V4L/DVB: IR: jvc-decoder needs BITREVERSE
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / PCI / MSI-HOWTO.txt
blobdcf7acc720e18bb68c572e38c6913863b5ead701
1                 The MSI Driver Guide HOWTO
2         Tom L Nguyen tom.l.nguyen@intel.com
3                         10/03/2003
4         Revised Feb 12, 2004 by Martine Silbermann
5                 email: Martine.Silbermann@hp.com
6         Revised Jun 25, 2004 by Tom L Nguyen
7         Revised Jul  9, 2008 by Matthew Wilcox <willy@linux.intel.com>
8                 Copyright 2003, 2008 Intel Corporation
10 1. About this guide
12 This guide describes the basics of Message Signaled Interrupts (MSIs),
13 the advantages of using MSI over traditional interrupt mechanisms, how
14 to change your driver to use MSI or MSI-X and some basic diagnostics to
15 try if a device doesn't support MSIs.
18 2. What are MSIs?
20 A Message Signaled Interrupt is a write from the device to a special
21 address which causes an interrupt to be received by the CPU.
23 The MSI capability was first specified in PCI 2.2 and was later enhanced
24 in PCI 3.0 to allow each interrupt to be masked individually.  The MSI-X
25 capability was also introduced with PCI 3.0.  It supports more interrupts
26 per device than MSI and allows interrupts to be independently configured.
28 Devices may support both MSI and MSI-X, but only one can be enabled at
29 a time.
32 3. Why use MSIs?
34 There are three reasons why using MSIs can give an advantage over
35 traditional pin-based interrupts.
37 Pin-based PCI interrupts are often shared amongst several devices.
38 To support this, the kernel must call each interrupt handler associated
39 with an interrupt, which leads to reduced performance for the system as
40 a whole.  MSIs are never shared, so this problem cannot arise.
42 When a device writes data to memory, then raises a pin-based interrupt,
43 it is possible that the interrupt may arrive before all the data has
44 arrived in memory (this becomes more likely with devices behind PCI-PCI
45 bridges).  In order to ensure that all the data has arrived in memory,
46 the interrupt handler must read a register on the device which raised
47 the interrupt.  PCI transaction ordering rules require that all the data
48 arrives in memory before the value can be returned from the register.
49 Using MSIs avoids this problem as the interrupt-generating write cannot
50 pass the data writes, so by the time the interrupt is raised, the driver
51 knows that all the data has arrived in memory.
53 PCI devices can only support a single pin-based interrupt per function.
54 Often drivers have to query the device to find out what event has
55 occurred, slowing down interrupt handling for the common case.  With
56 MSIs, a device can support more interrupts, allowing each interrupt
57 to be specialised to a different purpose.  One possible design gives
58 infrequent conditions (such as errors) their own interrupt which allows
59 the driver to handle the normal interrupt handling path more efficiently.
60 Other possible designs include giving one interrupt to each packet queue
61 in a network card or each port in a storage controller.
64 4. How to use MSIs
66 PCI devices are initialised to use pin-based interrupts.  The device
67 driver has to set up the device to use MSI or MSI-X.  Not all machines
68 support MSIs correctly, and for those machines, the APIs described below
69 will simply fail and the device will continue to use pin-based interrupts.
71 4.1 Include kernel support for MSIs
73 To support MSI or MSI-X, the kernel must be built with the CONFIG_PCI_MSI
74 option enabled.  This option is only available on some architectures,
75 and it may depend on some other options also being set.  For example,
76 on x86, you must also enable X86_UP_APIC or SMP in order to see the
77 CONFIG_PCI_MSI option.
79 4.2 Using MSI
81 Most of the hard work is done for the driver in the PCI layer.  It simply
82 has to request that the PCI layer set up the MSI capability for this
83 device.
