pata_bf54x: decrease count first.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / hrtimer.c
blobf78777abe769e1e3608b8f751d1c996f05aeea13
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * High-resolution kernel timers
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
20 * Started by: Thomas Gleixner and Ingo Molnar
22 * Credits:
23 * based on kernel/timer.c
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
31 * For licencing details see kernel-base/COPYING
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
47 #include <asm/uaccess.h>
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
52 * returns the time in ktime_t format
54 ktime_t ktime_get(void)
56 struct timespec now;
58 ktime_get_ts(&now);
60 return timespec_to_ktime(now);
62 EXPORT_SYMBOL_GPL(ktime_get);
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
67 * returns the time in ktime_t format
69 ktime_t ktime_get_real(void)
71 struct timespec now;
73 getnstimeofday(&now);
75 return timespec_to_ktime(now);
78 EXPORT_SYMBOL_GPL(ktime_get_real);
81 * The timer bases:
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 .clock_base =
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
115 void ktime_get_ts(struct timespec *ts)
117 struct timespec tomono;
118 unsigned long seq;
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
125 } while (read_seqretry(&xtime_lock, seq));
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
156 * Helper function to check, whether the timer is running the callback
157 * function
159 static inline int hrtimer_callback_running(struct hrtimer *timer)
161 return timer->state & HRTIMER_STATE_CALLBACK;
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
168 #ifdef CONFIG_SMP
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
182 static
183 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
186 struct hrtimer_clock_base *base;
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
197 cpu_relax();
202 * Switch the timer base to the current CPU when possible.
204 static inline struct hrtimer_clock_base *
205 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
213 if (base != new_base) {
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
223 if (unlikely(hrtimer_callback_running(timer)))
224 return base;
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
230 timer->base = new_base;
232 return new_base;
235 #else /* CONFIG_SMP */
237 static inline struct hrtimer_clock_base *
238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
240 struct hrtimer_clock_base *base = timer->base;
242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
244 return base;
247 # define switch_hrtimer_base(t, b) (b)
249 #endif /* !CONFIG_SMP */
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
262 * Returns the sum of kt and nsec in ktime_t format
264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
266 ktime_t tmp;
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
273 tmp = ktime_set((long)nsec, rem);
276 return ktime_add(kt, tmp);
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
286 * Returns the subtraction of @nsec from @kt in ktime_t format
288 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
290 ktime_t tmp;
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
297 tmp = ktime_set((long)nsec, rem);
300 return ktime_sub(kt, tmp);
303 EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 # endif /* !CONFIG_KTIME_SCALAR */
307 * Divide a ktime value by a nanosecond value
309 u64 ktime_divns(const ktime_t kt, s64 div)
311 u64 dclc, inc, dns;
312 int sft = 0;
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
324 return dclc;
326 #endif /* BITS_PER_LONG >= 64 */
329 * Add two ktime values and do a safety check for overflow:
331 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
333 ktime_t res = ktime_add(lhs, rhs);
336 * We use KTIME_SEC_MAX here, the maximum timeout which we can
337 * return to user space in a timespec:
339 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
340 res = ktime_set(KTIME_SEC_MAX, 0);
342 return res;
346 * Check, whether the timer is on the callback pending list
348 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
350 return timer->state & HRTIMER_STATE_PENDING;
354 * Remove a timer from the callback pending list
356 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
358 list_del_init(&timer->cb_entry);
361 /* High resolution timer related functions */
362 #ifdef CONFIG_HIGH_RES_TIMERS
365 * High resolution timer enabled ?
367 static int hrtimer_hres_enabled __read_mostly = 1;
370 * Enable / Disable high resolution mode
372 static int __init setup_hrtimer_hres(char *str)
374 if (!strcmp(str, "off"))
375 hrtimer_hres_enabled = 0;
376 else if (!strcmp(str, "on"))
377 hrtimer_hres_enabled = 1;
378 else
379 return 0;
380 return 1;
383 __setup("highres=", setup_hrtimer_hres);
386 * hrtimer_high_res_enabled - query, if the highres mode is enabled
388 static inline int hrtimer_is_hres_enabled(void)
390 return hrtimer_hres_enabled;
394 * Is the high resolution mode active ?
