[ALSA] snd-emu10k1: Add comments regarding chips present on the card.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / acpi / osl.c
blobe3cd0b16031ad32c70ee1b47516c23b02856cbcb
1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/pci.h>
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/kmod.h>
37 #include <linux/delay.h>
38 #include <linux/workqueue.h>
39 #include <linux/nmi.h>
40 #include <acpi/acpi.h>
41 #include <asm/io.h>
42 #include <acpi/acpi_bus.h>
43 #include <acpi/processor.h>
44 #include <asm/uaccess.h>
46 #include <linux/efi.h>
48 #define _COMPONENT ACPI_OS_SERVICES
49 ACPI_MODULE_NAME("osl")
50 #define PREFIX "ACPI: "
51 struct acpi_os_dpc {
52 acpi_osd_exec_callback function;
53 void *context;
56 #ifdef CONFIG_ACPI_CUSTOM_DSDT
57 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
58 #endif
60 #ifdef ENABLE_DEBUGGER
61 #include <linux/kdb.h>
63 /* stuff for debugger support */
64 int acpi_in_debugger;
65 EXPORT_SYMBOL(acpi_in_debugger);
67 extern char line_buf[80];
68 #endif /*ENABLE_DEBUGGER */
70 int acpi_specific_hotkey_enabled = TRUE;
71 EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
73 static unsigned int acpi_irq_irq;
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
78 acpi_status acpi_os_initialize(void)
80 return AE_OK;
83 acpi_status acpi_os_initialize1(void)
86 * Initialize PCI configuration space access, as we'll need to access
87 * it while walking the namespace (bus 0 and root bridges w/ _BBNs).
89 if (!raw_pci_ops) {
90 printk(KERN_ERR PREFIX
91 "Access to PCI configuration space unavailable\n");
92 return AE_NULL_ENTRY;
94 kacpid_wq = create_singlethread_workqueue("kacpid");
95 BUG_ON(!kacpid_wq);
97 return AE_OK;
100 acpi_status acpi_os_terminate(void)
102 if (acpi_irq_handler) {
103 acpi_os_remove_interrupt_handler(acpi_irq_irq,
104 acpi_irq_handler);
107 destroy_workqueue(kacpid_wq);
109 return AE_OK;
112 void acpi_os_printf(const char *fmt, ...)
114 va_list args;
115 va_start(args, fmt);
116 acpi_os_vprintf(fmt, args);
117 va_end(args);
120 EXPORT_SYMBOL(acpi_os_printf);
122 void acpi_os_vprintf(const char *fmt, va_list args)
124 static char buffer[512];
126 vsprintf(buffer, fmt, args);
128 #ifdef ENABLE_DEBUGGER
129 if (acpi_in_debugger) {
130 kdb_printf("%s", buffer);
131 } else {
132 printk("%s", buffer);
134 #else
135 printk("%s", buffer);
136 #endif
139 extern int acpi_in_resume;
140 void *acpi_os_allocate(acpi_size size)
142 if (acpi_in_resume)
143 return kmalloc(size, GFP_ATOMIC);
144 else
145 return kmalloc(size, GFP_KERNEL);
148 void acpi_os_free(void *ptr)
150 kfree(ptr);
153 EXPORT_SYMBOL(acpi_os_free);
155 acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
157 if (efi_enabled) {
158 addr->pointer_type = ACPI_PHYSICAL_POINTER;
159 if (efi.acpi20)
160 addr->pointer.physical =
161 (acpi_physical_address) virt_to_phys(efi.acpi20);
162 else if (efi.acpi)
163 addr->pointer.physical =
164 (acpi_physical_address) virt_to_phys(efi.acpi);
165 else {
166 printk(KERN_ERR PREFIX
167 "System description tables not found\n");
168 return AE_NOT_FOUND;
170 } else {
171 if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
172 printk(KERN_ERR PREFIX
173 "System description tables not found\n");
174 return AE_NOT_FOUND;
178 return AE_OK;
181 acpi_status
182 acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
183 void __iomem ** virt)
185 if (efi_enabled) {
186 if (EFI_MEMORY_WB & efi_mem_attributes(phys)) {
187 *virt = (void __iomem *)phys_to_virt(phys);
188 } else {
189 *virt = ioremap(phys, size);
191 } else {
192 if (phys > ULONG_MAX) {
193 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
