percpu: fix chunk range calculation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / page_alloc.c
blob3ecab7e7bbfa9ec72e620c327559a8a0d63f5192
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
58 * Array of node states.
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
71 EXPORT_SYMBOL(node_states);
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
237 /* Don't complain about poisoned pages */
238 if (PageHWPoison(page)) {
239 __ClearPageBuddy(page);
240 return;
244 * Allow a burst of 60 reports, then keep quiet for that minute;
245 * or allow a steady drip of one report per second.
247 if (nr_shown == 60) {
248 if (time_before(jiffies, resume)) {
249 nr_unshown++;
250 goto out;
252 if (nr_unshown) {
253 printk(KERN_ALERT
254 "BUG: Bad page state: %lu messages suppressed\n",
255 nr_unshown);
256 nr_unshown = 0;
258 nr_shown = 0;
260 if (nr_shown++ == 0)
261 resume = jiffies + 60 * HZ;
263 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
264 current->comm, page_to_pfn(page));
265 printk(KERN_ALERT
266 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
267 page, (void *)page->flags, page_count(page),
268 page_mapcount(page), page->mapping, page->index);
270 dump_stack();
271 out:
272 /* Leave bad fields for debug, except PageBuddy could make trouble */
273 __ClearPageBuddy(page);
274 add_taint(TAINT_BAD_PAGE);
278 * Higher-order pages are called "compound pages". They are structured thusly:
280 * The first PAGE_SIZE page is called the "head page".
282 * The remaining PAGE_SIZE pages are called "tail pages".
284 * All pages have PG_compound set. All pages have their ->private pointing at
285 * the head page (even the head page has this).
287 * The first tail page's ->lru.next holds the address of the compound page's
288 * put_page() function. Its ->lru.prev holds the order of allocation.
289 * This usage means that zero-order pages may not be compound.
292 static void free_compound_page(struct page *page)
294 __free_pages_ok(page, compound_order(page));
297 void prep_compound_page(struct page *page, unsigned long order)
299 int i;
300 int nr_pages = 1 << order;
302 set_compound_page_dtor(page, free_compound_page);
303 set_compound_order(page, order);
304 __SetPageHead(page);
305 for (i = 1; i < nr_pages; i++) {
306 struct page *p = page + i;
308 __SetPageTail(p);
309 p->first_page = page;
313 static int destroy_compound_page(struct page *page, unsigned long order)
315 int i;
316 int nr_pages = 1 << order;
317 int bad = 0;
319 if (unlikely(compound_order(page) != order) ||
320 unlikely(!PageHead(page))) {
321 bad_page(page);
322 bad++;
325 __ClearPageHead(page);
327 for (i = 1; i < nr_pages; i++) {
328 struct page *p = page + i;
330 if (unlikely(!PageTail(p) || (p->first_page != page))) {
331 bad_page(page);
332 bad++;
334 __ClearPageTail(p);
337 return bad;
340 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 int i;
345 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
346 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
349 for (i = 0; i < (1 << order); i++)
350 clear_highpage(page + i);
353 static inline void set_page_order(struct page *page, int order)
355 set_page_private(page, order);
356 __SetPageBuddy(page);
359 static inline void rmv_page_order(struct page *page)
361 __ClearPageBuddy(page);
362 set_page_private(page, 0);
366 * Locate the struct page for both the matching buddy in our
367 * pair (buddy1) and the combined O(n+1) page they form (page).
369 * 1) Any buddy B1 will have an order O twin B2 which satisfies
370 * the following equation:
371 * B2 = B1 ^ (1 << O)
372 * For example, if the starting buddy (buddy2) is #8 its order
373 * 1 buddy is #10:
374 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 * 2) Any buddy B will have an order O+1 parent P which
377 * satisfies the following equation:
378 * P = B & ~(1 << O)
380 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 static inline struct page *
383 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385 unsigned long buddy_idx = page_idx ^ (1 << order);
387 return page + (buddy_idx - page_idx);
390 static inline unsigned long
391 __find_combined_index(unsigned long page_idx, unsigned int order)
393 return (page_idx & ~(1 << order));
397 * This function checks whether a page is free && is the buddy
398 * we can do coalesce a page and its buddy if
399 * (a) the buddy is not in a hole &&
400 * (b) the buddy is in the buddy system &&
401 * (c) a page and its buddy have the same order &&
402 * (d) a page and its buddy are in the same zone.
404 * For recording whether a page is in the buddy system, we use PG_buddy.
405 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 * For recording page's order, we use page_private(page).
409 static inline int page_is_buddy(struct page *page, struct page *buddy,
410 int order)
412 if (!pfn_valid_within(page_to_pfn(buddy)))
413 return 0;
415 if (page_zone_id(page) != page_zone_id(buddy))
416 return 0;
418 if (PageBuddy(buddy) && page_order(buddy) == order) {
419 VM_BUG_ON(page_count(buddy) != 0);
420 return 1;
422 return 0;
426 * Freeing function for a buddy system allocator.
428 * The concept of a buddy system is to maintain direct-mapped table
429 * (containing bit values) for memory blocks of various "orders".
430 * The bottom level table contains the map for the smallest allocatable
431 * units of memory (here, pages), and each level above it describes
432 * pairs of units from the levels below, hence, "buddies".
433 * At a high level, all that happens here is marking the table entry
434 * at the bottom level available, and propagating the changes upward
435 * as necessary, plus some accounting needed to play nicely with other
436 * parts of the VM system.
437 * At each level, we keep a list of pages, which are heads of continuous
438 * free pages of length of (1 << order) and marked with PG_buddy. Page's
439 * order is recorded in page_private(page) field.
440 * So when we are allocating or freeing one, we can derive the state of the
441 * other. That is, if we allocate a small block, and both were
442 * free, the remainder of the region must be split into blocks.
443 * If a block is freed, and its buddy is also free, then this
444 * triggers coalescing into a block of larger size.
446 * -- wli
449 static inline void __free_one_page(struct page *page,
450 struct zone *zone, unsigned int order,
451 int migratetype)
453 unsigned long page_idx;
455 if (unlikely(PageCompound(page)))
456 if (unlikely(destroy_compound_page(page, order)))
457 return;
459 VM_BUG_ON(migratetype == -1);
461 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463 VM_BUG_ON(page_idx & ((1 << order) - 1));
464 VM_BUG_ON(bad_range(zone, page));
466 while (order < MAX_ORDER-1) {
467 unsigned long combined_idx;
468 struct page *buddy;
470 buddy = __page_find_buddy(page, page_idx, order);
471 if (!page_is_buddy(page, buddy, order))
472 break;
474 /* Our buddy is free, merge with it and move up one order. */
475 list_del(&buddy->lru);
476 zone->free_area[order].nr_free--;
477 rmv_page_order(buddy);
478 combined_idx = __find_combined_index(page_idx, order);
479 page = page + (combined_idx - page_idx);
480 page_idx = combined_idx;
481 order++;
483 set_page_order(page, order);
484 list_add(&page->lru,
485 &zone->free_area[order].free_list[migratetype]);
486 zone->free_area[order].nr_free++;
489 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
495 static inline void free_page_mlock(struct page *page)
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
500 #else
501 static void free_page_mlock(struct page *page) { }
502 #endif
504 static inline int free_pages_check(struct page *page)
506 if (unlikely(page_mapcount(page) |
507 (page->mapping != NULL) |
508 (atomic_read(&page->_count) != 0) |
509 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
510 bad_page(page);
511 return 1;
513 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
514 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
515 return 0;
519 * Frees a number of pages from the PCP lists
520 * Assumes all pages on list are in same zone, and of same order.
521 * count is the number of pages to free.
523 * If the zone was previously in an "all pages pinned" state then look to
524 * see if this freeing clears that state.
526 * And clear the zone's pages_scanned counter, to hold off the "all pages are
527 * pinned" detection logic.
529 static void free_pcppages_bulk(struct zone *zone, int count,
530 struct per_cpu_pages *pcp)
532 int migratetype = 0;
533 int batch_free = 0;
534 int to_free = count;
536 spin_lock(&zone->lock);
537 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
538 zone->pages_scanned = 0;
540 while (to_free) {
541 struct page *page;
542 struct list_head *list;
545 * Remove pages from lists in a round-robin fashion. A
546 * batch_free count is maintained that is incremented when an
547 * empty list is encountered. This is so more pages are freed
548 * off fuller lists instead of spinning excessively around empty
549 * lists
551 do {
552 batch_free++;
553 if (++migratetype == MIGRATE_PCPTYPES)
554 migratetype = 0;
555 list = &pcp->lists[migratetype];
556 } while (list_empty(list));
558 do {
559 page = list_entry(list->prev, struct page, lru);
560 /* must delete as __free_one_page list manipulates */
561 list_del(&page->lru);
562 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
563 __free_one_page(page, zone, 0, page_private(page));
564 trace_mm_page_pcpu_drain(page, 0, page_private(page));
565 } while (--to_free && --batch_free && !list_empty(list));
567 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
568 spin_unlock(&zone->lock);
571 static void free_one_page(struct zone *zone, struct page *page, int order,
572 int migratetype)
574 spin_lock(&zone->lock);
575 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
576 zone->pages_scanned = 0;
578 __free_one_page(page, zone, order, migratetype);
579 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
580 spin_unlock(&zone->lock);
583 static void __free_pages_ok(struct page *page, unsigned int order)
585 unsigned long flags;
586 int i;
587 int bad = 0;
588 int wasMlocked = __TestClearPageMlocked(page);
590 kmemcheck_free_shadow(page, order);
592 for (i = 0 ; i < (1 << order) ; ++i)
593 bad += free_pages_check(page + i);
594 if (bad)
595 return;
597 if (!PageHighMem(page)) {
598 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
599 debug_check_no_obj_freed(page_address(page),
600 PAGE_SIZE << order);
602 arch_free_page(page, order);
603 kernel_map_pages(page, 1 << order, 0);
605 local_irq_save(flags);
606 if (unlikely(wasMlocked))
607 free_page_mlock(page);
608 __count_vm_events(PGFREE, 1 << order);
609 free_one_page(page_zone(page), page, order,
610 get_pageblock_migratetype(page));
611 local_irq_restore(flags);
615 * permit the bootmem allocator to evade page validation on high-order frees
617 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
619 if (order == 0) {
620 __ClearPageReserved(page);
621 set_page_count(page, 0);
622 set_page_refcounted(page);
623 __free_page(page);
624 } else {
625 int loop;
627 prefetchw(page);
628 for (loop = 0; loop < BITS_PER_LONG; loop++) {
629 struct page *p = &page[loop];
631 if (loop + 1 < BITS_PER_LONG)
632 prefetchw(p + 1);
633 __ClearPageReserved(p);
634 set_page_count(p, 0);
637 set_page_refcounted(page);
638 __free_pages(page, order);
644 * The order of subdivision here is critical for the IO subsystem.
645 * Please do not alter this order without good reasons and regression
646 * testing. Specifically, as large blocks of memory are subdivided,
647 * the order in which smaller blocks are delivered depends on the order
648 * they're subdivided in this function. This is the primary factor
649 * influencing the order in which pages are delivered to the IO
650 * subsystem according to empirical testing, and this is also justified
651 * by considering the behavior of a buddy system containing a single
652 * large block of memory acted on by a series of small allocations.
653 * This behavior is a critical factor in sglist merging's success.
655 * -- wli
657 static inline void expand(struct zone *zone, struct page *page,
658 int low, int high, struct free_area *area,
659 int migratetype)
661 unsigned long size = 1 << high;
663 while (high > low) {
664 area--;
665 high--;
666 size >>= 1;
667 VM_BUG_ON(bad_range(zone, &page[size]));
668 list_add(&page[size].lru, &area->free_list[migratetype]);
669 area->nr_free++;
670 set_page_order(&page[size], high);
675 * This page is about to be returned from the page allocator
677 static inline int check_new_page(struct page *page)
679 if (unlikely(page_mapcount(page) |
680 (page->mapping != NULL) |
681 (atomic_read(&page->_count) != 0) |
682 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
683 bad_page(page);
684 return 1;
686 return 0;
689 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
691 int i;
693 for (i = 0; i < (1 << order); i++) {
694 struct page *p = page + i;
695 if (unlikely(check_new_page(p)))
696 return 1;
699 set_page_private(page, 0);
700 set_page_refcounted(page);
702 arch_alloc_page(page, order);
703 kernel_map_pages(page, 1 << order, 1);
705 if (gfp_flags & __GFP_ZERO)
706 prep_zero_page(page, order, gfp_flags);
708 if (order && (gfp_flags & __GFP_COMP))
709 prep_compound_page(page, order);
711 return 0;
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
718 static inline
719 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
720 int migratetype)
722 unsigned int current_order;
723 struct free_area * area;
724 struct page *page;
726 /* Find a page of the appropriate size in the preferred list */
727 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
728 area = &(zone->free_area[current_order]);
729 if (list_empty(&area->free_list[migratetype]))
730 continue;
732 page = list_entry(area->free_list[migratetype].next,
733 struct page, lru);
734 list_del(&page->lru);
735 rmv_page_order(page);
736 area->nr_free--;
737 expand(zone, page, order, current_order, area, migratetype);
738 return page;
741 return NULL;
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
749 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
750 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
753 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
757 * Move the free pages in a range to the free lists of the requested type.
758 * Note that start_page and end_pages are not aligned on a pageblock
759 * boundary. If alignment is required, use move_freepages_block()
761 static int move_freepages(struct zone *zone,
762 struct page *start_page, struct page *end_page,
763 int migratetype)
765 struct page *page;
766 unsigned long order;
767 int pages_moved = 0;
769 #ifndef CONFIG_HOLES_IN_ZONE
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
775 * grouping pages by mobility
777 BUG_ON(page_zone(start_page) != page_zone(end_page));
778 #endif
780 for (page = start_page; page <= end_page;) {
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
784 if (!pfn_valid_within(page_to_pfn(page))) {
785 page++;
786 continue;
789 if (!PageBuddy(page)) {
790 page++;
791 continue;
794 order = page_order(page);
795 list_del(&page->lru);
796 list_add(&page->lru,
797 &zone->free_area[order].free_list[migratetype]);
798 page += 1 << order;
799 pages_moved += 1 << order;
802 return pages_moved;
805 static int move_freepages_block(struct zone *zone, struct page *page,
806 int migratetype)
808 unsigned long start_pfn, end_pfn;
809 struct page *start_page, *end_page;
811 start_pfn = page_to_pfn(page);
812 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
813 start_page = pfn_to_page(start_pfn);
814 end_page = start_page + pageblock_nr_pages - 1;
815 end_pfn = start_pfn + pageblock_nr_pages - 1;
817 /* Do not cross zone boundaries */
818 if (start_pfn < zone->zone_start_pfn)
819 start_page = page;
820 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
821 return 0;
823 return move_freepages(zone, start_page, end_page, migratetype);
826 static void change_pageblock_range(struct page *pageblock_page,
827 int start_order, int migratetype)
829 int nr_pageblocks = 1 << (start_order - pageblock_order);
831 while (nr_pageblocks--) {
832 set_pageblock_migratetype(pageblock_page, migratetype);
833 pageblock_page += pageblock_nr_pages;
837 /* Remove an element from the buddy allocator from the fallback list */
838 static inline struct page *
839 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
841 struct free_area * area;
842 int current_order;
843 struct page *page;
844 int migratetype, i;
846 /* Find the largest possible block of pages in the other list */
847 for (current_order = MAX_ORDER-1; current_order >= order;
848 --current_order) {
849 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
850 migratetype = fallbacks[start_migratetype][i];
852 /* MIGRATE_RESERVE handled later if necessary */
853 if (migratetype == MIGRATE_RESERVE)
854 continue;
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 area->nr_free--;
865 * If breaking a large block of pages, move all free
866 * pages to the preferred allocation list. If falling
867 * back for a reclaimable kernel allocation, be more
868 * agressive about taking ownership of free pages
870 if (unlikely(current_order >= (pageblock_order >> 1)) ||
871 start_migratetype == MIGRATE_RECLAIMABLE ||
872 page_group_by_mobility_disabled) {
873 unsigned long pages;
874 pages = move_freepages_block(zone, page,
875 start_migratetype);
877 /* Claim the whole block if over half of it is free */
878 if (pages >= (1 << (pageblock_order-1)) ||
879 page_group_by_mobility_disabled)
880 set_pageblock_migratetype(page,
881 start_migratetype);
883 migratetype = start_migratetype;
886 /* Remove the page from the freelists */
887 list_del(&page->lru);
888 rmv_page_order(page);
890 /* Take ownership for orders >= pageblock_order */
891 if (current_order >= pageblock_order)
892 change_pageblock_range(page, current_order,
893 start_migratetype);
895 expand(zone, page, order, current_order, area, migratetype);
897 trace_mm_page_alloc_extfrag(page, order, current_order,
898 start_migratetype, migratetype);
900 return page;
904 return NULL;
908 * Do the hard work of removing an element from the buddy allocator.