396 static inline int hrtimer_hres_active(void)
398 return __get_cpu_var(hrtimer_bases).hres_active;
402 * Reprogram the event source with checking both queues for the
403 * next event
404 * Called with interrupts disabled and base->lock held
406 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
408 int i;
409 struct hrtimer_clock_base *base = cpu_base->clock_base;
410 ktime_t expires;
412 cpu_base->expires_next.tv64 = KTIME_MAX;
414 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
415 struct hrtimer *timer;
417 if (!base->first)
418 continue;
419 timer = rb_entry(base->first, struct hrtimer, node);
420 expires = ktime_sub(timer->expires, base->offset);
421 if (expires.tv64 < cpu_base->expires_next.tv64)
422 cpu_base->expires_next = expires;
425 if (cpu_base->expires_next.tv64 != KTIME_MAX)
426 tick_program_event(cpu_base->expires_next, 1);
430 * Shared reprogramming for clock_realtime and clock_monotonic
432 * When a timer is enqueued and expires earlier than the already enqueued
433 * timers, we have to check, whether it expires earlier than the timer for
434 * which the clock event device was armed.
436 * Called with interrupts disabled and base->cpu_base.lock held
438 static int hrtimer_reprogram(struct hrtimer *timer,
439 struct hrtimer_clock_base *base)
441 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
442 ktime_t expires = ktime_sub(timer->expires, base->offset);
443 int res;
445 WARN_ON_ONCE(timer->expires.tv64 < 0);
448 * When the callback is running, we do not reprogram the clock event
449 * device. The timer callback is either running on a different CPU or
450 * the callback is executed in the hrtimer_interrupt context. The
451 * reprogramming is handled either by the softirq, which called the
452 * callback or at the end of the hrtimer_interrupt.
454 if (hrtimer_callback_running(timer))
455 return 0;
458 * CLOCK_REALTIME timer might be requested with an absolute
459 * expiry time which is less than base->offset. Nothing wrong
460 * about that, just avoid to call into the tick code, which
461 * has now objections against negative expiry values.
463 if (expires.tv64 < 0)
464 return -ETIME;
466 if (expires.tv64 >= expires_next->tv64)
467 return 0;
470 * Clockevents returns -ETIME, when the event was in the past.
472 res = tick_program_event(expires, 0);
473 if (!IS_ERR_VALUE(res))
474 *expires_next = expires;
475 return res;
480 * Retrigger next event is called after clock was set
482 * Called with interrupts disabled via on_each_cpu()
484 static void retrigger_next_event(void *arg)
486 struct hrtimer_cpu_base *base;
487 struct timespec realtime_offset;
488 unsigned long seq;
490 if (!hrtimer_hres_active())
491 return;
493 do {
494 seq = read_seqbegin(&xtime_lock);
495 set_normalized_timespec(&realtime_offset,
496 -wall_to_monotonic.tv_sec,
497 -wall_to_monotonic.tv_nsec);
498 } while (read_seqretry(&xtime_lock, seq));
500 base = &__get_cpu_var(hrtimer_bases);
502 /* Adjust CLOCK_REALTIME offset */
503 spin_lock(&base->lock);
504 base->clock_base[CLOCK_REALTIME].offset =
505 timespec_to_ktime(realtime_offset);
507 hrtimer_force_reprogram(base);
508 spin_unlock(&base->lock);
512 * Clock realtime was set
514 * Change the offset of the realtime clock vs. the monotonic
515 * clock.
517 * We might have to reprogram the high resolution timer interrupt. On
518 * SMP we call the architecture specific code to retrigger _all_ high
519 * resolution timer interrupts. On UP we just disable interrupts and
520 * call the high resolution interrupt code.
522 void clock_was_set(void)
524 /* Retrigger the CPU local events everywhere */
525 on_each_cpu(retrigger_next_event, NULL, 0, 1);
529 * During resume we might have to reprogram the high resolution timer
530 * interrupt (on the local CPU):
532 void hres_timers_resume(void)
534 WARN_ON_ONCE(num_online_cpus() > 1);
536 /* Retrigger the CPU local events: */
537 retrigger_next_event(NULL);
541 * Initialize the high resolution related parts of cpu_base
543 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
545 base->expires_next.tv64 = KTIME_MAX;
546 base->hres_active = 0;
550 * Initialize the high resolution related parts of a hrtimer
552 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
557 * When High resolution timers are active, try to reprogram. Note, that in case
558 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
559 * check happens. The timer gets enqueued into the rbtree. The reprogramming
560 * and expiry check is done in the hrtimer_interrupt or in the softirq.
