4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
75 #include <asm/irq_regs.h>
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
107 * Timeslices get refilled after they expire.
109 #define DEF_TIMESLICE (100 * HZ / 1000)
112 * single value that denotes runtime == period, ie unlimited time.
114 #define RUNTIME_INF ((u64)~0ULL)
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
123 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
130 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
132 sg
->__cpu_power
+= val
;
133 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
137 static inline int rt_policy(int policy
)
139 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
144 static inline int task_has_rt_policy(struct task_struct
*p
)
146 return rt_policy(p
->policy
);
150 * This is the priority-queue data structure of the RT scheduling class:
152 struct rt_prio_array
{
153 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
154 struct list_head queue
[MAX_RT_PRIO
];
157 struct rt_bandwidth
{
158 /* nests inside the rq lock: */
159 spinlock_t rt_runtime_lock
;
162 struct hrtimer rt_period_timer
;
165 static struct rt_bandwidth def_rt_bandwidth
;
167 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
169 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
171 struct rt_bandwidth
*rt_b
=
172 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
178 now
= hrtimer_cb_get_time(timer
);
179 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
184 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
187 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
191 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
193 rt_b
->rt_period
= ns_to_ktime(period
);
194 rt_b
->rt_runtime
= runtime
;
196 spin_lock_init(&rt_b
->rt_runtime_lock
);
198 hrtimer_init(&rt_b
->rt_period_timer
,
199 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
200 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
201 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
204 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
208 if (rt_b
->rt_runtime
== RUNTIME_INF
)
211 if (hrtimer_active(&rt_b
->rt_period_timer
))
214 spin_lock(&rt_b
->rt_runtime_lock
);
216 if (hrtimer_active(&rt_b
->rt_period_timer
))
219 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
220 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
221 hrtimer_start(&rt_b
->rt_period_timer
,
222 rt_b
->rt_period_timer
.expires
,
225 spin_unlock(&rt_b
->rt_runtime_lock
);
228 #ifdef CONFIG_RT_GROUP_SCHED
229 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
231 hrtimer_cancel(&rt_b
->rt_period_timer
);
236 * sched_domains_mutex serializes calls to arch_init_sched_domains,
237 * detach_destroy_domains and partition_sched_domains.
239 static DEFINE_MUTEX(sched_domains_mutex
);
241 #ifdef CONFIG_GROUP_SCHED
243 #include <linux/cgroup.h>
247 static LIST_HEAD(task_groups
);
249 /* task group related information */
251 #ifdef CONFIG_CGROUP_SCHED
252 struct cgroup_subsys_state css
;
255 #ifdef CONFIG_FAIR_GROUP_SCHED
256 /* schedulable entities of this group on each cpu */
257 struct sched_entity
**se
;
258 /* runqueue "owned" by this group on each cpu */
259 struct cfs_rq
**cfs_rq
;
260 unsigned long shares
;
263 #ifdef CONFIG_RT_GROUP_SCHED
264 struct sched_rt_entity
**rt_se
;
265 struct rt_rq
**rt_rq
;
267 struct rt_bandwidth rt_bandwidth
;
271 struct list_head list
;
273 struct task_group
*parent
;
274 struct list_head siblings
;
275 struct list_head children
;
278 #ifdef CONFIG_USER_SCHED
282 * Every UID task group (including init_task_group aka UID-0) will
283 * be a child to this group.
285 struct task_group root_task_group
;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 /* Default task group's sched entity on each cpu */
289 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
290 /* Default task group's cfs_rq on each cpu */
291 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
294 #ifdef CONFIG_RT_GROUP_SCHED
295 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
296 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
299 #define root_task_group init_task_group
302 /* task_group_lock serializes add/remove of task groups and also changes to
303 * a task group's cpu shares.
305 static DEFINE_SPINLOCK(task_group_lock
);
307 #ifdef CONFIG_FAIR_GROUP_SCHED
308 #ifdef CONFIG_USER_SCHED
309 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
316 * (The default weight is 1024 - so there's no practical
317 * limitation from this.)
320 #define MAX_SHARES (ULONG_MAX - 1)
322 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
325 /* Default task group.
326 * Every task in system belong to this group at bootup.
328 struct task_group init_task_group
;
330 /* return group to which a task belongs */
331 static inline struct task_group
*task_group(struct task_struct
*p
)
333 struct task_group
*tg
;
335 #ifdef CONFIG_USER_SCHED
337 #elif defined(CONFIG_CGROUP_SCHED)
338 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
339 struct task_group
, css
);
341 tg
= &init_task_group
;
346 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
347 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
351 p
->se
.parent
= task_group(p
)->se
[cpu
];
354 #ifdef CONFIG_RT_GROUP_SCHED
355 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
356 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
362 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
364 #endif /* CONFIG_GROUP_SCHED */
366 /* CFS-related fields in a runqueue */
368 struct load_weight load
;
369 unsigned long nr_running
;
374 struct rb_root tasks_timeline
;
375 struct rb_node
*rb_leftmost
;
377 struct list_head tasks
;
378 struct list_head
*balance_iterator
;
381 * 'curr' points to currently running entity on this cfs_rq.
382 * It is set to NULL otherwise (i.e when none are currently running).
384 struct sched_entity
*curr
, *next
;
386 unsigned long nr_spread_over
;
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
392 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
393 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
394 * (like users, containers etc.)
396 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
397 * list is used during load balance.
399 struct list_head leaf_cfs_rq_list
;
400 struct task_group
*tg
; /* group that "owns" this runqueue */
403 unsigned long task_weight
;
404 unsigned long shares
;
406 * We need space to build a sched_domain wide view of the full task
407 * group tree, in order to avoid depending on dynamic memory allocation
408 * during the load balancing we place this in the per cpu task group
409 * hierarchy. This limits the load balancing to one instance per cpu,
410 * but more should not be needed anyway.
412 struct aggregate_struct
{
414 * load = weight(cpus) * f(tg)
416 * Where f(tg) is the recursive weight fraction assigned to
422 * part of the group weight distributed to this span.
424 unsigned long shares
;
427 * The sum of all runqueue weights within this span.
429 unsigned long rq_weight
;
432 * Weight contributed by tasks; this is the part we can
433 * influence by moving tasks around.
435 unsigned long task_weight
;
441 /* Real-Time classes' related field in a runqueue: */
443 struct rt_prio_array active
;
444 unsigned long rt_nr_running
;
445 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
446 int highest_prio
; /* highest queued rt task prio */
449 unsigned long rt_nr_migratory
;
455 /* Nests inside the rq lock: */
456 spinlock_t rt_runtime_lock
;
458 #ifdef CONFIG_RT_GROUP_SCHED
459 unsigned long rt_nr_boosted
;
462 struct list_head leaf_rt_rq_list
;
463 struct task_group
*tg
;
464 struct sched_rt_entity
*rt_se
;
471 * We add the notion of a root-domain which will be used to define per-domain
472 * variables. Each exclusive cpuset essentially defines an island domain by
473 * fully partitioning the member cpus from any other cpuset. Whenever a new
474 * exclusive cpuset is created, we also create and attach a new root-domain
484 * The "RT overload" flag: it gets set if a CPU has more than
485 * one runnable RT task.
492 * By default the system creates a single root-domain with all cpus as
493 * members (mimicking the global state we have today).
495 static struct root_domain def_root_domain
;
500 * This is the main, per-CPU runqueue data structure.
502 * Locking rule: those places that want to lock multiple runqueues
503 * (such as the load balancing or the thread migration code), lock
504 * acquire operations must be ordered by ascending &runqueue.
511 * nr_running and cpu_load should be in the same cacheline because
512 * remote CPUs use both these fields when doing load calculation.
514 unsigned long nr_running
;
515 #define CPU_LOAD_IDX_MAX 5
516 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
517 unsigned char idle_at_tick
;
519 unsigned long last_tick_seen
;
520 unsigned char in_nohz_recently
;
522 /* capture load from *all* tasks on this cpu: */
523 struct load_weight load
;
524 unsigned long nr_load_updates
;
530 #ifdef CONFIG_FAIR_GROUP_SCHED
531 /* list of leaf cfs_rq on this cpu: */
532 struct list_head leaf_cfs_rq_list
;
534 #ifdef CONFIG_RT_GROUP_SCHED
535 struct list_head leaf_rt_rq_list
;
539 * This is part of a global counter where only the total sum
540 * over all CPUs matters. A task can increase this counter on
541 * one CPU and if it got migrated afterwards it may decrease
542 * it on another CPU. Always updated under the runqueue lock:
544 unsigned long nr_uninterruptible
;
546 struct task_struct
*curr
, *idle
;
547 unsigned long next_balance
;
548 struct mm_struct
*prev_mm
;
555 struct root_domain
*rd
;
556 struct sched_domain
*sd
;
558 /* For active balancing */
561 /* cpu of this runqueue: */
564 struct task_struct
*migration_thread
;
565 struct list_head migration_queue
;
568 #ifdef CONFIG_SCHED_HRTICK
569 unsigned long hrtick_flags
;
570 ktime_t hrtick_expire
;
571 struct hrtimer hrtick_timer
;
574 #ifdef CONFIG_SCHEDSTATS
576 struct sched_info rq_sched_info
;
578 /* sys_sched_yield() stats */
579 unsigned int yld_exp_empty
;
580 unsigned int yld_act_empty
;
581 unsigned int yld_both_empty
;
582 unsigned int yld_count
;
584 /* schedule() stats */
585 unsigned int sched_switch
;
586 unsigned int sched_count
;
587 unsigned int sched_goidle
;
589 /* try_to_wake_up() stats */
590 unsigned int ttwu_count
;
591 unsigned int ttwu_local
;
594 unsigned int bkl_count
;
596 struct lock_class_key rq_lock_key
;
599 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
601 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
603 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
606 static inline int cpu_of(struct rq
*rq
)
616 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
617 * See detach_destroy_domains: synchronize_sched for details.
619 * The domain tree of any CPU may only be accessed from within
620 * preempt-disabled sections.
622 #define for_each_domain(cpu, __sd) \
623 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
625 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
626 #define this_rq() (&__get_cpu_var(runqueues))
627 #define task_rq(p) cpu_rq(task_cpu(p))
628 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
630 static inline void update_rq_clock(struct rq
*rq
)
632 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
636 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
638 #ifdef CONFIG_SCHED_DEBUG
639 # define const_debug __read_mostly
641 # define const_debug static const
645 * Debugging: various feature bits
648 #define SCHED_FEAT(name, enabled) \
649 __SCHED_FEAT_##name ,
652 #include "sched_features.h"
657 #define SCHED_FEAT(name, enabled) \
658 (1UL << __SCHED_FEAT_##name) * enabled |
660 const_debug
unsigned int sysctl_sched_features
=
661 #include "sched_features.h"
666 #ifdef CONFIG_SCHED_DEBUG
667 #define SCHED_FEAT(name, enabled) \
670 static __read_mostly
char *sched_feat_names
[] = {
671 #include "sched_features.h"
677 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
679 filp
->private_data
= inode
->i_private
;
684 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
685 size_t cnt
, loff_t
*ppos
)
692 for (i
= 0; sched_feat_names
[i
]; i
++) {
693 len
+= strlen(sched_feat_names
[i
]);
697 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
701 for (i
= 0; sched_feat_names
[i
]; i
++) {
702 if (sysctl_sched_features
& (1UL << i
))
703 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
705 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
708 r
+= sprintf(buf
+ r
, "\n");
709 WARN_ON(r
>= len
+ 2);
711 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
719 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
720 size_t cnt
, loff_t
*ppos
)
730 if (copy_from_user(&buf
, ubuf
, cnt
))
735 if (strncmp(buf
, "NO_", 3) == 0) {
740 for (i
= 0; sched_feat_names
[i
]; i
++) {
741 int len
= strlen(sched_feat_names
[i
]);
743 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
745 sysctl_sched_features
&= ~(1UL << i
);
747 sysctl_sched_features
|= (1UL << i
);
752 if (!sched_feat_names
[i
])
760 static struct file_operations sched_feat_fops
= {
761 .open
= sched_feat_open
,
762 .read
= sched_feat_read
,
763 .write
= sched_feat_write
,
766 static __init
int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
773 late_initcall(sched_init_debug
);
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
786 * period over which we measure -rt task cpu usage in us.
789 unsigned int sysctl_sched_rt_period
= 1000000;
791 static __read_mostly
int scheduler_running
;
794 * part of the period that we allow rt tasks to run in us.
797 int sysctl_sched_rt_runtime
= 950000;
799 static inline u64
global_rt_period(void)
801 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
804 static inline u64
global_rt_runtime(void)
806 if (sysctl_sched_rt_period
< 0)
809 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
812 unsigned long long time_sync_thresh
= 100000;
814 static DEFINE_PER_CPU(unsigned long long, time_offset
);
815 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time
);
818 * Global lock which we take every now and then to synchronize
819 * the CPUs time. This method is not warp-safe, but it's good
820 * enough to synchronize slowly diverging time sources and thus
821 * it's good enough for tracing:
823 static DEFINE_SPINLOCK(time_sync_lock
);
824 static unsigned long long prev_global_time
;
826 static unsigned long long __sync_cpu_clock(unsigned long long time
, int cpu
)
829 * We want this inlined, to not get tracer function calls
830 * in this critical section:
832 spin_acquire(&time_sync_lock
.dep_map
, 0, 0, _THIS_IP_
);
833 __raw_spin_lock(&time_sync_lock
.raw_lock
);
835 if (time
< prev_global_time
) {
836 per_cpu(time_offset
, cpu
) += prev_global_time
- time
;
837 time
= prev_global_time
;
839 prev_global_time
= time
;
842 __raw_spin_unlock(&time_sync_lock
.raw_lock
);
843 spin_release(&time_sync_lock
.dep_map
, 1, _THIS_IP_
);
848 static unsigned long long __cpu_clock(int cpu
)
850 unsigned long long now
;
853 * Only call sched_clock() if the scheduler has already been
854 * initialized (some code might call cpu_clock() very early):
856 if (unlikely(!scheduler_running
))
859 now
= sched_clock_cpu(cpu
);
865 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
866 * clock constructed from sched_clock():
868 unsigned long long cpu_clock(int cpu
)
870 unsigned long long prev_cpu_time
, time
, delta_time
;
873 local_irq_save(flags
);
874 prev_cpu_time
= per_cpu(prev_cpu_time
, cpu
);
875 time
= __cpu_clock(cpu
) + per_cpu(time_offset
, cpu
);
876 delta_time
= time
-prev_cpu_time
;
878 if (unlikely(delta_time
> time_sync_thresh
)) {
879 time
= __sync_cpu_clock(time
, cpu
);
880 per_cpu(prev_cpu_time
, cpu
) = time
;
882 local_irq_restore(flags
);
886 EXPORT_SYMBOL_GPL(cpu_clock
);
888 #ifndef prepare_arch_switch
889 # define prepare_arch_switch(next) do { } while (0)
891 #ifndef finish_arch_switch
892 # define finish_arch_switch(prev) do { } while (0)
895 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
897 return rq
->curr
== p
;
900 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
901 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
903 return task_current(rq
, p
);
906 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
910 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
912 #ifdef CONFIG_DEBUG_SPINLOCK
913 /* this is a valid case when another task releases the spinlock */
914 rq
->lock
.owner
= current
;
917 * If we are tracking spinlock dependencies then we have to
918 * fix up the runqueue lock - which gets 'carried over' from
921 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
923 spin_unlock_irq(&rq
->lock
);
926 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
927 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
932 return task_current(rq
, p
);
936 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
940 * We can optimise this out completely for !SMP, because the
941 * SMP rebalancing from interrupt is the only thing that cares
946 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 spin_unlock_irq(&rq
->lock
);
949 spin_unlock(&rq
->lock
);
953 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
957 * After ->oncpu is cleared, the task can be moved to a different CPU.
958 * We must ensure this doesn't happen until the switch is completely
964 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
971 * __task_rq_lock - lock the runqueue a given task resides on.
972 * Must be called interrupts disabled.
974 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
978 struct rq
*rq
= task_rq(p
);
979 spin_lock(&rq
->lock
);
980 if (likely(rq
== task_rq(p
)))
982 spin_unlock(&rq
->lock
);
987 * task_rq_lock - lock the runqueue a given task resides on and disable
988 * interrupts. Note the ordering: we can safely lookup the task_rq without
989 * explicitly disabling preemption.
991 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
997 local_irq_save(*flags
);
999 spin_lock(&rq
->lock
);
1000 if (likely(rq
== task_rq(p
)))
1002 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1006 static void __task_rq_unlock(struct rq
*rq
)
1007 __releases(rq
->lock
)
1009 spin_unlock(&rq
->lock
);
1012 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1013 __releases(rq
->lock
)
1015 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1019 * this_rq_lock - lock this runqueue and disable interrupts.
1021 static struct rq
*this_rq_lock(void)
1022 __acquires(rq
->lock
)
1026 local_irq_disable();
1028 spin_lock(&rq
->lock
);
1033 static void __resched_task(struct task_struct
*p
, int tif_bit
);
1035 static inline void resched_task(struct task_struct
*p
)
1037 __resched_task(p
, TIF_NEED_RESCHED
);
1040 #ifdef CONFIG_SCHED_HRTICK
1042 * Use HR-timers to deliver accurate preemption points.
1044 * Its all a bit involved since we cannot program an hrt while holding the
1045 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 static inline void resched_hrt(struct task_struct
*p
)
1053 __resched_task(p
, TIF_HRTICK_RESCHED
);
1056 static inline void resched_rq(struct rq
*rq
)
1058 unsigned long flags
;
1060 spin_lock_irqsave(&rq
->lock
, flags
);
1061 resched_task(rq
->curr
);
1062 spin_unlock_irqrestore(&rq
->lock
, flags
);
1066 HRTICK_SET
, /* re-programm hrtick_timer */
1067 HRTICK_RESET
, /* not a new slice */
1068 HRTICK_BLOCK
, /* stop hrtick operations */
1073 * - enabled by features
1074 * - hrtimer is actually high res
1076 static inline int hrtick_enabled(struct rq
*rq
)
1078 if (!sched_feat(HRTICK
))
1080 if (unlikely(test_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
)))
1082 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1086 * Called to set the hrtick timer state.