909 * Call me with the zone->lock already held.
911 static struct page *__rmqueue(struct zone *zone, unsigned int order,
912 int migratetype)
914 struct page *page;
916 retry_reserve:
917 page = __rmqueue_smallest(zone, order, migratetype);
919 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
920 page = __rmqueue_fallback(zone, order, migratetype);
923 * Use MIGRATE_RESERVE rather than fail an allocation. goto
924 * is used because __rmqueue_smallest is an inline function
925 * and we want just one call site
927 if (!page) {
928 migratetype = MIGRATE_RESERVE;
929 goto retry_reserve;
933 trace_mm_page_alloc_zone_locked(page, order, migratetype);
934 return page;
938 * Obtain a specified number of elements from the buddy allocator, all under
939 * a single hold of the lock, for efficiency. Add them to the supplied list.
940 * Returns the number of new pages which were placed at *list.
942 static int rmqueue_bulk(struct zone *zone, unsigned int order,
943 unsigned long count, struct list_head *list,
944 int migratetype, int cold)
946 int i;
948 spin_lock(&zone->lock);
949 for (i = 0; i < count; ++i) {
950 struct page *page = __rmqueue(zone, order, migratetype);
951 if (unlikely(page == NULL))
952 break;
955 * Split buddy pages returned by expand() are received here
956 * in physical page order. The page is added to the callers and
957 * list and the list head then moves forward. From the callers
958 * perspective, the linked list is ordered by page number in
959 * some conditions. This is useful for IO devices that can
960 * merge IO requests if the physical pages are ordered
961 * properly.
963 if (likely(cold == 0))
964 list_add(&page->lru, list);
965 else
966 list_add_tail(&page->lru, list);
967 set_page_private(page, migratetype);
968 list = &page->lru;
970 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
971 spin_unlock(&zone->lock);
972 return i;
975 #ifdef CONFIG_NUMA
977 * Called from the vmstat counter updater to drain pagesets of this
978 * currently executing processor on remote nodes after they have
979 * expired.
981 * Note that this function must be called with the thread pinned to
982 * a single processor.
984 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
986 unsigned long flags;
987 int to_drain;
989 local_irq_save(flags);
990 if (pcp->count >= pcp->batch)
991 to_drain = pcp->batch;
992 else
993 to_drain = pcp->count;
994 free_pcppages_bulk(zone, to_drain, pcp);
995 pcp->count -= to_drain;
996 local_irq_restore(flags);
998 #endif
1001 * Drain pages of the indicated processor.
1003 * The processor must either be the current processor and the
1004 * thread pinned to the current processor or a processor that
1005 * is not online.
1007 static void drain_pages(unsigned int cpu)
1009 unsigned long flags;
1010 struct zone *zone;
1012 for_each_populated_zone(zone) {
1013 struct per_cpu_pageset *pset;
1014 struct per_cpu_pages *pcp;
1016 pset = zone_pcp(zone, cpu);
1018 pcp = &pset->pcp;
1019 local_irq_save(flags);
1020 free_pcppages_bulk(zone, pcp->count, pcp);
1021 pcp->count = 0;
1022 local_irq_restore(flags);
1027 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1029 void drain_local_pages(void *arg)
1031 drain_pages(smp_processor_id());
1035 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1037 void drain_all_pages(void)
1039 on_each_cpu(drain_local_pages, NULL, 1);
1042 #ifdef CONFIG_HIBERNATION
1044 void mark_free_pages(struct zone *zone)
1046 unsigned long pfn, max_zone_pfn;
1047 unsigned long flags;
1048 int order, t;
1049 struct list_head *curr;
1051 if (!zone->spanned_pages)
1052 return;
1054 spin_lock_irqsave(&zone->lock, flags);
1056 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1057 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1058 if (pfn_valid(pfn)) {
1059 struct page *page = pfn_to_page(pfn);
1061 if (!swsusp_page_is_forbidden(page))
1062 swsusp_unset_page_free(page);
1065 for_each_migratetype_order(order, t) {
1066 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1067 unsigned long i;
1069 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1070 for (i = 0; i < (1UL << order); i++)
1071 swsusp_set_page_free(pfn_to_page(pfn + i));
1074 spin_unlock_irqrestore(&zone->lock, flags);
1076 #endif /* CONFIG_PM */
1079 * Free a 0-order page
1081 static void free_hot_cold_page(struct page *page, int cold)
1083 struct zone *zone = page_zone(page);
1084 struct per_cpu_pages *pcp;
1085 unsigned long flags;
1086 int migratetype;
1087 int wasMlocked = __TestClearPageMlocked(page);
1089 kmemcheck_free_shadow(page, 0);
1091 if (PageAnon(page))
1092 page->mapping = NULL;
1093 if (free_pages_check(page))
1094 return;
1096 if (!PageHighMem(page)) {
1097 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1098 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1100 arch_free_page(page, 0);
1101 kernel_map_pages(page, 1, 0);
1103 pcp = &zone_pcp(zone, get_cpu())->pcp;
1104 migratetype = get_pageblock_migratetype(page);
1105 set_page_private(page, migratetype);
1106 local_irq_save(flags);
1107 if (unlikely(wasMlocked))
1108 free_page_mlock(page);
1109 __count_vm_event(PGFREE);
1112 * We only track unmovable, reclaimable and movable on pcp lists.
1113 * Free ISOLATE pages back to the allocator because they are being
1114 * offlined but treat RESERVE as movable pages so we can get those
1115 * areas back if necessary. Otherwise, we may have to free
1116 * excessively into the page allocator
1118 if (migratetype >= MIGRATE_PCPTYPES) {
1119 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1120 free_one_page(zone, page, 0, migratetype);
1121 goto out;
1123 migratetype = MIGRATE_MOVABLE;
1126 if (cold)
1127 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1128 else
1129 list_add(&page->lru, &pcp->lists[migratetype]);
1130 pcp->count++;
1131 if (pcp->count >= pcp->high) {
1132 free_pcppages_bulk(zone, pcp->batch, pcp);
1133 pcp->count -= pcp->batch;
1136 out:
1137 local_irq_restore(flags);
1138 put_cpu();
1141 void free_hot_page(struct page *page)
1143 trace_mm_page_free_direct(page, 0);
1144 free_hot_cold_page(page, 0);
1148 * split_page takes a non-compound higher-order page, and splits it into
1149 * n (1<<order) sub-pages: page[0..n]
1150 * Each sub-page must be freed individually.
1152 * Note: this is probably too low level an operation for use in drivers.
1153 * Please consult with lkml before using this in your driver.
1155 void split_page(struct page *page, unsigned int order)
1157 int i;
1159 VM_BUG_ON(PageCompound(page));
1160 VM_BUG_ON(!page_count(page));
1162 #ifdef CONFIG_KMEMCHECK
1164 * Split shadow pages too, because free(page[0]) would
1165 * otherwise free the whole shadow.
1167 if (kmemcheck_page_is_tracked(page))
1168 split_page(virt_to_page(page[0].shadow), order);
1169 #endif
1171 for (i = 1; i < (1 << order); i++)
1172 set_page_refcounted(page + i);
1176 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1177 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1178 * or two.
1180 static inline
1181 struct page *buffered_rmqueue(struct zone *preferred_zone,
1182 struct zone *zone, int order, gfp_t gfp_flags,
1183 int migratetype)
1185 unsigned long flags;
1186 struct page *page;
1187 int cold = !!(gfp_flags & __GFP_COLD);
1188 int cpu;
1190 again:
1191 cpu = get_cpu();
1192 if (likely(order == 0)) {
1193 struct per_cpu_pages *pcp;
1194 struct list_head *list;
1196 pcp = &zone_pcp(zone, cpu)->pcp;
1197 list = &pcp->lists[migratetype];
1198 local_irq_save(flags);
1199 if (list_empty(list)) {
1200 pcp->count += rmqueue_bulk(zone, 0,
1201 pcp->batch, list,
1202 migratetype, cold);
1203 if (unlikely(list_empty(list)))
1204 goto failed;
1207 if (cold)
1208 page = list_entry(list->prev, struct page, lru);
1209 else
1210 page = list_entry(list->next, struct page, lru);
1212 list_del(&page->lru);
1213 pcp->count--;
1214 } else {
1215 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1217 * __GFP_NOFAIL is not to be used in new code.
1219 * All __GFP_NOFAIL callers should be fixed so that they
1220 * properly detect and handle allocation failures.
1222 * We most definitely don't want callers attempting to
1223 * allocate greater than order-1 page units with
1224 * __GFP_NOFAIL.
1226 WARN_ON_ONCE(order > 1);
1228 spin_lock_irqsave(&zone->lock, flags);
1229 page = __rmqueue(zone, order, migratetype);
1230 spin_unlock(&zone->lock);
1231 if (!page)
1232 goto failed;
1233 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1236 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1237 zone_statistics(preferred_zone, zone);
1238 local_irq_restore(flags);
1239 put_cpu();
1241 VM_BUG_ON(bad_range(zone, page));
1242 if (prep_new_page(page, order, gfp_flags))
1243 goto again;
1244 return page;
1246 failed:
1247 local_irq_restore(flags);
1248 put_cpu();
1249 return NULL;
1252 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1253 #define ALLOC_WMARK_MIN WMARK_MIN
1254 #define ALLOC_WMARK_LOW WMARK_LOW
1255 #define ALLOC_WMARK_HIGH WMARK_HIGH
1256 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1258 /* Mask to get the watermark bits */
1259 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1261 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1262 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1263 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1265 #ifdef CONFIG_FAIL_PAGE_ALLOC
1267 static struct fail_page_alloc_attr {
1268 struct fault_attr attr;
1270 u32 ignore_gfp_highmem;
1271 u32 ignore_gfp_wait;
1272 u32 min_order;
1274 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1276 struct dentry *ignore_gfp_highmem_file;
1277 struct dentry *ignore_gfp_wait_file;
1278 struct dentry *min_order_file;
1280 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1282 } fail_page_alloc = {
1283 .attr = FAULT_ATTR_INITIALIZER,
1284 .ignore_gfp_wait = 1,
1285 .ignore_gfp_highmem = 1,
1286 .min_order = 1,
1289 static int __init setup_fail_page_alloc(char *str)
1291 return setup_fault_attr(&fail_page_alloc.attr, str);
1293 __setup("fail_page_alloc=", setup_fail_page_alloc);
1295 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1297 if (order < fail_page_alloc.min_order)
1298 return 0;
1299 if (gfp_mask & __GFP_NOFAIL)
1300 return 0;
1301 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1302 return 0;
1303 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1304 return 0;
1306 return should_fail(&fail_page_alloc.attr, 1 << order);
1309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1311 static int __init fail_page_alloc_debugfs(void)
1313 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1314 struct dentry *dir;
1315 int err;
1317 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1318 "fail_page_alloc");
1319 if (err)
1320 return err;
1321 dir = fail_page_alloc.attr.dentries.dir;
1323 fail_page_alloc.ignore_gfp_wait_file =
1324 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1325 &fail_page_alloc.ignore_gfp_wait);
1327 fail_page_alloc.ignore_gfp_highmem_file =
1328 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1329 &fail_page_alloc.ignore_gfp_highmem);
1330 fail_page_alloc.min_order_file =
1331 debugfs_create_u32("min-order", mode, dir,
1332 &fail_page_alloc.min_order);
1334 if (!fail_page_alloc.ignore_gfp_wait_file ||
1335 !fail_page_alloc.ignore_gfp_highmem_file ||
1336 !fail_page_alloc.min_order_file) {
1337 err = -ENOMEM;
1338 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1339 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1340 debugfs_remove(fail_page_alloc.min_order_file);
1341 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1344 return err;
1347 late_initcall(fail_page_alloc_debugfs);
1349 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1351 #else /* CONFIG_FAIL_PAGE_ALLOC */
1353 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1355 return 0;
1358 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1361 * Return 1 if free pages are above 'mark'. This takes into account the order
1362 * of the allocation.
1364 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1365 int classzone_idx, int alloc_flags)
1367 /* free_pages my go negative - that's OK */
1368 long min = mark;
1369 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1370 int o;
1372 if (alloc_flags & ALLOC_HIGH)
1373 min -= min / 2;
1374 if (alloc_flags & ALLOC_HARDER)
1375 min -= min / 4;
1377 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1378 return 0;
1379 for (o = 0; o < order; o++) {
1380 /* At the next order, this order's pages become unavailable */
1381 free_pages -= z->free_area[o].nr_free << o;
1383 /* Require fewer higher order pages to be free */
1384 min >>= 1;
1386 if (free_pages <= min)
1387 return 0;
1389 return 1;
1392 #ifdef CONFIG_NUMA
1394 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1395 * skip over zones that are not allowed by the cpuset, or that have
1396 * been recently (in last second) found to be nearly full. See further
1397 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1398 * that have to skip over a lot of full or unallowed zones.
1400 * If the zonelist cache is present in the passed in zonelist, then
1401 * returns a pointer to the allowed node mask (either the current
1402 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1404 * If the zonelist cache is not available for this zonelist, does
1405 * nothing and returns NULL.
1407 * If the fullzones BITMAP in the zonelist cache is stale (more than
1408 * a second since last zap'd) then we zap it out (clear its bits.)
1410 * We hold off even calling zlc_setup, until after we've checked the
1411 * first zone in the zonelist, on the theory that most allocations will
1412 * be satisfied from that first zone, so best to examine that zone as
1413 * quickly as we can.
1415 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1417 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1418 nodemask_t *allowednodes; /* zonelist_cache approximation */
1420 zlc = zonelist->zlcache_ptr;
1421 if (!zlc)
1422 return NULL;
1424 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1425 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1426 zlc->last_full_zap = jiffies;
1429 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1430 &cpuset_current_mems_allowed :
1431 &node_states[N_HIGH_MEMORY];
1432 return allowednodes;
1436 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1437 * if it is worth looking at further for free memory:
1438 * 1) Check that the zone isn't thought to be full (doesn't have its
1439 * bit set in the zonelist_cache fullzones BITMAP).
1440 * 2) Check that the zones node (obtained from the zonelist_cache
1441 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1442 * Return true (non-zero) if zone is worth looking at further, or
1443 * else return false (zero) if it is not.
1445 * This check -ignores- the distinction between various watermarks,
1446 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1447 * found to be full for any variation of these watermarks, it will
1448 * be considered full for up to one second by all requests, unless
1449 * we are so low on memory on all allowed nodes that we are forced
1450 * into the second scan of the zonelist.
1452 * In the second scan we ignore this zonelist cache and exactly
1453 * apply the watermarks to all zones, even it is slower to do so.
1454 * We are low on memory in the second scan, and should leave no stone
1455 * unturned looking for a free page.
1457 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1458 nodemask_t *allowednodes)
1460 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1461 int i; /* index of *z in zonelist zones */
1462 int n; /* node that zone *z is on */
1464 zlc = zonelist->zlcache_ptr;
1465 if (!zlc)
1466 return 1;
1468 i = z - zonelist->_zonerefs;
1469 n = zlc->z_to_n[i];
1471 /* This zone is worth trying if it is allowed but not full */
1472 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1476 * Given 'z' scanning a zonelist, set the corresponding bit in
1477 * zlc->fullzones, so that subsequent attempts to allocate a page
1478 * from that zone don't waste time re-examining it.
1480 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1482 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1483 int i; /* index of *z in zonelist zones */
1485 zlc = zonelist->zlcache_ptr;
1486 if (!zlc)
1487 return;
1489 i = z - zonelist->_zonerefs;
1491 set_bit(i, zlc->fullzones);
1494 #else /* CONFIG_NUMA */
1496 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1498 return NULL;
1501 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1502 nodemask_t *allowednodes)
1504 return 1;
1507 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1510 #endif /* CONFIG_NUMA */
1513 * get_page_from_freelist goes through the zonelist trying to allocate
1514 * a page.
1516 static struct page *
1517 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1518 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1519 struct zone *preferred_zone, int migratetype)
1521 struct zoneref *z;
1522 struct page *page = NULL;
1523 int classzone_idx;
1524 struct zone *zone;
1525 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1526 int zlc_active = 0; /* set if using zonelist_cache */
1527 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1529 classzone_idx = zone_idx(preferred_zone);
1530 zonelist_scan:
1532 * Scan zonelist, looking for a zone with enough free.