85 4.2.1 pci_enable_msi
87 int pci_enable_msi(struct pci_dev *dev)
89 A successful call will allocate ONE interrupt to the device, regardless
90 of how many MSIs the device supports.  The device will be switched from
91 pin-based interrupt mode to MSI mode.  The dev->irq number is changed
92 to a new number which represents the message signaled interrupt.
93 This function should be called before the driver calls request_irq()
94 since enabling MSIs disables the pin-based IRQ and the driver will not
95 receive interrupts on the old interrupt.
97 4.2.2 pci_enable_msi_block
99 int pci_enable_msi_block(struct pci_dev *dev, int count)
101 This variation on the above call allows a device driver to request multiple
102 MSIs.  The MSI specification only allows interrupts to be allocated in
103 powers of two, up to a maximum of 2^5 (32).
105 If this function returns 0, it has succeeded in allocating at least as many
106 interrupts as the driver requested (it may have allocated more in order
107 to satisfy the power-of-two requirement).  In this case, the function
108 enables MSI on this device and updates dev->irq to be the lowest of
109 the new interrupts assigned to it.  The other interrupts assigned to
110 the device are in the range dev->irq to dev->irq + count - 1.
112 If this function returns a negative number, it indicates an error and
113 the driver should not attempt to request any more MSI interrupts for
114 this device.  If this function returns a positive number, it will be
115 less than 'count' and indicate the number of interrupts that could have
116 been allocated.  In neither case will the irq value have been
117 updated, nor will the device have been switched into MSI mode.
119 The device driver must decide what action to take if
120 pci_enable_msi_block() returns a value less than the number asked for.
121 Some devices can make use of fewer interrupts than the maximum they
122 request; in this case the driver should call pci_enable_msi_block()
123 again.  Note that it is not guaranteed to succeed, even when the
124 'count' has been reduced to the value returned from a previous call to
125 pci_enable_msi_block().  This is because there are multiple constraints
126 on the number of vectors that can be allocated; pci_enable_msi_block()
127 will return as soon as it finds any constraint that doesn't allow the
128 call to succeed.
130 4.2.3 pci_disable_msi
132 void pci_disable_msi(struct pci_dev *dev)
134 This function should be used to undo the effect of pci_enable_msi() or
135 pci_enable_msi_block().  Calling it restores dev->irq to the pin-based
136 interrupt number and frees the previously allocated message signaled
137 interrupt(s).  The interrupt may subsequently be assigned to another
138 device, so drivers should not cache the value of dev->irq.
140 A device driver must always call free_irq() on the interrupt(s)
141 for which it has called request_irq() before calling this function.
142 Failure to do so will result in a BUG_ON(), the device will be left with
143 MSI enabled and will leak its vector.
145 4.3 Using MSI-X
147 The MSI-X capability is much more flexible than the MSI capability.
148 It supports up to 2048 interrupts, each of which can be controlled
149 independently.  To support this flexibility, drivers must use an array of
150 `struct msix_entry':
152 struct msix_entry {
153         u16     vector; /* kernel uses to write alloc vector */
154         u16     entry; /* driver uses to specify entry */
157 This allows for the device to use these interrupts in a sparse fashion;
158 for example it could use interrupts 3 and 1027 and allocate only a
159 two-element array.  The driver is expected to fill in the 'entry' value
160 in each element of the array to indicate which entries it wants the kernel
161 to assign interrupts for.  It is invalid to fill in two entries with the
162 same number.
164 4.3.1 pci_enable_msix
166 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
168 Calling this function asks the PCI subsystem to allocate 'nvec' MSIs.
169 The 'entries' argument is a pointer to an array of msix_entry structs
170 which should be at least 'nvec' entries in size.  On success, the
171 function will return 0 and the device will have been switched into
172 MSI-X interrupt mode.  The 'vector' elements in each entry will have
173 been filled in with the interrupt number.  The driver should then call
174 request_irq() for each 'vector' that it decides to use.
176 If this function returns a negative number, it indicates an error and
177 the driver should not attempt to allocate any more MSI-X interrupts for
178 this device.  If it returns a positive number, it indicates the maximum
179 number of interrupt vectors that could have been allocated. See example
180 below.