1088 * called with rq->lock held and irqs disabled
1090 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1092 assert_spin_locked(&rq
->lock
);
1095 * preempt at: now + delay
1098 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1100 * indicate we need to program the timer
1102 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1104 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1107 * New slices are called from the schedule path and don't need a
1108 * forced reschedule.
1111 resched_hrt(rq
->curr
);
1114 static void hrtick_clear(struct rq
*rq
)
1116 if (hrtimer_active(&rq
->hrtick_timer
))
1117 hrtimer_cancel(&rq
->hrtick_timer
);
1121 * Update the timer from the possible pending state.
1123 static void hrtick_set(struct rq
*rq
)
1127 unsigned long flags
;
1129 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1131 spin_lock_irqsave(&rq
->lock
, flags
);
1132 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1133 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1134 time
= rq
->hrtick_expire
;
1135 clear_thread_flag(TIF_HRTICK_RESCHED
);
1136 spin_unlock_irqrestore(&rq
->lock
, flags
);
1139 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1140 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1147 * High-resolution timer tick.
1148 * Runs from hardirq context with interrupts disabled.
1150 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1152 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1154 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1156 spin_lock(&rq
->lock
);
1157 update_rq_clock(rq
);
1158 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1159 spin_unlock(&rq
->lock
);
1161 return HRTIMER_NORESTART
;
1164 static void hotplug_hrtick_disable(int cpu
)
1166 struct rq
*rq
= cpu_rq(cpu
);
1167 unsigned long flags
;
1169 spin_lock_irqsave(&rq
->lock
, flags
);
1170 rq
->hrtick_flags
= 0;
1171 __set_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1172 spin_unlock_irqrestore(&rq
->lock
, flags
);
1177 static void hotplug_hrtick_enable(int cpu
)
1179 struct rq
*rq
= cpu_rq(cpu
);
1180 unsigned long flags
;
1182 spin_lock_irqsave(&rq
->lock
, flags
);
1183 __clear_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1184 spin_unlock_irqrestore(&rq
->lock
, flags
);
1188 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1190 int cpu
= (int)(long)hcpu
;
1193 case CPU_UP_CANCELED
:
1194 case CPU_UP_CANCELED_FROZEN
:
1195 case CPU_DOWN_PREPARE
:
1196 case CPU_DOWN_PREPARE_FROZEN
:
1198 case CPU_DEAD_FROZEN
:
1199 hotplug_hrtick_disable(cpu
);
1202 case CPU_UP_PREPARE
:
1203 case CPU_UP_PREPARE_FROZEN
:
1204 case CPU_DOWN_FAILED
:
1205 case CPU_DOWN_FAILED_FROZEN
:
1207 case CPU_ONLINE_FROZEN
:
1208 hotplug_hrtick_enable(cpu
);
1215 static void init_hrtick(void)
1217 hotcpu_notifier(hotplug_hrtick
, 0);
1220 static void init_rq_hrtick(struct rq
*rq
)
1222 rq
->hrtick_flags
= 0;
1223 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1224 rq
->hrtick_timer
.function
= hrtick
;
1225 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1228 void hrtick_resched(void)
1231 unsigned long flags
;
1233 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1236 local_irq_save(flags
);
1237 rq
= cpu_rq(smp_processor_id());
1239 local_irq_restore(flags
);
1242 static inline void hrtick_clear(struct rq
*rq
)
1246 static inline void hrtick_set(struct rq
*rq
)
1250 static inline void init_rq_hrtick(struct rq
*rq
)
1254 void hrtick_resched(void)
1258 static inline void init_hrtick(void)
1264 * resched_task - mark a task 'to be rescheduled now'.
1266 * On UP this means the setting of the need_resched flag, on SMP it
1267 * might also involve a cross-CPU call to trigger the scheduler on
1272 #ifndef tsk_is_polling
1273 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1276 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1280 assert_spin_locked(&task_rq(p
)->lock
);
1282 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1285 set_tsk_thread_flag(p
, tif_bit
);
1288 if (cpu
== smp_processor_id())
1291 /* NEED_RESCHED must be visible before we test polling */
1293 if (!tsk_is_polling(p
))
1294 smp_send_reschedule(cpu
);
1297 static void resched_cpu(int cpu
)
1299 struct rq
*rq
= cpu_rq(cpu
);
1300 unsigned long flags
;
1302 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1304 resched_task(cpu_curr(cpu
));
1305 spin_unlock_irqrestore(&rq
->lock
, flags
);
1310 * When add_timer_on() enqueues a timer into the timer wheel of an
1311 * idle CPU then this timer might expire before the next timer event
1312 * which is scheduled to wake up that CPU. In case of a completely
1313 * idle system the next event might even be infinite time into the
1314 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1315 * leaves the inner idle loop so the newly added timer is taken into
1316 * account when the CPU goes back to idle and evaluates the timer
1317 * wheel for the next timer event.
1319 void wake_up_idle_cpu(int cpu
)
1321 struct rq
*rq
= cpu_rq(cpu
);
1323 if (cpu
== smp_processor_id())
1327 * This is safe, as this function is called with the timer
1328 * wheel base lock of (cpu) held. When the CPU is on the way
1329 * to idle and has not yet set rq->curr to idle then it will
1330 * be serialized on the timer wheel base lock and take the new
1331 * timer into account automatically.
1333 if (rq
->curr
!= rq
->idle
)
1337 * We can set TIF_RESCHED on the idle task of the other CPU
1338 * lockless. The worst case is that the other CPU runs the
1339 * idle task through an additional NOOP schedule()
1341 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1343 /* NEED_RESCHED must be visible before we test polling */
1345 if (!tsk_is_polling(rq
->idle
))
1346 smp_send_reschedule(cpu
);
1351 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1353 assert_spin_locked(&task_rq(p
)->lock
);
1354 set_tsk_thread_flag(p
, tif_bit
);
1358 #if BITS_PER_LONG == 32
1359 # define WMULT_CONST (~0UL)
1361 # define WMULT_CONST (1UL << 32)
1364 #define WMULT_SHIFT 32
1367 * Shift right and round:
1369 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1371 static unsigned long
1372 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1373 struct load_weight
*lw
)
1377 if (!lw
->inv_weight
)
1378 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)/(lw
->weight
+1);
1380 tmp
= (u64
)delta_exec
* weight
;
1382 * Check whether we'd overflow the 64-bit multiplication:
1384 if (unlikely(tmp
> WMULT_CONST
))
1385 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1388 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1390 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1393 static inline unsigned long
1394 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
1396 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
1399 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1405 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1412 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1413 * of tasks with abnormal "nice" values across CPUs the contribution that
1414 * each task makes to its run queue's load is weighted according to its
1415 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1416 * scaled version of the new time slice allocation that they receive on time
1420 #define WEIGHT_IDLEPRIO 2
1421 #define WMULT_IDLEPRIO (1 << 31)
1424 * Nice levels are multiplicative, with a gentle 10% change for every
1425 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1426 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1427 * that remained on nice 0.
1429 * The "10% effect" is relative and cumulative: from _any_ nice level,
1430 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1431 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1432 * If a task goes up by ~10% and another task goes down by ~10% then
1433 * the relative distance between them is ~25%.)
1435 static const int prio_to_weight
[40] = {
1436 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1437 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1438 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1439 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1440 /* 0 */ 1024, 820, 655, 526, 423,
1441 /* 5 */ 335, 272, 215, 172, 137,
1442 /* 10 */ 110, 87, 70, 56, 45,
1443 /* 15 */ 36, 29, 23, 18, 15,
1447 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1449 * In cases where the weight does not change often, we can use the
1450 * precalculated inverse to speed up arithmetics by turning divisions
1451 * into multiplications:
1453 static const u32 prio_to_wmult
[40] = {
1454 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1455 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1456 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1457 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1458 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1459 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1460 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1461 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1464 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1467 * runqueue iterator, to support SMP load-balancing between different
1468 * scheduling classes, without having to expose their internal data
1469 * structures to the load-balancing proper:
1471 struct rq_iterator
{
1473 struct task_struct
*(*start
)(void *);
1474 struct task_struct
*(*next
)(void *);
1478 static unsigned long
1479 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1480 unsigned long max_load_move
, struct sched_domain
*sd
,
1481 enum cpu_idle_type idle
, int *all_pinned
,
1482 int *this_best_prio
, struct rq_iterator
*iterator
);
1485 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1486 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1487 struct rq_iterator
*iterator
);
1490 #ifdef CONFIG_CGROUP_CPUACCT
1491 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1493 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1496 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1498 update_load_add(&rq
->load
, load
);
1501 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1503 update_load_sub(&rq
->load
, load
);
1507 static unsigned long source_load(int cpu
, int type
);
1508 static unsigned long target_load(int cpu
, int type
);
1509 static unsigned long cpu_avg_load_per_task(int cpu
);
1510 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1512 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 * Group load balancing.
1517 * We calculate a few balance domain wide aggregate numbers; load and weight.
1518 * Given the pictures below, and assuming each item has equal weight:
1529 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1530 * which equals 1/9-th of the total load.
1533 * The weight of this group on the selected cpus.
1536 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1540 * Part of the rq_weight contributed by tasks; all groups except B would
1544 static inline struct aggregate_struct
*
1545 aggregate(struct task_group
*tg
, struct sched_domain
*sd
)
1547 return &tg
->cfs_rq
[sd
->first_cpu
]->aggregate
;
1550 typedef void (*aggregate_func
)(struct task_group
*, struct sched_domain
*);
1553 * Iterate the full tree, calling @down when first entering a node and @up when
1554 * leaving it for the final time.
1557 void aggregate_walk_tree(aggregate_func down
, aggregate_func up
,
1558 struct sched_domain
*sd
)
1560 struct task_group
*parent
, *child
;
1563 parent
= &root_task_group
;
1565 (*down
)(parent
, sd
);
1566 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1576 parent
= parent
->parent
;
1583 * Calculate the aggregate runqueue weight.
1586 void aggregate_group_weight(struct task_group
*tg
, struct sched_domain
*sd
)
1588 unsigned long rq_weight
= 0;
1589 unsigned long task_weight
= 0;
1592 for_each_cpu_mask(i
, sd
->span
) {
1593 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1594 task_weight
+= tg
->cfs_rq
[i
]->task_weight
;
1597 aggregate(tg
, sd
)->rq_weight
= rq_weight
;
1598 aggregate(tg
, sd
)->task_weight
= task_weight
;
1602 * Compute the weight of this group on the given cpus.
1605 void aggregate_group_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1607 unsigned long shares
= 0;
1610 for_each_cpu_mask(i
, sd
->span
)
1611 shares
+= tg
->cfs_rq
[i
]->shares
;
1613 if ((!shares
&& aggregate(tg
, sd
)->rq_weight
) || shares
> tg
->shares
)
1614 shares
= tg
->shares
;
1616 aggregate(tg
, sd
)->shares
= shares
;
1620 * Compute the load fraction assigned to this group, relies on the aggregate
1621 * weight and this group's parent's load, i.e. top-down.
1624 void aggregate_group_load(struct task_group
*tg
, struct sched_domain
*sd
)
1632 for_each_cpu_mask(i
, sd
->span
)
1633 load
+= cpu_rq(i
)->load
.weight
;
1636 load
= aggregate(tg
->parent
, sd
)->load
;
1639 * shares is our weight in the parent's rq so
1640 * shares/parent->rq_weight gives our fraction of the load
1642 load
*= aggregate(tg
, sd
)->shares
;
1643 load
/= aggregate(tg
->parent
, sd
)->rq_weight
+ 1;
1646 aggregate(tg
, sd
)->load
= load
;
1649 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1652 * Calculate and set the cpu's group shares.
1655 __update_group_shares_cpu(struct task_group
*tg
, struct sched_domain
*sd
,
1659 unsigned long shares
;
1660 unsigned long rq_weight
;
1665 rq_weight
= tg
->cfs_rq
[tcpu
]->load
.weight
;
1668 * If there are currently no tasks on the cpu pretend there is one of
1669 * average load so that when a new task gets to run here it will not
1670 * get delayed by group starvation.
1674 rq_weight
= NICE_0_LOAD
;
1678 * \Sum shares * rq_weight
1679 * shares = -----------------------
1683 shares
= aggregate(tg
, sd
)->shares
* rq_weight
;
1684 shares
/= aggregate(tg
, sd
)->rq_weight
+ 1;
1687 * record the actual number of shares, not the boosted amount.
1689 tg
->cfs_rq
[tcpu
]->shares
= boost
? 0 : shares
;
1691 if (shares
< MIN_SHARES
)
1692 shares
= MIN_SHARES
;
1693 else if (shares
> MAX_SHARES
)
1694 shares
= MAX_SHARES
;
1696 __set_se_shares(tg
->se
[tcpu
], shares
);
1700 * Re-adjust the weights on the cpu the task came from and on the cpu the
1704 __move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1707 unsigned long shares
;
1709 shares
= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1711 __update_group_shares_cpu(tg
, sd
, scpu
);
1712 __update_group_shares_cpu(tg
, sd
, dcpu
);
1715 * ensure we never loose shares due to rounding errors in the
1716 * above redistribution.
1718 shares
-= tg
->cfs_rq
[scpu
]->shares
+ tg
->cfs_rq
[dcpu
]->shares
;
1720 tg
->cfs_rq
[dcpu
]->shares
+= shares
;
1724 * Because changing a group's shares changes the weight of the super-group
1725 * we need to walk up the tree and change all shares until we hit the root.
1728 move_group_shares(struct task_group
*tg
, struct sched_domain
*sd
,
1732 __move_group_shares(tg
, sd
, scpu
, dcpu
);
1738 void aggregate_group_set_shares(struct task_group
*tg
, struct sched_domain
*sd
)
1740 unsigned long shares
= aggregate(tg
, sd
)->shares
;
1743 for_each_cpu_mask(i
, sd
->span
) {
1744 struct rq
*rq
= cpu_rq(i
);
1745 unsigned long flags
;
1747 spin_lock_irqsave(&rq
->lock
, flags
);
1748 __update_group_shares_cpu(tg
, sd
, i
);
1749 spin_unlock_irqrestore(&rq
->lock
, flags
);
1752 aggregate_group_shares(tg
, sd
);
1755 * ensure we never loose shares due to rounding errors in the
1756 * above redistribution.
1758 shares
-= aggregate(tg
, sd
)->shares
;
1760 tg
->cfs_rq
[sd
->first_cpu
]->shares
+= shares
;
1761 aggregate(tg
, sd
)->shares
+= shares
;
1766 * Calculate the accumulative weight and recursive load of each task group
1767 * while walking down the tree.
1770 void aggregate_get_down(struct task_group
*tg
, struct sched_domain
*sd
)
1772 aggregate_group_weight(tg
, sd
);
1773 aggregate_group_shares(tg
, sd
);
1774 aggregate_group_load(tg
, sd
);
1778 * Rebalance the cpu shares while walking back up the tree.
1781 void aggregate_get_up(struct task_group
*tg
, struct sched_domain
*sd
)
1783 aggregate_group_set_shares(tg
, sd
);
1786 static DEFINE_PER_CPU(spinlock_t
, aggregate_lock
);
1788 static void __init
init_aggregate(void)
1792 for_each_possible_cpu(i
)
1793 spin_lock_init(&per_cpu(aggregate_lock
, i
));
1796 static int get_aggregate(struct sched_domain
*sd
)
1798 if (!spin_trylock(&per_cpu(aggregate_lock
, sd
->first_cpu
)))
1801 aggregate_walk_tree(aggregate_get_down
, aggregate_get_up
, sd
);
1805 static void put_aggregate(struct sched_domain
*sd
)
1807 spin_unlock(&per_cpu(aggregate_lock
, sd
->first_cpu
));
1810 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1812 cfs_rq
->shares
= shares
;
1817 static inline void init_aggregate(void)
1821 static inline int get_aggregate(struct sched_domain
*sd
)
1826 static inline void put_aggregate(struct sched_domain
*sd
)
1831 #else /* CONFIG_SMP */
1833 #ifdef CONFIG_FAIR_GROUP_SCHED
1834 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1839 #endif /* CONFIG_SMP */
1841 #include "sched_stats.h"
1842 #include "sched_idletask.c"
1843 #include "sched_fair.c"
1844 #include "sched_rt.c"
1845 #ifdef CONFIG_SCHED_DEBUG
1846 # include "sched_debug.c"
1849 #define sched_class_highest (&rt_sched_class)
1851 static void inc_nr_running(struct rq
*rq
)
1856 static void dec_nr_running(struct rq
*rq
)
1861 static void set_load_weight(struct task_struct
*p
)
1863 if (task_has_rt_policy(p
)) {
1864 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1865 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1870 * SCHED_IDLE tasks get minimal weight:
1872 if (p
->policy
== SCHED_IDLE
) {
1873 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1874 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1878 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1879 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1882 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1884 sched_info_queued(p
);
1885 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1889 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1891 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1896 * __normal_prio - return the priority that is based on the static prio
1898 static inline int __normal_prio(struct task_struct
*p
)
1900 return p
->static_prio
;
1904 * Calculate the expected normal priority: i.e. priority
1905 * without taking RT-inheritance into account. Might be
1906 * boosted by interactivity modifiers. Changes upon fork,
1907 * setprio syscalls, and whenever the interactivity
1908 * estimator recalculates.
1910 static inline int normal_prio(struct task_struct
*p
)
1914 if (task_has_rt_policy(p
))
1915 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1917 prio
= __normal_prio(p
);
1922 * Calculate the current priority, i.e. the priority
1923 * taken into account by the scheduler. This value might
1924 * be boosted by RT tasks, or might be boosted by
1925 * interactivity modifiers. Will be RT if the task got
1926 * RT-boosted. If not then it returns p->normal_prio.