1533 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1536 high_zoneidx, nodemask) {
1537 if (NUMA_BUILD && zlc_active &&
1538 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1539 continue;
1540 if ((alloc_flags & ALLOC_CPUSET) &&
1541 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1542 goto try_next_zone;
1544 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1545 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1546 unsigned long mark;
1547 int ret;
1549 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1550 if (zone_watermark_ok(zone, order, mark,
1551 classzone_idx, alloc_flags))
1552 goto try_this_zone;
1554 if (zone_reclaim_mode == 0)
1555 goto this_zone_full;
1557 ret = zone_reclaim(zone, gfp_mask, order);
1558 switch (ret) {
1559 case ZONE_RECLAIM_NOSCAN:
1560 /* did not scan */
1561 goto try_next_zone;
1562 case ZONE_RECLAIM_FULL:
1563 /* scanned but unreclaimable */
1564 goto this_zone_full;
1565 default:
1566 /* did we reclaim enough */
1567 if (!zone_watermark_ok(zone, order, mark,
1568 classzone_idx, alloc_flags))
1569 goto this_zone_full;
1573 try_this_zone:
1574 page = buffered_rmqueue(preferred_zone, zone, order,
1575 gfp_mask, migratetype);
1576 if (page)
1577 break;
1578 this_zone_full:
1579 if (NUMA_BUILD)
1580 zlc_mark_zone_full(zonelist, z);
1581 try_next_zone:
1582 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1584 * we do zlc_setup after the first zone is tried but only
1585 * if there are multiple nodes make it worthwhile
1587 allowednodes = zlc_setup(zonelist, alloc_flags);
1588 zlc_active = 1;
1589 did_zlc_setup = 1;
1593 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1594 /* Disable zlc cache for second zonelist scan */
1595 zlc_active = 0;
1596 goto zonelist_scan;
1598 return page;
1601 static inline int
1602 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1603 unsigned long pages_reclaimed)
1605 /* Do not loop if specifically requested */
1606 if (gfp_mask & __GFP_NORETRY)
1607 return 0;
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1614 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1615 return 1;
1618 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1619 * specified, then we retry until we no longer reclaim any pages
1620 * (above), or we've reclaimed an order of pages at least as
1621 * large as the allocation's order. In both cases, if the
1622 * allocation still fails, we stop retrying.
1624 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1625 return 1;
1628 * Don't let big-order allocations loop unless the caller
1629 * explicitly requests that.
1631 if (gfp_mask & __GFP_NOFAIL)
1632 return 1;
1634 return 0;
1637 static inline struct page *
1638 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1639 struct zonelist *zonelist, enum zone_type high_zoneidx,
1640 nodemask_t *nodemask, struct zone *preferred_zone,
1641 int migratetype)
1643 struct page *page;
1645 /* Acquire the OOM killer lock for the zones in zonelist */
1646 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1647 schedule_timeout_uninterruptible(1);
1648 return NULL;
1652 * Go through the zonelist yet one more time, keep very high watermark
1653 * here, this is only to catch a parallel oom killing, we must fail if
1654 * we're still under heavy pressure.
1656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1657 order, zonelist, high_zoneidx,
1658 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1659 preferred_zone, migratetype);
1660 if (page)
1661 goto out;
1663 /* The OOM killer will not help higher order allocs */
1664 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1665 goto out;
1667 /* Exhausted what can be done so it's blamo time */
1668 out_of_memory(zonelist, gfp_mask, order);
1670 out:
1671 clear_zonelist_oom(zonelist, gfp_mask);
1672 return page;
1675 /* The really slow allocator path where we enter direct reclaim */
1676 static inline struct page *
1677 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1678 struct zonelist *zonelist, enum zone_type high_zoneidx,
1679 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1680 int migratetype, unsigned long *did_some_progress)
1682 struct page *page = NULL;
1683 struct reclaim_state reclaim_state;
1684 struct task_struct *p = current;
1685 bool drained = false;
1687 cond_resched();
1689 /* We now go into synchronous reclaim */
1690 cpuset_memory_pressure_bump();
1691 p->flags |= PF_MEMALLOC;
1692 lockdep_set_current_reclaim_state(gfp_mask);
1693 reclaim_state.reclaimed_slab = 0;
1694 p->reclaim_state = &reclaim_state;
1696 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1698 p->reclaim_state = NULL;
1699 lockdep_clear_current_reclaim_state();
1700 p->flags &= ~PF_MEMALLOC;
1702 cond_resched();
1704 if (unlikely(!(*did_some_progress)))
1705 return NULL;
1707 retry:
1708 page = get_page_from_freelist(gfp_mask, nodemask, order,
1709 zonelist, high_zoneidx,
1710 alloc_flags, preferred_zone,
1711 migratetype);
1714 * If an allocation failed after direct reclaim, it could be because
1715 * pages are pinned on the per-cpu lists. Drain them and try again
1717 if (!page && !drained) {
1718 drain_all_pages();
1719 drained = true;
1720 goto retry;
1723 return page;
1727 * This is called in the allocator slow-path if the allocation request is of
1728 * sufficient urgency to ignore watermarks and take other desperate measures
1730 static inline struct page *
1731 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1732 struct zonelist *zonelist, enum zone_type high_zoneidx,
1733 nodemask_t *nodemask, struct zone *preferred_zone,
1734 int migratetype)
1736 struct page *page;
1738 do {
1739 page = get_page_from_freelist(gfp_mask, nodemask, order,
1740 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1741 preferred_zone, migratetype);
1743 if (!page && gfp_mask & __GFP_NOFAIL)
1744 congestion_wait(BLK_RW_ASYNC, HZ/50);
1745 } while (!page && (gfp_mask & __GFP_NOFAIL));
1747 return page;
1750 static inline
1751 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1752 enum zone_type high_zoneidx)
1754 struct zoneref *z;
1755 struct zone *zone;
1757 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1758 wakeup_kswapd(zone, order);
1761 static inline int
1762 gfp_to_alloc_flags(gfp_t gfp_mask)
1764 struct task_struct *p = current;
1765 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1766 const gfp_t wait = gfp_mask & __GFP_WAIT;
1768 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1769 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1772 * The caller may dip into page reserves a bit more if the caller
1773 * cannot run direct reclaim, or if the caller has realtime scheduling
1774 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1775 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1777 alloc_flags |= (gfp_mask & __GFP_HIGH);
1779 if (!wait) {
1780 alloc_flags |= ALLOC_HARDER;
1782 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1783 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1785 alloc_flags &= ~ALLOC_CPUSET;
1786 } else if (unlikely(rt_task(p)) && !in_interrupt())
1787 alloc_flags |= ALLOC_HARDER;
1789 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1790 if (!in_interrupt() &&
1791 ((p->flags & PF_MEMALLOC) ||
1792 unlikely(test_thread_flag(TIF_MEMDIE))))
1793 alloc_flags |= ALLOC_NO_WATERMARKS;
1796 return alloc_flags;
1799 static inline struct page *
1800 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1801 struct zonelist *zonelist, enum zone_type high_zoneidx,
1802 nodemask_t *nodemask, struct zone *preferred_zone,
1803 int migratetype)
1805 const gfp_t wait = gfp_mask & __GFP_WAIT;
1806 struct page *page = NULL;
1807 int alloc_flags;
1808 unsigned long pages_reclaimed = 0;
1809 unsigned long did_some_progress;
1810 struct task_struct *p = current;
1813 * In the slowpath, we sanity check order to avoid ever trying to
1814 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1815 * be using allocators in order of preference for an area that is
1816 * too large.
1818 if (order >= MAX_ORDER) {
1819 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1820 return NULL;
1824 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1825 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1826 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1827 * using a larger set of nodes after it has established that the
1828 * allowed per node queues are empty and that nodes are
1829 * over allocated.
1831 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1832 goto nopage;
1834 restart:
1835 wake_all_kswapd(order, zonelist, high_zoneidx);
1838 * OK, we're below the kswapd watermark and have kicked background
1839 * reclaim. Now things get more complex, so set up alloc_flags according
1840 * to how we want to proceed.
1842 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1844 rebalance:
1845 /* This is the last chance, in general, before the goto nopage. */
1846 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1847 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1848 preferred_zone, migratetype);
1849 if (page)
1850 goto got_pg;
1852 /* Allocate without watermarks if the context allows */
1853 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1854 page = __alloc_pages_high_priority(gfp_mask, order,
1855 zonelist, high_zoneidx, nodemask,
1856 preferred_zone, migratetype);
1857 if (page)
1858 goto got_pg;
1861 /* Atomic allocations - we can't balance anything */
1862 if (!wait)
1863 goto nopage;
1865 /* Avoid recursion of direct reclaim */
1866 if (p->flags & PF_MEMALLOC)
1867 goto nopage;
1869 /* Avoid allocations with no watermarks from looping endlessly */
1870 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1871 goto nopage;
1873 /* Try direct reclaim and then allocating */
1874 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1875 zonelist, high_zoneidx,
1876 nodemask,
1877 alloc_flags, preferred_zone,
1878 migratetype, &did_some_progress);
1879 if (page)
1880 goto got_pg;
1883 * If we failed to make any progress reclaiming, then we are
1884 * running out of options and have to consider going OOM
1886 if (!did_some_progress) {
1887 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1888 if (oom_killer_disabled)
1889 goto nopage;
1890 page = __alloc_pages_may_oom(gfp_mask, order,
1891 zonelist, high_zoneidx,
1892 nodemask, preferred_zone,
1893 migratetype);
1894 if (page)
1895 goto got_pg;
1898 * The OOM killer does not trigger for high-order
1899 * ~__GFP_NOFAIL allocations so if no progress is being
1900 * made, there are no other options and retrying is
1901 * unlikely to help.
1903 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1904 !(gfp_mask & __GFP_NOFAIL))
1905 goto nopage;
1907 goto restart;
1911 /* Check if we should retry the allocation */
1912 pages_reclaimed += did_some_progress;
1913 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1914 /* Wait for some write requests to complete then retry */
1915 congestion_wait(BLK_RW_ASYNC, HZ/50);
1916 goto rebalance;
1919 nopage:
1920 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1921 printk(KERN_WARNING "%s: page allocation failure."
1922 " order:%d, mode:0x%x\n",
1923 p->comm, order, gfp_mask);
1924 dump_stack();
1925 show_mem();
1927 return page;
1928 got_pg:
1929 if (kmemcheck_enabled)
1930 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1931 return page;
1936 * This is the 'heart' of the zoned buddy allocator.
1938 struct page *
1939 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1940 struct zonelist *zonelist, nodemask_t *nodemask)
1942 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1943 struct zone *preferred_zone;
1944 struct page *page;
1945 int migratetype = allocflags_to_migratetype(gfp_mask);
1947 gfp_mask &= gfp_allowed_mask;
1949 lockdep_trace_alloc(gfp_mask);
1951 might_sleep_if(gfp_mask & __GFP_WAIT);
1953 if (should_fail_alloc_page(gfp_mask, order))
1954 return NULL;
1957 * Check the zones suitable for the gfp_mask contain at least one
1958 * valid zone. It's possible to have an empty zonelist as a result
1959 * of GFP_THISNODE and a memoryless node
1961 if (unlikely(!zonelist->_zonerefs->zone))
1962 return NULL;
1964 /* The preferred zone is used for statistics later */
1965 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1966 if (!preferred_zone)
1967 return NULL;
1969 /* First allocation attempt */
1970 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1971 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1972 preferred_zone, migratetype);
1973 if (unlikely(!page))
1974 page = __alloc_pages_slowpath(gfp_mask, order,
1975 zonelist, high_zoneidx, nodemask,
1976 preferred_zone, migratetype);
1978 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1979 return page;
1981 EXPORT_SYMBOL(__alloc_pages_nodemask);
1984 * Common helper functions.
1986 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1988 struct page *page;
1991 * __get_free_pages() returns a 32-bit address, which cannot represent
1992 * a highmem page
1994 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1996 page = alloc_pages(gfp_mask, order);
1997 if (!page)
1998 return 0;
1999 return (unsigned long) page_address(page);
2001 EXPORT_SYMBOL(__get_free_pages);
2003 unsigned long get_zeroed_page(gfp_t gfp_mask)
2005 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2007 EXPORT_SYMBOL(get_zeroed_page);
2009 void __pagevec_free(struct pagevec *pvec)
2011 int i = pagevec_count(pvec);
2013 while (--i >= 0) {
2014 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2015 free_hot_cold_page(pvec->pages[i], pvec->cold);
2019 void __free_pages(struct page *page, unsigned int order)
2021 if (put_page_testzero(page)) {
2022 trace_mm_page_free_direct(page, order);
2023 if (order == 0)
2024 free_hot_page(page);
2025 else
2026 __free_pages_ok(page, order);
2030 EXPORT_SYMBOL(__free_pages);
2032 void free_pages(unsigned long addr, unsigned int order)
2034 if (addr != 0) {
2035 VM_BUG_ON(!virt_addr_valid((void *)addr));
2036 __free_pages(virt_to_page((void *)addr), order);
2040 EXPORT_SYMBOL(free_pages);
2043 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2044 * @size: the number of bytes to allocate
2045 * @gfp_mask: GFP flags for the allocation
2047 * This function is similar to alloc_pages(), except that it allocates the
2048 * minimum number of pages to satisfy the request. alloc_pages() can only
2049 * allocate memory in power-of-two pages.
2051 * This function is also limited by MAX_ORDER.
2053 * Memory allocated by this function must be released by free_pages_exact().
2055 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2057 unsigned int order = get_order(size);
2058 unsigned long addr;
2060 addr = __get_free_pages(gfp_mask, order);
2061 if (addr) {
2062 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2063 unsigned long used = addr + PAGE_ALIGN(size);
2065 split_page(virt_to_page((void *)addr), order);
2066 while (used < alloc_end) {
2067 free_page(used);
2068 used += PAGE_SIZE;
2072 return (void *)addr;
2074 EXPORT_SYMBOL(alloc_pages_exact);
2077 * free_pages_exact - release memory allocated via alloc_pages_exact()
2078 * @virt: the value returned by alloc_pages_exact.
2079 * @size: size of allocation, same value as passed to alloc_pages_exact().
2081 * Release the memory allocated by a previous call to alloc_pages_exact.
2083 void free_pages_exact(void *virt, size_t size)
2085 unsigned long addr = (unsigned long)virt;
2086 unsigned long end = addr + PAGE_ALIGN(size);
2088 while (addr < end) {
2089 free_page(addr);
2090 addr += PAGE_SIZE;
2093 EXPORT_SYMBOL(free_pages_exact);
2095 static unsigned int nr_free_zone_pages(int offset)
2097 struct zoneref *z;
2098 struct zone *zone;
2100 /* Just pick one node, since fallback list is circular */
2101 unsigned int sum = 0;
2103 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2105 for_each_zone_zonelist(zone, z, zonelist, offset) {
2106 unsigned long size = zone->present_pages;
2107 unsigned long high = high_wmark_pages(zone);
2108 if (size > high)
2109 sum += size - high;
2112 return sum;
2116 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2118 unsigned int nr_free_buffer_pages(void)
2120 return nr_free_zone_pages(gfp_zone(GFP_USER));
2122 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2125 * Amount of free RAM allocatable within all zones
2127 unsigned int nr_free_pagecache_pages(void)
2129 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2132 static inline void show_node(struct zone *zone)
2134 if (NUMA_BUILD)
2135 printk("Node %d ", zone_to_nid(zone));
2138 void si_meminfo(struct sysinfo *val)
2140 val->totalram = totalram_pages;
2141 val->sharedram = 0;
2142 val->freeram = global_page_state(NR_FREE_PAGES);
2143 val->bufferram = nr_blockdev_pages();
2144 val->totalhigh = totalhigh_pages;
2145 val->freehigh = nr_free_highpages();
2146 val->mem_unit = PAGE_SIZE;
2149 EXPORT_SYMBOL(si_meminfo);
2151 #ifdef CONFIG_NUMA
2152 void si_meminfo_node(struct sysinfo *val, int nid)
2154 pg_data_t *pgdat = NODE_DATA(nid);
2156 val->totalram = pgdat->node_present_pages;
2157 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2158 #ifdef CONFIG_HIGHMEM
2159 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2160 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2161 NR_FREE_PAGES);
2162 #else
2163 val->totalhigh = 0;
2164 val->freehigh = 0;
2165 #endif
2166 val->mem_unit = PAGE_SIZE;
2168 #endif
2170 #define K(x) ((x) << (PAGE_SHIFT-10))
2173 * Show free area list (used inside shift_scroll-lock stuff)
2174 * We also calculate the percentage fragmentation. We do this by counting the
2175 * memory on each free list with the exception of the first item on the list.