194 return AE_BAD_PARAMETER;
197 * ioremap checks to ensure this is in reserved space
199 *virt = ioremap((unsigned long)phys, size);
202 if (!*virt)
203 return AE_NO_MEMORY;
205 return AE_OK;
208 void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
210 iounmap(virt);
213 #ifdef ACPI_FUTURE_USAGE
214 acpi_status
215 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
217 if (!phys || !virt)
218 return AE_BAD_PARAMETER;
220 *phys = virt_to_phys(virt);
222 return AE_OK;
224 #endif
226 #define ACPI_MAX_OVERRIDE_LEN 100
228 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
230 acpi_status
231 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
232 acpi_string * new_val)
234 if (!init_val || !new_val)
235 return AE_BAD_PARAMETER;
237 *new_val = NULL;
238 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
239 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
240 acpi_os_name);
241 *new_val = acpi_os_name;
244 return AE_OK;
247 acpi_status
248 acpi_os_table_override(struct acpi_table_header * existing_table,
249 struct acpi_table_header ** new_table)
251 if (!existing_table || !new_table)
252 return AE_BAD_PARAMETER;
254 #ifdef CONFIG_ACPI_CUSTOM_DSDT
255 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
256 *new_table = (struct acpi_table_header *)AmlCode;
257 else
258 *new_table = NULL;
259 #else
260 *new_table = NULL;
261 #endif
262 return AE_OK;
265 static irqreturn_t acpi_irq(int irq, void *dev_id, struct pt_regs *regs)
267 return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
270 acpi_status
271 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
272 void *context)
274 unsigned int irq;
277 * Ignore the GSI from the core, and use the value in our copy of the
278 * FADT. It may not be the same if an interrupt source override exists
279 * for the SCI.
281 gsi = acpi_fadt.sci_int;
282 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
283 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
284 gsi);
285 return AE_OK;
288 acpi_irq_handler = handler;
289 acpi_irq_context = context;
290 if (request_irq(irq, acpi_irq, SA_SHIRQ, "acpi", acpi_irq)) {
291 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
292 return AE_NOT_ACQUIRED;
294 acpi_irq_irq = irq;
296 return AE_OK;
299 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
301 if (irq) {
302 free_irq(irq, acpi_irq);
303 acpi_irq_handler = NULL;
304 acpi_irq_irq = 0;
307 return AE_OK;
311 * Running in interpreter thread context, safe to sleep
314 void acpi_os_sleep(acpi_integer ms)
316 schedule_timeout_interruptible(msecs_to_jiffies(ms));
319 EXPORT_SYMBOL(acpi_os_sleep);
321 void acpi_os_stall(u32 us)
323 while (us) {
324 u32 delay = 1000;
326 if (delay > us)
327 delay = us;
328 udelay(delay);
329 touch_nmi_watchdog();
330 us -= delay;
334 EXPORT_SYMBOL(acpi_os_stall);
337 * Support ACPI 3.0 AML Timer operand
338 * Returns 64-bit free-running, monotonically increasing timer
339 * with 100ns granularity
341 u64 acpi_os_get_timer(void)
343 static u64 t;
345 #ifdef CONFIG_HPET
346 /* TBD: use HPET if available */
347 #endif
349 #ifdef CONFIG_X86_PM_TIMER
350 /* TBD: default to PM timer if HPET was not available */
351 #endif
352 if (!t)
353 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
355 return ++t;
358 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
360 u32 dummy;
362 if (!value)
363 value = &dummy;
365 switch (width) {
366 case 8:
367 *(u8 *) value = inb(port);
368 break;
369 case 16:
370 *(u16 *) value = inw(port);
371 break;
372 case 32:
373 *(u32 *) value = inl(port);
374 break;
375 default:
376 BUG();