562 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
563 struct hrtimer_clock_base *base)
565 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
567 /* Timer is expired, act upon the callback mode */
568 switch(timer->cb_mode) {
569 case HRTIMER_CB_IRQSAFE_NO_RESTART:
571 * We can call the callback from here. No restart
572 * happens, so no danger of recursion
574 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
575 return 1;
576 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
578 * This is solely for the sched tick emulation with
579 * dynamic tick support to ensure that we do not
580 * restart the tick right on the edge and end up with
581 * the tick timer in the softirq ! The calling site
582 * takes care of this.
584 return 1;
585 case HRTIMER_CB_IRQSAFE:
586 case HRTIMER_CB_SOFTIRQ:
588 * Move everything else into the softirq pending list !
590 list_add_tail(&timer->cb_entry,
591 &base->cpu_base->cb_pending);
592 timer->state = HRTIMER_STATE_PENDING;
593 raise_softirq(HRTIMER_SOFTIRQ);
594 return 1;
595 default:
596 BUG();
599 return 0;
603 * Switch to high resolution mode
605 static int hrtimer_switch_to_hres(void)
607 int cpu = smp_processor_id();
608 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
609 unsigned long flags;
611 if (base->hres_active)
612 return 1;
614 local_irq_save(flags);
616 if (tick_init_highres()) {
617 local_irq_restore(flags);
618 printk(KERN_WARNING "Could not switch to high resolution "
619 "mode on CPU %d\n", cpu);
620 return 0;
622 base->hres_active = 1;
623 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
624 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
626 tick_setup_sched_timer();
628 /* "Retrigger" the interrupt to get things going */
629 retrigger_next_event(NULL);
630 local_irq_restore(flags);
631 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
632 smp_processor_id());
633 return 1;
636 #else
638 static inline int hrtimer_hres_active(void) { return 0; }
639 static inline int hrtimer_is_hres_enabled(void) { return 0; }
640 static inline int hrtimer_switch_to_hres(void) { return 0; }
641 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
642 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 struct hrtimer_clock_base *base)
645 return 0;
647 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
648 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
649 static inline int hrtimer_reprogram(struct hrtimer *timer,
650 struct hrtimer_clock_base *base)
652 return 0;
655 #endif /* CONFIG_HIGH_RES_TIMERS */
657 #ifdef CONFIG_TIMER_STATS
658 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
660 if (timer->start_site)
661 return;
663 timer->start_site = addr;
664 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
665 timer->start_pid = current->pid;
667 #endif
670 * Counterpart to lock_hrtimer_base above:
672 static inline
673 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
675 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
679 * hrtimer_forward - forward the timer expiry
680 * @timer: hrtimer to forward
681 * @now: forward past this time
682 * @interval: the interval to forward
684 * Forward the timer expiry so it will expire in the future.
685 * Returns the number of overruns.
687 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
689 u64 orun = 1;
690 ktime_t delta;
692 delta = ktime_sub(now, timer->expires);
694 if (delta.tv64 < 0)
695 return 0;
697 if (interval.tv64 < timer->base->resolution.tv64)
698 interval.tv64 = timer->base->resolution.tv64;
700 if (unlikely(delta.tv64 >= interval.tv64)) {
701 s64 incr = ktime_to_ns(interval);
703 orun = ktime_divns(delta, incr);
704 timer->expires = ktime_add_ns(timer->expires, incr * orun);
705 if (timer->expires.tv64 > now.tv64)
706 return orun;
708 * This (and the ktime_add() below) is the
709 * correction for exact:
711 orun++;
713 timer->expires = ktime_add_safe(timer->expires, interval);
715 return orun;
717 EXPORT_SYMBOL_GPL(hrtimer_forward);
720 * enqueue_hrtimer - internal function to (re)start a timer
722 * The timer is inserted in expiry order. Insertion into the
723 * red black tree is O(log(n)). Must hold the base lock.