1928 static int effective_prio(struct task_struct
*p
)
1930 p
->normal_prio
= normal_prio(p
);
1932 * If we are RT tasks or we were boosted to RT priority,
1933 * keep the priority unchanged. Otherwise, update priority
1934 * to the normal priority:
1936 if (!rt_prio(p
->prio
))
1937 return p
->normal_prio
;
1942 * activate_task - move a task to the runqueue.
1944 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1946 if (task_contributes_to_load(p
))
1947 rq
->nr_uninterruptible
--;
1949 enqueue_task(rq
, p
, wakeup
);
1954 * deactivate_task - remove a task from the runqueue.
1956 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1958 if (task_contributes_to_load(p
))
1959 rq
->nr_uninterruptible
++;
1961 dequeue_task(rq
, p
, sleep
);
1966 * task_curr - is this task currently executing on a CPU?
1967 * @p: the task in question.
1969 inline int task_curr(const struct task_struct
*p
)
1971 return cpu_curr(task_cpu(p
)) == p
;
1974 /* Used instead of source_load when we know the type == 0 */
1975 unsigned long weighted_cpuload(const int cpu
)
1977 return cpu_rq(cpu
)->load
.weight
;
1980 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1982 set_task_rq(p
, cpu
);
1985 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1986 * successfuly executed on another CPU. We must ensure that updates of
1987 * per-task data have been completed by this moment.
1990 task_thread_info(p
)->cpu
= cpu
;
1994 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1995 const struct sched_class
*prev_class
,
1996 int oldprio
, int running
)
1998 if (prev_class
!= p
->sched_class
) {
1999 if (prev_class
->switched_from
)
2000 prev_class
->switched_from(rq
, p
, running
);
2001 p
->sched_class
->switched_to(rq
, p
, running
);
2003 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2009 * Is this task likely cache-hot:
2012 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2017 * Buddy candidates are cache hot:
2019 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
2022 if (p
->sched_class
!= &fair_sched_class
)
2025 if (sysctl_sched_migration_cost
== -1)
2027 if (sysctl_sched_migration_cost
== 0)
2030 delta
= now
- p
->se
.exec_start
;
2032 return delta
< (s64
)sysctl_sched_migration_cost
;
2036 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2038 int old_cpu
= task_cpu(p
);
2039 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
2040 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
2041 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
2044 clock_offset
= old_rq
->clock
- new_rq
->clock
;
2046 #ifdef CONFIG_SCHEDSTATS
2047 if (p
->se
.wait_start
)
2048 p
->se
.wait_start
-= clock_offset
;
2049 if (p
->se
.sleep_start
)
2050 p
->se
.sleep_start
-= clock_offset
;
2051 if (p
->se
.block_start
)
2052 p
->se
.block_start
-= clock_offset
;
2053 if (old_cpu
!= new_cpu
) {
2054 schedstat_inc(p
, se
.nr_migrations
);
2055 if (task_hot(p
, old_rq
->clock
, NULL
))
2056 schedstat_inc(p
, se
.nr_forced2_migrations
);
2059 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
2060 new_cfsrq
->min_vruntime
;
2062 __set_task_cpu(p
, new_cpu
);
2065 struct migration_req
{
2066 struct list_head list
;
2068 struct task_struct
*task
;
2071 struct completion done
;
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2079 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2081 struct rq
*rq
= task_rq(p
);
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2087 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
2088 set_task_cpu(p
, dest_cpu
);
2092 init_completion(&req
->done
);
2094 req
->dest_cpu
= dest_cpu
;
2095 list_add(&req
->list
, &rq
->migration_queue
);
2101 * wait_task_inactive - wait for a thread to unschedule.
2103 * The caller must ensure that the task *will* unschedule sometime soon,
2104 * else this function might spin for a *long* time. This function can't
2105 * be called with interrupts off, or it may introduce deadlock with
2106 * smp_call_function() if an IPI is sent by the same process we are
2107 * waiting to become inactive.
2109 void wait_task_inactive(struct task_struct
*p
)
2111 unsigned long flags
;
2117 * We do the initial early heuristics without holding
2118 * any task-queue locks at all. We'll only try to get
2119 * the runqueue lock when things look like they will
2125 * If the task is actively running on another CPU
2126 * still, just relax and busy-wait without holding
2129 * NOTE! Since we don't hold any locks, it's not
2130 * even sure that "rq" stays as the right runqueue!
2131 * But we don't care, since "task_running()" will
2132 * return false if the runqueue has changed and p
2133 * is actually now running somewhere else!
2135 while (task_running(rq
, p
))
2139 * Ok, time to look more closely! We need the rq
2140 * lock now, to be *sure*. If we're wrong, we'll
2141 * just go back and repeat.
2143 rq
= task_rq_lock(p
, &flags
);
2144 running
= task_running(rq
, p
);
2145 on_rq
= p
->se
.on_rq
;
2146 task_rq_unlock(rq
, &flags
);
2149 * Was it really running after all now that we
2150 * checked with the proper locks actually held?
2152 * Oops. Go back and try again..
2154 if (unlikely(running
)) {
2160 * It's not enough that it's not actively running,
2161 * it must be off the runqueue _entirely_, and not
2164 * So if it wa still runnable (but just not actively
2165 * running right now), it's preempted, and we should
2166 * yield - it could be a while.
2168 if (unlikely(on_rq
)) {
2169 schedule_timeout_uninterruptible(1);
2174 * Ahh, all good. It wasn't running, and it wasn't
2175 * runnable, which means that it will never become
2176 * running in the future either. We're all done!
2183 * kick_process - kick a running thread to enter/exit the kernel
2184 * @p: the to-be-kicked thread
2186 * Cause a process which is running on another CPU to enter
2187 * kernel-mode, without any delay. (to get signals handled.)
2189 * NOTE: this function doesnt have to take the runqueue lock,
2190 * because all it wants to ensure is that the remote task enters
2191 * the kernel. If the IPI races and the task has been migrated
2192 * to another CPU then no harm is done and the purpose has been
2195 void kick_process(struct task_struct
*p
)
2201 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2202 smp_send_reschedule(cpu
);
2207 * Return a low guess at the load of a migration-source cpu weighted
2208 * according to the scheduling class and "nice" value.
2210 * We want to under-estimate the load of migration sources, to
2211 * balance conservatively.
2213 static unsigned long source_load(int cpu
, int type
)
2215 struct rq
*rq
= cpu_rq(cpu
);
2216 unsigned long total
= weighted_cpuload(cpu
);
2221 return min(rq
->cpu_load
[type
-1], total
);
2225 * Return a high guess at the load of a migration-target cpu weighted
2226 * according to the scheduling class and "nice" value.
2228 static unsigned long target_load(int cpu
, int type
)
2230 struct rq
*rq
= cpu_rq(cpu
);
2231 unsigned long total
= weighted_cpuload(cpu
);
2236 return max(rq
->cpu_load
[type
-1], total
);
2240 * Return the average load per task on the cpu's run queue
2242 static unsigned long cpu_avg_load_per_task(int cpu
)
2244 struct rq
*rq
= cpu_rq(cpu
);
2245 unsigned long total
= weighted_cpuload(cpu
);
2246 unsigned long n
= rq
->nr_running
;
2248 return n
? total
/ n
: SCHED_LOAD_SCALE
;
2252 * find_idlest_group finds and returns the least busy CPU group within the
2255 static struct sched_group
*
2256 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2258 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2259 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2260 int load_idx
= sd
->forkexec_idx
;
2261 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2264 unsigned long load
, avg_load
;
2268 /* Skip over this group if it has no CPUs allowed */
2269 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2272 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2274 /* Tally up the load of all CPUs in the group */
2277 for_each_cpu_mask(i
, group
->cpumask
) {
2278 /* Bias balancing toward cpus of our domain */
2280 load
= source_load(i
, load_idx
);
2282 load
= target_load(i
, load_idx
);
2287 /* Adjust by relative CPU power of the group */
2288 avg_load
= sg_div_cpu_power(group
,
2289 avg_load
* SCHED_LOAD_SCALE
);
2292 this_load
= avg_load
;
2294 } else if (avg_load
< min_load
) {
2295 min_load
= avg_load
;
2298 } while (group
= group
->next
, group
!= sd
->groups
);
2300 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2306 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2309 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2312 unsigned long load
, min_load
= ULONG_MAX
;
2316 /* Traverse only the allowed CPUs */
2317 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2319 for_each_cpu_mask(i
, *tmp
) {
2320 load
= weighted_cpuload(i
);
2322 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2332 * sched_balance_self: balance the current task (running on cpu) in domains
2333 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2336 * Balance, ie. select the least loaded group.
2338 * Returns the target CPU number, or the same CPU if no balancing is needed.
2340 * preempt must be disabled.
2342 static int sched_balance_self(int cpu
, int flag
)
2344 struct task_struct
*t
= current
;
2345 struct sched_domain
*tmp
, *sd
= NULL
;
2347 for_each_domain(cpu
, tmp
) {
2349 * If power savings logic is enabled for a domain, stop there.
2351 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2353 if (tmp
->flags
& flag
)
2358 cpumask_t span
, tmpmask
;
2359 struct sched_group
*group
;
2360 int new_cpu
, weight
;
2362 if (!(sd
->flags
& flag
)) {
2368 group
= find_idlest_group(sd
, t
, cpu
);
2374 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2375 if (new_cpu
== -1 || new_cpu
== cpu
) {
2376 /* Now try balancing at a lower domain level of cpu */
2381 /* Now try balancing at a lower domain level of new_cpu */
2384 weight
= cpus_weight(span
);
2385 for_each_domain(cpu
, tmp
) {
2386 if (weight
<= cpus_weight(tmp
->span
))
2388 if (tmp
->flags
& flag
)
2391 /* while loop will break here if sd == NULL */
2397 #endif /* CONFIG_SMP */
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2411 * returns failure only if the task is already active.
2413 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2415 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2416 unsigned long flags
;
2420 if (!sched_feat(SYNC_WAKEUPS
))
2424 rq
= task_rq_lock(p
, &flags
);
2425 old_state
= p
->state
;
2426 if (!(old_state
& state
))
2434 this_cpu
= smp_processor_id();
2437 if (unlikely(task_running(rq
, p
)))
2440 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2441 if (cpu
!= orig_cpu
) {
2442 set_task_cpu(p
, cpu
);
2443 task_rq_unlock(rq
, &flags
);
2444 /* might preempt at this point */
2445 rq
= task_rq_lock(p
, &flags
);
2446 old_state
= p
->state
;
2447 if (!(old_state
& state
))
2452 this_cpu
= smp_processor_id();
2456 #ifdef CONFIG_SCHEDSTATS
2457 schedstat_inc(rq
, ttwu_count
);
2458 if (cpu
== this_cpu
)
2459 schedstat_inc(rq
, ttwu_local
);
2461 struct sched_domain
*sd
;
2462 for_each_domain(this_cpu
, sd
) {
2463 if (cpu_isset(cpu
, sd
->span
)) {
2464 schedstat_inc(sd
, ttwu_wake_remote
);
2472 #endif /* CONFIG_SMP */
2473 schedstat_inc(p
, se
.nr_wakeups
);
2475 schedstat_inc(p
, se
.nr_wakeups_sync
);
2476 if (orig_cpu
!= cpu
)
2477 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2478 if (cpu
== this_cpu
)
2479 schedstat_inc(p
, se
.nr_wakeups_local
);
2481 schedstat_inc(p
, se
.nr_wakeups_remote
);
2482 update_rq_clock(rq
);
2483 activate_task(rq
, p
, 1);
2487 check_preempt_curr(rq
, p
);
2489 p
->state
= TASK_RUNNING
;
2491 if (p
->sched_class
->task_wake_up
)
2492 p
->sched_class
->task_wake_up(rq
, p
);
2495 task_rq_unlock(rq
, &flags
);
2500 int wake_up_process(struct task_struct
*p
)
2502 return try_to_wake_up(p
, TASK_ALL
, 0);
2504 EXPORT_SYMBOL(wake_up_process
);
2506 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2508 return try_to_wake_up(p
, state
, 0);
2512 * Perform scheduler related setup for a newly forked process p.
2513 * p is forked by current.
2515 * __sched_fork() is basic setup used by init_idle() too:
2517 static void __sched_fork(struct task_struct
*p
)
2519 p
->se
.exec_start
= 0;
2520 p
->se
.sum_exec_runtime
= 0;
2521 p
->se
.prev_sum_exec_runtime
= 0;
2522 p
->se
.last_wakeup
= 0;
2523 p
->se
.avg_overlap
= 0;
2525 #ifdef CONFIG_SCHEDSTATS
2526 p
->se
.wait_start
= 0;
2527 p
->se
.sum_sleep_runtime
= 0;
2528 p
->se
.sleep_start
= 0;
2529 p
->se
.block_start
= 0;
2530 p
->se
.sleep_max
= 0;
2531 p
->se
.block_max
= 0;
2533 p
->se
.slice_max
= 0;
2537 INIT_LIST_HEAD(&p
->rt
.run_list
);
2539 INIT_LIST_HEAD(&p
->se
.group_node
);
2541 #ifdef CONFIG_PREEMPT_NOTIFIERS
2542 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2546 * We mark the process as running here, but have not actually
2547 * inserted it onto the runqueue yet. This guarantees that
2548 * nobody will actually run it, and a signal or other external
2549 * event cannot wake it up and insert it on the runqueue either.
2551 p
->state
= TASK_RUNNING
;
2555 * fork()/clone()-time setup:
2557 void sched_fork(struct task_struct
*p
, int clone_flags
)
2559 int cpu
= get_cpu();
2564 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2566 set_task_cpu(p
, cpu
);
2569 * Make sure we do not leak PI boosting priority to the child:
2571 p
->prio
= current
->normal_prio
;
2572 if (!rt_prio(p
->prio
))
2573 p
->sched_class
= &fair_sched_class
;
2575 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2576 if (likely(sched_info_on()))
2577 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2579 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2582 #ifdef CONFIG_PREEMPT
2583 /* Want to start with kernel preemption disabled. */
2584 task_thread_info(p
)->preempt_count
= 1;
2590 * wake_up_new_task - wake up a newly created task for the first time.
2592 * This function will do some initial scheduler statistics housekeeping
2593 * that must be done for every newly created context, then puts the task
2594 * on the runqueue and wakes it.
2596 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2598 unsigned long flags
;
2601 rq
= task_rq_lock(p
, &flags
);
2602 BUG_ON(p
->state
!= TASK_RUNNING
);
2603 update_rq_clock(rq
);
2605 p
->prio
= effective_prio(p
);
2607 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2608 activate_task(rq
, p
, 0);
2611 * Let the scheduling class do new task startup
2612 * management (if any):
2614 p
->sched_class
->task_new(rq
, p
);
2617 check_preempt_curr(rq
, p
);
2619 if (p
->sched_class
->task_wake_up
)
2620 p
->sched_class
->task_wake_up(rq
, p
);
2622 task_rq_unlock(rq
, &flags
);
2625 #ifdef CONFIG_PREEMPT_NOTIFIERS
2628 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2629 * @notifier: notifier struct to register
2631 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2633 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2635 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2638 * preempt_notifier_unregister - no longer interested in preemption notifications
2639 * @notifier: notifier struct to unregister
2641 * This is safe to call from within a preemption notifier.
2643 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2645 hlist_del(¬ifier
->link
);
2647 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2649 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2651 struct preempt_notifier
*notifier
;
2652 struct hlist_node
*node
;
2654 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2655 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2659 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2660 struct task_struct
*next
)
2662 struct preempt_notifier
*notifier
;
2663 struct hlist_node
*node
;
2665 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2666 notifier
->ops
->sched_out(notifier
, next
);
2671 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2676 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2677 struct task_struct
*next
)
2684 * prepare_task_switch - prepare to switch tasks
2685 * @rq: the runqueue preparing to switch
2686 * @prev: the current task that is being switched out
2687 * @next: the task we are going to switch to.
2689 * This is called with the rq lock held and interrupts off. It must
2690 * be paired with a subsequent finish_task_switch after the context
2693 * prepare_task_switch sets up locking and calls architecture specific
2697 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2698 struct task_struct
*next
)
2700 fire_sched_out_preempt_notifiers(prev
, next
);
2701 prepare_lock_switch(rq
, next
);
2702 prepare_arch_switch(next
);
2706 * finish_task_switch - clean up after a task-switch
2707 * @rq: runqueue associated with task-switch
2708 * @prev: the thread we just switched away from.
2710 * finish_task_switch must be called after the context switch, paired
2711 * with a prepare_task_switch call before the context switch.
2712 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2713 * and do any other architecture-specific cleanup actions.
2715 * Note that we may have delayed dropping an mm in context_switch(). If
2716 * so, we finish that here outside of the runqueue lock. (Doing it
2717 * with the lock held can cause deadlocks; see schedule() for
2720 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2721 __releases(rq
->lock
)
2723 struct mm_struct
*mm
= rq
->prev_mm
;
2729 * A task struct has one reference for the use as "current".
2730 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2731 * schedule one last time. The schedule call will never return, and
2732 * the scheduled task must drop that reference.
2733 * The test for TASK_DEAD must occur while the runqueue locks are
2734 * still held, otherwise prev could be scheduled on another cpu, die
2735 * there before we look at prev->state, and then the reference would
2737 * Manfred Spraul <manfred@colorfullife.com>
2739 prev_state
= prev
->state
;
2740 finish_arch_switch(prev
);
2741 finish_lock_switch(rq
, prev
);
2743 if (current
->sched_class
->post_schedule
)
2744 current
->sched_class
->post_schedule(rq
);
2747 fire_sched_in_preempt_notifiers(current
);
2750 if (unlikely(prev_state
== TASK_DEAD
)) {
2752 * Remove function-return probe instances associated with this
2753 * task and put them back on the free list.
2755 kprobe_flush_task(prev
);
2756 put_task_struct(prev
);
2761 * schedule_tail - first thing a freshly forked thread must call.