2177 void show_free_areas(void)
2179 int cpu;
2180 struct zone *zone;
2182 for_each_populated_zone(zone) {
2183 show_node(zone);
2184 printk("%s per-cpu:\n", zone->name);
2186 for_each_online_cpu(cpu) {
2187 struct per_cpu_pageset *pageset;
2189 pageset = zone_pcp(zone, cpu);
2191 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2192 cpu, pageset->pcp.high,
2193 pageset->pcp.batch, pageset->pcp.count);
2197 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2198 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2199 " unevictable:%lu"
2200 " dirty:%lu writeback:%lu unstable:%lu\n"
2201 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2202 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2203 global_page_state(NR_ACTIVE_ANON),
2204 global_page_state(NR_INACTIVE_ANON),
2205 global_page_state(NR_ISOLATED_ANON),
2206 global_page_state(NR_ACTIVE_FILE),
2207 global_page_state(NR_INACTIVE_FILE),
2208 global_page_state(NR_ISOLATED_FILE),
2209 global_page_state(NR_UNEVICTABLE),
2210 global_page_state(NR_FILE_DIRTY),
2211 global_page_state(NR_WRITEBACK),
2212 global_page_state(NR_UNSTABLE_NFS),
2213 global_page_state(NR_FREE_PAGES),
2214 global_page_state(NR_SLAB_RECLAIMABLE),
2215 global_page_state(NR_SLAB_UNRECLAIMABLE),
2216 global_page_state(NR_FILE_MAPPED),
2217 global_page_state(NR_SHMEM),
2218 global_page_state(NR_PAGETABLE),
2219 global_page_state(NR_BOUNCE));
2221 for_each_populated_zone(zone) {
2222 int i;
2224 show_node(zone);
2225 printk("%s"
2226 " free:%lukB"
2227 " min:%lukB"
2228 " low:%lukB"
2229 " high:%lukB"
2230 " active_anon:%lukB"
2231 " inactive_anon:%lukB"
2232 " active_file:%lukB"
2233 " inactive_file:%lukB"
2234 " unevictable:%lukB"
2235 " isolated(anon):%lukB"
2236 " isolated(file):%lukB"
2237 " present:%lukB"
2238 " mlocked:%lukB"
2239 " dirty:%lukB"
2240 " writeback:%lukB"
2241 " mapped:%lukB"
2242 " shmem:%lukB"
2243 " slab_reclaimable:%lukB"
2244 " slab_unreclaimable:%lukB"
2245 " kernel_stack:%lukB"
2246 " pagetables:%lukB"
2247 " unstable:%lukB"
2248 " bounce:%lukB"
2249 " writeback_tmp:%lukB"
2250 " pages_scanned:%lu"
2251 " all_unreclaimable? %s"
2252 "\n",
2253 zone->name,
2254 K(zone_nr_free_pages(zone)),
2255 K(min_wmark_pages(zone)),
2256 K(low_wmark_pages(zone)),
2257 K(high_wmark_pages(zone)),
2258 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2259 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2260 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2261 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2262 K(zone_page_state(zone, NR_UNEVICTABLE)),
2263 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2264 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2265 K(zone->present_pages),
2266 K(zone_page_state(zone, NR_MLOCK)),
2267 K(zone_page_state(zone, NR_FILE_DIRTY)),
2268 K(zone_page_state(zone, NR_WRITEBACK)),
2269 K(zone_page_state(zone, NR_FILE_MAPPED)),
2270 K(zone_page_state(zone, NR_SHMEM)),
2271 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2272 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2273 zone_page_state(zone, NR_KERNEL_STACK) *
2274 THREAD_SIZE / 1024,
2275 K(zone_page_state(zone, NR_PAGETABLE)),
2276 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2277 K(zone_page_state(zone, NR_BOUNCE)),
2278 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2279 zone->pages_scanned,
2280 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2282 printk("lowmem_reserve[]:");
2283 for (i = 0; i < MAX_NR_ZONES; i++)
2284 printk(" %lu", zone->lowmem_reserve[i]);
2285 printk("\n");
2288 for_each_populated_zone(zone) {
2289 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2291 show_node(zone);
2292 printk("%s: ", zone->name);
2294 spin_lock_irqsave(&zone->lock, flags);
2295 for (order = 0; order < MAX_ORDER; order++) {
2296 nr[order] = zone->free_area[order].nr_free;
2297 total += nr[order] << order;
2299 spin_unlock_irqrestore(&zone->lock, flags);
2300 for (order = 0; order < MAX_ORDER; order++)
2301 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2302 printk("= %lukB\n", K(total));
2305 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2307 show_swap_cache_info();
2310 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2312 zoneref->zone = zone;
2313 zoneref->zone_idx = zone_idx(zone);
2317 * Builds allocation fallback zone lists.
2319 * Add all populated zones of a node to the zonelist.
2321 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2322 int nr_zones, enum zone_type zone_type)
2324 struct zone *zone;
2326 BUG_ON(zone_type >= MAX_NR_ZONES);
2327 zone_type++;
2329 do {
2330 zone_type--;
2331 zone = pgdat->node_zones + zone_type;
2332 if (populated_zone(zone)) {
2333 zoneref_set_zone(zone,
2334 &zonelist->_zonerefs[nr_zones++]);
2335 check_highest_zone(zone_type);
2338 } while (zone_type);
2339 return nr_zones;
2344 * zonelist_order:
2345 * 0 = automatic detection of better ordering.
2346 * 1 = order by ([node] distance, -zonetype)
2347 * 2 = order by (-zonetype, [node] distance)
2349 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2350 * the same zonelist. So only NUMA can configure this param.
2352 #define ZONELIST_ORDER_DEFAULT 0
2353 #define ZONELIST_ORDER_NODE 1
2354 #define ZONELIST_ORDER_ZONE 2
2356 /* zonelist order in the kernel.
2357 * set_zonelist_order() will set this to NODE or ZONE.
2359 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2360 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2363 #ifdef CONFIG_NUMA
2364 /* The value user specified ....changed by config */
2365 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2366 /* string for sysctl */
2367 #define NUMA_ZONELIST_ORDER_LEN 16
2368 char numa_zonelist_order[16] = "default";
2371 * interface for configure zonelist ordering.
2372 * command line option "numa_zonelist_order"
2373 * = "[dD]efault - default, automatic configuration.
2374 * = "[nN]ode - order by node locality, then by zone within node
2375 * = "[zZ]one - order by zone, then by locality within zone
2378 static int __parse_numa_zonelist_order(char *s)
2380 if (*s == 'd' || *s == 'D') {
2381 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2382 } else if (*s == 'n' || *s == 'N') {
2383 user_zonelist_order = ZONELIST_ORDER_NODE;
2384 } else if (*s == 'z' || *s == 'Z') {
2385 user_zonelist_order = ZONELIST_ORDER_ZONE;
2386 } else {
2387 printk(KERN_WARNING
2388 "Ignoring invalid numa_zonelist_order value: "
2389 "%s\n", s);
2390 return -EINVAL;
2392 return 0;
2395 static __init int setup_numa_zonelist_order(char *s)
2397 if (s)
2398 return __parse_numa_zonelist_order(s);
2399 return 0;
2401 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2404 * sysctl handler for numa_zonelist_order
2406 int numa_zonelist_order_handler(ctl_table *table, int write,
2407 void __user *buffer, size_t *length,
2408 loff_t *ppos)
2410 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2411 int ret;
2413 if (write)
2414 strncpy(saved_string, (char*)table->data,
2415 NUMA_ZONELIST_ORDER_LEN);
2416 ret = proc_dostring(table, write, buffer, length, ppos);
2417 if (ret)
2418 return ret;
2419 if (write) {
2420 int oldval = user_zonelist_order;
2421 if (__parse_numa_zonelist_order((char*)table->data)) {
2423 * bogus value. restore saved string
2425 strncpy((char*)table->data, saved_string,
2426 NUMA_ZONELIST_ORDER_LEN);
2427 user_zonelist_order = oldval;
2428 } else if (oldval != user_zonelist_order)
2429 build_all_zonelists();
2431 return 0;
2435 #define MAX_NODE_LOAD (nr_online_nodes)
2436 static int node_load[MAX_NUMNODES];
2439 * find_next_best_node - find the next node that should appear in a given node's fallback list
2440 * @node: node whose fallback list we're appending
2441 * @used_node_mask: nodemask_t of already used nodes
2443 * We use a number of factors to determine which is the next node that should
2444 * appear on a given node's fallback list. The node should not have appeared
2445 * already in @node's fallback list, and it should be the next closest node
2446 * according to the distance array (which contains arbitrary distance values
2447 * from each node to each node in the system), and should also prefer nodes
2448 * with no CPUs, since presumably they'll have very little allocation pressure
2449 * on them otherwise.
2450 * It returns -1 if no node is found.
2452 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2454 int n, val;
2455 int min_val = INT_MAX;
2456 int best_node = -1;
2457 const struct cpumask *tmp = cpumask_of_node(0);
2459 /* Use the local node if we haven't already */
2460 if (!node_isset(node, *used_node_mask)) {
2461 node_set(node, *used_node_mask);
2462 return node;
2465 for_each_node_state(n, N_HIGH_MEMORY) {
2467 /* Don't want a node to appear more than once */
2468 if (node_isset(n, *used_node_mask))
2469 continue;
2471 /* Use the distance array to find the distance */
2472 val = node_distance(node, n);
2474 /* Penalize nodes under us ("prefer the next node") */
2475 val += (n < node);
2477 /* Give preference to headless and unused nodes */
2478 tmp = cpumask_of_node(n);
2479 if (!cpumask_empty(tmp))
2480 val += PENALTY_FOR_NODE_WITH_CPUS;
2482 /* Slight preference for less loaded node */
2483 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2484 val += node_load[n];
2486 if (val < min_val) {
2487 min_val = val;
2488 best_node = n;
2492 if (best_node >= 0)
2493 node_set(best_node, *used_node_mask);
2495 return best_node;
2500 * Build zonelists ordered by node and zones within node.
2501 * This results in maximum locality--normal zone overflows into local
2502 * DMA zone, if any--but risks exhausting DMA zone.
2504 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2506 int j;
2507 struct zonelist *zonelist;
2509 zonelist = &pgdat->node_zonelists[0];
2510 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2512 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2513 MAX_NR_ZONES - 1);
2514 zonelist->_zonerefs[j].zone = NULL;
2515 zonelist->_zonerefs[j].zone_idx = 0;
2519 * Build gfp_thisnode zonelists
2521 static void build_thisnode_zonelists(pg_data_t *pgdat)
2523 int j;
2524 struct zonelist *zonelist;
2526 zonelist = &pgdat->node_zonelists[1];
2527 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2528 zonelist->_zonerefs[j].zone = NULL;
2529 zonelist->_zonerefs[j].zone_idx = 0;
2533 * Build zonelists ordered by zone and nodes within zones.
2534 * This results in conserving DMA zone[s] until all Normal memory is
2535 * exhausted, but results in overflowing to remote node while memory
2536 * may still exist in local DMA zone.
2538 static int node_order[MAX_NUMNODES];
2540 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2542 int pos, j, node;
2543 int zone_type; /* needs to be signed */
2544 struct zone *z;
2545 struct zonelist *zonelist;
2547 zonelist = &pgdat->node_zonelists[0];
2548 pos = 0;
2549 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2550 for (j = 0; j < nr_nodes; j++) {
2551 node = node_order[j];
2552 z = &NODE_DATA(node)->node_zones[zone_type];
2553 if (populated_zone(z)) {
2554 zoneref_set_zone(z,
2555 &zonelist->_zonerefs[pos++]);
2556 check_highest_zone(zone_type);
2560 zonelist->_zonerefs[pos].zone = NULL;
2561 zonelist->_zonerefs[pos].zone_idx = 0;
2564 static int default_zonelist_order(void)
2566 int nid, zone_type;
2567 unsigned long low_kmem_size,total_size;
2568 struct zone *z;
2569 int average_size;
2571 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2572 * If they are really small and used heavily, the system can fall
2573 * into OOM very easily.
2574 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2576 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2577 low_kmem_size = 0;
2578 total_size = 0;
2579 for_each_online_node(nid) {
2580 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2581 z = &NODE_DATA(nid)->node_zones[zone_type];
2582 if (populated_zone(z)) {
2583 if (zone_type < ZONE_NORMAL)
2584 low_kmem_size += z->present_pages;
2585 total_size += z->present_pages;
2589 if (!low_kmem_size || /* there are no DMA area. */
2590 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2591 return ZONELIST_ORDER_NODE;
2593 * look into each node's config.
2594 * If there is a node whose DMA/DMA32 memory is very big area on
2595 * local memory, NODE_ORDER may be suitable.
2597 average_size = total_size /
2598 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2599 for_each_online_node(nid) {
2600 low_kmem_size = 0;
2601 total_size = 0;
2602 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2603 z = &NODE_DATA(nid)->node_zones[zone_type];
2604 if (populated_zone(z)) {
2605 if (zone_type < ZONE_NORMAL)
2606 low_kmem_size += z->present_pages;
2607 total_size += z->present_pages;
2610 if (low_kmem_size &&
2611 total_size > average_size && /* ignore small node */
2612 low_kmem_size > total_size * 70/100)
2613 return ZONELIST_ORDER_NODE;
2615 return ZONELIST_ORDER_ZONE;
2618 static void set_zonelist_order(void)
2620 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2621 current_zonelist_order = default_zonelist_order();
2622 else
2623 current_zonelist_order = user_zonelist_order;
2626 static void build_zonelists(pg_data_t *pgdat)
2628 int j, node, load;
2629 enum zone_type i;
2630 nodemask_t used_mask;
2631 int local_node, prev_node;
2632 struct zonelist *zonelist;
2633 int order = current_zonelist_order;
2635 /* initialize zonelists */
2636 for (i = 0; i < MAX_ZONELISTS; i++) {
2637 zonelist = pgdat->node_zonelists + i;
2638 zonelist->_zonerefs[0].zone = NULL;
2639 zonelist->_zonerefs[0].zone_idx = 0;
2642 /* NUMA-aware ordering of nodes */
2643 local_node = pgdat->node_id;
2644 load = nr_online_nodes;
2645 prev_node = local_node;
2646 nodes_clear(used_mask);
2648 memset(node_order, 0, sizeof(node_order));
2649 j = 0;
2651 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2652 int distance = node_distance(local_node, node);
2655 * If another node is sufficiently far away then it is better
2656 * to reclaim pages in a zone before going off node.
2658 if (distance > RECLAIM_DISTANCE)
2659 zone_reclaim_mode = 1;
2662 * We don't want to pressure a particular node.
2663 * So adding penalty to the first node in same
2664 * distance group to make it round-robin.
2666 if (distance != node_distance(local_node, prev_node))
2667 node_load[node] = load;
2669 prev_node = node;
2670 load--;
2671 if (order == ZONELIST_ORDER_NODE)
2672 build_zonelists_in_node_order(pgdat, node);
2673 else
2674 node_order[j++] = node; /* remember order */
2677 if (order == ZONELIST_ORDER_ZONE) {
2678 /* calculate node order -- i.e., DMA last! */
2679 build_zonelists_in_zone_order(pgdat, j);
2682 build_thisnode_zonelists(pgdat);
2685 /* Construct the zonelist performance cache - see further mmzone.h */
2686 static void build_zonelist_cache(pg_data_t *pgdat)
2688 struct zonelist *zonelist;
2689 struct zonelist_cache *zlc;
2690 struct zoneref *z;
2692 zonelist = &pgdat->node_zonelists[0];
2693 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2694 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2695 for (z = zonelist->_zonerefs; z->zone; z++)
2696 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2700 #else /* CONFIG_NUMA */
2702 static void set_zonelist_order(void)
2704 current_zonelist_order = ZONELIST_ORDER_ZONE;
2707 static void build_zonelists(pg_data_t *pgdat)
2709 int node, local_node;
2710 enum zone_type j;
2711 struct zonelist *zonelist;
2713 local_node = pgdat->node_id;
2715 zonelist = &pgdat->node_zonelists[0];
2716 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2719 * Now we build the zonelist so that it contains the zones
2720 * of all the other nodes.