725 static void enqueue_hrtimer(struct hrtimer *timer,
726 struct hrtimer_clock_base *base, int reprogram)
728 struct rb_node **link = &base->active.rb_node;
729 struct rb_node *parent = NULL;
730 struct hrtimer *entry;
731 int leftmost = 1;
734 * Find the right place in the rbtree:
736 while (*link) {
737 parent = *link;
738 entry = rb_entry(parent, struct hrtimer, node);
740 * We dont care about collisions. Nodes with
741 * the same expiry time stay together.
743 if (timer->expires.tv64 < entry->expires.tv64) {
744 link = &(*link)->rb_left;
745 } else {
746 link = &(*link)->rb_right;
747 leftmost = 0;
752 * Insert the timer to the rbtree and check whether it
753 * replaces the first pending timer
755 if (leftmost) {
757 * Reprogram the clock event device. When the timer is already
758 * expired hrtimer_enqueue_reprogram has either called the
759 * callback or added it to the pending list and raised the
760 * softirq.
762 * This is a NOP for !HIGHRES
764 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
765 return;
767 base->first = &timer->node;
770 rb_link_node(&timer->node, parent, link);
771 rb_insert_color(&timer->node, &base->active);
773 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
774 * state of a possibly running callback.
776 timer->state |= HRTIMER_STATE_ENQUEUED;
780 * __remove_hrtimer - internal function to remove a timer
782 * Caller must hold the base lock.
784 * High resolution timer mode reprograms the clock event device when the
785 * timer is the one which expires next. The caller can disable this by setting
786 * reprogram to zero. This is useful, when the context does a reprogramming
787 * anyway (e.g. timer interrupt)
789 static void __remove_hrtimer(struct hrtimer *timer,
790 struct hrtimer_clock_base *base,
791 unsigned long newstate, int reprogram)
793 /* High res. callback list. NOP for !HIGHRES */
794 if (hrtimer_cb_pending(timer))
795 hrtimer_remove_cb_pending(timer);
796 else {
798 * Remove the timer from the rbtree and replace the
799 * first entry pointer if necessary.
801 if (base->first == &timer->node) {
802 base->first = rb_next(&timer->node);
803 /* Reprogram the clock event device. if enabled */
804 if (reprogram && hrtimer_hres_active())
805 hrtimer_force_reprogram(base->cpu_base);
807 rb_erase(&timer->node, &base->active);
809 timer->state = newstate;
813 * remove hrtimer, called with base lock held
815 static inline int
816 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
818 if (hrtimer_is_queued(timer)) {
819 int reprogram;
822 * Remove the timer and force reprogramming when high
823 * resolution mode is active and the timer is on the current
824 * CPU. If we remove a timer on another CPU, reprogramming is
825 * skipped. The interrupt event on this CPU is fired and
826 * reprogramming happens in the interrupt handler. This is a
827 * rare case and less expensive than a smp call.
829 timer_stats_hrtimer_clear_start_info(timer);
830 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
831 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
832 reprogram);
833 return 1;
835 return 0;
839 * hrtimer_start - (re)start an relative timer on the current CPU
840 * @timer: the timer to be added
841 * @tim: expiry time
842 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
844 * Returns:
845 * 0 on success
846 * 1 when the timer was active
849 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
851 struct hrtimer_clock_base *base, *new_base;
852 unsigned long flags;
853 int ret;
855 base = lock_hrtimer_base(timer, &flags);
857 /* Remove an active timer from the queue: */
858 ret = remove_hrtimer(timer, base);
860 /* Switch the timer base, if necessary: */
861 new_base = switch_hrtimer_base(timer, base);
863 if (mode == HRTIMER_MODE_REL) {
864 tim = ktime_add_safe(tim, new_base->get_time());
866 * CONFIG_TIME_LOW_RES is a temporary way for architectures
867 * to signal that they simply return xtime in
868 * do_gettimeoffset(). In this case we want to round up by
869 * resolution when starting a relative timer, to avoid short
870 * timeouts. This will go away with the GTOD framework.
872 #ifdef CONFIG_TIME_LOW_RES
873 tim = ktime_add_safe(tim, base->resolution);
874 #endif
876 timer->expires = tim;
878 timer_stats_hrtimer_set_start_info(timer);
881 * Only allow reprogramming if the new base is on this CPU.