2762 * @prev: the thread we just switched away from.
2764 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2765 __releases(rq
->lock
)
2767 struct rq
*rq
= this_rq();
2769 finish_task_switch(rq
, prev
);
2770 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2771 /* In this case, finish_task_switch does not reenable preemption */
2774 if (current
->set_child_tid
)
2775 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2779 * context_switch - switch to the new MM and the new
2780 * thread's register state.
2783 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2784 struct task_struct
*next
)
2786 struct mm_struct
*mm
, *oldmm
;
2788 prepare_task_switch(rq
, prev
, next
);
2790 oldmm
= prev
->active_mm
;
2792 * For paravirt, this is coupled with an exit in switch_to to
2793 * combine the page table reload and the switch backend into
2796 arch_enter_lazy_cpu_mode();
2798 if (unlikely(!mm
)) {
2799 next
->active_mm
= oldmm
;
2800 atomic_inc(&oldmm
->mm_count
);
2801 enter_lazy_tlb(oldmm
, next
);
2803 switch_mm(oldmm
, mm
, next
);
2805 if (unlikely(!prev
->mm
)) {
2806 prev
->active_mm
= NULL
;
2807 rq
->prev_mm
= oldmm
;
2810 * Since the runqueue lock will be released by the next
2811 * task (which is an invalid locking op but in the case
2812 * of the scheduler it's an obvious special-case), so we
2813 * do an early lockdep release here:
2815 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2816 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2819 /* Here we just switch the register state and the stack. */
2820 switch_to(prev
, next
, prev
);
2824 * this_rq must be evaluated again because prev may have moved
2825 * CPUs since it called schedule(), thus the 'rq' on its stack
2826 * frame will be invalid.
2828 finish_task_switch(this_rq(), prev
);
2832 * nr_running, nr_uninterruptible and nr_context_switches:
2834 * externally visible scheduler statistics: current number of runnable
2835 * threads, current number of uninterruptible-sleeping threads, total
2836 * number of context switches performed since bootup.
2838 unsigned long nr_running(void)
2840 unsigned long i
, sum
= 0;
2842 for_each_online_cpu(i
)
2843 sum
+= cpu_rq(i
)->nr_running
;
2848 unsigned long nr_uninterruptible(void)
2850 unsigned long i
, sum
= 0;
2852 for_each_possible_cpu(i
)
2853 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2856 * Since we read the counters lockless, it might be slightly
2857 * inaccurate. Do not allow it to go below zero though:
2859 if (unlikely((long)sum
< 0))
2865 unsigned long long nr_context_switches(void)
2868 unsigned long long sum
= 0;
2870 for_each_possible_cpu(i
)
2871 sum
+= cpu_rq(i
)->nr_switches
;
2876 unsigned long nr_iowait(void)
2878 unsigned long i
, sum
= 0;
2880 for_each_possible_cpu(i
)
2881 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2886 unsigned long nr_active(void)
2888 unsigned long i
, running
= 0, uninterruptible
= 0;
2890 for_each_online_cpu(i
) {
2891 running
+= cpu_rq(i
)->nr_running
;
2892 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2895 if (unlikely((long)uninterruptible
< 0))
2896 uninterruptible
= 0;
2898 return running
+ uninterruptible
;
2902 * Update rq->cpu_load[] statistics. This function is usually called every
2903 * scheduler tick (TICK_NSEC).
2905 static void update_cpu_load(struct rq
*this_rq
)
2907 unsigned long this_load
= this_rq
->load
.weight
;
2910 this_rq
->nr_load_updates
++;
2912 /* Update our load: */
2913 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2914 unsigned long old_load
, new_load
;
2916 /* scale is effectively 1 << i now, and >> i divides by scale */
2918 old_load
= this_rq
->cpu_load
[i
];
2919 new_load
= this_load
;
2921 * Round up the averaging division if load is increasing. This
2922 * prevents us from getting stuck on 9 if the load is 10, for
2925 if (new_load
> old_load
)
2926 new_load
+= scale
-1;
2927 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2934 * double_rq_lock - safely lock two runqueues
2936 * Note this does not disable interrupts like task_rq_lock,
2937 * you need to do so manually before calling.
2939 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2940 __acquires(rq1
->lock
)
2941 __acquires(rq2
->lock
)
2943 BUG_ON(!irqs_disabled());
2945 spin_lock(&rq1
->lock
);
2946 __acquire(rq2
->lock
); /* Fake it out ;) */
2949 spin_lock(&rq1
->lock
);
2950 spin_lock(&rq2
->lock
);
2952 spin_lock(&rq2
->lock
);
2953 spin_lock(&rq1
->lock
);
2956 update_rq_clock(rq1
);
2957 update_rq_clock(rq2
);
2961 * double_rq_unlock - safely unlock two runqueues
2963 * Note this does not restore interrupts like task_rq_unlock,
2964 * you need to do so manually after calling.
2966 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2967 __releases(rq1
->lock
)
2968 __releases(rq2
->lock
)
2970 spin_unlock(&rq1
->lock
);
2972 spin_unlock(&rq2
->lock
);
2974 __release(rq2
->lock
);
2978 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2980 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2981 __releases(this_rq
->lock
)
2982 __acquires(busiest
->lock
)
2983 __acquires(this_rq
->lock
)
2987 if (unlikely(!irqs_disabled())) {
2988 /* printk() doesn't work good under rq->lock */
2989 spin_unlock(&this_rq
->lock
);
2992 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2993 if (busiest
< this_rq
) {
2994 spin_unlock(&this_rq
->lock
);
2995 spin_lock(&busiest
->lock
);
2996 spin_lock(&this_rq
->lock
);
2999 spin_lock(&busiest
->lock
);
3005 * If dest_cpu is allowed for this process, migrate the task to it.
3006 * This is accomplished by forcing the cpu_allowed mask to only
3007 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3008 * the cpu_allowed mask is restored.
3010 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
3012 struct migration_req req
;
3013 unsigned long flags
;
3016 rq
= task_rq_lock(p
, &flags
);
3017 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
3018 || unlikely(cpu_is_offline(dest_cpu
)))
3021 /* force the process onto the specified CPU */
3022 if (migrate_task(p
, dest_cpu
, &req
)) {
3023 /* Need to wait for migration thread (might exit: take ref). */
3024 struct task_struct
*mt
= rq
->migration_thread
;
3026 get_task_struct(mt
);
3027 task_rq_unlock(rq
, &flags
);
3028 wake_up_process(mt
);
3029 put_task_struct(mt
);
3030 wait_for_completion(&req
.done
);
3035 task_rq_unlock(rq
, &flags
);
3039 * sched_exec - execve() is a valuable balancing opportunity, because at
3040 * this point the task has the smallest effective memory and cache footprint.
3042 void sched_exec(void)
3044 int new_cpu
, this_cpu
= get_cpu();
3045 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
3047 if (new_cpu
!= this_cpu
)
3048 sched_migrate_task(current
, new_cpu
);
3052 * pull_task - move a task from a remote runqueue to the local runqueue.
3053 * Both runqueues must be locked.
3055 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
3056 struct rq
*this_rq
, int this_cpu
)
3058 deactivate_task(src_rq
, p
, 0);
3059 set_task_cpu(p
, this_cpu
);
3060 activate_task(this_rq
, p
, 0);
3062 * Note that idle threads have a prio of MAX_PRIO, for this test
3063 * to be always true for them.
3065 check_preempt_curr(this_rq
, p
);
3069 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3072 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
3073 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3077 * We do not migrate tasks that are:
3078 * 1) running (obviously), or
3079 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3080 * 3) are cache-hot on their current CPU.
3082 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
3083 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
3088 if (task_running(rq
, p
)) {
3089 schedstat_inc(p
, se
.nr_failed_migrations_running
);
3094 * Aggressive migration if:
3095 * 1) task is cache cold, or
3096 * 2) too many balance attempts have failed.
3099 if (!task_hot(p
, rq
->clock
, sd
) ||
3100 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
3101 #ifdef CONFIG_SCHEDSTATS
3102 if (task_hot(p
, rq
->clock
, sd
)) {
3103 schedstat_inc(sd
, lb_hot_gained
[idle
]);
3104 schedstat_inc(p
, se
.nr_forced_migrations
);
3110 if (task_hot(p
, rq
->clock
, sd
)) {
3111 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
3117 static unsigned long
3118 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3119 unsigned long max_load_move
, struct sched_domain
*sd
,
3120 enum cpu_idle_type idle
, int *all_pinned
,
3121 int *this_best_prio
, struct rq_iterator
*iterator
)
3123 int loops
= 0, pulled
= 0, pinned
= 0, skip_for_load
;
3124 struct task_struct
*p
;
3125 long rem_load_move
= max_load_move
;
3127 if (max_load_move
== 0)
3133 * Start the load-balancing iterator:
3135 p
= iterator
->start(iterator
->arg
);
3137 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3140 * To help distribute high priority tasks across CPUs we don't
3141 * skip a task if it will be the highest priority task (i.e. smallest
3142 * prio value) on its new queue regardless of its load weight
3144 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
3145 SCHED_LOAD_SCALE_FUZZ
;
3146 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
3147 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3148 p
= iterator
->next(iterator
->arg
);
3152 pull_task(busiest
, p
, this_rq
, this_cpu
);
3154 rem_load_move
-= p
->se
.load
.weight
;
3157 * We only want to steal up to the prescribed amount of weighted load.
3159 if (rem_load_move
> 0) {
3160 if (p
->prio
< *this_best_prio
)
3161 *this_best_prio
= p
->prio
;
3162 p
= iterator
->next(iterator
->arg
);
3167 * Right now, this is one of only two places pull_task() is called,
3168 * so we can safely collect pull_task() stats here rather than
3169 * inside pull_task().
3171 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3174 *all_pinned
= pinned
;
3176 return max_load_move
- rem_load_move
;
3180 * move_tasks tries to move up to max_load_move weighted load from busiest to
3181 * this_rq, as part of a balancing operation within domain "sd".
3182 * Returns 1 if successful and 0 otherwise.
3184 * Called with both runqueues locked.
3186 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3187 unsigned long max_load_move
,
3188 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3191 const struct sched_class
*class = sched_class_highest
;
3192 unsigned long total_load_moved
= 0;
3193 int this_best_prio
= this_rq
->curr
->prio
;
3197 class->load_balance(this_rq
, this_cpu
, busiest
,
3198 max_load_move
- total_load_moved
,
3199 sd
, idle
, all_pinned
, &this_best_prio
);
3200 class = class->next
;
3201 } while (class && max_load_move
> total_load_moved
);
3203 return total_load_moved
> 0;
3207 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3208 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3209 struct rq_iterator
*iterator
)
3211 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3215 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3216 pull_task(busiest
, p
, this_rq
, this_cpu
);
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3222 schedstat_inc(sd
, lb_gained
[idle
]);
3226 p
= iterator
->next(iterator
->arg
);
3233 * move_one_task tries to move exactly one task from busiest to this_rq, as
3234 * part of active balancing operations within "domain".
3235 * Returns 1 if successful and 0 otherwise.
3237 * Called with both runqueues locked.
3239 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3240 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3242 const struct sched_class
*class;
3244 for (class = sched_class_highest
; class; class = class->next
)
3245 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3252 * find_busiest_group finds and returns the busiest CPU group within the
3253 * domain. It calculates and returns the amount of weighted load which
3254 * should be moved to restore balance via the imbalance parameter.
3256 static struct sched_group
*
3257 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3258 unsigned long *imbalance
, enum cpu_idle_type idle
,
3259 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3261 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3262 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3263 unsigned long max_pull
;
3264 unsigned long busiest_load_per_task
, busiest_nr_running
;
3265 unsigned long this_load_per_task
, this_nr_running
;
3266 int load_idx
, group_imb
= 0;
3267 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3268 int power_savings_balance
= 1;
3269 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3270 unsigned long min_nr_running
= ULONG_MAX
;
3271 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3274 max_load
= this_load
= total_load
= total_pwr
= 0;
3275 busiest_load_per_task
= busiest_nr_running
= 0;
3276 this_load_per_task
= this_nr_running
= 0;
3277 if (idle
== CPU_NOT_IDLE
)
3278 load_idx
= sd
->busy_idx
;
3279 else if (idle
== CPU_NEWLY_IDLE
)
3280 load_idx
= sd
->newidle_idx
;
3282 load_idx
= sd
->idle_idx
;
3285 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3288 int __group_imb
= 0;
3289 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3290 unsigned long sum_nr_running
, sum_weighted_load
;
3292 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3295 balance_cpu
= first_cpu(group
->cpumask
);
3297 /* Tally up the load of all CPUs in the group */
3298 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3300 min_cpu_load
= ~0UL;
3302 for_each_cpu_mask(i
, group
->cpumask
) {
3305 if (!cpu_isset(i
, *cpus
))
3310 if (*sd_idle
&& rq
->nr_running
)
3313 /* Bias balancing toward cpus of our domain */
3315 if (idle_cpu(i
) && !first_idle_cpu
) {
3320 load
= target_load(i
, load_idx
);
3322 load
= source_load(i
, load_idx
);
3323 if (load
> max_cpu_load
)
3324 max_cpu_load
= load
;
3325 if (min_cpu_load
> load
)
3326 min_cpu_load
= load
;
3330 sum_nr_running
+= rq
->nr_running
;
3331 sum_weighted_load
+= weighted_cpuload(i
);
3335 * First idle cpu or the first cpu(busiest) in this sched group
3336 * is eligible for doing load balancing at this and above
3337 * domains. In the newly idle case, we will allow all the cpu's
3338 * to do the newly idle load balance.
3340 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3341 balance_cpu
!= this_cpu
&& balance
) {
3346 total_load
+= avg_load
;
3347 total_pwr
+= group
->__cpu_power
;
3349 /* Adjust by relative CPU power of the group */
3350 avg_load
= sg_div_cpu_power(group
,
3351 avg_load
* SCHED_LOAD_SCALE
);
3353 if ((max_cpu_load
- min_cpu_load
) > SCHED_LOAD_SCALE
)
3356 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3359 this_load
= avg_load
;
3361 this_nr_running
= sum_nr_running
;
3362 this_load_per_task
= sum_weighted_load
;
3363 } else if (avg_load
> max_load
&&
3364 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3365 max_load
= avg_load
;
3367 busiest_nr_running
= sum_nr_running
;
3368 busiest_load_per_task
= sum_weighted_load
;
3369 group_imb
= __group_imb
;
3372 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3374 * Busy processors will not participate in power savings
3377 if (idle
== CPU_NOT_IDLE
||
3378 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3382 * If the local group is idle or completely loaded
3383 * no need to do power savings balance at this domain
3385 if (local_group
&& (this_nr_running
>= group_capacity
||
3387 power_savings_balance
= 0;
3390 * If a group is already running at full capacity or idle,
3391 * don't include that group in power savings calculations
3393 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3398 * Calculate the group which has the least non-idle load.
3399 * This is the group from where we need to pick up the load
3402 if ((sum_nr_running
< min_nr_running
) ||
3403 (sum_nr_running
== min_nr_running
&&
3404 first_cpu(group
->cpumask
) <
3405 first_cpu(group_min
->cpumask
))) {
3407 min_nr_running
= sum_nr_running
;
3408 min_load_per_task
= sum_weighted_load
/
3413 * Calculate the group which is almost near its
3414 * capacity but still has some space to pick up some load
3415 * from other group and save more power
3417 if (sum_nr_running
<= group_capacity
- 1) {
3418 if (sum_nr_running
> leader_nr_running
||
3419 (sum_nr_running
== leader_nr_running
&&
3420 first_cpu(group
->cpumask
) >
3421 first_cpu(group_leader
->cpumask
))) {
3422 group_leader
= group
;
3423 leader_nr_running
= sum_nr_running
;
3428 group
= group
->next
;
3429 } while (group
!= sd
->groups
);
3431 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3434 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3436 if (this_load
>= avg_load
||
3437 100*max_load
<= sd
->imbalance_pct
*this_load
)
3440 busiest_load_per_task
/= busiest_nr_running
;
3442 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3445 * We're trying to get all the cpus to the average_load, so we don't
3446 * want to push ourselves above the average load, nor do we wish to
3447 * reduce the max loaded cpu below the average load, as either of these
3448 * actions would just result in more rebalancing later, and ping-pong
3449 * tasks around. Thus we look for the minimum possible imbalance.
3450 * Negative imbalances (*we* are more loaded than anyone else) will
3451 * be counted as no imbalance for these purposes -- we can't fix that
3452 * by pulling tasks to us. Be careful of negative numbers as they'll
3453 * appear as very large values with unsigned longs.
3455 if (max_load
<= busiest_load_per_task
)
3459 * In the presence of smp nice balancing, certain scenarios can have
3460 * max load less than avg load(as we skip the groups at or below
3461 * its cpu_power, while calculating max_load..)