2721 * We don't want to pressure a particular node, so when
2722 * building the zones for node N, we make sure that the
2723 * zones coming right after the local ones are those from
2724 * node N+1 (modulo N)
2726 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2727 if (!node_online(node))
2728 continue;
2729 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2730 MAX_NR_ZONES - 1);
2732 for (node = 0; node < local_node; node++) {
2733 if (!node_online(node))
2734 continue;
2735 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2736 MAX_NR_ZONES - 1);
2739 zonelist->_zonerefs[j].zone = NULL;
2740 zonelist->_zonerefs[j].zone_idx = 0;
2743 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2744 static void build_zonelist_cache(pg_data_t *pgdat)
2746 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2749 #endif /* CONFIG_NUMA */
2751 /* return values int ....just for stop_machine() */
2752 static int __build_all_zonelists(void *dummy)
2754 int nid;
2756 #ifdef CONFIG_NUMA
2757 memset(node_load, 0, sizeof(node_load));
2758 #endif
2759 for_each_online_node(nid) {
2760 pg_data_t *pgdat = NODE_DATA(nid);
2762 build_zonelists(pgdat);
2763 build_zonelist_cache(pgdat);
2765 return 0;
2768 void build_all_zonelists(void)
2770 set_zonelist_order();
2772 if (system_state == SYSTEM_BOOTING) {
2773 __build_all_zonelists(NULL);
2774 mminit_verify_zonelist();
2775 cpuset_init_current_mems_allowed();
2776 } else {
2777 /* we have to stop all cpus to guarantee there is no user
2778 of zonelist */
2779 stop_machine(__build_all_zonelists, NULL, NULL);
2780 /* cpuset refresh routine should be here */
2782 vm_total_pages = nr_free_pagecache_pages();
2784 * Disable grouping by mobility if the number of pages in the
2785 * system is too low to allow the mechanism to work. It would be
2786 * more accurate, but expensive to check per-zone. This check is
2787 * made on memory-hotadd so a system can start with mobility
2788 * disabled and enable it later
2790 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2791 page_group_by_mobility_disabled = 1;
2792 else
2793 page_group_by_mobility_disabled = 0;
2795 printk("Built %i zonelists in %s order, mobility grouping %s. "
2796 "Total pages: %ld\n",
2797 nr_online_nodes,
2798 zonelist_order_name[current_zonelist_order],
2799 page_group_by_mobility_disabled ? "off" : "on",
2800 vm_total_pages);
2801 #ifdef CONFIG_NUMA
2802 printk("Policy zone: %s\n", zone_names[policy_zone]);
2803 #endif
2807 * Helper functions to size the waitqueue hash table.
2808 * Essentially these want to choose hash table sizes sufficiently
2809 * large so that collisions trying to wait on pages are rare.
2810 * But in fact, the number of active page waitqueues on typical
2811 * systems is ridiculously low, less than 200. So this is even
2812 * conservative, even though it seems large.
2814 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2815 * waitqueues, i.e. the size of the waitq table given the number of pages.
2817 #define PAGES_PER_WAITQUEUE 256
2819 #ifndef CONFIG_MEMORY_HOTPLUG
2820 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2822 unsigned long size = 1;
2824 pages /= PAGES_PER_WAITQUEUE;
2826 while (size < pages)
2827 size <<= 1;
2830 * Once we have dozens or even hundreds of threads sleeping
2831 * on IO we've got bigger problems than wait queue collision.
2832 * Limit the size of the wait table to a reasonable size.
2834 size = min(size, 4096UL);
2836 return max(size, 4UL);
2838 #else
2840 * A zone's size might be changed by hot-add, so it is not possible to determine
2841 * a suitable size for its wait_table. So we use the maximum size now.
2843 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2845 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2846 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2847 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2849 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2850 * or more by the traditional way. (See above). It equals:
2852 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2853 * ia64(16K page size) : = ( 8G + 4M)byte.
2854 * powerpc (64K page size) : = (32G +16M)byte.
2856 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2858 return 4096UL;
2860 #endif
2863 * This is an integer logarithm so that shifts can be used later
2864 * to extract the more random high bits from the multiplicative
2865 * hash function before the remainder is taken.
2867 static inline unsigned long wait_table_bits(unsigned long size)
2869 return ffz(~size);
2872 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2875 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2876 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2877 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2878 * higher will lead to a bigger reserve which will get freed as contiguous
2879 * blocks as reclaim kicks in
2881 static void setup_zone_migrate_reserve(struct zone *zone)
2883 unsigned long start_pfn, pfn, end_pfn;
2884 struct page *page;
2885 unsigned long block_migratetype;
2886 int reserve;
2888 /* Get the start pfn, end pfn and the number of blocks to reserve */
2889 start_pfn = zone->zone_start_pfn;
2890 end_pfn = start_pfn + zone->spanned_pages;
2891 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2892 pageblock_order;
2895 * Reserve blocks are generally in place to help high-order atomic
2896 * allocations that are short-lived. A min_free_kbytes value that
2897 * would result in more than 2 reserve blocks for atomic allocations
2898 * is assumed to be in place to help anti-fragmentation for the
2899 * future allocation of hugepages at runtime.
2901 reserve = min(2, reserve);
2903 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2904 if (!pfn_valid(pfn))
2905 continue;
2906 page = pfn_to_page(pfn);
2908 /* Watch out for overlapping nodes */
2909 if (page_to_nid(page) != zone_to_nid(zone))
2910 continue;
2912 /* Blocks with reserved pages will never free, skip them. */
2913 if (PageReserved(page))
2914 continue;
2916 block_migratetype = get_pageblock_migratetype(page);
2918 /* If this block is reserved, account for it */
2919 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2920 reserve--;
2921 continue;
2924 /* Suitable for reserving if this block is movable */
2925 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2926 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2927 move_freepages_block(zone, page, MIGRATE_RESERVE);
2928 reserve--;
2929 continue;
2933 * If the reserve is met and this is a previous reserved block,
2934 * take it back
2936 if (block_migratetype == MIGRATE_RESERVE) {
2937 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2938 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2944 * Initially all pages are reserved - free ones are freed
2945 * up by free_all_bootmem() once the early boot process is
2946 * done. Non-atomic initialization, single-pass.
2948 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2949 unsigned long start_pfn, enum memmap_context context)
2951 struct page *page;
2952 unsigned long end_pfn = start_pfn + size;
2953 unsigned long pfn;
2954 struct zone *z;
2956 if (highest_memmap_pfn < end_pfn - 1)
2957 highest_memmap_pfn = end_pfn - 1;
2959 z = &NODE_DATA(nid)->node_zones[zone];
2960 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2962 * There can be holes in boot-time mem_map[]s
2963 * handed to this function. They do not
2964 * exist on hotplugged memory.
2966 if (context == MEMMAP_EARLY) {
2967 if (!early_pfn_valid(pfn))
2968 continue;
2969 if (!early_pfn_in_nid(pfn, nid))
2970 continue;
2972 page = pfn_to_page(pfn);
2973 set_page_links(page, zone, nid, pfn);
2974 mminit_verify_page_links(page, zone, nid, pfn);
2975 init_page_count(page);
2976 reset_page_mapcount(page);
2977 SetPageReserved(page);
2979 * Mark the block movable so that blocks are reserved for
2980 * movable at startup. This will force kernel allocations
2981 * to reserve their blocks rather than leaking throughout
2982 * the address space during boot when many long-lived
2983 * kernel allocations are made. Later some blocks near
2984 * the start are marked MIGRATE_RESERVE by
2985 * setup_zone_migrate_reserve()
2987 * bitmap is created for zone's valid pfn range. but memmap
2988 * can be created for invalid pages (for alignment)
2989 * check here not to call set_pageblock_migratetype() against
2990 * pfn out of zone.
2992 if ((z->zone_start_pfn <= pfn)
2993 && (pfn < z->zone_start_pfn + z->spanned_pages)
2994 && !(pfn & (pageblock_nr_pages - 1)))
2995 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2997 INIT_LIST_HEAD(&page->lru);
2998 #ifdef WANT_PAGE_VIRTUAL
2999 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3000 if (!is_highmem_idx(zone))
3001 set_page_address(page, __va(pfn << PAGE_SHIFT));
3002 #endif
3006 static void __meminit zone_init_free_lists(struct zone *zone)
3008 int order, t;
3009 for_each_migratetype_order(order, t) {
3010 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3011 zone->free_area[order].nr_free = 0;
3015 #ifndef __HAVE_ARCH_MEMMAP_INIT
3016 #define memmap_init(size, nid, zone, start_pfn) \
3017 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3018 #endif
3020 static int zone_batchsize(struct zone *zone)
3022 #ifdef CONFIG_MMU
3023 int batch;
3026 * The per-cpu-pages pools are set to around 1000th of the
3027 * size of the zone. But no more than 1/2 of a meg.
3029 * OK, so we don't know how big the cache is. So guess.
3031 batch = zone->present_pages / 1024;
3032 if (batch * PAGE_SIZE > 512 * 1024)
3033 batch = (512 * 1024) / PAGE_SIZE;
3034 batch /= 4; /* We effectively *= 4 below */
3035 if (batch < 1)
3036 batch = 1;
3039 * Clamp the batch to a 2^n - 1 value. Having a power
3040 * of 2 value was found to be more likely to have
3041 * suboptimal cache aliasing properties in some cases.
3043 * For example if 2 tasks are alternately allocating
3044 * batches of pages, one task can end up with a lot
3045 * of pages of one half of the possible page colors
3046 * and the other with pages of the other colors.
3048 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3050 return batch;
3052 #else
3053 /* The deferral and batching of frees should be suppressed under NOMMU
3054 * conditions.
3056 * The problem is that NOMMU needs to be able to allocate large chunks
3057 * of contiguous memory as there's no hardware page translation to
3058 * assemble apparent contiguous memory from discontiguous pages.
3060 * Queueing large contiguous runs of pages for batching, however,
3061 * causes the pages to actually be freed in smaller chunks. As there
3062 * can be a significant delay between the individual batches being
3063 * recycled, this leads to the once large chunks of space being
3064 * fragmented and becoming unavailable for high-order allocations.
3066 return 0;
3067 #endif
3070 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3072 struct per_cpu_pages *pcp;
3073 int migratetype;
3075 memset(p, 0, sizeof(*p));
3077 pcp = &p->pcp;
3078 pcp->count = 0;
3079 pcp->high = 6 * batch;
3080 pcp->batch = max(1UL, 1 * batch);
3081 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3082 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3086 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3087 * to the value high for the pageset p.
3090 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3091 unsigned long high)
3093 struct per_cpu_pages *pcp;
3095 pcp = &p->pcp;
3096 pcp->high = high;
3097 pcp->batch = max(1UL, high/4);
3098 if ((high/4) > (PAGE_SHIFT * 8))
3099 pcp->batch = PAGE_SHIFT * 8;
3103 #ifdef CONFIG_NUMA
3105 * Boot pageset table. One per cpu which is going to be used for all
3106 * zones and all nodes. The parameters will be set in such a way
3107 * that an item put on a list will immediately be handed over to
3108 * the buddy list. This is safe since pageset manipulation is done
3109 * with interrupts disabled.
3111 * Some NUMA counter updates may also be caught by the boot pagesets.
3113 * The boot_pagesets must be kept even after bootup is complete for
3114 * unused processors and/or zones. They do play a role for bootstrapping
3115 * hotplugged processors.
3117 * zoneinfo_show() and maybe other functions do
3118 * not check if the processor is online before following the pageset pointer.
3119 * Other parts of the kernel may not check if the zone is available.
3121 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3124 * Dynamically allocate memory for the
3125 * per cpu pageset array in struct zone.
3127 static int __cpuinit process_zones(int cpu)
3129 struct zone *zone, *dzone;
3130 int node = cpu_to_node(cpu);
3132 node_set_state(node, N_CPU); /* this node has a cpu */
3134 for_each_populated_zone(zone) {
3135 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3136 GFP_KERNEL, node);
3137 if (!zone_pcp(zone, cpu))
3138 goto bad;
3140 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3142 if (percpu_pagelist_fraction)
3143 setup_pagelist_highmark(zone_pcp(zone, cpu),
3144 (zone->present_pages / percpu_pagelist_fraction));
3147 return 0;
3148 bad:
3149 for_each_zone(dzone) {
3150 if (!populated_zone(dzone))
3151 continue;
3152 if (dzone == zone)
3153 break;
3154 kfree(zone_pcp(dzone, cpu));
3155 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3157 return -ENOMEM;
3160 static inline void free_zone_pagesets(int cpu)
3162 struct zone *zone;
3164 for_each_zone(zone) {
3165 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3167 /* Free per_cpu_pageset if it is slab allocated */
3168 if (pset != &boot_pageset[cpu])
3169 kfree(pset);
3170 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3174 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3175 unsigned long action,
3176 void *hcpu)
3178 int cpu = (long)hcpu;
3179 int ret = NOTIFY_OK;
3181 switch (action) {
3182 case CPU_UP_PREPARE:
3183 case CPU_UP_PREPARE_FROZEN:
3184 if (process_zones(cpu))
3185 ret = NOTIFY_BAD;
3186 break;
3187 case CPU_UP_CANCELED:
3188 case CPU_UP_CANCELED_FROZEN:
3189 case CPU_DEAD:
3190 case CPU_DEAD_FROZEN:
3191 free_zone_pagesets(cpu);
3192 break;
3193 default:
3194 break;
3196 return ret;
3199 static struct notifier_block __cpuinitdata pageset_notifier =
3200 { &pageset_cpuup_callback, NULL, 0 };
3202 void __init setup_per_cpu_pageset(void)
3204 int err;
3206 /* Initialize per_cpu_pageset for cpu 0.
3207 * A cpuup callback will do this for every cpu
3208 * as it comes online
3210 err = process_zones(smp_processor_id());
3211 BUG_ON(err);
3212 register_cpu_notifier(&pageset_notifier);
3215 #endif
3217 static noinline __init_refok
3218 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3220 int i;
3221 struct pglist_data *pgdat = zone->zone_pgdat;
3222 size_t alloc_size;
3225 * The per-page waitqueue mechanism uses hashed waitqueues
3226 * per zone.
3228 zone->wait_table_hash_nr_entries =
3229 wait_table_hash_nr_entries(zone_size_pages);
3230 zone->wait_table_bits =
3231 wait_table_bits(zone->wait_table_hash_nr_entries);
3232 alloc_size = zone->wait_table_hash_nr_entries
3233 * sizeof(wait_queue_head_t);
3235 if (!slab_is_available()) {
3236 zone->wait_table = (wait_queue_head_t *)
3237 alloc_bootmem_node(pgdat, alloc_size);
3238 } else {
3240 * This case means that a zone whose size was 0 gets new memory
3241 * via memory hot-add.
3242 * But it may be the case that a new node was hot-added. In
3243 * this case vmalloc() will not be able to use this new node's
3244 * memory - this wait_table must be initialized to use this new
3245 * node itself as well.
3246 * To use this new node's memory, further consideration will be
3247 * necessary.
3249 zone->wait_table = vmalloc(alloc_size);
3251 if (!zone->wait_table)
3252 return -ENOMEM;
3254 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3255 init_waitqueue_head(zone->wait_table + i);
3257 return 0;
3260 static int __zone_pcp_update(void *data)
3262 struct zone *zone = data;
3263 int cpu;
3264 unsigned long batch = zone_batchsize(zone), flags;
3266 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3267 struct per_cpu_pageset *pset;
3268 struct per_cpu_pages *pcp;
3270 pset = zone_pcp(zone, cpu);
3271 pcp = &pset->pcp;
3273 local_irq_save(flags);
3274 free_pcppages_bulk(zone, pcp->count, pcp);
3275 setup_pageset(pset, batch);
3276 local_irq_restore(flags);
3278 return 0;
3281 void zone_pcp_update(struct zone *zone)
3283 stop_machine(__zone_pcp_update, zone, NULL);
3286 static __meminit void zone_pcp_init(struct zone *zone)
3288 int cpu;
3289 unsigned long batch = zone_batchsize(zone);
3291 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3292 #ifdef CONFIG_NUMA
3293 /* Early boot. Slab allocator not functional yet */
3294 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3295 setup_pageset(&boot_pageset[cpu],0);
3296 #else
3297 setup_pageset(zone_pcp(zone,cpu), batch);
3298 #endif
3300 if (zone->present_pages)
3301 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3302 zone->name, zone->present_pages, batch);
3305 __meminit int init_currently_empty_zone(struct zone *zone,
3306 unsigned long zone_start_pfn,
3307 unsigned long size,
3308 enum memmap_context context)
3310 struct pglist_data *pgdat = zone->zone_pgdat;
3311 int ret;
3312 ret = zone_wait_table_init(zone, size);
3313 if (ret)
3314 return ret;
3315 pgdat->nr_zones = zone_idx(zone) + 1;
3317 zone->zone_start_pfn = zone_start_pfn;
3319 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3320 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3321 pgdat->node_id,
3322 (unsigned long)zone_idx(zone),
3323 zone_start_pfn, (zone_start_pfn + size));
3325 zone_init_free_lists(zone);
3327 return 0;
3330 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3332 * Basic iterator support. Return the first range of PFNs for a node
3333 * Note: nid == MAX_NUMNODES returns first region regardless of node
3335 static int __meminit first_active_region_index_in_nid(int nid)
3337 int i;
3339 for (i = 0; i < nr_nodemap_entries; i++)
3340 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3341 return i;
3343 return -1;
3347 * Basic iterator support. Return the next active range of PFNs for a node
3348 * Note: nid == MAX_NUMNODES returns next region regardless of node
3350 static int __meminit next_active_region_index_in_nid(int index, int nid)
3352 for (index = index + 1; index < nr_nodemap_entries; index++)
3353 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3354 return index;
3356 return -1;
3359 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3361 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3362 * Architectures may implement their own version but if add_active_range()
3363 * was used and there are no special requirements, this is a convenient
3364 * alternative
3366 int __meminit __early_pfn_to_nid(unsigned long pfn)
3368 int i;
3370 for (i = 0; i < nr_nodemap_entries; i++) {
3371 unsigned long start_pfn = early_node_map[i].start_pfn;
3372 unsigned long end_pfn = early_node_map[i].end_pfn;
3374 if (start_pfn <= pfn && pfn < end_pfn)
3375 return early_node_map[i].nid;
3377 /* This is a memory hole */
3378 return -1;
3380 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3382 int __meminit early_pfn_to_nid(unsigned long pfn)
3384 int nid;
3386 nid = __early_pfn_to_nid(pfn);
3387 if (nid >= 0)
3388 return nid;
3389 /* just returns 0 */
3390 return 0;
3393 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3394 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3396 int nid;
3398 nid = __early_pfn_to_nid(pfn);
3399 if (nid >= 0 && nid != node)
3400 return false;
3401 return true;
3403 #endif
3405 /* Basic iterator support to walk early_node_map[] */
3406 #define for_each_active_range_index_in_nid(i, nid) \
3407 for (i = first_active_region_index_in_nid(nid); i != -1; \
3408 i = next_active_region_index_in_nid(i, nid))
3411 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3412 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3413 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3415 * If an architecture guarantees that all ranges registered with
3416 * add_active_ranges() contain no holes and may be freed, this
3417 * this function may be used instead of calling free_bootmem() manually.