882 * (it might still be on another CPU if the timer was pending)
884 enqueue_hrtimer(timer, new_base,
885 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
887 unlock_hrtimer_base(timer, &flags);
889 return ret;
891 EXPORT_SYMBOL_GPL(hrtimer_start);
894 * hrtimer_try_to_cancel - try to deactivate a timer
895 * @timer: hrtimer to stop
897 * Returns:
898 * 0 when the timer was not active
899 * 1 when the timer was active
900 * -1 when the timer is currently excuting the callback function and
901 * cannot be stopped
903 int hrtimer_try_to_cancel(struct hrtimer *timer)
905 struct hrtimer_clock_base *base;
906 unsigned long flags;
907 int ret = -1;
909 base = lock_hrtimer_base(timer, &flags);
911 if (!hrtimer_callback_running(timer))
912 ret = remove_hrtimer(timer, base);
914 unlock_hrtimer_base(timer, &flags);
916 return ret;
919 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
922 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
923 * @timer: the timer to be cancelled
925 * Returns:
926 * 0 when the timer was not active
927 * 1 when the timer was active
929 int hrtimer_cancel(struct hrtimer *timer)
931 for (;;) {
932 int ret = hrtimer_try_to_cancel(timer);
934 if (ret >= 0)
935 return ret;
936 cpu_relax();
939 EXPORT_SYMBOL_GPL(hrtimer_cancel);
942 * hrtimer_get_remaining - get remaining time for the timer
943 * @timer: the timer to read
945 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
947 struct hrtimer_clock_base *base;
948 unsigned long flags;
949 ktime_t rem;
951 base = lock_hrtimer_base(timer, &flags);
952 rem = ktime_sub(timer->expires, base->get_time());
953 unlock_hrtimer_base(timer, &flags);
955 return rem;
957 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
959 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
961 * hrtimer_get_next_event - get the time until next expiry event
963 * Returns the delta to the next expiry event or KTIME_MAX if no timer
964 * is pending.
966 ktime_t hrtimer_get_next_event(void)
968 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
969 struct hrtimer_clock_base *base = cpu_base->clock_base;
970 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
971 unsigned long flags;
972 int i;
974 spin_lock_irqsave(&cpu_base->lock, flags);
976 if (!hrtimer_hres_active()) {
977 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
978 struct hrtimer *timer;
980 if (!base->first)
981 continue;
983 timer = rb_entry(base->first, struct hrtimer, node);
984 delta.tv64 = timer->expires.tv64;
985 delta = ktime_sub(delta, base->get_time());
986 if (delta.tv64 < mindelta.tv64)
987 mindelta.tv64 = delta.tv64;
991 spin_unlock_irqrestore(&cpu_base->lock, flags);
993 if (mindelta.tv64 < 0)
994 mindelta.tv64 = 0;
995 return mindelta;
997 #endif
1000 * hrtimer_init - initialize a timer to the given clock
1001 * @timer: the timer to be initialized
1002 * @clock_id: the clock to be used
1003 * @mode: timer mode abs/rel
1005 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1006 enum hrtimer_mode mode)
1008 struct hrtimer_cpu_base *cpu_base;
1010 memset(timer, 0, sizeof(struct hrtimer));
1012 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1014 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1015 clock_id = CLOCK_MONOTONIC;
1017 timer->base = &cpu_base->clock_base[clock_id];
1018 INIT_LIST_HEAD(&timer->cb_entry);
1019 hrtimer_init_timer_hres(timer);
1021 #ifdef CONFIG_TIMER_STATS
1022 timer->start_site = NULL;
1023 timer->start_pid = -1;
1024 memset(timer->start_comm, 0, TASK_COMM_LEN);
1025 #endif
1027 EXPORT_SYMBOL_GPL(hrtimer_init);
1030 * hrtimer_get_res - get the timer resolution for a clock
1031 * @which_clock: which clock to query
1032 * @tp: pointer to timespec variable to store the resolution
1034 * Store the resolution of the clock selected by @which_clock in the
1035 * variable pointed to by @tp.