379 return AE_OK;
382 EXPORT_SYMBOL(acpi_os_read_port);
384 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
386 switch (width) {
387 case 8:
388 outb(value, port);
389 break;
390 case 16:
391 outw(value, port);
392 break;
393 case 32:
394 outl(value, port);
395 break;
396 default:
397 BUG();
400 return AE_OK;
403 EXPORT_SYMBOL(acpi_os_write_port);
405 acpi_status
406 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
408 u32 dummy;
409 void __iomem *virt_addr;
410 int iomem = 0;
412 if (efi_enabled) {
413 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
414 /* HACK ALERT! We can use readb/w/l on real memory too.. */
415 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
416 } else {
417 iomem = 1;
418 virt_addr = ioremap(phys_addr, width);
420 } else
421 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
422 if (!value)
423 value = &dummy;
425 switch (width) {
426 case 8:
427 *(u8 *) value = readb(virt_addr);
428 break;
429 case 16:
430 *(u16 *) value = readw(virt_addr);
431 break;
432 case 32:
433 *(u32 *) value = readl(virt_addr);
434 break;
435 default:
436 BUG();
439 if (efi_enabled) {
440 if (iomem)
441 iounmap(virt_addr);
444 return AE_OK;
447 acpi_status
448 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
450 void __iomem *virt_addr;
451 int iomem = 0;
453 if (efi_enabled) {
454 if (EFI_MEMORY_WB & efi_mem_attributes(phys_addr)) {
455 /* HACK ALERT! We can use writeb/w/l on real memory too */
456 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
457 } else {
458 iomem = 1;
459 virt_addr = ioremap(phys_addr, width);
461 } else
462 virt_addr = (void __iomem *)phys_to_virt(phys_addr);
464 switch (width) {
465 case 8:
466 writeb(value, virt_addr);
467 break;
468 case 16:
469 writew(value, virt_addr);
470 break;
471 case 32:
472 writel(value, virt_addr);
473 break;
474 default:
475 BUG();
478 if (iomem)
479 iounmap(virt_addr);
481 return AE_OK;
484 acpi_status
485 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
486 void *value, u32 width)
488 int result, size;
490 if (!value)
491 return AE_BAD_PARAMETER;
493 switch (width) {
494 case 8:
495 size = 1;
496 break;
497 case 16:
498 size = 2;
499 break;
500 case 32:
501 size = 4;
502 break;
503 default:
504 return AE_ERROR;
507 BUG_ON(!raw_pci_ops);
509 result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
510 PCI_DEVFN(pci_id->device, pci_id->function),
511 reg, size, value);
513 return (result ? AE_ERROR : AE_OK);
516 EXPORT_SYMBOL(acpi_os_read_pci_configuration);
518 acpi_status
519 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
520 acpi_integer value, u32 width)
522 int result, size;
524 switch (width) {
525 case 8:
526 size = 1;
527 break;
528 case 16:
529 size = 2;
530 break;
531 case 32:
532 size = 4;
533 break;
534 default:
535 return AE_ERROR;
538 BUG_ON(!raw_pci_ops);
540 result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
541 PCI_DEVFN(pci_id->device, pci_id->function),
542 reg, size, value);
544 return (result ? AE_ERROR : AE_OK);
547 /* TODO: Change code to take advantage of driver model more */
548 static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
549 acpi_handle chandle, /* current node */
550 struct acpi_pci_id **id,
551 int *is_bridge, u8 * bus_number)
553 acpi_handle handle;
554 struct acpi_pci_id *pci_id = *id;
555 acpi_status status;
556 unsigned long temp;
557 acpi_object_type type;
558 u8 tu8;
560 acpi_get_parent(chandle, &handle);
561 if (handle != rhandle) {
562 acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
563 bus_number);
565 status = acpi_get_type(handle, &type);
