one.
2803 page_list
= kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS
,
2811 /* Calculating how many pages that are required */
2812 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
2814 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
2815 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
2816 base
->lcla_pool
.pages
);
2817 if (!page_list
[i
]) {
2819 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
2820 base
->lcla_pool
.pages
);
2822 for (j
= 0; j
< i
; j
++)
2823 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
2827 if ((virt_to_phys((void *)page_list
[i
]) &
2828 (LCLA_ALIGNMENT
- 1)) == 0)
2832 for (j
= 0; j
< i
; j
++)
2833 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
2835 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
2836 base
->lcla_pool
.base
= (void *)page_list
[i
];
2839 * After many attempts and no succees with finding the correct
2840 * alignment, try with allocating a big buffer.
2843 "[%s] Failed to get %d pages @ 18 bit align.\n",
2844 __func__
, base
->lcla_pool
.pages
);
2845 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
2846 base
->num_phy_chans
+
2849 if (!base
->lcla_pool
.base_unaligned
) {
2854 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
2858 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
2859 SZ_1K
* base
->num_phy_chans
,
2861 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
2867 writel(virt_to_phys(base
->lcla_pool
.base
),
2868 base
->virtbase
+ D40_DREG_LCLA
);
2874 static int __init
d40_probe(struct platform_device
*pdev
)
2878 struct d40_base
*base
;
2879 struct resource
*res
= NULL
;
2880 int num_reserved_chans
;
2883 base
= d40_hw_detect_init(pdev
);
2888 num_reserved_chans
= d40_phy_res_init(base
);
2890 platform_set_drvdata(pdev
, base
);
2892 spin_lock_init(&base
->interrupt_lock
);
2893 spin_lock_init(&base
->execmd_lock
);
2895 /* Get IO for logical channel parameter address */
2896 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
2899 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
2902 base
->lcpa_size
= resource_size(res
);
2903 base
->phy_lcpa
= res
->start
;
2905 if (request_mem_region(res
->start
, resource_size(res
),
2906 D40_NAME
" I/O lcpa") == NULL
) {
2909 "Failed to request LCPA region 0x%x-0x%x\n",
2910 res
->start
, res
->end
);
2914 /* We make use of ESRAM memory for this. */
2915 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
2916 if (res
->start
!= val
&& val
!= 0) {
2917 dev_warn(&pdev
->dev
,
2918 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2919 __func__
, val
, res
->start
);
2921 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
2923 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
2924 if (!base
->lcpa_base
) {
2926 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
2930 ret
= d40_lcla_allocate(base
);
2932 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
2936 spin_lock_init(&base
->lcla_pool
.lock
);
2938 base
->irq
= platform_get_irq(pdev
, 0);
2940 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
2942 d40_err(&pdev
->dev
, "No IRQ defined\n");
2946 err
= d40_dmaengine_init(base
, num_reserved_chans
);
2952 dev_info(base
->dev
, "initialized\n");
2957 if (base
->desc_slab
)
2958 kmem_cache_destroy(base
->desc_slab
);
2960 iounmap(base
->virtbase
);
2962 if (base
->lcla_pool
.dma_addr
)
2963 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
2964 SZ_1K
* base
->num_phy_chans
,
2967 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
2968 free_pages((unsigned long)base
->lcla_pool
.base
,
2969 base
->lcla_pool
.pages
);
2971 kfree(base
->lcla_pool
.base_unaligned
);
2974 release_mem_region(base
->phy_lcpa
,
2976 if (base
->phy_start
)
2977 release_mem_region(base
->phy_start
,
2980 clk_disable(base
->clk
);
2984 kfree(base
->lcla_pool
.alloc_map
);
2985 kfree(base
->lookup_log_chans
);
2986 kfree(base
->lookup_phy_chans
);
2987 kfree(base
->phy_res
);
2991 d40_err(&pdev
->dev
, "probe failed\n");
2995 static struct platform_driver d40_driver
= {
2997 .owner
= THIS_MODULE
,
3002 static int __init
stedma40_init(void)
3004 return platform_driver_probe(&d40_driver
, d40_probe
);
3006 subsys_initcall(stedma40_init
);