3463 if (max_load
< avg_load
) {
3465 goto small_imbalance
;
3468 /* Don't want to pull so many tasks that a group would go idle */
3469 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3471 /* How much load to actually move to equalise the imbalance */
3472 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3473 (avg_load
- this_load
) * this->__cpu_power
)
3477 * if *imbalance is less than the average load per runnable task
3478 * there is no gaurantee that any tasks will be moved so we'll have
3479 * a think about bumping its value to force at least one task to be
3482 if (*imbalance
< busiest_load_per_task
) {
3483 unsigned long tmp
, pwr_now
, pwr_move
;
3487 pwr_move
= pwr_now
= 0;
3489 if (this_nr_running
) {
3490 this_load_per_task
/= this_nr_running
;
3491 if (busiest_load_per_task
> this_load_per_task
)
3494 this_load_per_task
= SCHED_LOAD_SCALE
;
3496 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
3497 busiest_load_per_task
* imbn
) {
3498 *imbalance
= busiest_load_per_task
;
3503 * OK, we don't have enough imbalance to justify moving tasks,
3504 * however we may be able to increase total CPU power used by
3508 pwr_now
+= busiest
->__cpu_power
*
3509 min(busiest_load_per_task
, max_load
);
3510 pwr_now
+= this->__cpu_power
*
3511 min(this_load_per_task
, this_load
);
3512 pwr_now
/= SCHED_LOAD_SCALE
;
3514 /* Amount of load we'd subtract */
3515 tmp
= sg_div_cpu_power(busiest
,
3516 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3518 pwr_move
+= busiest
->__cpu_power
*
3519 min(busiest_load_per_task
, max_load
- tmp
);
3521 /* Amount of load we'd add */
3522 if (max_load
* busiest
->__cpu_power
<
3523 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3524 tmp
= sg_div_cpu_power(this,
3525 max_load
* busiest
->__cpu_power
);
3527 tmp
= sg_div_cpu_power(this,
3528 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3529 pwr_move
+= this->__cpu_power
*
3530 min(this_load_per_task
, this_load
+ tmp
);
3531 pwr_move
/= SCHED_LOAD_SCALE
;
3533 /* Move if we gain throughput */
3534 if (pwr_move
> pwr_now
)
3535 *imbalance
= busiest_load_per_task
;
3541 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3542 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3545 if (this == group_leader
&& group_leader
!= group_min
) {
3546 *imbalance
= min_load_per_task
;
3556 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3559 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3560 unsigned long imbalance
, const cpumask_t
*cpus
)
3562 struct rq
*busiest
= NULL
, *rq
;
3563 unsigned long max_load
= 0;
3566 for_each_cpu_mask(i
, group
->cpumask
) {
3569 if (!cpu_isset(i
, *cpus
))
3573 wl
= weighted_cpuload(i
);
3575 if (rq
->nr_running
== 1 && wl
> imbalance
)
3578 if (wl
> max_load
) {
3588 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3589 * so long as it is large enough.
3591 #define MAX_PINNED_INTERVAL 512
3594 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3595 * tasks if there is an imbalance.
3597 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3598 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3599 int *balance
, cpumask_t
*cpus
)
3601 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3602 struct sched_group
*group
;
3603 unsigned long imbalance
;
3605 unsigned long flags
;
3606 int unlock_aggregate
;
3610 unlock_aggregate
= get_aggregate(sd
);
3613 * When power savings policy is enabled for the parent domain, idle
3614 * sibling can pick up load irrespective of busy siblings. In this case,
3615 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3616 * portraying it as CPU_NOT_IDLE.
3618 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3619 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3622 schedstat_inc(sd
, lb_count
[idle
]);
3625 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3632 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3636 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3638 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3642 BUG_ON(busiest
== this_rq
);
3644 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3647 if (busiest
->nr_running
> 1) {
3649 * Attempt to move tasks. If find_busiest_group has found
3650 * an imbalance but busiest->nr_running <= 1, the group is
3651 * still unbalanced. ld_moved simply stays zero, so it is
3652 * correctly treated as an imbalance.
3654 local_irq_save(flags
);
3655 double_rq_lock(this_rq
, busiest
);
3656 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3657 imbalance
, sd
, idle
, &all_pinned
);
3658 double_rq_unlock(this_rq
, busiest
);
3659 local_irq_restore(flags
);
3662 * some other cpu did the load balance for us.
3664 if (ld_moved
&& this_cpu
!= smp_processor_id())
3665 resched_cpu(this_cpu
);
3667 /* All tasks on this runqueue were pinned by CPU affinity */
3668 if (unlikely(all_pinned
)) {
3669 cpu_clear(cpu_of(busiest
), *cpus
);
3670 if (!cpus_empty(*cpus
))
3677 schedstat_inc(sd
, lb_failed
[idle
]);
3678 sd
->nr_balance_failed
++;
3680 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3682 spin_lock_irqsave(&busiest
->lock
, flags
);
3684 /* don't kick the migration_thread, if the curr
3685 * task on busiest cpu can't be moved to this_cpu
3687 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3688 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3690 goto out_one_pinned
;
3693 if (!busiest
->active_balance
) {
3694 busiest
->active_balance
= 1;
3695 busiest
->push_cpu
= this_cpu
;
3698 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3700 wake_up_process(busiest
->migration_thread
);
3703 * We've kicked active balancing, reset the failure
3706 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3709 sd
->nr_balance_failed
= 0;
3711 if (likely(!active_balance
)) {
3712 /* We were unbalanced, so reset the balancing interval */
3713 sd
->balance_interval
= sd
->min_interval
;
3716 * If we've begun active balancing, start to back off. This
3717 * case may not be covered by the all_pinned logic if there
3718 * is only 1 task on the busy runqueue (because we don't call
3721 if (sd
->balance_interval
< sd
->max_interval
)
3722 sd
->balance_interval
*= 2;
3725 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3726 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3732 schedstat_inc(sd
, lb_balanced
[idle
]);
3734 sd
->nr_balance_failed
= 0;
3737 /* tune up the balancing interval */
3738 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3739 (sd
->balance_interval
< sd
->max_interval
))
3740 sd
->balance_interval
*= 2;
3742 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3743 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3748 if (unlock_aggregate
)
3754 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3755 * tasks if there is an imbalance.
3757 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3758 * this_rq is locked.
3761 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3764 struct sched_group
*group
;
3765 struct rq
*busiest
= NULL
;
3766 unsigned long imbalance
;
3774 * When power savings policy is enabled for the parent domain, idle
3775 * sibling can pick up load irrespective of busy siblings. In this case,
3776 * let the state of idle sibling percolate up as IDLE, instead of
3777 * portraying it as CPU_NOT_IDLE.
3779 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3780 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3783 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3785 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3786 &sd_idle
, cpus
, NULL
);
3788 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3792 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3794 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3798 BUG_ON(busiest
== this_rq
);
3800 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3803 if (busiest
->nr_running
> 1) {
3804 /* Attempt to move tasks */
3805 double_lock_balance(this_rq
, busiest
);
3806 /* this_rq->clock is already updated */
3807 update_rq_clock(busiest
);
3808 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3809 imbalance
, sd
, CPU_NEWLY_IDLE
,
3811 spin_unlock(&busiest
->lock
);
3813 if (unlikely(all_pinned
)) {
3814 cpu_clear(cpu_of(busiest
), *cpus
);
3815 if (!cpus_empty(*cpus
))
3821 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3822 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3823 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3826 sd
->nr_balance_failed
= 0;
3831 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3832 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3833 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3835 sd
->nr_balance_failed
= 0;
3841 * idle_balance is called by schedule() if this_cpu is about to become
3842 * idle. Attempts to pull tasks from other CPUs.
3844 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3846 struct sched_domain
*sd
;
3847 int pulled_task
= -1;
3848 unsigned long next_balance
= jiffies
+ HZ
;
3851 for_each_domain(this_cpu
, sd
) {
3852 unsigned long interval
;
3854 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3857 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3858 /* If we've pulled tasks over stop searching: */
3859 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3862 interval
= msecs_to_jiffies(sd
->balance_interval
);
3863 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3864 next_balance
= sd
->last_balance
+ interval
;
3868 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3870 * We are going idle. next_balance may be set based on
3871 * a busy processor. So reset next_balance.
3873 this_rq
->next_balance
= next_balance
;
3878 * active_load_balance is run by migration threads. It pushes running tasks
3879 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3880 * running on each physical CPU where possible, and avoids physical /
3881 * logical imbalances.
3883 * Called with busiest_rq locked.
3885 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3887 int target_cpu
= busiest_rq
->push_cpu
;
3888 struct sched_domain
*sd
;
3889 struct rq
*target_rq
;
3891 /* Is there any task to move? */
3892 if (busiest_rq
->nr_running
<= 1)
3895 target_rq
= cpu_rq(target_cpu
);
3898 * This condition is "impossible", if it occurs
3899 * we need to fix it. Originally reported by
3900 * Bjorn Helgaas on a 128-cpu setup.
3902 BUG_ON(busiest_rq
== target_rq
);
3904 /* move a task from busiest_rq to target_rq */
3905 double_lock_balance(busiest_rq
, target_rq
);
3906 update_rq_clock(busiest_rq
);
3907 update_rq_clock(target_rq
);
3909 /* Search for an sd spanning us and the target CPU. */
3910 for_each_domain(target_cpu
, sd
) {
3911 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3912 cpu_isset(busiest_cpu
, sd
->span
))
3917 schedstat_inc(sd
, alb_count
);
3919 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3921 schedstat_inc(sd
, alb_pushed
);
3923 schedstat_inc(sd
, alb_failed
);
3925 spin_unlock(&target_rq
->lock
);
3930 atomic_t load_balancer
;
3932 } nohz ____cacheline_aligned
= {
3933 .load_balancer
= ATOMIC_INIT(-1),
3934 .cpu_mask
= CPU_MASK_NONE
,
3938 * This routine will try to nominate the ilb (idle load balancing)
3939 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3940 * load balancing on behalf of all those cpus. If all the cpus in the system
3941 * go into this tickless mode, then there will be no ilb owner (as there is
3942 * no need for one) and all the cpus will sleep till the next wakeup event
3945 * For the ilb owner, tick is not stopped. And this tick will be used
3946 * for idle load balancing. ilb owner will still be part of
3949 * While stopping the tick, this cpu will become the ilb owner if there
3950 * is no other owner. And will be the owner till that cpu becomes busy
3951 * or if all cpus in the system stop their ticks at which point
3952 * there is no need for ilb owner.
3954 * When the ilb owner becomes busy, it nominates another owner, during the
3955 * next busy scheduler_tick()
3957 int select_nohz_load_balancer(int stop_tick
)
3959 int cpu
= smp_processor_id();
3962 cpu_set(cpu
, nohz
.cpu_mask
);
3963 cpu_rq(cpu
)->in_nohz_recently
= 1;
3966 * If we are going offline and still the leader, give up!
3968 if (cpu_is_offline(cpu
) &&
3969 atomic_read(&nohz
.load_balancer
) == cpu
) {
3970 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3975 /* time for ilb owner also to sleep */
3976 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3977 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3978 atomic_set(&nohz
.load_balancer
, -1);
3982 if (atomic_read(&nohz
.load_balancer
) == -1) {
3983 /* make me the ilb owner */
3984 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3986 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3989 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3992 cpu_clear(cpu
, nohz
.cpu_mask
);
3994 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3995 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
4002 static DEFINE_SPINLOCK(balancing
);
4005 * It checks each scheduling domain to see if it is due to be balanced,
4006 * and initiates a balancing operation if so.
4008 * Balancing parameters are set up in arch_init_sched_domains.
4010 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
4013 struct rq
*rq
= cpu_rq(cpu
);
4014 unsigned long interval
;
4015 struct sched_domain
*sd
;
4016 /* Earliest time when we have to do rebalance again */
4017 unsigned long next_balance
= jiffies
+ 60*HZ
;
4018 int update_next_balance
= 0;
4021 for_each_domain(cpu
, sd
) {
4022 if (!(sd
->flags
& SD_LOAD_BALANCE
))
4025 interval
= sd
->balance_interval
;
4026 if (idle
!= CPU_IDLE
)
4027 interval
*= sd
->busy_factor
;
4029 /* scale ms to jiffies */
4030 interval
= msecs_to_jiffies(interval
);
4031 if (unlikely(!interval
))
4033 if (interval
> HZ
*NR_CPUS
/10)
4034 interval
= HZ
*NR_CPUS
/10;
4037 if (sd
->flags
& SD_SERIALIZE
) {
4038 if (!spin_trylock(&balancing
))
4042 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
4043 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
4045 * We've pulled tasks over so either we're no
4046 * longer idle, or one of our SMT siblings is
4049 idle
= CPU_NOT_IDLE
;
4051 sd
->last_balance
= jiffies
;
4053 if (sd
->flags
& SD_SERIALIZE
)
4054 spin_unlock(&balancing
);
4056 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
4057 next_balance
= sd
->last_balance
+ interval
;
4058 update_next_balance
= 1;
4062 * Stop the load balance at this level. There is another
4063 * CPU in our sched group which is doing load balancing more
4071 * next_balance will be updated only when there is a need.
4072 * When the cpu is attached to null domain for ex, it will not be
4075 if (likely(update_next_balance
))
4076 rq
->next_balance
= next_balance
;
4080 * run_rebalance_domains is triggered when needed from the scheduler tick.
4081 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4082 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4084 static void run_rebalance_domains(struct softirq_action
*h
)
4086 int this_cpu
= smp_processor_id();
4087 struct rq
*this_rq
= cpu_rq(this_cpu
);
4088 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4089 CPU_IDLE
: CPU_NOT_IDLE
;
4091 rebalance_domains(this_cpu
, idle
);
4095 * If this cpu is the owner for idle load balancing, then do the
4096 * balancing on behalf of the other idle cpus whose ticks are
4099 if (this_rq
->idle_at_tick
&&
4100 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4101 cpumask_t cpus
= nohz
.cpu_mask
;
4105 cpu_clear(this_cpu
, cpus
);
4106 for_each_cpu_mask(balance_cpu
, cpus
) {
4108 * If this cpu gets work to do, stop the load balancing
4109 * work being done for other cpus. Next load
4110 * balancing owner will pick it up.
4115 rebalance_domains(balance_cpu
, CPU_IDLE
);
4117 rq
= cpu_rq(balance_cpu
);
4118 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4119 this_rq
->next_balance
= rq
->next_balance
;
4126 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4128 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4129 * idle load balancing owner or decide to stop the periodic load balancing,
4130 * if the whole system is idle.
4132 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4136 * If we were in the nohz mode recently and busy at the current
4137 * scheduler tick, then check if we need to nominate new idle
4140 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4141 rq
->in_nohz_recently
= 0;
4143 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4144 cpu_clear(cpu
, nohz
.cpu_mask
);
4145 atomic_set(&nohz
.load_balancer
, -1);
4148 if (atomic_read(&nohz
.load_balancer
) == -1) {
4150 * simple selection for now: Nominate the
4151 * first cpu in the nohz list to be the next
4154 * TBD: Traverse the sched domains and nominate
4155 * the nearest cpu in the nohz.cpu_mask.
4157 int ilb
= first_cpu(nohz
.cpu_mask
);
4159 if (ilb
< nr_cpu_ids
)
4165 * If this cpu is idle and doing idle load balancing for all the
4166 * cpus with ticks stopped, is it time for that to stop?
4168 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4169 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4175 * If this cpu is idle and the idle load balancing is done by
4176 * someone else, then no need raise the SCHED_SOFTIRQ
4178 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4179 cpu_isset(cpu
, nohz
.cpu_mask
))
4182 if (time_after_eq(jiffies
, rq
->next_balance
))
4183 raise_softirq(SCHED_SOFTIRQ
);
4186 #else /* CONFIG_SMP */
4189 * on UP we do not need to balance between CPUs:
4191 static inline void idle_balance(int cpu
, struct rq
*rq
)
4197 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4199 EXPORT_PER_CPU_SYMBOL(kstat
);
4202 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4203 * that have not yet been banked in case the task is currently running.
4205 unsigned long long task_sched_runtime(struct task_struct
*p
)
4207 unsigned long flags
;
4211 rq
= task_rq_lock(p
, &flags
);
4212 ns
= p
->se
.sum_exec_runtime
;
4213 if (task_current(rq
, p
)) {
4214 update_rq_clock(rq
);
4215 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4216 if ((s64
)delta_exec
> 0)
4219 task_rq_unlock(rq
, &flags
);
4225 * Account user cpu time to a process.
4226 * @p: the process that the cpu time gets accounted to
4227 * @cputime: the cpu time spent in user space since the last update
4229 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4231 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4234 p
->utime
= cputime_add(p
->utime
, cputime
);
4236 /* Add user time to cpustat. */
4237 tmp
= cputime_to_cputime64(cputime
);
4238 if (TASK_NICE(p
) > 0)
4239 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4241 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4245 * Account guest cpu time to a process.
4246 * @p: the process that the cpu time gets accounted to
4247 * @cputime: the cpu time spent in virtual machine since the last update
4249 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4252 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4254 tmp
= cputime_to_cputime64(cputime
);
4256 p
->utime
= cputime_add(p
->utime
, cputime
);
4257 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4259 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4260 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4264 * Account scaled user cpu time to a process.
4265 * @p: the process that the cpu time gets accounted to
4266 * @cputime: the cpu time spent in user space since the last update
4268 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4270 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4274 * Account system cpu time to a process.
4275 * @p: the process that the cpu time gets accounted to
4276 * @hardirq_offset: the offset to subtract from hardirq_count()
4277 * @cputime: the cpu time spent in kernel space since the last update
4279 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4282 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4283 struct rq
*rq
= this_rq();
4286 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4287 account_guest_time(p
, cputime
);
4291 p
->stime
= cputime_add(p
->stime
, cputime
);
4293 /* Add system time to cpustat. */
4294 tmp
= cputime_to_cputime64(cputime
);
4295 if (hardirq_count() - hardirq_offset
)
4296 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4297 else if (softirq_count())
4298 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4299 else if (p
!= rq
->idle
)
4300 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4301 else if (atomic_read(&rq
->nr_iowait
) > 0)
4302 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4304 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4305 /* Account for system time used */
4306 acct_update_integrals(p
);
4310 * Account scaled system cpu time to a process.
4311 * @p: the process that the cpu time gets accounted to
4312 * @hardirq_offset: the offset to subtract from hardirq_count()
4313 * @cputime: the cpu time spent in kernel space since the last update
4315 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4317 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4321 * Account for involuntary wait time.
4322 * @p: the process from which the cpu time has been stolen
4323 * @steal: the cpu time spent in involuntary wait
4325 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4327 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4328 cputime64_t tmp
= cputime_to_cputime64(steal
);
4329 struct rq
*rq
= this_rq();
4331 if (p
== rq
->idle
) {
4332 p
->stime
= cputime_add(p
->stime
, steal
);
4333 if (atomic_read(&rq
->nr_iowait
) > 0)
4334 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4336 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4338 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4342 * This function gets called by the timer code, with HZ frequency.
4343 * We call it with interrupts disabled.