3419 void __init free_bootmem_with_active_regions(int nid,
3420 unsigned long max_low_pfn)
3422 int i;
3424 for_each_active_range_index_in_nid(i, nid) {
3425 unsigned long size_pages = 0;
3426 unsigned long end_pfn = early_node_map[i].end_pfn;
3428 if (early_node_map[i].start_pfn >= max_low_pfn)
3429 continue;
3431 if (end_pfn > max_low_pfn)
3432 end_pfn = max_low_pfn;
3434 size_pages = end_pfn - early_node_map[i].start_pfn;
3435 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3436 PFN_PHYS(early_node_map[i].start_pfn),
3437 size_pages << PAGE_SHIFT);
3441 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3443 int i;
3444 int ret;
3446 for_each_active_range_index_in_nid(i, nid) {
3447 ret = work_fn(early_node_map[i].start_pfn,
3448 early_node_map[i].end_pfn, data);
3449 if (ret)
3450 break;
3454 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3455 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3457 * If an architecture guarantees that all ranges registered with
3458 * add_active_ranges() contain no holes and may be freed, this
3459 * function may be used instead of calling memory_present() manually.
3461 void __init sparse_memory_present_with_active_regions(int nid)
3463 int i;
3465 for_each_active_range_index_in_nid(i, nid)
3466 memory_present(early_node_map[i].nid,
3467 early_node_map[i].start_pfn,
3468 early_node_map[i].end_pfn);
3472 * get_pfn_range_for_nid - Return the start and end page frames for a node
3473 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3474 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3475 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3477 * It returns the start and end page frame of a node based on information
3478 * provided by an arch calling add_active_range(). If called for a node
3479 * with no available memory, a warning is printed and the start and end
3480 * PFNs will be 0.
3482 void __meminit get_pfn_range_for_nid(unsigned int nid,
3483 unsigned long *start_pfn, unsigned long *end_pfn)
3485 int i;
3486 *start_pfn = -1UL;
3487 *end_pfn = 0;
3489 for_each_active_range_index_in_nid(i, nid) {
3490 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3491 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3494 if (*start_pfn == -1UL)
3495 *start_pfn = 0;
3499 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3500 * assumption is made that zones within a node are ordered in monotonic
3501 * increasing memory addresses so that the "highest" populated zone is used
3503 static void __init find_usable_zone_for_movable(void)
3505 int zone_index;
3506 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3507 if (zone_index == ZONE_MOVABLE)
3508 continue;
3510 if (arch_zone_highest_possible_pfn[zone_index] >
3511 arch_zone_lowest_possible_pfn[zone_index])
3512 break;
3515 VM_BUG_ON(zone_index == -1);
3516 movable_zone = zone_index;
3520 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3521 * because it is sized independant of architecture. Unlike the other zones,
3522 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3523 * in each node depending on the size of each node and how evenly kernelcore
3524 * is distributed. This helper function adjusts the zone ranges
3525 * provided by the architecture for a given node by using the end of the
3526 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3527 * zones within a node are in order of monotonic increases memory addresses
3529 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3530 unsigned long zone_type,
3531 unsigned long node_start_pfn,
3532 unsigned long node_end_pfn,
3533 unsigned long *zone_start_pfn,
3534 unsigned long *zone_end_pfn)
3536 /* Only adjust if ZONE_MOVABLE is on this node */
3537 if (zone_movable_pfn[nid]) {
3538 /* Size ZONE_MOVABLE */
3539 if (zone_type == ZONE_MOVABLE) {
3540 *zone_start_pfn = zone_movable_pfn[nid];
3541 *zone_end_pfn = min(node_end_pfn,
3542 arch_zone_highest_possible_pfn[movable_zone]);
3544 /* Adjust for ZONE_MOVABLE starting within this range */
3545 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3546 *zone_end_pfn > zone_movable_pfn[nid]) {
3547 *zone_end_pfn = zone_movable_pfn[nid];
3549 /* Check if this whole range is within ZONE_MOVABLE */
3550 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3551 *zone_start_pfn = *zone_end_pfn;
3556 * Return the number of pages a zone spans in a node, including holes
3557 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3559 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3560 unsigned long zone_type,
3561 unsigned long *ignored)
3563 unsigned long node_start_pfn, node_end_pfn;
3564 unsigned long zone_start_pfn, zone_end_pfn;
3566 /* Get the start and end of the node and zone */
3567 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3568 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3569 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3570 adjust_zone_range_for_zone_movable(nid, zone_type,
3571 node_start_pfn, node_end_pfn,
3572 &zone_start_pfn, &zone_end_pfn);
3574 /* Check that this node has pages within the zone's required range */
3575 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3576 return 0;
3578 /* Move the zone boundaries inside the node if necessary */
3579 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3580 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3582 /* Return the spanned pages */
3583 return zone_end_pfn - zone_start_pfn;
3587 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3588 * then all holes in the requested range will be accounted for.
3590 static unsigned long __meminit __absent_pages_in_range(int nid,
3591 unsigned long range_start_pfn,
3592 unsigned long range_end_pfn)
3594 int i = 0;
3595 unsigned long prev_end_pfn = 0, hole_pages = 0;
3596 unsigned long start_pfn;
3598 /* Find the end_pfn of the first active range of pfns in the node */
3599 i = first_active_region_index_in_nid(nid);
3600 if (i == -1)
3601 return 0;
3603 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3605 /* Account for ranges before physical memory on this node */
3606 if (early_node_map[i].start_pfn > range_start_pfn)
3607 hole_pages = prev_end_pfn - range_start_pfn;
3609 /* Find all holes for the zone within the node */
3610 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3612 /* No need to continue if prev_end_pfn is outside the zone */
3613 if (prev_end_pfn >= range_end_pfn)
3614 break;
3616 /* Make sure the end of the zone is not within the hole */
3617 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3618 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3620 /* Update the hole size cound and move on */
3621 if (start_pfn > range_start_pfn) {
3622 BUG_ON(prev_end_pfn > start_pfn);
3623 hole_pages += start_pfn - prev_end_pfn;
3625 prev_end_pfn = early_node_map[i].end_pfn;
3628 /* Account for ranges past physical memory on this node */
3629 if (range_end_pfn > prev_end_pfn)
3630 hole_pages += range_end_pfn -
3631 max(range_start_pfn, prev_end_pfn);
3633 return hole_pages;
3637 * absent_pages_in_range - Return number of page frames in holes within a range
3638 * @start_pfn: The start PFN to start searching for holes
3639 * @end_pfn: The end PFN to stop searching for holes
3641 * It returns the number of pages frames in memory holes within a range.
3643 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3644 unsigned long end_pfn)
3646 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3649 /* Return the number of page frames in holes in a zone on a node */
3650 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3651 unsigned long zone_type,
3652 unsigned long *ignored)
3654 unsigned long node_start_pfn, node_end_pfn;
3655 unsigned long zone_start_pfn, zone_end_pfn;
3657 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3658 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3659 node_start_pfn);
3660 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3661 node_end_pfn);
3663 adjust_zone_range_for_zone_movable(nid, zone_type,
3664 node_start_pfn, node_end_pfn,
3665 &zone_start_pfn, &zone_end_pfn);
3666 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3669 #else
3670 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3671 unsigned long zone_type,
3672 unsigned long *zones_size)
3674 return zones_size[zone_type];
3677 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3678 unsigned long zone_type,
3679 unsigned long *zholes_size)
3681 if (!zholes_size)
3682 return 0;
3684 return zholes_size[zone_type];
3687 #endif
3689 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3690 unsigned long *zones_size, unsigned long *zholes_size)
3692 unsigned long realtotalpages, totalpages = 0;
3693 enum zone_type i;
3695 for (i = 0; i < MAX_NR_ZONES; i++)
3696 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3697 zones_size);
3698 pgdat->node_spanned_pages = totalpages;
3700 realtotalpages = totalpages;
3701 for (i = 0; i < MAX_NR_ZONES; i++)
3702 realtotalpages -=
3703 zone_absent_pages_in_node(pgdat->node_id, i,
3704 zholes_size);
3705 pgdat->node_present_pages = realtotalpages;
3706 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3707 realtotalpages);
3710 #ifndef CONFIG_SPARSEMEM
3712 * Calculate the size of the zone->blockflags rounded to an unsigned long
3713 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3714 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3715 * round what is now in bits to nearest long in bits, then return it in
3716 * bytes.
3718 static unsigned long __init usemap_size(unsigned long zonesize)
3720 unsigned long usemapsize;
3722 usemapsize = roundup(zonesize, pageblock_nr_pages);
3723 usemapsize = usemapsize >> pageblock_order;
3724 usemapsize *= NR_PAGEBLOCK_BITS;
3725 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3727 return usemapsize / 8;
3730 static void __init setup_usemap(struct pglist_data *pgdat,
3731 struct zone *zone, unsigned long zonesize)
3733 unsigned long usemapsize = usemap_size(zonesize);
3734 zone->pageblock_flags = NULL;
3735 if (usemapsize)
3736 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3738 #else
3739 static void inline setup_usemap(struct pglist_data *pgdat,
3740 struct zone *zone, unsigned long zonesize) {}
3741 #endif /* CONFIG_SPARSEMEM */
3743 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3745 /* Return a sensible default order for the pageblock size. */
3746 static inline int pageblock_default_order(void)
3748 if (HPAGE_SHIFT > PAGE_SHIFT)
3749 return HUGETLB_PAGE_ORDER;
3751 return MAX_ORDER-1;
3754 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3755 static inline void __init set_pageblock_order(unsigned int order)
3757 /* Check that pageblock_nr_pages has not already been setup */
3758 if (pageblock_order)
3759 return;
3762 * Assume the largest contiguous order of interest is a huge page.
3763 * This value may be variable depending on boot parameters on IA64
3765 pageblock_order = order;
3767 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3770 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3771 * and pageblock_default_order() are unused as pageblock_order is set
3772 * at compile-time. See include/linux/pageblock-flags.h for the values of
3773 * pageblock_order based on the kernel config
3775 static inline int pageblock_default_order(unsigned int order)
3777 return MAX_ORDER-1;
3779 #define set_pageblock_order(x) do {} while (0)
3781 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3784 * Set up the zone data structures:
3785 * - mark all pages reserved
3786 * - mark all memory queues empty
3787 * - clear the memory bitmaps
3789 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3790 unsigned long *zones_size, unsigned long *zholes_size)
3792 enum zone_type j;
3793 int nid = pgdat->node_id;
3794 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3795 int ret;
3797 pgdat_resize_init(pgdat);
3798 pgdat->nr_zones = 0;
3799 init_waitqueue_head(&pgdat->kswapd_wait);
3800 pgdat->kswapd_max_order = 0;
3801 pgdat_page_cgroup_init(pgdat);
3803 for (j = 0; j < MAX_NR_ZONES; j++) {
3804 struct zone *zone = pgdat->node_zones + j;
3805 unsigned long size, realsize, memmap_pages;
3806 enum lru_list l;
3808 size = zone_spanned_pages_in_node(nid, j, zones_size);
3809 realsize = size - zone_absent_pages_in_node(nid, j,
3810 zholes_size);
3813 * Adjust realsize so that it accounts for how much memory
3814 * is used by this zone for memmap. This affects the watermark
3815 * and per-cpu initialisations
3817 memmap_pages =
3818 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3819 if (realsize >= memmap_pages) {
3820 realsize -= memmap_pages;
3821 if (memmap_pages)
3822 printk(KERN_DEBUG
3823 " %s zone: %lu pages used for memmap\n",
3824 zone_names[j], memmap_pages);
3825 } else
3826 printk(KERN_WARNING
3827 " %s zone: %lu pages exceeds realsize %lu\n",
3828 zone_names[j], memmap_pages, realsize);
3830 /* Account for reserved pages */
3831 if (j == 0 && realsize > dma_reserve) {
3832 realsize -= dma_reserve;
3833 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3834 zone_names[0], dma_reserve);
3837 if (!is_highmem_idx(j))
3838 nr_kernel_pages += realsize;
3839 nr_all_pages += realsize;
3841 zone->spanned_pages = size;
3842 zone->present_pages = realsize;
3843 #ifdef CONFIG_NUMA
3844 zone->node = nid;
3845 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3846 / 100;
3847 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3848 #endif
3849 zone->name = zone_names[j];
3850 spin_lock_init(&zone->lock);
3851 spin_lock_init(&zone->lru_lock);
3852 zone_seqlock_init(zone);
3853 zone->zone_pgdat = pgdat;
3855 zone->prev_priority = DEF_PRIORITY;
3857 zone_pcp_init(zone);
3858 for_each_lru(l) {
3859 INIT_LIST_HEAD(&zone->lru[l].list);
3860 zone->reclaim_stat.nr_saved_scan[l] = 0;
3862 zone->reclaim_stat.recent_rotated[0] = 0;
3863 zone->reclaim_stat.recent_rotated[1] = 0;
3864 zone->reclaim_stat.recent_scanned[0] = 0;
3865 zone->reclaim_stat.recent_scanned[1] = 0;
3866 zap_zone_vm_stats(zone);
3867 zone->flags = 0;
3868 if (!size)
3869 continue;
3871 set_pageblock_order(pageblock_default_order());
3872 setup_usemap(pgdat, zone, size);
3873 ret = init_currently_empty_zone(zone, zone_start_pfn,
3874 size, MEMMAP_EARLY);
3875 BUG_ON(ret);
3876 memmap_init(size, nid, j, zone_start_pfn);
3877 zone_start_pfn += size;
3881 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3883 /* Skip empty nodes */
3884 if (!pgdat->node_spanned_pages)
3885 return;
3887 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3888 /* ia64 gets its own node_mem_map, before this, without bootmem */
3889 if (!pgdat->node_mem_map) {
3890 unsigned long size, start, end;
3891 struct page *map;
3894 * The zone's endpoints aren't required to be MAX_ORDER
3895 * aligned but the node_mem_map endpoints must be in order
3896 * for the buddy allocator to function correctly.
3898 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3899 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3900 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3901 size = (end - start) * sizeof(struct page);
3902 map = alloc_remap(pgdat->node_id, size);
3903 if (!map)
3904 map = alloc_bootmem_node(pgdat, size);
3905 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3907 #ifndef CONFIG_NEED_MULTIPLE_NODES
3909 * With no DISCONTIG, the global mem_map is just set as node 0's
3911 if (pgdat == NODE_DATA(0)) {
3912 mem_map = NODE_DATA(0)->node_mem_map;
3913 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3914 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3915 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3916 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3918 #endif
3919 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3922 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3923 unsigned long node_start_pfn, unsigned long *zholes_size)
3925 pg_data_t *pgdat = NODE_DATA(nid);
3927 pgdat->node_id = nid;
3928 pgdat->node_start_pfn = node_start_pfn;
3929 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3931 alloc_node_mem_map(pgdat);
3932 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3933 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3934 nid, (unsigned long)pgdat,
3935 (unsigned long)pgdat->node_mem_map);
3936 #endif
3938 free_area_init_core(pgdat, zones_size, zholes_size);
3941 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3943 #if MAX_NUMNODES > 1
3945 * Figure out the number of possible node ids.