566 if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
567 return;
569 status =
570 acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
571 &temp);
572 if (ACPI_SUCCESS(status)) {
573 pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
574 pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
576 if (*is_bridge)
577 pci_id->bus = *bus_number;
579 /* any nicer way to get bus number of bridge ? */
580 status =
581 acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
583 if (ACPI_SUCCESS(status)
584 && ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
585 status =
586 acpi_os_read_pci_configuration(pci_id, 0x18,
587 &tu8, 8);
588 if (!ACPI_SUCCESS(status)) {
589 /* Certainly broken... FIX ME */
590 return;
592 *is_bridge = 1;
593 pci_id->bus = tu8;
594 status =
595 acpi_os_read_pci_configuration(pci_id, 0x19,
596 &tu8, 8);
597 if (ACPI_SUCCESS(status)) {
598 *bus_number = tu8;
600 } else
601 *is_bridge = 0;
606 void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
607 acpi_handle chandle, /* current node */
608 struct acpi_pci_id **id)
610 int is_bridge = 1;
611 u8 bus_number = (*id)->bus;
613 acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
616 static void acpi_os_execute_deferred(void *context)
618 struct acpi_os_dpc *dpc = NULL;
620 ACPI_FUNCTION_TRACE("os_execute_deferred");
622 dpc = (struct acpi_os_dpc *)context;
623 if (!dpc) {
624 ACPI_DEBUG_PRINT((ACPI_DB_ERROR, "Invalid (NULL) context.\n"));
625 return_VOID;
628 dpc->function(dpc->context);
630 kfree(dpc);
632 return_VOID;
635 acpi_status
636 acpi_os_queue_for_execution(u32 priority,
637 acpi_osd_exec_callback function, void *context)
639 acpi_status status = AE_OK;
640 struct acpi_os_dpc *dpc;
641 struct work_struct *task;
643 ACPI_FUNCTION_TRACE("os_queue_for_execution");
645 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
646 "Scheduling function [%p(%p)] for deferred execution.\n",
647 function, context));
649 if (!function)
650 return_ACPI_STATUS(AE_BAD_PARAMETER);
653 * Allocate/initialize DPC structure. Note that this memory will be
654 * freed by the callee. The kernel handles the tq_struct list in a
655 * way that allows us to also free its memory inside the callee.
656 * Because we may want to schedule several tasks with different
657 * parameters we can't use the approach some kernel code uses of
658 * having a static tq_struct.
659 * We can save time and code by allocating the DPC and tq_structs
660 * from the same memory.
663 dpc =
664 kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
665 GFP_ATOMIC);
666 if (!dpc)
667 return_ACPI_STATUS(AE_NO_MEMORY);
669 dpc->function = function;
670 dpc->context = context;
672 task = (void *)(dpc + 1);
673 INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
675 if (!queue_work(kacpid_wq, task)) {
676 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
677 "Call to queue_work() failed.\n"));
678 kfree(dpc);
679 status = AE_ERROR;
682 return_ACPI_STATUS(status);
685 EXPORT_SYMBOL(acpi_os_queue_for_execution);
687 void acpi_os_wait_events_complete(void *context)
689 flush_workqueue(kacpid_wq);
692 EXPORT_SYMBOL(acpi_os_wait_events_complete);
695 * Allocate the memory for a spinlock and initialize it.
697 acpi_status acpi_os_create_lock(acpi_handle * out_handle)
699 spinlock_t *lock_ptr;
701 ACPI_FUNCTION_TRACE("os_create_lock");
703 lock_ptr = acpi_os_allocate(sizeof(spinlock_t));
705 spin_lock_init(lock_ptr);
707 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating spinlock[%p].\n", lock_ptr));
709 *out_handle = lock_ptr;
711 return_ACPI_STATUS(AE_OK);
715 * Deallocate the memory for a spinlock.