4345 * It also gets called by the fork code, when changing the parent's
4348 void scheduler_tick(void)
4350 int cpu
= smp_processor_id();
4351 struct rq
*rq
= cpu_rq(cpu
);
4352 struct task_struct
*curr
= rq
->curr
;
4356 spin_lock(&rq
->lock
);
4357 update_rq_clock(rq
);
4358 update_cpu_load(rq
);
4359 curr
->sched_class
->task_tick(rq
, curr
, 0);
4360 spin_unlock(&rq
->lock
);
4363 rq
->idle_at_tick
= idle_cpu(cpu
);
4364 trigger_load_balance(rq
, cpu
);
4368 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4370 void __kprobes
add_preempt_count(int val
)
4375 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4377 preempt_count() += val
;
4379 * Spinlock count overflowing soon?
4381 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4384 EXPORT_SYMBOL(add_preempt_count
);
4386 void __kprobes
sub_preempt_count(int val
)
4391 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4394 * Is the spinlock portion underflowing?
4396 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4397 !(preempt_count() & PREEMPT_MASK
)))
4400 preempt_count() -= val
;
4402 EXPORT_SYMBOL(sub_preempt_count
);
4407 * Print scheduling while atomic bug:
4409 static noinline
void __schedule_bug(struct task_struct
*prev
)
4411 struct pt_regs
*regs
= get_irq_regs();
4413 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4414 prev
->comm
, prev
->pid
, preempt_count());
4416 debug_show_held_locks(prev
);
4417 if (irqs_disabled())
4418 print_irqtrace_events(prev
);
4427 * Various schedule()-time debugging checks and statistics:
4429 static inline void schedule_debug(struct task_struct
*prev
)
4432 * Test if we are atomic. Since do_exit() needs to call into
4433 * schedule() atomically, we ignore that path for now.
4434 * Otherwise, whine if we are scheduling when we should not be.
4436 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
4437 __schedule_bug(prev
);
4439 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4441 schedstat_inc(this_rq(), sched_count
);
4442 #ifdef CONFIG_SCHEDSTATS
4443 if (unlikely(prev
->lock_depth
>= 0)) {
4444 schedstat_inc(this_rq(), bkl_count
);
4445 schedstat_inc(prev
, sched_info
.bkl_count
);
4451 * Pick up the highest-prio task:
4453 static inline struct task_struct
*
4454 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4456 const struct sched_class
*class;
4457 struct task_struct
*p
;
4460 * Optimization: we know that if all tasks are in
4461 * the fair class we can call that function directly:
4463 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4464 p
= fair_sched_class
.pick_next_task(rq
);
4469 class = sched_class_highest
;
4471 p
= class->pick_next_task(rq
);
4475 * Will never be NULL as the idle class always
4476 * returns a non-NULL p:
4478 class = class->next
;
4483 * schedule() is the main scheduler function.
4485 asmlinkage
void __sched
schedule(void)
4487 struct task_struct
*prev
, *next
;
4488 unsigned long *switch_count
;
4494 cpu
= smp_processor_id();
4498 switch_count
= &prev
->nivcsw
;
4500 release_kernel_lock(prev
);
4501 need_resched_nonpreemptible
:
4503 schedule_debug(prev
);
4508 * Do the rq-clock update outside the rq lock:
4510 local_irq_disable();
4511 update_rq_clock(rq
);
4512 spin_lock(&rq
->lock
);
4513 clear_tsk_need_resched(prev
);
4515 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4516 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
4517 signal_pending(prev
))) {
4518 prev
->state
= TASK_RUNNING
;
4520 deactivate_task(rq
, prev
, 1);
4522 switch_count
= &prev
->nvcsw
;
4526 if (prev
->sched_class
->pre_schedule
)
4527 prev
->sched_class
->pre_schedule(rq
, prev
);
4530 if (unlikely(!rq
->nr_running
))
4531 idle_balance(cpu
, rq
);
4533 prev
->sched_class
->put_prev_task(rq
, prev
);
4534 next
= pick_next_task(rq
, prev
);
4536 if (likely(prev
!= next
)) {
4537 sched_info_switch(prev
, next
);
4543 context_switch(rq
, prev
, next
); /* unlocks the rq */
4545 * the context switch might have flipped the stack from under
4546 * us, hence refresh the local variables.
4548 cpu
= smp_processor_id();
4551 spin_unlock_irq(&rq
->lock
);
4555 if (unlikely(reacquire_kernel_lock(current
) < 0))
4556 goto need_resched_nonpreemptible
;
4558 preempt_enable_no_resched();
4559 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4562 EXPORT_SYMBOL(schedule
);
4564 #ifdef CONFIG_PREEMPT
4566 * this is the entry point to schedule() from in-kernel preemption
4567 * off of preempt_enable. Kernel preemptions off return from interrupt
4568 * occur there and call schedule directly.
4570 asmlinkage
void __sched
preempt_schedule(void)
4572 struct thread_info
*ti
= current_thread_info();
4575 * If there is a non-zero preempt_count or interrupts are disabled,
4576 * we do not want to preempt the current task. Just return..
4578 if (likely(ti
->preempt_count
|| irqs_disabled()))
4582 add_preempt_count(PREEMPT_ACTIVE
);
4584 sub_preempt_count(PREEMPT_ACTIVE
);
4587 * Check again in case we missed a preemption opportunity
4588 * between schedule and now.
4591 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4593 EXPORT_SYMBOL(preempt_schedule
);
4596 * this is the entry point to schedule() from kernel preemption
4597 * off of irq context.
4598 * Note, that this is called and return with irqs disabled. This will
4599 * protect us against recursive calling from irq.
4601 asmlinkage
void __sched
preempt_schedule_irq(void)
4603 struct thread_info
*ti
= current_thread_info();
4605 /* Catch callers which need to be fixed */
4606 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4609 add_preempt_count(PREEMPT_ACTIVE
);
4612 local_irq_disable();
4613 sub_preempt_count(PREEMPT_ACTIVE
);
4616 * Check again in case we missed a preemption opportunity
4617 * between schedule and now.
4620 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4623 #endif /* CONFIG_PREEMPT */
4625 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4628 return try_to_wake_up(curr
->private, mode
, sync
);
4630 EXPORT_SYMBOL(default_wake_function
);
4633 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4634 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4635 * number) then we wake all the non-exclusive tasks and one exclusive task.
4637 * There are circumstances in which we can try to wake a task which has already
4638 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4639 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4641 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4642 int nr_exclusive
, int sync
, void *key
)
4644 wait_queue_t
*curr
, *next
;
4646 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4647 unsigned flags
= curr
->flags
;
4649 if (curr
->func(curr
, mode
, sync
, key
) &&
4650 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4656 * __wake_up - wake up threads blocked on a waitqueue.
4658 * @mode: which threads
4659 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4660 * @key: is directly passed to the wakeup function
4662 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4663 int nr_exclusive
, void *key
)
4665 unsigned long flags
;
4667 spin_lock_irqsave(&q
->lock
, flags
);
4668 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4669 spin_unlock_irqrestore(&q
->lock
, flags
);
4671 EXPORT_SYMBOL(__wake_up
);
4674 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4676 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4678 __wake_up_common(q
, mode
, 1, 0, NULL
);
4682 * __wake_up_sync - wake up threads blocked on a waitqueue.
4684 * @mode: which threads
4685 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4687 * The sync wakeup differs that the waker knows that it will schedule
4688 * away soon, so while the target thread will be woken up, it will not
4689 * be migrated to another CPU - ie. the two threads are 'synchronized'
4690 * with each other. This can prevent needless bouncing between CPUs.
4692 * On UP it can prevent extra preemption.
4695 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4697 unsigned long flags
;
4703 if (unlikely(!nr_exclusive
))
4706 spin_lock_irqsave(&q
->lock
, flags
);
4707 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4708 spin_unlock_irqrestore(&q
->lock
, flags
);
4710 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4712 void complete(struct completion
*x
)
4714 unsigned long flags
;
4716 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4718 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4719 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4721 EXPORT_SYMBOL(complete
);
4723 void complete_all(struct completion
*x
)
4725 unsigned long flags
;
4727 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4728 x
->done
+= UINT_MAX
/2;
4729 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4730 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4732 EXPORT_SYMBOL(complete_all
);
4734 static inline long __sched
4735 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4738 DECLARE_WAITQUEUE(wait
, current
);
4740 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4741 __add_wait_queue_tail(&x
->wait
, &wait
);
4743 if ((state
== TASK_INTERRUPTIBLE
&&
4744 signal_pending(current
)) ||
4745 (state
== TASK_KILLABLE
&&
4746 fatal_signal_pending(current
))) {
4747 __remove_wait_queue(&x
->wait
, &wait
);
4748 return -ERESTARTSYS
;
4750 __set_current_state(state
);
4751 spin_unlock_irq(&x
->wait
.lock
);
4752 timeout
= schedule_timeout(timeout
);
4753 spin_lock_irq(&x
->wait
.lock
);
4755 __remove_wait_queue(&x
->wait
, &wait
);
4759 __remove_wait_queue(&x
->wait
, &wait
);
4766 wait_for_common(struct completion
*x
, long timeout
, int state
)
4770 spin_lock_irq(&x
->wait
.lock
);
4771 timeout
= do_wait_for_common(x
, timeout
, state
);
4772 spin_unlock_irq(&x
->wait
.lock
);
4776 void __sched
wait_for_completion(struct completion
*x
)
4778 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4780 EXPORT_SYMBOL(wait_for_completion
);
4782 unsigned long __sched
4783 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4785 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4787 EXPORT_SYMBOL(wait_for_completion_timeout
);
4789 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4791 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4792 if (t
== -ERESTARTSYS
)
4796 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4798 unsigned long __sched
4799 wait_for_completion_interruptible_timeout(struct completion
*x
,
4800 unsigned long timeout
)
4802 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4804 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4806 int __sched
wait_for_completion_killable(struct completion
*x
)
4808 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4809 if (t
== -ERESTARTSYS
)
4813 EXPORT_SYMBOL(wait_for_completion_killable
);
4816 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4818 unsigned long flags
;
4821 init_waitqueue_entry(&wait
, current
);
4823 __set_current_state(state
);
4825 spin_lock_irqsave(&q
->lock
, flags
);
4826 __add_wait_queue(q
, &wait
);
4827 spin_unlock(&q
->lock
);
4828 timeout
= schedule_timeout(timeout
);
4829 spin_lock_irq(&q
->lock
);
4830 __remove_wait_queue(q
, &wait
);
4831 spin_unlock_irqrestore(&q
->lock
, flags
);
4836 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4838 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4840 EXPORT_SYMBOL(interruptible_sleep_on
);
4843 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4845 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4847 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4849 void __sched
sleep_on(wait_queue_head_t
*q
)
4851 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4853 EXPORT_SYMBOL(sleep_on
);
4855 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4857 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4859 EXPORT_SYMBOL(sleep_on_timeout
);
4861 #ifdef CONFIG_RT_MUTEXES
4864 * rt_mutex_setprio - set the current priority of a task
4866 * @prio: prio value (kernel-internal form)
4868 * This function changes the 'effective' priority of a task. It does
4869 * not touch ->normal_prio like __setscheduler().
4871 * Used by the rt_mutex code to implement priority inheritance logic.
4873 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4875 unsigned long flags
;
4876 int oldprio
, on_rq
, running
;
4878 const struct sched_class
*prev_class
= p
->sched_class
;
4880 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4882 rq
= task_rq_lock(p
, &flags
);
4883 update_rq_clock(rq
);
4886 on_rq
= p
->se
.on_rq
;
4887 running
= task_current(rq
, p
);
4889 dequeue_task(rq
, p
, 0);
4891 p
->sched_class
->put_prev_task(rq
, p
);
4894 p
->sched_class
= &rt_sched_class
;
4896 p
->sched_class
= &fair_sched_class
;
4901 p
->sched_class
->set_curr_task(rq
);
4903 enqueue_task(rq
, p
, 0);
4905 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4907 task_rq_unlock(rq
, &flags
);
4912 void set_user_nice(struct task_struct
*p
, long nice
)
4914 int old_prio
, delta
, on_rq
;
4915 unsigned long flags
;
4918 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4921 * We have to be careful, if called from sys_setpriority(),
4922 * the task might be in the middle of scheduling on another CPU.
4924 rq
= task_rq_lock(p
, &flags
);
4925 update_rq_clock(rq
);
4927 * The RT priorities are set via sched_setscheduler(), but we still
4928 * allow the 'normal' nice value to be set - but as expected
4929 * it wont have any effect on scheduling until the task is
4930 * SCHED_FIFO/SCHED_RR:
4932 if (task_has_rt_policy(p
)) {
4933 p
->static_prio
= NICE_TO_PRIO(nice
);
4936 on_rq
= p
->se
.on_rq
;
4938 dequeue_task(rq
, p
, 0);
4940 p
->static_prio
= NICE_TO_PRIO(nice
);
4943 p
->prio
= effective_prio(p
);
4944 delta
= p
->prio
- old_prio
;
4947 enqueue_task(rq
, p
, 0);
4949 * If the task increased its priority or is running and
4950 * lowered its priority, then reschedule its CPU:
4952 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4953 resched_task(rq
->curr
);
4956 task_rq_unlock(rq
, &flags
);
4958 EXPORT_SYMBOL(set_user_nice
);
4961 * can_nice - check if a task can reduce its nice value
4965 int can_nice(const struct task_struct
*p
, const int nice
)
4967 /* convert nice value [19,-20] to rlimit style value [1,40] */
4968 int nice_rlim
= 20 - nice
;
4970 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4971 capable(CAP_SYS_NICE
));
4974 #ifdef __ARCH_WANT_SYS_NICE
4977 * sys_nice - change the priority of the current process.
4978 * @increment: priority increment
4980 * sys_setpriority is a more generic, but much slower function that
4981 * does similar things.
4983 asmlinkage
long sys_nice(int increment
)
4988 * Setpriority might change our priority at the same moment.
4989 * We don't have to worry. Conceptually one call occurs first
4990 * and we have a single winner.
4992 if (increment
< -40)
4997 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5003 if (increment
< 0 && !can_nice(current
, nice
))
5006 retval
= security_task_setnice(current
, nice
);
5010 set_user_nice(current
, nice
);
5017 * task_prio - return the priority value of a given task.
5018 * @p: the task in question.
5020 * This is the priority value as seen by users in /proc.
5021 * RT tasks are offset by -200. Normal tasks are centered
5022 * around 0, value goes from -16 to +15.
5024 int task_prio(const struct task_struct
*p
)
5026 return p
->prio
- MAX_RT_PRIO
;
5030 * task_nice - return the nice value of a given task.
5031 * @p: the task in question.
5033 int task_nice(const struct task_struct
*p
)
5035 return TASK_NICE(p
);
5037 EXPORT_SYMBOL(task_nice
);
5040 * idle_cpu - is a given cpu idle currently?
5041 * @cpu: the processor in question.
5043 int idle_cpu(int cpu
)
5045 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5049 * idle_task - return the idle task for a given cpu.
5050 * @cpu: the processor in question.
5052 struct task_struct
*idle_task(int cpu
)
5054 return cpu_rq(cpu
)->idle
;
5058 * find_process_by_pid - find a process with a matching PID value.
5059 * @pid: the pid in question.
5061 static struct task_struct
*find_process_by_pid(pid_t pid
)
5063 return pid
? find_task_by_vpid(pid
) : current
;
5066 /* Actually do priority change: must hold rq lock. */
5068 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5070 BUG_ON(p
->se
.on_rq
);
5073 switch (p
->policy
) {
5077 p
->sched_class
= &fair_sched_class
;
5081 p
->sched_class
= &rt_sched_class
;
5085 p
->rt_priority
= prio
;
5086 p
->normal_prio
= normal_prio(p
);
5087 /* we are holding p->pi_lock already */
5088 p
->prio
= rt_mutex_getprio(p
);
5093 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5094 * @p: the task in question.
5095 * @policy: new policy.
5096 * @param: structure containing the new RT priority.
5098 * NOTE that the task may be already dead.
5100 int sched_setscheduler(struct task_struct
*p
, int policy
,
5101 struct sched_param
*param
)
5103 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5104 unsigned long flags
;
5105 const struct sched_class
*prev_class
= p
->sched_class
;
5108 /* may grab non-irq protected spin_locks */
5109 BUG_ON(in_interrupt());
5111 /* double check policy once rq lock held */
5113 policy
= oldpolicy
= p
->policy
;
5114 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5115 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5116 policy
!= SCHED_IDLE
)
5119 * Valid priorities for SCHED_FIFO and SCHED_RR are
5120 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5121 * SCHED_BATCH and SCHED_IDLE is 0.
5123 if (param
->sched_priority
< 0 ||
5124 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5125 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5127 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5131 * Allow unprivileged RT tasks to decrease priority:
5133 if (!capable(CAP_SYS_NICE
)) {
5134 if (rt_policy(policy
)) {
5135 unsigned long rlim_rtprio
;
5137 if (!lock_task_sighand(p
, &flags
))
5139 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5140 unlock_task_sighand(p
, &flags
);
5142 /* can't set/change the rt policy */
5143 if (policy
!= p
->policy
&& !rlim_rtprio
)
5146 /* can't increase priority */
5147 if (param
->sched_priority
> p
->rt_priority
&&
5148 param
->sched_priority
> rlim_rtprio
)
5152 * Like positive nice levels, dont allow tasks to
5153 * move out of SCHED_IDLE either:
5155 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5158 /* can't change other user's priorities */
5159 if ((current
->euid
!= p
->euid
) &&
5160 (current
->euid
!= p
->uid
))
5164 #ifdef CONFIG_RT_GROUP_SCHED
5166 * Do not allow realtime tasks into groups that have no runtime
5169 if (rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5173 retval
= security_task_setscheduler(p
, policy
, param
);
5177 * make sure no PI-waiters arrive (or leave) while we are
5178 * changing the priority of the task:
5180 spin_lock_irqsave(&p
->pi_lock
, flags
);
5182 * To be able to change p->policy safely, the apropriate
5183 * runqueue lock must be held.