3947 static void __init setup_nr_node_ids(void)
3949 unsigned int node;
3950 unsigned int highest = 0;
3952 for_each_node_mask(node, node_possible_map)
3953 highest = node;
3954 nr_node_ids = highest + 1;
3956 #else
3957 static inline void setup_nr_node_ids(void)
3960 #endif
3963 * add_active_range - Register a range of PFNs backed by physical memory
3964 * @nid: The node ID the range resides on
3965 * @start_pfn: The start PFN of the available physical memory
3966 * @end_pfn: The end PFN of the available physical memory
3968 * These ranges are stored in an early_node_map[] and later used by
3969 * free_area_init_nodes() to calculate zone sizes and holes. If the
3970 * range spans a memory hole, it is up to the architecture to ensure
3971 * the memory is not freed by the bootmem allocator. If possible
3972 * the range being registered will be merged with existing ranges.
3974 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3975 unsigned long end_pfn)
3977 int i;
3979 mminit_dprintk(MMINIT_TRACE, "memory_register",
3980 "Entering add_active_range(%d, %#lx, %#lx) "
3981 "%d entries of %d used\n",
3982 nid, start_pfn, end_pfn,
3983 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3985 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3987 /* Merge with existing active regions if possible */
3988 for (i = 0; i < nr_nodemap_entries; i++) {
3989 if (early_node_map[i].nid != nid)
3990 continue;
3992 /* Skip if an existing region covers this new one */
3993 if (start_pfn >= early_node_map[i].start_pfn &&
3994 end_pfn <= early_node_map[i].end_pfn)
3995 return;
3997 /* Merge forward if suitable */
3998 if (start_pfn <= early_node_map[i].end_pfn &&
3999 end_pfn > early_node_map[i].end_pfn) {
4000 early_node_map[i].end_pfn = end_pfn;
4001 return;
4004 /* Merge backward if suitable */
4005 if (start_pfn < early_node_map[i].end_pfn &&
4006 end_pfn >= early_node_map[i].start_pfn) {
4007 early_node_map[i].start_pfn = start_pfn;
4008 return;
4012 /* Check that early_node_map is large enough */
4013 if (i >= MAX_ACTIVE_REGIONS) {
4014 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4015 MAX_ACTIVE_REGIONS);
4016 return;
4019 early_node_map[i].nid = nid;
4020 early_node_map[i].start_pfn = start_pfn;
4021 early_node_map[i].end_pfn = end_pfn;
4022 nr_nodemap_entries = i + 1;
4026 * remove_active_range - Shrink an existing registered range of PFNs
4027 * @nid: The node id the range is on that should be shrunk
4028 * @start_pfn: The new PFN of the range
4029 * @end_pfn: The new PFN of the range
4031 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4032 * The map is kept near the end physical page range that has already been
4033 * registered. This function allows an arch to shrink an existing registered
4034 * range.
4036 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4037 unsigned long end_pfn)
4039 int i, j;
4040 int removed = 0;
4042 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4043 nid, start_pfn, end_pfn);
4045 /* Find the old active region end and shrink */
4046 for_each_active_range_index_in_nid(i, nid) {
4047 if (early_node_map[i].start_pfn >= start_pfn &&
4048 early_node_map[i].end_pfn <= end_pfn) {
4049 /* clear it */
4050 early_node_map[i].start_pfn = 0;
4051 early_node_map[i].end_pfn = 0;
4052 removed = 1;
4053 continue;
4055 if (early_node_map[i].start_pfn < start_pfn &&
4056 early_node_map[i].end_pfn > start_pfn) {
4057 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4058 early_node_map[i].end_pfn = start_pfn;
4059 if (temp_end_pfn > end_pfn)
4060 add_active_range(nid, end_pfn, temp_end_pfn);
4061 continue;
4063 if (early_node_map[i].start_pfn >= start_pfn &&
4064 early_node_map[i].end_pfn > end_pfn &&
4065 early_node_map[i].start_pfn < end_pfn) {
4066 early_node_map[i].start_pfn = end_pfn;
4067 continue;
4071 if (!removed)
4072 return;
4074 /* remove the blank ones */
4075 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4076 if (early_node_map[i].nid != nid)
4077 continue;
4078 if (early_node_map[i].end_pfn)
4079 continue;
4080 /* we found it, get rid of it */
4081 for (j = i; j < nr_nodemap_entries - 1; j++)
4082 memcpy(&early_node_map[j], &early_node_map[j+1],
4083 sizeof(early_node_map[j]));
4084 j = nr_nodemap_entries - 1;
4085 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4086 nr_nodemap_entries--;
4091 * remove_all_active_ranges - Remove all currently registered regions
4093 * During discovery, it may be found that a table like SRAT is invalid
4094 * and an alternative discovery method must be used. This function removes
4095 * all currently registered regions.
4097 void __init remove_all_active_ranges(void)
4099 memset(early_node_map, 0, sizeof(early_node_map));
4100 nr_nodemap_entries = 0;
4103 /* Compare two active node_active_regions */
4104 static int __init cmp_node_active_region(const void *a, const void *b)
4106 struct node_active_region *arange = (struct node_active_region *)a;
4107 struct node_active_region *brange = (struct node_active_region *)b;
4109 /* Done this way to avoid overflows */
4110 if (arange->start_pfn > brange->start_pfn)
4111 return 1;
4112 if (arange->start_pfn < brange->start_pfn)
4113 return -1;
4115 return 0;
4118 /* sort the node_map by start_pfn */
4119 static void __init sort_node_map(void)
4121 sort(early_node_map, (size_t)nr_nodemap_entries,
4122 sizeof(struct node_active_region),
4123 cmp_node_active_region, NULL);
4126 /* Find the lowest pfn for a node */
4127 static unsigned long __init find_min_pfn_for_node(int nid)
4129 int i;
4130 unsigned long min_pfn = ULONG_MAX;
4132 /* Assuming a sorted map, the first range found has the starting pfn */
4133 for_each_active_range_index_in_nid(i, nid)
4134 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4136 if (min_pfn == ULONG_MAX) {
4137 printk(KERN_WARNING
4138 "Could not find start_pfn for node %d\n", nid);
4139 return 0;
4142 return min_pfn;
4146 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4148 * It returns the minimum PFN based on information provided via
4149 * add_active_range().
4151 unsigned long __init find_min_pfn_with_active_regions(void)
4153 return find_min_pfn_for_node(MAX_NUMNODES);
4157 * early_calculate_totalpages()
4158 * Sum pages in active regions for movable zone.
4159 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4161 static unsigned long __init early_calculate_totalpages(void)
4163 int i;
4164 unsigned long totalpages = 0;
4166 for (i = 0; i < nr_nodemap_entries; i++) {
4167 unsigned long pages = early_node_map[i].end_pfn -
4168 early_node_map[i].start_pfn;
4169 totalpages += pages;
4170 if (pages)
4171 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4173 return totalpages;
4177 * Find the PFN the Movable zone begins in each node. Kernel memory
4178 * is spread evenly between nodes as long as the nodes have enough
4179 * memory. When they don't, some nodes will have more kernelcore than
4180 * others
4182 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4184 int i, nid;
4185 unsigned long usable_startpfn;
4186 unsigned long kernelcore_node, kernelcore_remaining;
4187 /* save the state before borrow the nodemask */
4188 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4189 unsigned long totalpages = early_calculate_totalpages();
4190 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4193 * If movablecore was specified, calculate what size of
4194 * kernelcore that corresponds so that memory usable for
4195 * any allocation type is evenly spread. If both kernelcore
4196 * and movablecore are specified, then the value of kernelcore
4197 * will be used for required_kernelcore if it's greater than
4198 * what movablecore would have allowed.
4200 if (required_movablecore) {
4201 unsigned long corepages;
4204 * Round-up so that ZONE_MOVABLE is at least as large as what
4205 * was requested by the user
4207 required_movablecore =
4208 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4209 corepages = totalpages - required_movablecore;
4211 required_kernelcore = max(required_kernelcore, corepages);
4214 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4215 if (!required_kernelcore)
4216 goto out;
4218 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4219 find_usable_zone_for_movable();
4220 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4222 restart:
4223 /* Spread kernelcore memory as evenly as possible throughout nodes */
4224 kernelcore_node = required_kernelcore / usable_nodes;
4225 for_each_node_state(nid, N_HIGH_MEMORY) {
4227 * Recalculate kernelcore_node if the division per node
4228 * now exceeds what is necessary to satisfy the requested
4229 * amount of memory for the kernel
4231 if (required_kernelcore < kernelcore_node)
4232 kernelcore_node = required_kernelcore / usable_nodes;
4235 * As the map is walked, we track how much memory is usable
4236 * by the kernel using kernelcore_remaining. When it is
4237 * 0, the rest of the node is usable by ZONE_MOVABLE
4239 kernelcore_remaining = kernelcore_node;
4241 /* Go through each range of PFNs within this node */
4242 for_each_active_range_index_in_nid(i, nid) {
4243 unsigned long start_pfn, end_pfn;
4244 unsigned long size_pages;
4246 start_pfn = max(early_node_map[i].start_pfn,
4247 zone_movable_pfn[nid]);
4248 end_pfn = early_node_map[i].end_pfn;
4249 if (start_pfn >= end_pfn)
4250 continue;
4252 /* Account for what is only usable for kernelcore */
4253 if (start_pfn < usable_startpfn) {
4254 unsigned long kernel_pages;
4255 kernel_pages = min(end_pfn, usable_startpfn)
4256 - start_pfn;
4258 kernelcore_remaining -= min(kernel_pages,
4259 kernelcore_remaining);
4260 required_kernelcore -= min(kernel_pages,
4261 required_kernelcore);
4263 /* Continue if range is now fully accounted */
4264 if (end_pfn <= usable_startpfn) {
4267 * Push zone_movable_pfn to the end so
4268 * that if we have to rebalance
4269 * kernelcore across nodes, we will
4270 * not double account here
4272 zone_movable_pfn[nid] = end_pfn;
4273 continue;
4275 start_pfn = usable_startpfn;
4279 * The usable PFN range for ZONE_MOVABLE is from
4280 * start_pfn->end_pfn. Calculate size_pages as the
4281 * number of pages used as kernelcore
4283 size_pages = end_pfn - start_pfn;
4284 if (size_pages > kernelcore_remaining)
4285 size_pages = kernelcore_remaining;
4286 zone_movable_pfn[nid] = start_pfn + size_pages;
4289 * Some kernelcore has been met, update counts and
4290 * break if the kernelcore for this node has been
4291 * satisified
4293 required_kernelcore -= min(required_kernelcore,
4294 size_pages);
4295 kernelcore_remaining -= size_pages;
4296 if (!kernelcore_remaining)
4297 break;
4302 * If there is still required_kernelcore, we do another pass with one
4303 * less node in the count. This will push zone_movable_pfn[nid] further
4304 * along on the nodes that still have memory until kernelcore is
4305 * satisified
4307 usable_nodes--;
4308 if (usable_nodes && required_kernelcore > usable_nodes)
4309 goto restart;
4311 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4312 for (nid = 0; nid < MAX_NUMNODES; nid++)
4313 zone_movable_pfn[nid] =
4314 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4316 out:
4317 /* restore the node_state */
4318 node_states[N_HIGH_MEMORY] = saved_node_state;
4321 /* Any regular memory on that node ? */
4322 static void check_for_regular_memory(pg_data_t *pgdat)
4324 #ifdef CONFIG_HIGHMEM
4325 enum zone_type zone_type;
4327 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4328 struct zone *zone = &pgdat->node_zones[zone_type];
4329 if (zone->present_pages)
4330 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4332 #endif
4336 * free_area_init_nodes - Initialise all pg_data_t and zone data
4337 * @max_zone_pfn: an array of max PFNs for each zone
4339 * This will call free_area_init_node() for each active node in the system.
4340 * Using the page ranges provided by add_active_range(), the size of each
4341 * zone in each node and their holes is calculated. If the maximum PFN
4342 * between two adjacent zones match, it is assumed that the zone is empty.
4343 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4344 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4345 * starts where the previous one ended. For example, ZONE_DMA32 starts
4346 * at arch_max_dma_pfn.
4348 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4350 unsigned long nid;
4351 int i;
4353 /* Sort early_node_map as initialisation assumes it is sorted */
4354 sort_node_map();
4356 /* Record where the zone boundaries are */
4357 memset(arch_zone_lowest_possible_pfn, 0,
4358 sizeof(arch_zone_lowest_possible_pfn));
4359 memset(arch_zone_highest_possible_pfn, 0,
4360 sizeof(arch_zone_highest_possible_pfn));
4361 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4362 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4363 for (i = 1; i < MAX_NR_ZONES; i++) {
4364 if (i == ZONE_MOVABLE)
4365 continue;
4366 arch_zone_lowest_possible_pfn[i] =
4367 arch_zone_highest_possible_pfn[i-1];
4368 arch_zone_highest_possible_pfn[i] =
4369 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4371 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4372 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4374 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4375 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4376 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4378 /* Print out the zone ranges */
4379 printk("Zone PFN ranges:\n");
4380 for (i = 0; i < MAX_NR_ZONES; i++) {
4381 if (i == ZONE_MOVABLE)
4382 continue;
4383 printk(" %-8s %0#10lx -> %0#10lx\n",
4384 zone_names[i],
4385 arch_zone_lowest_possible_pfn[i],
4386 arch_zone_highest_possible_pfn[i]);
4389 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4390 printk("Movable zone start PFN for each node\n");
4391 for (i = 0; i < MAX_NUMNODES; i++) {
4392 if (zone_movable_pfn[i])
4393 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4396 /* Print out the early_node_map[] */
4397 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4398 for (i = 0; i < nr_nodemap_entries; i++)
4399 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4400 early_node_map[i].start_pfn,
4401 early_node_map[i].end_pfn);
4403 /* Initialise every node */
4404 mminit_verify_pageflags_layout();
4405 setup_nr_node_ids();
4406 for_each_online_node(nid) {
4407 pg_data_t *pgdat = NODE_DATA(nid);
4408 free_area_init_node(nid, NULL,
4409 find_min_pfn_for_node(nid), NULL);
4411 /* Any memory on that node */
4412 if (pgdat->node_present_pages)
4413 node_set_state(nid, N_HIGH_MEMORY);
4414 check_for_regular_memory(pgdat);
4418 static int __init cmdline_parse_core(char *p, unsigned long *core)
4420 unsigned long long coremem;
4421 if (!p)
4422 return -EINVAL;
4424 coremem = memparse(p, &p);
4425 *core = coremem >> PAGE_SHIFT;
4427 /* Paranoid check that UL is enough for the coremem value */
4428 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4430 return 0;
4434 * kernelcore=size sets the amount of memory for use for allocations that
4435 * cannot be reclaimed or migrated.
4437 static int __init cmdline_parse_kernelcore(char *p)
4439 return cmdline_parse_core(p, &required_kernelcore);
4443 * movablecore=size sets the amount of memory for use for allocations that
4444 * can be reclaimed or migrated.
4446 static int __init cmdline_parse_movablecore(char *p)
4448 return cmdline_parse_core(p, &required_movablecore);
4451 early_param("kernelcore", cmdline_parse_kernelcore);
4452 early_param("movablecore", cmdline_parse_movablecore);
4454 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4457 * set_dma_reserve - set the specified number of pages reserved in the first zone
4458 * @new_dma_reserve: The number of pages to mark reserved
4460 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4461 * In the DMA zone, a significant percentage may be consumed by kernel image
4462 * and other unfreeable allocations which can skew the watermarks badly. This
4463 * function may optionally be used to account for unfreeable pages in the
4464 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4465 * smaller per-cpu batchsize.
4467 void __init set_dma_reserve(unsigned long new_dma_reserve)
4469 dma_reserve = new_dma_reserve;
4472 #ifndef CONFIG_NEED_MULTIPLE_NODES
4473 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4474 EXPORT_SYMBOL(contig_page_data);
4475 #endif
4477 void __init free_area_init(unsigned long *zones_size)
4479 free_area_init_node(0, zones_size,
4480 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4483 static int page_alloc_cpu_notify(struct notifier_block *self,
4484 unsigned long action, void *hcpu)
4486 int cpu = (unsigned long)hcpu;
4488 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4489 drain_pages(cpu);
4492 * Spill the event counters of the dead processor
4493 * into the current processors event counters.