1037 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1039 struct hrtimer_cpu_base *cpu_base;
1041 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1042 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1044 return 0;
1046 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1048 static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1050 spin_lock_irq(&cpu_base->lock);
1052 while (!list_empty(&cpu_base->cb_pending)) {
1053 enum hrtimer_restart (*fn)(struct hrtimer *);
1054 struct hrtimer *timer;
1055 int restart;
1057 timer = list_entry(cpu_base->cb_pending.next,
1058 struct hrtimer, cb_entry);
1060 timer_stats_account_hrtimer(timer);
1062 fn = timer->function;
1063 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1064 spin_unlock_irq(&cpu_base->lock);
1066 restart = fn(timer);
1068 spin_lock_irq(&cpu_base->lock);
1070 timer->state &= ~HRTIMER_STATE_CALLBACK;
1071 if (restart == HRTIMER_RESTART) {
1072 BUG_ON(hrtimer_active(timer));
1074 * Enqueue the timer, allow reprogramming of the event
1075 * device
1077 enqueue_hrtimer(timer, timer->base, 1);
1078 } else if (hrtimer_active(timer)) {
1080 * If the timer was rearmed on another CPU, reprogram
1081 * the event device.
1083 if (timer->base->first == &timer->node)
1084 hrtimer_reprogram(timer, timer->base);
1087 spin_unlock_irq(&cpu_base->lock);
1090 static void __run_hrtimer(struct hrtimer *timer)
1092 struct hrtimer_clock_base *base = timer->base;
1093 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1094 enum hrtimer_restart (*fn)(struct hrtimer *);
1095 int restart;
1097 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1098 timer_stats_account_hrtimer(timer);
1100 fn = timer->function;
1101 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ) {
1103 * Used for scheduler timers, avoid lock inversion with
1104 * rq->lock and tasklist_lock.
1106 * These timers are required to deal with enqueue expiry
1107 * themselves and are not allowed to migrate.
1109 spin_unlock(&cpu_base->lock);
1110 restart = fn(timer);
1111 spin_lock(&cpu_base->lock);
1112 } else
1113 restart = fn(timer);
1116 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1117 * reprogramming of the event hardware. This happens at the end of this
1118 * function anyway.
1120 if (restart != HRTIMER_NORESTART) {
1121 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1122 enqueue_hrtimer(timer, base, 0);
1124 timer->state &= ~HRTIMER_STATE_CALLBACK;
1127 #ifdef CONFIG_HIGH_RES_TIMERS
1130 * High resolution timer interrupt
1131 * Called with interrupts disabled
1133 void hrtimer_interrupt(struct clock_event_device *dev)
1135 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1136 struct hrtimer_clock_base *base;
1137 ktime_t expires_next, now;
1138 int i, raise = 0;
1140 BUG_ON(!cpu_base->hres_active);
1141 cpu_base->nr_events++;
1142 dev->next_event.tv64 = KTIME_MAX;
1144 retry:
1145 now = ktime_get();
1147 expires_next.tv64 = KTIME_MAX;
1149 base = cpu_base->clock_base;
1151 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1152 ktime_t basenow;
1153 struct rb_node *node;
1155 spin_lock(&cpu_base->lock);
1157 basenow = ktime_add(now, base->offset);
1159 while ((node = base->first)) {
1160 struct hrtimer *timer;
1162 timer = rb_entry(node, struct hrtimer, node);
1164 if (basenow.tv64 < timer->expires.tv64) {
1165 ktime_t expires;
1167 expires = ktime_sub(timer->expires,
1168 base->offset);
1169 if (expires.tv64 < expires_next.tv64)
1170 expires_next = expires;
1171 break;
1174 /* Move softirq callbacks to the pending list */
1175 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1176 __remove_hrtimer(timer, base,
1177 HRTIMER_STATE_PENDING, 0);
1178 list_add_tail(&timer->cb_entry,
1179 &base->cpu_base->cb_pending);
1180 raise = 1;
1181 continue;
1184 __run_hrtimer(timer);
1186 spin_unlock(&cpu_base->lock);
1187 base++;
1190 cpu_base->expires_next = expires_next;
1192 /* Reprogramming necessary ? */
1193 if (expires_next.tv64 != KTIME_MAX) {
1194 if (tick_program_event(expires_next, 0))
1195 goto retry;
1198 /* Raise softirq ? */
1199 if (raise)
1200 raise_softirq(HRTIMER_SOFTIRQ);
1203 static void run_hrtimer_softirq(struct softirq_action *h)
1205 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1208 #endif /* CONFIG_HIGH_RES_TIMERS */
1211 * Called from timer softirq every jiffy, expire hrtimers:
1213 * For HRT its the fall back code to run the softirq in the timer
1214 * softirq context in case the hrtimer initialization failed or has
1215 * not been done yet.