182 This function, in contrast with pci_enable_msi(), does not adjust
183 dev->irq.  The device will not generate interrupts for this interrupt
184 number once MSI-X is enabled.  The device driver is responsible for
185 keeping track of the interrupts assigned to the MSI-X vectors so it can
186 free them again later.
188 Device drivers should normally call this function once per device
189 during the initialization phase.
191 It is ideal if drivers can cope with a variable number of MSI-X interrupts,
192 there are many reasons why the platform may not be able to provide the
193 exact number a driver asks for.
195 A request loop to achieve that might look like:
197 static int foo_driver_enable_msix(struct foo_adapter *adapter, int nvec)
199         while (nvec >= FOO_DRIVER_MINIMUM_NVEC) {
200                 rc = pci_enable_msix(adapter->pdev,
201                                      adapter->msix_entries, nvec);
202                 if (rc > 0)
203                         nvec = rc;
204                 else
205                         return rc;
206         }
208         return -ENOSPC;
211 4.3.2 pci_disable_msix
213 void pci_disable_msix(struct pci_dev *dev)
215 This API should be used to undo the effect of pci_enable_msix().  It frees
216 the previously allocated message signaled interrupts.  The interrupts may
217 subsequently be assigned to another device, so drivers should not cache
218 the value of the 'vector' elements over a call to pci_disable_msix().
220 A device driver must always call free_irq() on the interrupt(s)
221 for which it has called request_irq() before calling this function.
222 Failure to do so will result in a BUG_ON(), the device will be left with
223 MSI enabled and will leak its vector.
225 4.3.3 The MSI-X Table
227 The MSI-X capability specifies a BAR and offset within that BAR for the
228 MSI-X Table.  This address is mapped by the PCI subsystem, and should not
229 be accessed directly by the device driver.  If the driver wishes to
230 mask or unmask an interrupt, it should call disable_irq() / enable_irq().
232 4.4 Handling devices implementing both MSI and MSI-X capabilities
234 If a device implements both MSI and MSI-X capabilities, it can
235 run in either MSI mode or MSI-X mode but not both simultaneously.
236 This is a requirement of the PCI spec, and it is enforced by the
237 PCI layer.  Calling pci_enable_msi() when MSI-X is already enabled or
238 pci_enable_msix() when MSI is already enabled will result in an error.
239 If a device driver wishes to switch between MSI and MSI-X at runtime,
240 it must first quiesce the device, then switch it back to pin-interrupt
241 mode, before calling pci_enable_msi() or pci_enable_msix() and resuming
242 operation.  This is not expected to be a common operation but may be
243 useful for debugging or testing during development.
245 4.5 Considerations when using MSIs
247 4.5.1 Choosing between MSI-X and MSI
249 If your device supports both MSI-X and MSI capabilities, you should use
250 the MSI-X facilities in preference to the MSI facilities.  As mentioned
251 above, MSI-X supports any number of interrupts between 1 and 2048.
252 In constrast, MSI is restricted to a maximum of 32 interrupts (and
253 must be a power of two).  In addition, the MSI interrupt vectors must
254 be allocated consecutively, so the system may not be able to allocate
255 as many vectors for MSI as it could for MSI-X.  On some platforms, MSI
256 interrupts must all be targetted at the same set of CPUs whereas MSI-X
257 interrupts can all be targetted at different CPUs.
259 4.5.2 Spinlocks
261 Most device drivers have a per-device spinlock which is taken in the
262 interrupt handler.  With pin-based interrupts or a single MSI, it is not
263 necessary to disable interrupts (Linux guarantees the same interrupt will
264 not be re-entered).  If a device uses multiple interrupts, the driver
265 must disable interrupts while the lock is held.  If the device sends
266 a different interrupt, the driver will deadlock trying to recursively
267 acquire the spinlock.