4494 * This artificially elevates the count of the current
4495 * processor.
4497 vm_events_fold_cpu(cpu);
4500 * Zero the differential counters of the dead processor
4501 * so that the vm statistics are consistent.
4503 * This is only okay since the processor is dead and cannot
4504 * race with what we are doing.
4506 refresh_cpu_vm_stats(cpu);
4508 return NOTIFY_OK;
4511 void __init page_alloc_init(void)
4513 hotcpu_notifier(page_alloc_cpu_notify, 0);
4517 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4518 * or min_free_kbytes changes.
4520 static void calculate_totalreserve_pages(void)
4522 struct pglist_data *pgdat;
4523 unsigned long reserve_pages = 0;
4524 enum zone_type i, j;
4526 for_each_online_pgdat(pgdat) {
4527 for (i = 0; i < MAX_NR_ZONES; i++) {
4528 struct zone *zone = pgdat->node_zones + i;
4529 unsigned long max = 0;
4531 /* Find valid and maximum lowmem_reserve in the zone */
4532 for (j = i; j < MAX_NR_ZONES; j++) {
4533 if (zone->lowmem_reserve[j] > max)
4534 max = zone->lowmem_reserve[j];
4537 /* we treat the high watermark as reserved pages. */
4538 max += high_wmark_pages(zone);
4540 if (max > zone->present_pages)
4541 max = zone->present_pages;
4542 reserve_pages += max;
4545 totalreserve_pages = reserve_pages;
4549 * setup_per_zone_lowmem_reserve - called whenever
4550 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4551 * has a correct pages reserved value, so an adequate number of
4552 * pages are left in the zone after a successful __alloc_pages().
4554 static void setup_per_zone_lowmem_reserve(void)
4556 struct pglist_data *pgdat;
4557 enum zone_type j, idx;
4559 for_each_online_pgdat(pgdat) {
4560 for (j = 0; j < MAX_NR_ZONES; j++) {
4561 struct zone *zone = pgdat->node_zones + j;
4562 unsigned long present_pages = zone->present_pages;
4564 zone->lowmem_reserve[j] = 0;
4566 idx = j;
4567 while (idx) {
4568 struct zone *lower_zone;
4570 idx--;
4572 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4573 sysctl_lowmem_reserve_ratio[idx] = 1;
4575 lower_zone = pgdat->node_zones + idx;
4576 lower_zone->lowmem_reserve[j] = present_pages /
4577 sysctl_lowmem_reserve_ratio[idx];
4578 present_pages += lower_zone->present_pages;
4583 /* update totalreserve_pages */
4584 calculate_totalreserve_pages();
4588 * setup_per_zone_wmarks - called when min_free_kbytes changes
4589 * or when memory is hot-{added|removed}
4591 * Ensures that the watermark[min,low,high] values for each zone are set
4592 * correctly with respect to min_free_kbytes.
4594 void setup_per_zone_wmarks(void)
4596 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4597 unsigned long lowmem_pages = 0;
4598 struct zone *zone;
4599 unsigned long flags;
4601 /* Calculate total number of !ZONE_HIGHMEM pages */
4602 for_each_zone(zone) {
4603 if (!is_highmem(zone))
4604 lowmem_pages += zone->present_pages;
4607 for_each_zone(zone) {
4608 u64 tmp;
4610 spin_lock_irqsave(&zone->lock, flags);
4611 tmp = (u64)pages_min * zone->present_pages;
4612 do_div(tmp, lowmem_pages);
4613 if (is_highmem(zone)) {
4615 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4616 * need highmem pages, so cap pages_min to a small
4617 * value here.
4619 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4620 * deltas controls asynch page reclaim, and so should
4621 * not be capped for highmem.
4623 int min_pages;
4625 min_pages = zone->present_pages / 1024;
4626 if (min_pages < SWAP_CLUSTER_MAX)
4627 min_pages = SWAP_CLUSTER_MAX;
4628 if (min_pages > 128)
4629 min_pages = 128;
4630 zone->watermark[WMARK_MIN] = min_pages;
4631 } else {
4633 * If it's a lowmem zone, reserve a number of pages
4634 * proportionate to the zone's size.
4636 zone->watermark[WMARK_MIN] = tmp;
4639 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4640 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4641 setup_zone_migrate_reserve(zone);
4642 spin_unlock_irqrestore(&zone->lock, flags);
4645 /* update totalreserve_pages */
4646 calculate_totalreserve_pages();
4650 * The inactive anon list should be small enough that the VM never has to
4651 * do too much work, but large enough that each inactive page has a chance
4652 * to be referenced again before it is swapped out.
4654 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4655 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4656 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4657 * the anonymous pages are kept on the inactive list.
4659 * total target max
4660 * memory ratio inactive anon
4661 * -------------------------------------
4662 * 10MB 1 5MB
4663 * 100MB 1 50MB
4664 * 1GB 3 250MB
4665 * 10GB 10 0.9GB
4666 * 100GB 31 3GB
4667 * 1TB 101 10GB
4668 * 10TB 320 32GB
4670 void calculate_zone_inactive_ratio(struct zone *zone)
4672 unsigned int gb, ratio;
4674 /* Zone size in gigabytes */
4675 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4676 if (gb)
4677 ratio = int_sqrt(10 * gb);
4678 else
4679 ratio = 1;
4681 zone->inactive_ratio = ratio;
4684 static void __init setup_per_zone_inactive_ratio(void)
4686 struct zone *zone;
4688 for_each_zone(zone)
4689 calculate_zone_inactive_ratio(zone);
4693 * Initialise min_free_kbytes.
4695 * For small machines we want it small (128k min). For large machines
4696 * we want it large (64MB max). But it is not linear, because network
4697 * bandwidth does not increase linearly with machine size. We use
4699 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4700 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4702 * which yields
4704 * 16MB: 512k
4705 * 32MB: 724k
4706 * 64MB: 1024k
4707 * 128MB: 1448k
4708 * 256MB: 2048k
4709 * 512MB: 2896k
4710 * 1024MB: 4096k
4711 * 2048MB: 5792k
4712 * 4096MB: 8192k
4713 * 8192MB: 11584k
4714 * 16384MB: 16384k
4716 static int __init init_per_zone_wmark_min(void)
4718 unsigned long lowmem_kbytes;
4720 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4722 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4723 if (min_free_kbytes < 128)
4724 min_free_kbytes = 128;
4725 if (min_free_kbytes > 65536)
4726 min_free_kbytes = 65536;
4727 setup_per_zone_wmarks();
4728 setup_per_zone_lowmem_reserve();
4729 setup_per_zone_inactive_ratio();
4730 return 0;
4732 module_init(init_per_zone_wmark_min)
4735 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4736 * that we can call two helper functions whenever min_free_kbytes
4737 * changes.
4739 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4740 void __user *buffer, size_t *length, loff_t *ppos)
4742 proc_dointvec(table, write, buffer, length, ppos);
4743 if (write)
4744 setup_per_zone_wmarks();
4745 return 0;
4748 #ifdef CONFIG_NUMA
4749 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4750 void __user *buffer, size_t *length, loff_t *ppos)
4752 struct zone *zone;
4753 int rc;
4755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4756 if (rc)
4757 return rc;
4759 for_each_zone(zone)
4760 zone->min_unmapped_pages = (zone->present_pages *
4761 sysctl_min_unmapped_ratio) / 100;
4762 return 0;
4765 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4766 void __user *buffer, size_t *length, loff_t *ppos)
4768 struct zone *zone;
4769 int rc;
4771 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4772 if (rc)
4773 return rc;
4775 for_each_zone(zone)
4776 zone->min_slab_pages = (zone->present_pages *
4777 sysctl_min_slab_ratio) / 100;
4778 return 0;
4780 #endif
4783 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4784 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4785 * whenever sysctl_lowmem_reserve_ratio changes.
4787 * The reserve ratio obviously has absolutely no relation with the
4788 * minimum watermarks. The lowmem reserve ratio can only make sense
4789 * if in function of the boot time zone sizes.
4791 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4792 void __user *buffer, size_t *length, loff_t *ppos)
4794 proc_dointvec_minmax(table, write, buffer, length, ppos);
4795 setup_per_zone_lowmem_reserve();
4796 return 0;
4800 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4801 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4802 * can have before it gets flushed back to buddy allocator.
4805 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4806 void __user *buffer, size_t *length, loff_t *ppos)
4808 struct zone *zone;
4809 unsigned int cpu;
4810 int ret;
4812 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4813 if (!write || (ret == -EINVAL))
4814 return ret;
4815 for_each_populated_zone(zone) {
4816 for_each_online_cpu(cpu) {
4817 unsigned long high;
4818 high = zone->present_pages / percpu_pagelist_fraction;
4819 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4822 return 0;
4825 int hashdist = HASHDIST_DEFAULT;
4827 #ifdef CONFIG_NUMA
4828 static int __init set_hashdist(char *str)
4830 if (!str)
4831 return 0;
4832 hashdist = simple_strtoul(str, &str, 0);
4833 return 1;
4835 __setup("hashdist=", set_hashdist);
4836 #endif
4839 * allocate a large system hash table from bootmem
4840 * - it is assumed that the hash table must contain an exact power-of-2
4841 * quantity of entries
4842 * - limit is the number of hash buckets, not the total allocation size
4844 void *__init alloc_large_system_hash(const char *tablename,
4845 unsigned long bucketsize,
4846 unsigned long numentries,
4847 int scale,
4848 int flags,
4849 unsigned int *_hash_shift,
4850 unsigned int *_hash_mask,
4851 unsigned long limit)
4853 unsigned long long max = limit;
4854 unsigned long log2qty, size;
4855 void *table = NULL;
4857 /* allow the kernel cmdline to have a say */
4858 if (!numentries) {
4859 /* round applicable memory size up to nearest megabyte */
4860 numentries = nr_kernel_pages;
4861 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4862 numentries >>= 20 - PAGE_SHIFT;
4863 numentries <<= 20 - PAGE_SHIFT;
4865 /* limit to 1 bucket per 2^scale bytes of low memory */
4866 if (scale > PAGE_SHIFT)
4867 numentries >>= (scale - PAGE_SHIFT);
4868 else
4869 numentries <<= (PAGE_SHIFT - scale);
4871 /* Make sure we've got at least a 0-order allocation.. */
4872 if (unlikely(flags & HASH_SMALL)) {
4873 /* Makes no sense without HASH_EARLY */
4874 WARN_ON(!(flags & HASH_EARLY));
4875 if (!(numentries >> *_hash_shift)) {
4876 numentries = 1UL << *_hash_shift;
4877 BUG_ON(!numentries);
4879 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4880 numentries = PAGE_SIZE / bucketsize;
4882 numentries = roundup_pow_of_two(numentries);
4884 /* limit allocation size to 1/16 total memory by default */
4885 if (max == 0) {
4886 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4887 do_div(max, bucketsize);
4890 if (numentries > max)
4891 numentries = max;
4893 log2qty = ilog2(numentries);
4895 do {
4896 size = bucketsize << log2qty;
4897 if (flags & HASH_EARLY)
4898 table = alloc_bootmem_nopanic(size);
4899 else if (hashdist)
4900 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4901 else {
4903 * If bucketsize is not a power-of-two, we may free
4904 * some pages at the end of hash table which
4905 * alloc_pages_exact() automatically does
4907 if (get_order(size) < MAX_ORDER) {
4908 table = alloc_pages_exact(size, GFP_ATOMIC);
4909 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4912 } while (!table && size > PAGE_SIZE && --log2qty);
4914 if (!table)
4915 panic("Failed to allocate %s hash table\n", tablename);
4917 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4918 tablename,
4919 (1U << log2qty),
4920 ilog2(size) - PAGE_SHIFT,
4921 size);
4923 if (_hash_shift)
4924 *_hash_shift = log2qty;
4925 if (_hash_mask)
4926 *_hash_mask = (1 << log2qty) - 1;
4928 return table;
4931 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4932 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4933 unsigned long pfn)
4935 #ifdef CONFIG_SPARSEMEM
4936 return __pfn_to_section(pfn)->pageblock_flags;
4937 #else
4938 return zone->pageblock_flags;
4939 #endif /* CONFIG_SPARSEMEM */
4942 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4944 #ifdef CONFIG_SPARSEMEM
4945 pfn &= (PAGES_PER_SECTION-1);
4946 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4947 #else
4948 pfn = pfn - zone->zone_start_pfn;
4949 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4950 #endif /* CONFIG_SPARSEMEM */
4954 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4955 * @page: The page within the block of interest
4956 * @start_bitidx: The first bit of interest to retrieve
4957 * @end_bitidx: The last bit of interest
4958 * returns pageblock_bits flags
4960 unsigned long get_pageblock_flags_group(struct page *page,
4961 int start_bitidx, int end_bitidx)
4963 struct zone *zone;
4964 unsigned long *bitmap;
4965 unsigned long pfn, bitidx;
4966 unsigned long flags = 0;
4967 unsigned long value = 1;
4969 zone = page_zone(page);
4970 pfn = page_to_pfn(page);
4971 bitmap = get_pageblock_bitmap(zone, pfn);
4972 bitidx = pfn_to_bitidx(zone, pfn);
4974 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4975 if (test_bit(bitidx + start_bitidx, bitmap))
4976 flags |= value;
4978 return flags;
4982 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4983 * @page: The page within the block of interest
4984 * @start_bitidx: The first bit of interest
4985 * @end_bitidx: The last bit of interest
4986 * @flags: The flags to set
4988 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4989 int start_bitidx, int end_bitidx)
4991 struct zone *zone;
4992 unsigned long *bitmap;
4993 unsigned long pfn, bitidx;
4994 unsigned long value = 1;
4996 zone = page_zone(page);
4997 pfn = page_to_pfn(page);
4998 bitmap = get_pageblock_bitmap(zone, pfn);
4999 bitidx = pfn_to_bitidx(zone, pfn);
5000 VM_BUG_ON(pfn < zone->zone_start_pfn);
5001 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5003 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5004 if (flags & value)
5005 __set_bit(bitidx + start_bitidx, bitmap);
5006 else
5007 __clear_bit(bitidx + start_bitidx, bitmap);
5011 * This is designed as sub function...plz see page_isolation.c also.
5012 * set/clear page block's type to be ISOLATE.
5013 * page allocater never alloc memory from ISOLATE block.
5016 int set_migratetype_isolate(struct page *page)
5018 struct zone *zone;
5019 unsigned long flags;
5020 int ret = -EBUSY;
5021 int zone_idx;
5023 zone = page_zone(page);
5024 zone_idx = zone_idx(zone);
5025 spin_lock_irqsave(&zone->lock, flags);
5027 * In future, more migrate types will be able to be isolation target.
5029 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5030 zone_idx != ZONE_MOVABLE)
5031 goto out;
5032 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5033 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5034 ret = 0;
5035 out:
5036 spin_unlock_irqrestore(&zone->lock, flags);
5037 if (!ret)
5038 drain_all_pages();
5039 return ret;
5042 void unset_migratetype_isolate(struct page *page)
5044 struct zone *zone;
5045 unsigned long flags;
5046 zone = page_zone(page);
5047 spin_lock_irqsave(&zone->lock, flags);
5048 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5049 goto out;
5050 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5051 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5052 out:
5053 spin_unlock_irqrestore(&zone->lock, flags);
5056 #ifdef CONFIG_MEMORY_HOTREMOVE
5058 * All pages in the range must be isolated before calling this.
5060 void
5061 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5063 struct page *page;
5064 struct zone *zone;
5065 int order, i;
5066 unsigned long pfn;
5067 unsigned long flags;
5068 /* find the first valid pfn */
5069 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5070 if (pfn_valid(pfn))
5071 break;
5072 if (pfn == end_pfn)
5073 return;
5074 zone = page_zone(pfn_to_page(pfn));
5075 spin_lock_irqsave(&zone->lock, flags);
5076 pfn = start_pfn;
5077 while (pfn < end_pfn) {
5078 if (!pfn_valid(pfn)) {
5079 pfn++;
5080 continue;
5082 page = pfn_to_page(pfn);
5083 BUG_ON(page_count(page));
5084 BUG_ON(!PageBuddy(page));
5085 order = page_order(page);
5086 #ifdef CONFIG_DEBUG_VM
5087 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5088 pfn, 1 << order, end_pfn);
5089 #endif
5090 list_del(&page->lru);
5091 rmv_page_order(page);
5092 zone->free_area[order].nr_free--;
5093 __mod_zone_page_state(zone, NR_FREE_PAGES,
5094 - (1UL << order));
5095 for (i = 0; i < (1 << order); i++)
5096 SetPageReserved((page+i));
5097 pfn += (1 << order);
5099 spin_unlock_irqrestore(&zone->lock, flags);
5101 #endif