1217 void hrtimer_run_pending(void)
1219 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1221 if (hrtimer_hres_active())
1222 return;
1225 * This _is_ ugly: We have to check in the softirq context,
1226 * whether we can switch to highres and / or nohz mode. The
1227 * clocksource switch happens in the timer interrupt with
1228 * xtime_lock held. Notification from there only sets the
1229 * check bit in the tick_oneshot code, otherwise we might
1230 * deadlock vs. xtime_lock.
1232 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1233 hrtimer_switch_to_hres();
1235 run_hrtimer_pending(cpu_base);
1239 * Called from hardirq context every jiffy
1241 void hrtimer_run_queues(void)
1243 struct rb_node *node;
1244 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1245 struct hrtimer_clock_base *base;
1246 int index, gettime = 1;
1248 if (hrtimer_hres_active())
1249 return;
1251 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1252 base = &cpu_base->clock_base[index];
1254 if (!base->first)
1255 continue;
1257 if (base->get_softirq_time)
1258 base->softirq_time = base->get_softirq_time();
1259 else if (gettime) {
1260 hrtimer_get_softirq_time(cpu_base);
1261 gettime = 0;
1264 spin_lock(&cpu_base->lock);
1266 while ((node = base->first)) {
1267 struct hrtimer *timer;
1269 timer = rb_entry(node, struct hrtimer, node);
1270 if (base->softirq_time.tv64 <= timer->expires.tv64)
1271 break;
1273 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1274 __remove_hrtimer(timer, base,
1275 HRTIMER_STATE_PENDING, 0);
1276 list_add_tail(&timer->cb_entry,
1277 &base->cpu_base->cb_pending);
1278 continue;
1281 __run_hrtimer(timer);
1283 spin_unlock(&cpu_base->lock);
1288 * Sleep related functions:
1290 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1292 struct hrtimer_sleeper *t =
1293 container_of(timer, struct hrtimer_sleeper, timer);
1294 struct task_struct *task = t->task;
1296 t->task = NULL;
1297 if (task)
1298 wake_up_process(task);
1300 return HRTIMER_NORESTART;
1303 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1305 sl->timer.function = hrtimer_wakeup;
1306 sl->task = task;
1307 #ifdef CONFIG_HIGH_RES_TIMERS
1308 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1309 #endif
1312 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1314 hrtimer_init_sleeper(t, current);
1316 do {
1317 set_current_state(TASK_INTERRUPTIBLE);
1318 hrtimer_start(&t->timer, t->timer.expires, mode);
1319 if (!hrtimer_active(&t->timer))
1320 t->task = NULL;
1322 if (likely(t->task))
1323 schedule();
1325 hrtimer_cancel(&t->timer);
1326 mode = HRTIMER_MODE_ABS;
1328 } while (t->task && !signal_pending(current));
1330 __set_current_state(TASK_RUNNING);
1332 return t->task == NULL;
1335 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1337 struct timespec rmt;
1338 ktime_t rem;
1340 rem = ktime_sub(timer->expires, timer->base->get_time());
1341 if (rem.tv64 <= 0)
1342 return 0;
1343 rmt = ktime_to_timespec(rem);
1345 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1346 return -EFAULT;
1348 return 1;
1351 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1353 struct hrtimer_sleeper t;
1354 struct timespec __user *rmtp;
1356 hrtimer_init(&t.timer, restart->nanosleep.index, HRTIMER_MODE_ABS);
1357 t.timer.expires.tv64 = restart->nanosleep.expires;
1359 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1360 return 0;
1362 rmtp = restart->nanosleep.rmtp;
1363 if (rmtp) {
1364 int ret = update_rmtp(&t.timer, rmtp);
1365 if (ret <= 0)
1366 return ret;
1369 /* The other values in restart are already filled in */
1370 return -ERESTART_RESTARTBLOCK;