5185 rq
= __task_rq_lock(p
);
5186 /* recheck policy now with rq lock held */
5187 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5188 policy
= oldpolicy
= -1;
5189 __task_rq_unlock(rq
);
5190 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5193 update_rq_clock(rq
);
5194 on_rq
= p
->se
.on_rq
;
5195 running
= task_current(rq
, p
);
5197 deactivate_task(rq
, p
, 0);
5199 p
->sched_class
->put_prev_task(rq
, p
);
5202 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5205 p
->sched_class
->set_curr_task(rq
);
5207 activate_task(rq
, p
, 0);
5209 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5211 __task_rq_unlock(rq
);
5212 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5214 rt_mutex_adjust_pi(p
);
5218 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5221 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5223 struct sched_param lparam
;
5224 struct task_struct
*p
;
5227 if (!param
|| pid
< 0)
5229 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5234 p
= find_process_by_pid(pid
);
5236 retval
= sched_setscheduler(p
, policy
, &lparam
);
5243 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5244 * @pid: the pid in question.
5245 * @policy: new policy.
5246 * @param: structure containing the new RT priority.
5249 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5251 /* negative values for policy are not valid */
5255 return do_sched_setscheduler(pid
, policy
, param
);
5259 * sys_sched_setparam - set/change the RT priority of a thread
5260 * @pid: the pid in question.
5261 * @param: structure containing the new RT priority.
5263 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5265 return do_sched_setscheduler(pid
, -1, param
);
5269 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5270 * @pid: the pid in question.
5272 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5274 struct task_struct
*p
;
5281 read_lock(&tasklist_lock
);
5282 p
= find_process_by_pid(pid
);
5284 retval
= security_task_getscheduler(p
);
5288 read_unlock(&tasklist_lock
);
5293 * sys_sched_getscheduler - get the RT priority of a thread
5294 * @pid: the pid in question.
5295 * @param: structure containing the RT priority.
5297 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5299 struct sched_param lp
;
5300 struct task_struct
*p
;
5303 if (!param
|| pid
< 0)
5306 read_lock(&tasklist_lock
);
5307 p
= find_process_by_pid(pid
);
5312 retval
= security_task_getscheduler(p
);
5316 lp
.sched_priority
= p
->rt_priority
;
5317 read_unlock(&tasklist_lock
);
5320 * This one might sleep, we cannot do it with a spinlock held ...
5322 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5327 read_unlock(&tasklist_lock
);
5331 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5333 cpumask_t cpus_allowed
;
5334 cpumask_t new_mask
= *in_mask
;
5335 struct task_struct
*p
;
5339 read_lock(&tasklist_lock
);
5341 p
= find_process_by_pid(pid
);
5343 read_unlock(&tasklist_lock
);
5349 * It is not safe to call set_cpus_allowed with the
5350 * tasklist_lock held. We will bump the task_struct's
5351 * usage count and then drop tasklist_lock.
5354 read_unlock(&tasklist_lock
);
5357 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5358 !capable(CAP_SYS_NICE
))
5361 retval
= security_task_setscheduler(p
, 0, NULL
);
5365 cpuset_cpus_allowed(p
, &cpus_allowed
);
5366 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5368 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5371 cpuset_cpus_allowed(p
, &cpus_allowed
);
5372 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5374 * We must have raced with a concurrent cpuset
5375 * update. Just reset the cpus_allowed to the
5376 * cpuset's cpus_allowed
5378 new_mask
= cpus_allowed
;
5388 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5389 cpumask_t
*new_mask
)
5391 if (len
< sizeof(cpumask_t
)) {
5392 memset(new_mask
, 0, sizeof(cpumask_t
));
5393 } else if (len
> sizeof(cpumask_t
)) {
5394 len
= sizeof(cpumask_t
);
5396 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5400 * sys_sched_setaffinity - set the cpu affinity of a process
5401 * @pid: pid of the process
5402 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5403 * @user_mask_ptr: user-space pointer to the new cpu mask
5405 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5406 unsigned long __user
*user_mask_ptr
)
5411 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5415 return sched_setaffinity(pid
, &new_mask
);
5419 * Represents all cpu's present in the system
5420 * In systems capable of hotplug, this map could dynamically grow
5421 * as new cpu's are detected in the system via any platform specific
5422 * method, such as ACPI for e.g.
5425 cpumask_t cpu_present_map __read_mostly
;
5426 EXPORT_SYMBOL(cpu_present_map
);
5429 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
5430 EXPORT_SYMBOL(cpu_online_map
);
5432 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
5433 EXPORT_SYMBOL(cpu_possible_map
);
5436 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5438 struct task_struct
*p
;
5442 read_lock(&tasklist_lock
);
5445 p
= find_process_by_pid(pid
);
5449 retval
= security_task_getscheduler(p
);
5453 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5456 read_unlock(&tasklist_lock
);
5463 * sys_sched_getaffinity - get the cpu affinity of a process
5464 * @pid: pid of the process
5465 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5466 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5468 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5469 unsigned long __user
*user_mask_ptr
)
5474 if (len
< sizeof(cpumask_t
))
5477 ret
= sched_getaffinity(pid
, &mask
);
5481 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5484 return sizeof(cpumask_t
);
5488 * sys_sched_yield - yield the current processor to other threads.
5490 * This function yields the current CPU to other tasks. If there are no
5491 * other threads running on this CPU then this function will return.
5493 asmlinkage
long sys_sched_yield(void)
5495 struct rq
*rq
= this_rq_lock();
5497 schedstat_inc(rq
, yld_count
);
5498 current
->sched_class
->yield_task(rq
);
5501 * Since we are going to call schedule() anyway, there's
5502 * no need to preempt or enable interrupts:
5504 __release(rq
->lock
);
5505 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5506 _raw_spin_unlock(&rq
->lock
);
5507 preempt_enable_no_resched();
5514 static void __cond_resched(void)
5516 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5517 __might_sleep(__FILE__
, __LINE__
);
5520 * The BKS might be reacquired before we have dropped
5521 * PREEMPT_ACTIVE, which could trigger a second
5522 * cond_resched() call.
5525 add_preempt_count(PREEMPT_ACTIVE
);
5527 sub_preempt_count(PREEMPT_ACTIVE
);
5528 } while (need_resched());
5531 int __sched
_cond_resched(void)
5533 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5534 system_state
== SYSTEM_RUNNING
) {
5540 EXPORT_SYMBOL(_cond_resched
);
5543 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5544 * call schedule, and on return reacquire the lock.
5546 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5547 * operations here to prevent schedule() from being called twice (once via
5548 * spin_unlock(), once by hand).
5550 int cond_resched_lock(spinlock_t
*lock
)
5552 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5555 if (spin_needbreak(lock
) || resched
) {
5557 if (resched
&& need_resched())
5566 EXPORT_SYMBOL(cond_resched_lock
);
5568 int __sched
cond_resched_softirq(void)
5570 BUG_ON(!in_softirq());
5572 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5580 EXPORT_SYMBOL(cond_resched_softirq
);
5583 * yield - yield the current processor to other threads.
5585 * This is a shortcut for kernel-space yielding - it marks the
5586 * thread runnable and calls sys_sched_yield().
5588 void __sched
yield(void)
5590 set_current_state(TASK_RUNNING
);
5593 EXPORT_SYMBOL(yield
);
5596 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5597 * that process accounting knows that this is a task in IO wait state.
5599 * But don't do that if it is a deliberate, throttling IO wait (this task
5600 * has set its backing_dev_info: the queue against which it should throttle)
5602 void __sched
io_schedule(void)
5604 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5606 delayacct_blkio_start();
5607 atomic_inc(&rq
->nr_iowait
);
5609 atomic_dec(&rq
->nr_iowait
);
5610 delayacct_blkio_end();
5612 EXPORT_SYMBOL(io_schedule
);
5614 long __sched
io_schedule_timeout(long timeout
)
5616 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5619 delayacct_blkio_start();
5620 atomic_inc(&rq
->nr_iowait
);
5621 ret
= schedule_timeout(timeout
);
5622 atomic_dec(&rq
->nr_iowait
);
5623 delayacct_blkio_end();
5628 * sys_sched_get_priority_max - return maximum RT priority.
5629 * @policy: scheduling class.
5631 * this syscall returns the maximum rt_priority that can be used
5632 * by a given scheduling class.
5634 asmlinkage
long sys_sched_get_priority_max(int policy
)
5641 ret
= MAX_USER_RT_PRIO
-1;
5653 * sys_sched_get_priority_min - return minimum RT priority.
5654 * @policy: scheduling class.
5656 * this syscall returns the minimum rt_priority that can be used
5657 * by a given scheduling class.
5659 asmlinkage
long sys_sched_get_priority_min(int policy
)
5677 * sys_sched_rr_get_interval - return the default timeslice of a process.
5678 * @pid: pid of the process.
5679 * @interval: userspace pointer to the timeslice value.
5681 * this syscall writes the default timeslice value of a given process
5682 * into the user-space timespec buffer. A value of '0' means infinity.
5685 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5687 struct task_struct
*p
;
5688 unsigned int time_slice
;
5696 read_lock(&tasklist_lock
);
5697 p
= find_process_by_pid(pid
);
5701 retval
= security_task_getscheduler(p
);
5706 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5707 * tasks that are on an otherwise idle runqueue:
5710 if (p
->policy
== SCHED_RR
) {
5711 time_slice
= DEF_TIMESLICE
;
5712 } else if (p
->policy
!= SCHED_FIFO
) {
5713 struct sched_entity
*se
= &p
->se
;
5714 unsigned long flags
;
5717 rq
= task_rq_lock(p
, &flags
);
5718 if (rq
->cfs
.load
.weight
)
5719 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5720 task_rq_unlock(rq
, &flags
);
5722 read_unlock(&tasklist_lock
);
5723 jiffies_to_timespec(time_slice
, &t
);
5724 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5728 read_unlock(&tasklist_lock
);
5732 static const char stat_nam
[] = "RSDTtZX";
5734 void sched_show_task(struct task_struct
*p
)
5736 unsigned long free
= 0;
5739 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5740 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5741 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5742 #if BITS_PER_LONG == 32
5743 if (state
== TASK_RUNNING
)
5744 printk(KERN_CONT
" running ");
5746 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5748 if (state
== TASK_RUNNING
)
5749 printk(KERN_CONT
" running task ");
5751 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5753 #ifdef CONFIG_DEBUG_STACK_USAGE
5755 unsigned long *n
= end_of_stack(p
);
5758 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5761 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5762 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5764 show_stack(p
, NULL
);
5767 void show_state_filter(unsigned long state_filter
)
5769 struct task_struct
*g
, *p
;
5771 #if BITS_PER_LONG == 32
5773 " task PC stack pid father\n");
5776 " task PC stack pid father\n");
5778 read_lock(&tasklist_lock
);
5779 do_each_thread(g
, p
) {
5781 * reset the NMI-timeout, listing all files on a slow
5782 * console might take alot of time:
5784 touch_nmi_watchdog();
5785 if (!state_filter
|| (p
->state
& state_filter
))
5787 } while_each_thread(g
, p
);
5789 touch_all_softlockup_watchdogs();
5791 #ifdef CONFIG_SCHED_DEBUG
5792 sysrq_sched_debug_show();
5794 read_unlock(&tasklist_lock
);
5796 * Only show locks if all tasks are dumped:
5798 if (state_filter
== -1)
5799 debug_show_all_locks();
5802 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5804 idle
->sched_class
= &idle_sched_class
;
5808 * init_idle - set up an idle thread for a given CPU
5809 * @idle: task in question
5810 * @cpu: cpu the idle task belongs to
5812 * NOTE: this function does not set the idle thread's NEED_RESCHED
5813 * flag, to make booting more robust.
5815 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5817 struct rq
*rq
= cpu_rq(cpu
);
5818 unsigned long flags
;
5821 idle
->se
.exec_start
= sched_clock();
5823 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5824 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5825 __set_task_cpu(idle
, cpu
);
5827 spin_lock_irqsave(&rq
->lock
, flags
);
5828 rq
->curr
= rq
->idle
= idle
;
5829 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5832 spin_unlock_irqrestore(&rq
->lock
, flags
);
5834 /* Set the preempt count _outside_ the spinlocks! */
5835 #if defined(CONFIG_PREEMPT)
5836 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5838 task_thread_info(idle
)->preempt_count
= 0;
5841 * The idle tasks have their own, simple scheduling class:
5843 idle
->sched_class
= &idle_sched_class
;
5847 * In a system that switches off the HZ timer nohz_cpu_mask
5848 * indicates which cpus entered this state. This is used
5849 * in the rcu update to wait only for active cpus. For system
5850 * which do not switch off the HZ timer nohz_cpu_mask should
5851 * always be CPU_MASK_NONE.
5853 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5856 * Increase the granularity value when there are more CPUs,
5857 * because with more CPUs the 'effective latency' as visible
5858 * to users decreases. But the relationship is not linear,
5859 * so pick a second-best guess by going with the log2 of the
5862 * This idea comes from the SD scheduler of Con Kolivas:
5864 static inline void sched_init_granularity(void)
5866 unsigned int factor
= 1 + ilog2(num_online_cpus());
5867 const unsigned long limit
= 200000000;
5869 sysctl_sched_min_granularity
*= factor
;
5870 if (sysctl_sched_min_granularity
> limit
)
5871 sysctl_sched_min_granularity
= limit
;
5873 sysctl_sched_latency
*= factor
;
5874 if (sysctl_sched_latency
> limit
)
5875 sysctl_sched_latency
= limit
;
5877 sysctl_sched_wakeup_granularity
*= factor
;
5882 * This is how migration works:
5884 * 1) we queue a struct migration_req structure in the source CPU's
5885 * runqueue and wake up that CPU's migration thread.
5886 * 2) we down() the locked semaphore => thread blocks.
5887 * 3) migration thread wakes up (implicitly it forces the migrated
5888 * thread off the CPU)
5889 * 4) it gets the migration request and checks whether the migrated
5890 * task is still in the wrong runqueue.
5891 * 5) if it's in the wrong runqueue then the migration thread removes
5892 * it and puts it into the right queue.
5893 * 6) migration thread up()s the semaphore.
5894 * 7) we wake up and the migration is done.
5898 * Change a given task's CPU affinity. Migrate the thread to a
5899 * proper CPU and schedule it away if the CPU it's executing on
5900 * is removed from the allowed bitmask.
5902 * NOTE: the caller must have a valid reference to the task, the
5903 * task must not exit() & deallocate itself prematurely. The
5904 * call is not atomic; no spinlocks may be held.
5906 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5908 struct migration_req req
;
5909 unsigned long flags
;
5913 rq
= task_rq_lock(p
, &flags
);
5914 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5919 if (p
->sched_class
->set_cpus_allowed
)
5920 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5922 p
->cpus_allowed
= *new_mask
;
5923 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5926 /* Can the task run on the task's current CPU? If so, we're done */
5927 if (cpu_isset(task_cpu(p
), *new_mask
))
5930 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5931 /* Need help from migration thread: drop lock and wait. */
5932 task_rq_unlock(rq
, &flags
);
5933 wake_up_process(rq
->migration_thread
);
5934 wait_for_completion(&req
.done
);
5935 tlb_migrate_finish(p
->mm
);
5939 task_rq_unlock(rq
, &flags
);
5943 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5946 * Move (not current) task off this cpu, onto dest cpu. We're doing
5947 * this because either it can't run here any more (set_cpus_allowed()
5948 * away from this CPU, or CPU going down), or because we're
5949 * attempting to rebalance this task on exec (sched_exec).
5951 * So we race with normal scheduler movements, but that's OK, as long
5952 * as the task is no longer on this CPU.
5954 * Returns non-zero if task was successfully migrated.
5956 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5958 struct rq
*rq_dest
, *rq_src
;
5961 if (unlikely(cpu_is_offline(dest_cpu
)))
5964 rq_src
= cpu_rq(src_cpu
);
5965 rq_dest
= cpu_rq(dest_cpu
);
5967 double_rq_lock(rq_src
, rq_dest
);
5968 /* Already moved. */
5969 if (task_cpu(p
) != src_cpu
)
5971 /* Affinity changed (again). */
5972 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5975 on_rq
= p
->se
.on_rq
;
5977 deactivate_task(rq_src
, p
, 0);
5979 set_task_cpu(p
, dest_cpu
);
5981 activate_task(rq_dest
, p
, 0);
5982 check_preempt_curr(rq_dest
, p
);
5986 double_rq_unlock(rq_src
, rq_dest
);
5991 * migration_thread - this is a highprio system thread that performs
5992 * thread migration by bumping thread off CPU then 'pushing' onto
5995 static int migration_thread(void *data
)
5997 int cpu
= (long)data
;
6001 BUG_ON(rq
->migration_thread
!= current
);
6003 set_current_state(TASK_INTERRUPTIBLE
);
6004 while (!kthread_should_stop()) {
6005 struct migration_req
*req
;
6006 struct list_head
*head
;
6008 spin_lock_irq(&rq
->lock
);
6010 if (cpu_is_offline(cpu
)) {
6011 spin_unlock_irq(&rq
->lock
);
6015 if (rq
->active_balance
) {
6016 active_load_balance(rq
, cpu
);
6017 rq
->active_balance
= 0;
6020 head
= &rq
->migration_queue
;
6022 if (list_empty(head
)) {
6023 spin_unlock_irq(&rq
->lock
);
6025 set_current_state(TASK_INTERRUPTIBLE
);
6028 req
= list_entry(head
->next
, struct migration_req
, list
);
6029 list_del_init(head
->next
);
6031 spin_unlock(&rq
->lock
);
6032 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6035 complete(&req
->done
);
6037 __set_current_state(TASK_RUNNING
);
6041 /* Wait for kthread_stop */
6042 set_current_state(TASK_INTERRUPTIBLE
);
6043 while (!kthread_should_stop()) {
6045 set_current_state(TASK_INTERRUPTIBLE
);
6047 __set_current_state(TASK_RUNNING
);
6051 #ifdef CONFIG_HOTPLUG_CPU
6053 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6057 local_irq_disable();
6058 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6064 * Figure out where task on dead CPU should go, use force if necessary.