717 void acpi_os_delete_lock(acpi_handle handle)
719 ACPI_FUNCTION_TRACE("os_create_lock");
721 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting spinlock[%p].\n", handle));
723 acpi_os_free(handle);
725 return_VOID;
728 acpi_status
729 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
731 struct semaphore *sem = NULL;
733 ACPI_FUNCTION_TRACE("os_create_semaphore");
735 sem = acpi_os_allocate(sizeof(struct semaphore));
736 if (!sem)
737 return_ACPI_STATUS(AE_NO_MEMORY);
738 memset(sem, 0, sizeof(struct semaphore));
740 sema_init(sem, initial_units);
742 *handle = (acpi_handle *) sem;
744 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
745 *handle, initial_units));
747 return_ACPI_STATUS(AE_OK);
750 EXPORT_SYMBOL(acpi_os_create_semaphore);
753 * TODO: A better way to delete semaphores? Linux doesn't have a
754 * 'delete_semaphore()' function -- may result in an invalid
755 * pointer dereference for non-synchronized consumers. Should
756 * we at least check for blocked threads and signal/cancel them?
759 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
761 struct semaphore *sem = (struct semaphore *)handle;
763 ACPI_FUNCTION_TRACE("os_delete_semaphore");
765 if (!sem)
766 return_ACPI_STATUS(AE_BAD_PARAMETER);
768 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
770 acpi_os_free(sem);
771 sem = NULL;
773 return_ACPI_STATUS(AE_OK);
776 EXPORT_SYMBOL(acpi_os_delete_semaphore);
779 * TODO: The kernel doesn't have a 'down_timeout' function -- had to
780 * improvise. The process is to sleep for one scheduler quantum
781 * until the semaphore becomes available. Downside is that this
782 * may result in starvation for timeout-based waits when there's
783 * lots of semaphore activity.
785 * TODO: Support for units > 1?
787 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
789 acpi_status status = AE_OK;
790 struct semaphore *sem = (struct semaphore *)handle;
791 int ret = 0;
793 ACPI_FUNCTION_TRACE("os_wait_semaphore");
795 if (!sem || (units < 1))
796 return_ACPI_STATUS(AE_BAD_PARAMETER);
798 if (units > 1)
799 return_ACPI_STATUS(AE_SUPPORT);
801 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
802 handle, units, timeout));
804 if (in_atomic())
805 timeout = 0;
807 switch (timeout) {
809 * No Wait:
810 * --------
811 * A zero timeout value indicates that we shouldn't wait - just
812 * acquire the semaphore if available otherwise return AE_TIME
813 * (a.k.a. 'would block').
815 case 0:
816 if (down_trylock(sem))
817 status = AE_TIME;
818 break;
821 * Wait Indefinitely:
822 * ------------------
824 case ACPI_WAIT_FOREVER:
825 down(sem);
826 break;
829 * Wait w/ Timeout:
830 * ----------------
832 default:
833 // TODO: A better timeout algorithm?
835 int i = 0;
836 static const int quantum_ms = 1000 / HZ;
838 ret = down_trylock(sem);
839 for (i = timeout; (i > 0 && ret < 0); i -= quantum_ms) {
840 schedule_timeout_interruptible(1);
841 ret = down_trylock(sem);
844 if (ret != 0)
845 status = AE_TIME;
847 break;
850 if (ACPI_FAILURE(status)) {
851 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
852 "Failed to acquire semaphore[%p|%d|%d], %s\n",
853 handle, units, timeout,
854 acpi_format_exception(status)));
855 } else {
856 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
857 "Acquired semaphore[%p|%d|%d]\n", handle,
858 units, timeout));
861 return_ACPI_STATUS(status);
864 EXPORT_SYMBOL(acpi_os_wait_semaphore);
867 * TODO: Support for units > 1?