269 There are two solutions.  The first is to take the lock with
270 spin_lock_irqsave() or spin_lock_irq() (see
271 Documentation/DocBook/kernel-locking).  The second is to specify
272 IRQF_DISABLED to request_irq() so that the kernel runs the entire
273 interrupt routine with interrupts disabled.
275 If your MSI interrupt routine does not hold the lock for the whole time
276 it is running, the first solution may be best.  The second solution is
277 normally preferred as it avoids making two transitions from interrupt
278 disabled to enabled and back again.
280 4.6 How to tell whether MSI/MSI-X is enabled on a device
282 Using 'lspci -v' (as root) may show some devices with "MSI", "Message
283 Signalled Interrupts" or "MSI-X" capabilities.  Each of these capabilities
284 has an 'Enable' flag which will be followed with either "+" (enabled)
285 or "-" (disabled).
288 5. MSI quirks
290 Several PCI chipsets or devices are known not to support MSIs.
291 The PCI stack provides three ways to disable MSIs:
293 1. globally
294 2. on all devices behind a specific bridge
295 3. on a single device
297 5.1. Disabling MSIs globally
299 Some host chipsets simply don't support MSIs properly.  If we're
300 lucky, the manufacturer knows this and has indicated it in the ACPI
301 FADT table.  In this case, Linux will automatically disable MSIs.
302 Some boards don't include this information in the table and so we have
303 to detect them ourselves.  The complete list of these is found near the
304 quirk_disable_all_msi() function in drivers/pci/quirks.c.
306 If you have a board which has problems with MSIs, you can pass pci=nomsi
307 on the kernel command line to disable MSIs on all devices.  It would be
308 in your best interests to report the problem to linux-pci@vger.kernel.org
309 including a full 'lspci -v' so we can add the quirks to the kernel.
311 5.2. Disabling MSIs below a bridge
313 Some PCI bridges are not able to route MSIs between busses properly.
314 In this case, MSIs must be disabled on all devices behind the bridge.
316 Some bridges allow you to enable MSIs by changing some bits in their
317 PCI configuration space (especially the Hypertransport chipsets such
318 as the nVidia nForce and Serverworks HT2000).  As with host chipsets,
319 Linux mostly knows about them and automatically enables MSIs if it can.
320 If you have a bridge which Linux doesn't yet know about, you can enable
321 MSIs in configuration space using whatever method you know works, then
322 enable MSIs on that bridge by doing:
324        echo 1 > /sys/bus/pci/devices/$bridge/msi_bus
326 where $bridge is the PCI address of the bridge you've enabled (eg
327 0000:00:0e.0).
329 To disable MSIs, echo 0 instead of 1.  Changing this value should be
330 done with caution as it can break interrupt handling for all devices
331 below this bridge.
333 Again, please notify linux-pci@vger.kernel.org of any bridges that need
334 special handling.
336 5.3. Disabling MSIs on a single device
338 Some devices are known to have faulty MSI implementations.  Usually this
339 is handled in the individual device driver but occasionally it's necessary
340 to handle this with a quirk.  Some drivers have an option to disable use
341 of MSI.  While this is a convenient workaround for the driver author,
342 it is not good practise, and should not be emulated.
344 5.4. Finding why MSIs are disabled on a device
346 From the above three sections, you can see that there are many reasons
347 why MSIs may not be enabled for a given device.  Your first step should
348 be to examine your dmesg carefully to determine whether MSIs are enabled
349 for your machine.  You should also check your .config to be sure you
350 have enabled CONFIG_PCI_MSI.
352 Then, 'lspci -t' gives the list of bridges above a device.  Reading
353 /sys/bus/pci/devices/*/msi_bus will tell you whether MSI are enabled (1)
354 or disabled (0).  If 0 is found in any of the msi_bus files belonging
355 to bridges between the PCI root and the device, MSIs are disabled.
357 It is also worth checking the device driver to see whether it supports MSIs.
358 For example, it may contain calls to pci_enable_msi(), pci_enable_msix() or
359 pci_enable_msi_block().