1373 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1374 const enum hrtimer_mode mode, const clockid_t clockid)
1376 struct restart_block *restart;
1377 struct hrtimer_sleeper t;
1379 hrtimer_init(&t.timer, clockid, mode);
1380 t.timer.expires = timespec_to_ktime(*rqtp);
1381 if (do_nanosleep(&t, mode))
1382 return 0;
1384 /* Absolute timers do not update the rmtp value and restart: */
1385 if (mode == HRTIMER_MODE_ABS)
1386 return -ERESTARTNOHAND;
1388 if (rmtp) {
1389 int ret = update_rmtp(&t.timer, rmtp);
1390 if (ret <= 0)
1391 return ret;
1394 restart = &current_thread_info()->restart_block;
1395 restart->fn = hrtimer_nanosleep_restart;
1396 restart->nanosleep.index = t.timer.base->index;
1397 restart->nanosleep.rmtp = rmtp;
1398 restart->nanosleep.expires = t.timer.expires.tv64;
1400 return -ERESTART_RESTARTBLOCK;
1403 asmlinkage long
1404 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1406 struct timespec tu;
1408 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1409 return -EFAULT;
1411 if (!timespec_valid(&tu))
1412 return -EINVAL;
1414 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1418 * Functions related to boot-time initialization:
1420 static void __cpuinit init_hrtimers_cpu(int cpu)
1422 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1423 int i;
1425 spin_lock_init(&cpu_base->lock);
1427 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1428 cpu_base->clock_base[i].cpu_base = cpu_base;
1430 INIT_LIST_HEAD(&cpu_base->cb_pending);
1431 hrtimer_init_hres(cpu_base);
1434 #ifdef CONFIG_HOTPLUG_CPU
1436 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1437 struct hrtimer_clock_base *new_base)
1439 struct hrtimer *timer;
1440 struct rb_node *node;
1442 while ((node = rb_first(&old_base->active))) {
1443 timer = rb_entry(node, struct hrtimer, node);
1444 BUG_ON(hrtimer_callback_running(timer));
1445 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1446 timer->base = new_base;
1448 * Enqueue the timer. Allow reprogramming of the event device
1450 enqueue_hrtimer(timer, new_base, 1);
1454 static void migrate_hrtimers(int cpu)
1456 struct hrtimer_cpu_base *old_base, *new_base;
1457 int i;
1459 BUG_ON(cpu_online(cpu));
1460 old_base = &per_cpu(hrtimer_bases, cpu);
1461 new_base = &get_cpu_var(hrtimer_bases);
1463 tick_cancel_sched_timer(cpu);
1465 local_irq_disable();
1466 spin_lock(&new_base->lock);
1467 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1469 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1470 migrate_hrtimer_list(&old_base->clock_base[i],
1471 &new_base->clock_base[i]);
1474 spin_unlock(&old_base->lock);
1475 spin_unlock(&new_base->lock);
1476 local_irq_enable();
1477 put_cpu_var(hrtimer_bases);
1479 #endif /* CONFIG_HOTPLUG_CPU */
1481 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1482 unsigned long action, void *hcpu)
1484 unsigned int cpu = (long)hcpu;
1486 switch (action) {
1488 case CPU_UP_PREPARE:
1489 case CPU_UP_PREPARE_FROZEN:
1490 init_hrtimers_cpu(cpu);
1491 break;
1493 #ifdef CONFIG_HOTPLUG_CPU
1494 case CPU_DEAD:
1495 case CPU_DEAD_FROZEN:
1496 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1497 migrate_hrtimers(cpu);
1498 break;
1499 #endif
1501 default:
1502 break;
1505 return NOTIFY_OK;
1508 static struct notifier_block __cpuinitdata hrtimers_nb = {
1509 .notifier_call = hrtimer_cpu_notify,
1512 void __init hrtimers_init(void)
1514 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1515 (void *)(long)smp_processor_id());
1516 register_cpu_notifier(&hrtimers_nb);
1517 #ifdef CONFIG_HIGH_RES_TIMERS
1518 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1519 #endif