869 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
871 struct semaphore *sem = (struct semaphore *)handle;
873 ACPI_FUNCTION_TRACE("os_signal_semaphore");
875 if (!sem || (units < 1))
876 return_ACPI_STATUS(AE_BAD_PARAMETER);
878 if (units > 1)
879 return_ACPI_STATUS(AE_SUPPORT);
881 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
882 units));
884 up(sem);
886 return_ACPI_STATUS(AE_OK);
889 EXPORT_SYMBOL(acpi_os_signal_semaphore);
891 #ifdef ACPI_FUTURE_USAGE
892 u32 acpi_os_get_line(char *buffer)
895 #ifdef ENABLE_DEBUGGER
896 if (acpi_in_debugger) {
897 u32 chars;
899 kdb_read(buffer, sizeof(line_buf));
901 /* remove the CR kdb includes */
902 chars = strlen(buffer) - 1;
903 buffer[chars] = '\0';
905 #endif
907 return 0;
909 #endif /* ACPI_FUTURE_USAGE */
911 /* Assumes no unreadable holes inbetween */
912 u8 acpi_os_readable(void *ptr, acpi_size len)
914 #if defined(__i386__) || defined(__x86_64__)
915 char tmp;
916 return !__get_user(tmp, (char __user *)ptr)
917 && !__get_user(tmp, (char __user *)ptr + len - 1);
918 #endif
919 return 1;
922 #ifdef ACPI_FUTURE_USAGE
923 u8 acpi_os_writable(void *ptr, acpi_size len)
925 /* could do dummy write (racy) or a kernel page table lookup.
926 The later may be difficult at early boot when kmap doesn't work yet. */
927 return 1;
929 #endif
931 u32 acpi_os_get_thread_id(void)
933 if (!in_atomic())
934 return current->pid;
936 return 0;
939 acpi_status acpi_os_signal(u32 function, void *info)
941 switch (function) {
942 case ACPI_SIGNAL_FATAL:
943 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
944 break;
945 case ACPI_SIGNAL_BREAKPOINT:
947 * AML Breakpoint
948 * ACPI spec. says to treat it as a NOP unless
949 * you are debugging. So if/when we integrate
950 * AML debugger into the kernel debugger its
951 * hook will go here. But until then it is
952 * not useful to print anything on breakpoints.
954 break;
955 default:
956 break;
959 return AE_OK;
962 EXPORT_SYMBOL(acpi_os_signal);
964 static int __init acpi_os_name_setup(char *str)
966 char *p = acpi_os_name;
967 int count = ACPI_MAX_OVERRIDE_LEN - 1;
969 if (!str || !*str)
970 return 0;
972 for (; count-- && str && *str; str++) {
973 if (isalnum(*str) || *str == ' ' || *str == ':')
974 *p++ = *str;
975 else if (*str == '\'' || *str == '"')
976 continue;
977 else
978 break;
980 *p = 0;
982 return 1;
986 __setup("acpi_os_name=", acpi_os_name_setup);
989 * _OSI control
990 * empty string disables _OSI
991 * TBD additional string adds to _OSI
993 static int __init acpi_osi_setup(char *str)
995 if (str == NULL || *str == '\0') {
996 printk(KERN_INFO PREFIX "_OSI method disabled\n");
997 acpi_gbl_create_osi_method = FALSE;
998 } else {
999 /* TBD */
1000 printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
1001 str);
1004 return 1;
1007 __setup("acpi_osi=", acpi_osi_setup);
1009 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1010 static int __init acpi_serialize_setup(char *str)
1012 printk(KERN_INFO PREFIX "serialize enabled\n");
1014 acpi_gbl_all_methods_serialized = TRUE;
1016 return 1;
1019 __setup("acpi_serialize", acpi_serialize_setup);
1022 * Wake and Run-Time GPES are expected to be separate.
1023 * We disable wake-GPEs at run-time to prevent spurious
1024 * interrupts.
1026 * However, if a system exists that shares Wake and
1027 * Run-time events on the same GPE this flag is available
1028 * to tell Linux to keep the wake-time GPEs enabled at run-time.
1030 static int __init acpi_wake_gpes_always_on_setup(char *str)
1032 printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
1034 acpi_gbl_leave_wake_gpes_disabled = FALSE;
1036 return 1;
1039 __setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
1041 static int __init acpi_hotkey_setup(char *str)
1043 acpi_specific_hotkey_enabled = FALSE;
1044 return 1;
1047 __setup("acpi_generic_hotkey", acpi_hotkey_setup);
1050 * max_cstate is defined in the base kernel so modules can
1051 * change it w/o depending on the state of the processor module.
1053 unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
1055 EXPORT_SYMBOL(max_cstate);
1058 * Acquire a spinlock.
1060 * handle is a pointer to the spinlock_t.
1061 * flags is *not* the result of save_flags - it is an ACPI-specific flag variable
1062 * that indicates whether we are at interrupt level.
1065 unsigned long acpi_os_acquire_lock(acpi_handle handle)
1067 unsigned long flags;
1068 spin_lock_irqsave((spinlock_t *) handle, flags);
1069 return flags;
1073 * Release a spinlock. See above.
1076 void acpi_os_release_lock(acpi_handle handle, unsigned long flags)
1078 spin_unlock_irqrestore((spinlock_t *) handle, flags);
1081 #ifndef ACPI_USE_LOCAL_CACHE
1083 /*******************************************************************************
1085 * FUNCTION: acpi_os_create_cache
1087 * PARAMETERS: CacheName - Ascii name for the cache
1088 * ObjectSize - Size of each cached object
1089 * MaxDepth - Maximum depth of the cache (in objects)
1090 * ReturnCache - Where the new cache object is returned
1092 * RETURN: Status
1094 * DESCRIPTION: Create a cache object
1096 ******************************************************************************/
1098 acpi_status
1099 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1101 *cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
1102 return AE_OK;
1105 /*******************************************************************************
1107 * FUNCTION: acpi_os_purge_cache
1109 * PARAMETERS: Cache - Handle to cache object
1111 * RETURN: Status
1113 * DESCRIPTION: Free all objects within the requested cache.
1115 ******************************************************************************/
1117 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1119 (void)kmem_cache_shrink(cache);
1120 return (AE_OK);
1123 /*******************************************************************************
1125 * FUNCTION: acpi_os_delete_cache
1127 * PARAMETERS: Cache - Handle to cache object
1129 * RETURN: Status
1131 * DESCRIPTION: Free all objects within the requested cache and delete the
1132 * cache object.
1134 ******************************************************************************/
1136 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1138 (void)kmem_cache_destroy(cache);
1139 return (AE_OK);
1142 /*******************************************************************************
1144 * FUNCTION: acpi_os_release_object
1146 * PARAMETERS: Cache - Handle to cache object
1147 * Object - The object to be released
1149 * RETURN: None
1151 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1152 * the object is deleted.
1154 ******************************************************************************/
1156 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1158 kmem_cache_free(cache, object);
1159 return (AE_OK);
1162 /*******************************************************************************
1164 * FUNCTION: acpi_os_acquire_object
1166 * PARAMETERS: Cache - Handle to cache object
1167 * ReturnObject - Where the object is returned
1169 * RETURN: Status
1171 * DESCRIPTION: Get an object from the specified cache. If cache is empty,
1172 * the object is allocated.
1174 ******************************************************************************/
1176 void *acpi_os_acquire_object(acpi_cache_t * cache)
1178 void *object = kmem_cache_alloc(cache, GFP_KERNEL);
1179 WARN_ON(!object);
1180 return object;
1183 #endif