6065 * NOTE: interrupts should be disabled by the caller
6067 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6069 unsigned long flags
;
6076 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
6077 cpus_and(mask
, mask
, p
->cpus_allowed
);
6078 dest_cpu
= any_online_cpu(mask
);
6080 /* On any allowed CPU? */
6081 if (dest_cpu
>= nr_cpu_ids
)
6082 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6084 /* No more Mr. Nice Guy. */
6085 if (dest_cpu
>= nr_cpu_ids
) {
6086 cpumask_t cpus_allowed
;
6088 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6090 * Try to stay on the same cpuset, where the
6091 * current cpuset may be a subset of all cpus.
6092 * The cpuset_cpus_allowed_locked() variant of
6093 * cpuset_cpus_allowed() will not block. It must be
6094 * called within calls to cpuset_lock/cpuset_unlock.
6096 rq
= task_rq_lock(p
, &flags
);
6097 p
->cpus_allowed
= cpus_allowed
;
6098 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6099 task_rq_unlock(rq
, &flags
);
6102 * Don't tell them about moving exiting tasks or
6103 * kernel threads (both mm NULL), since they never
6106 if (p
->mm
&& printk_ratelimit()) {
6107 printk(KERN_INFO
"process %d (%s) no "
6108 "longer affine to cpu%d\n",
6109 task_pid_nr(p
), p
->comm
, dead_cpu
);
6112 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6116 * While a dead CPU has no uninterruptible tasks queued at this point,
6117 * it might still have a nonzero ->nr_uninterruptible counter, because
6118 * for performance reasons the counter is not stricly tracking tasks to
6119 * their home CPUs. So we just add the counter to another CPU's counter,
6120 * to keep the global sum constant after CPU-down:
6122 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6124 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6125 unsigned long flags
;
6127 local_irq_save(flags
);
6128 double_rq_lock(rq_src
, rq_dest
);
6129 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6130 rq_src
->nr_uninterruptible
= 0;
6131 double_rq_unlock(rq_src
, rq_dest
);
6132 local_irq_restore(flags
);
6135 /* Run through task list and migrate tasks from the dead cpu. */
6136 static void migrate_live_tasks(int src_cpu
)
6138 struct task_struct
*p
, *t
;
6140 read_lock(&tasklist_lock
);
6142 do_each_thread(t
, p
) {
6146 if (task_cpu(p
) == src_cpu
)
6147 move_task_off_dead_cpu(src_cpu
, p
);
6148 } while_each_thread(t
, p
);
6150 read_unlock(&tasklist_lock
);
6154 * Schedules idle task to be the next runnable task on current CPU.
6155 * It does so by boosting its priority to highest possible.
6156 * Used by CPU offline code.
6158 void sched_idle_next(void)
6160 int this_cpu
= smp_processor_id();
6161 struct rq
*rq
= cpu_rq(this_cpu
);
6162 struct task_struct
*p
= rq
->idle
;
6163 unsigned long flags
;
6165 /* cpu has to be offline */
6166 BUG_ON(cpu_online(this_cpu
));
6169 * Strictly not necessary since rest of the CPUs are stopped by now
6170 * and interrupts disabled on the current cpu.
6172 spin_lock_irqsave(&rq
->lock
, flags
);
6174 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6176 update_rq_clock(rq
);
6177 activate_task(rq
, p
, 0);
6179 spin_unlock_irqrestore(&rq
->lock
, flags
);
6183 * Ensures that the idle task is using init_mm right before its cpu goes
6186 void idle_task_exit(void)
6188 struct mm_struct
*mm
= current
->active_mm
;
6190 BUG_ON(cpu_online(smp_processor_id()));
6193 switch_mm(mm
, &init_mm
, current
);
6197 /* called under rq->lock with disabled interrupts */
6198 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6200 struct rq
*rq
= cpu_rq(dead_cpu
);
6202 /* Must be exiting, otherwise would be on tasklist. */
6203 BUG_ON(!p
->exit_state
);
6205 /* Cannot have done final schedule yet: would have vanished. */
6206 BUG_ON(p
->state
== TASK_DEAD
);
6211 * Drop lock around migration; if someone else moves it,
6212 * that's OK. No task can be added to this CPU, so iteration is
6215 spin_unlock_irq(&rq
->lock
);
6216 move_task_off_dead_cpu(dead_cpu
, p
);
6217 spin_lock_irq(&rq
->lock
);
6222 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6223 static void migrate_dead_tasks(unsigned int dead_cpu
)
6225 struct rq
*rq
= cpu_rq(dead_cpu
);
6226 struct task_struct
*next
;
6229 if (!rq
->nr_running
)
6231 update_rq_clock(rq
);
6232 next
= pick_next_task(rq
, rq
->curr
);
6235 migrate_dead(dead_cpu
, next
);
6239 #endif /* CONFIG_HOTPLUG_CPU */
6241 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6243 static struct ctl_table sd_ctl_dir
[] = {
6245 .procname
= "sched_domain",
6251 static struct ctl_table sd_ctl_root
[] = {
6253 .ctl_name
= CTL_KERN
,
6254 .procname
= "kernel",
6256 .child
= sd_ctl_dir
,
6261 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6263 struct ctl_table
*entry
=
6264 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6269 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6271 struct ctl_table
*entry
;
6274 * In the intermediate directories, both the child directory and
6275 * procname are dynamically allocated and could fail but the mode
6276 * will always be set. In the lowest directory the names are
6277 * static strings and all have proc handlers.
6279 for (entry
= *tablep
; entry
->mode
; entry
++) {
6281 sd_free_ctl_entry(&entry
->child
);
6282 if (entry
->proc_handler
== NULL
)
6283 kfree(entry
->procname
);
6291 set_table_entry(struct ctl_table
*entry
,
6292 const char *procname
, void *data
, int maxlen
,
6293 mode_t mode
, proc_handler
*proc_handler
)
6295 entry
->procname
= procname
;
6297 entry
->maxlen
= maxlen
;
6299 entry
->proc_handler
= proc_handler
;
6302 static struct ctl_table
*
6303 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6305 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6310 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6311 sizeof(long), 0644, proc_doulongvec_minmax
);
6312 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6313 sizeof(long), 0644, proc_doulongvec_minmax
);
6314 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6315 sizeof(int), 0644, proc_dointvec_minmax
);
6316 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6317 sizeof(int), 0644, proc_dointvec_minmax
);
6318 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6319 sizeof(int), 0644, proc_dointvec_minmax
);
6320 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6321 sizeof(int), 0644, proc_dointvec_minmax
);
6322 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6323 sizeof(int), 0644, proc_dointvec_minmax
);
6324 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6325 sizeof(int), 0644, proc_dointvec_minmax
);
6326 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6327 sizeof(int), 0644, proc_dointvec_minmax
);
6328 set_table_entry(&table
[9], "cache_nice_tries",
6329 &sd
->cache_nice_tries
,
6330 sizeof(int), 0644, proc_dointvec_minmax
);
6331 set_table_entry(&table
[10], "flags", &sd
->flags
,
6332 sizeof(int), 0644, proc_dointvec_minmax
);
6333 /* &table[11] is terminator */
6338 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6340 struct ctl_table
*entry
, *table
;
6341 struct sched_domain
*sd
;
6342 int domain_num
= 0, i
;
6345 for_each_domain(cpu
, sd
)
6347 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6352 for_each_domain(cpu
, sd
) {
6353 snprintf(buf
, 32, "domain%d", i
);
6354 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6356 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6363 static struct ctl_table_header
*sd_sysctl_header
;
6364 static void register_sched_domain_sysctl(void)
6366 int i
, cpu_num
= num_online_cpus();
6367 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6370 WARN_ON(sd_ctl_dir
[0].child
);
6371 sd_ctl_dir
[0].child
= entry
;
6376 for_each_online_cpu(i
) {
6377 snprintf(buf
, 32, "cpu%d", i
);
6378 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6380 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6384 WARN_ON(sd_sysctl_header
);
6385 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6388 /* may be called multiple times per register */
6389 static void unregister_sched_domain_sysctl(void)
6391 if (sd_sysctl_header
)
6392 unregister_sysctl_table(sd_sysctl_header
);
6393 sd_sysctl_header
= NULL
;
6394 if (sd_ctl_dir
[0].child
)
6395 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6398 static void register_sched_domain_sysctl(void)
6401 static void unregister_sched_domain_sysctl(void)
6407 * migration_call - callback that gets triggered when a CPU is added.
6408 * Here we can start up the necessary migration thread for the new CPU.
6410 static int __cpuinit
6411 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6413 struct task_struct
*p
;
6414 int cpu
= (long)hcpu
;
6415 unsigned long flags
;
6420 case CPU_UP_PREPARE
:
6421 case CPU_UP_PREPARE_FROZEN
:
6422 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6425 kthread_bind(p
, cpu
);
6426 /* Must be high prio: stop_machine expects to yield to it. */
6427 rq
= task_rq_lock(p
, &flags
);
6428 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6429 task_rq_unlock(rq
, &flags
);
6430 cpu_rq(cpu
)->migration_thread
= p
;
6434 case CPU_ONLINE_FROZEN
:
6435 /* Strictly unnecessary, as first user will wake it. */
6436 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6438 /* Update our root-domain */
6440 spin_lock_irqsave(&rq
->lock
, flags
);
6442 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6443 cpu_set(cpu
, rq
->rd
->online
);
6445 spin_unlock_irqrestore(&rq
->lock
, flags
);
6448 #ifdef CONFIG_HOTPLUG_CPU
6449 case CPU_UP_CANCELED
:
6450 case CPU_UP_CANCELED_FROZEN
:
6451 if (!cpu_rq(cpu
)->migration_thread
)
6453 /* Unbind it from offline cpu so it can run. Fall thru. */
6454 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6455 any_online_cpu(cpu_online_map
));
6456 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6457 cpu_rq(cpu
)->migration_thread
= NULL
;
6461 case CPU_DEAD_FROZEN
:
6462 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6463 migrate_live_tasks(cpu
);
6465 kthread_stop(rq
->migration_thread
);
6466 rq
->migration_thread
= NULL
;
6467 /* Idle task back to normal (off runqueue, low prio) */
6468 spin_lock_irq(&rq
->lock
);
6469 update_rq_clock(rq
);
6470 deactivate_task(rq
, rq
->idle
, 0);
6471 rq
->idle
->static_prio
= MAX_PRIO
;
6472 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6473 rq
->idle
->sched_class
= &idle_sched_class
;
6474 migrate_dead_tasks(cpu
);
6475 spin_unlock_irq(&rq
->lock
);
6477 migrate_nr_uninterruptible(rq
);
6478 BUG_ON(rq
->nr_running
!= 0);
6481 * No need to migrate the tasks: it was best-effort if
6482 * they didn't take sched_hotcpu_mutex. Just wake up
6485 spin_lock_irq(&rq
->lock
);
6486 while (!list_empty(&rq
->migration_queue
)) {
6487 struct migration_req
*req
;
6489 req
= list_entry(rq
->migration_queue
.next
,
6490 struct migration_req
, list
);
6491 list_del_init(&req
->list
);
6492 complete(&req
->done
);
6494 spin_unlock_irq(&rq
->lock
);
6498 case CPU_DYING_FROZEN
:
6499 /* Update our root-domain */
6501 spin_lock_irqsave(&rq
->lock
, flags
);
6503 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6504 cpu_clear(cpu
, rq
->rd
->online
);
6506 spin_unlock_irqrestore(&rq
->lock
, flags
);
6513 /* Register at highest priority so that task migration (migrate_all_tasks)
6514 * happens before everything else.
6516 static struct notifier_block __cpuinitdata migration_notifier
= {
6517 .notifier_call
= migration_call
,
6521 void __init
migration_init(void)
6523 void *cpu
= (void *)(long)smp_processor_id();
6526 /* Start one for the boot CPU: */
6527 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6528 BUG_ON(err
== NOTIFY_BAD
);
6529 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6530 register_cpu_notifier(&migration_notifier
);
6536 #ifdef CONFIG_SCHED_DEBUG
6538 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6539 cpumask_t
*groupmask
)
6541 struct sched_group
*group
= sd
->groups
;
6544 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6545 cpus_clear(*groupmask
);
6547 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6549 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6550 printk("does not load-balance\n");
6552 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6557 printk(KERN_CONT
"span %s\n", str
);
6559 if (!cpu_isset(cpu
, sd
->span
)) {
6560 printk(KERN_ERR
"ERROR: domain->span does not contain "
6563 if (!cpu_isset(cpu
, group
->cpumask
)) {
6564 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6568 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6572 printk(KERN_ERR
"ERROR: group is NULL\n");
6576 if (!group
->__cpu_power
) {
6577 printk(KERN_CONT
"\n");
6578 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6583 if (!cpus_weight(group
->cpumask
)) {
6584 printk(KERN_CONT
"\n");
6585 printk(KERN_ERR
"ERROR: empty group\n");
6589 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6590 printk(KERN_CONT
"\n");
6591 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6595 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6597 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6598 printk(KERN_CONT
" %s", str
);
6600 group
= group
->next
;
6601 } while (group
!= sd
->groups
);
6602 printk(KERN_CONT
"\n");
6604 if (!cpus_equal(sd
->span
, *groupmask
))
6605 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6607 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6608 printk(KERN_ERR
"ERROR: parent span is not a superset "
6609 "of domain->span\n");
6613 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6615 cpumask_t
*groupmask
;
6619 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6623 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6625 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6627 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6632 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6642 # define sched_domain_debug(sd, cpu) do { } while (0)
6645 static int sd_degenerate(struct sched_domain
*sd
)
6647 if (cpus_weight(sd
->span
) == 1)
6650 /* Following flags need at least 2 groups */
6651 if (sd
->flags
& (SD_LOAD_BALANCE
|
6652 SD_BALANCE_NEWIDLE
|
6656 SD_SHARE_PKG_RESOURCES
)) {
6657 if (sd
->groups
!= sd
->groups
->next
)
6661 /* Following flags don't use groups */
6662 if (sd
->flags
& (SD_WAKE_IDLE
|
6671 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6673 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6675 if (sd_degenerate(parent
))
6678 if (!cpus_equal(sd
->span
, parent
->span
))
6681 /* Does parent contain flags not in child? */
6682 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6683 if (cflags
& SD_WAKE_AFFINE
)
6684 pflags
&= ~SD_WAKE_BALANCE
;
6685 /* Flags needing groups don't count if only 1 group in parent */
6686 if (parent
->groups
== parent
->groups
->next
) {
6687 pflags
&= ~(SD_LOAD_BALANCE
|
6688 SD_BALANCE_NEWIDLE
|
6692 SD_SHARE_PKG_RESOURCES
);
6694 if (~cflags
& pflags
)
6700 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6702 unsigned long flags
;
6703 const struct sched_class
*class;
6705 spin_lock_irqsave(&rq
->lock
, flags
);
6708 struct root_domain
*old_rd
= rq
->rd
;
6710 for (class = sched_class_highest
; class; class = class->next
) {
6711 if (class->leave_domain
)
6712 class->leave_domain(rq
);
6715 cpu_clear(rq
->cpu
, old_rd
->span
);
6716 cpu_clear(rq
->cpu
, old_rd
->online
);
6718 if (atomic_dec_and_test(&old_rd
->refcount
))
6722 atomic_inc(&rd
->refcount
);
6725 cpu_set(rq
->cpu
, rd
->span
);
6726 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6727 cpu_set(rq
->cpu
, rd
->online
);
6729 for (class = sched_class_highest
; class; class = class->next
) {
6730 if (class->join_domain
)
6731 class->join_domain(rq
);
6734 spin_unlock_irqrestore(&rq
->lock
, flags
);
6737 static void init_rootdomain(struct root_domain
*rd
)
6739 memset(rd
, 0, sizeof(*rd
));
6741 cpus_clear(rd
->span
);
6742 cpus_clear(rd
->online
);
6745 static void init_defrootdomain(void)
6747 init_rootdomain(&def_root_domain
);
6748 atomic_set(&def_root_domain
.refcount
, 1);
6751 static struct root_domain
*alloc_rootdomain(void)
6753 struct root_domain
*rd
;
6755 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6759 init_rootdomain(rd
);
6765 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6766 * hold the hotplug lock.
6769 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6771 struct rq
*rq
= cpu_rq(cpu
);
6772 struct sched_domain
*tmp
;
6774 /* Remove the sched domains which do not contribute to scheduling. */
6775 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6776 struct sched_domain
*parent
= tmp
->parent
;
6779 if (sd_parent_degenerate(tmp
, parent
)) {
6780 tmp
->parent
= parent
->parent
;
6782 parent
->parent
->child
= tmp
;
6786 if (sd
&& sd_degenerate(sd
)) {
6792 sched_domain_debug(sd
, cpu
);
6794 rq_attach_root(rq
, rd
);
6795 rcu_assign_pointer(rq
->sd
, sd
);
6798 /* cpus with isolated domains */
6799 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6801 /* Setup the mask of cpus configured for isolated domains */
6802 static int __init
isolated_cpu_setup(char *str
)
6804 int ints
[NR_CPUS
], i
;
6806 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6807 cpus_clear(cpu_isolated_map
);
6808 for (i
= 1; i
<= ints
[0]; i
++)
6809 if (ints
[i
] < NR_CPUS
)
6810 cpu_set(ints
[i
], cpu_isolated_map
);
6814 __setup("isolcpus=", isolated_cpu_setup
);
6817 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6818 * to a function which identifies what group(along with sched group) a CPU
6819 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6820 * (due to the fact that we keep track of groups covered with a cpumask_t).
6822 * init_sched_build_groups will build a circular linked list of the groups
6823 * covered by the given span, and will set each group's ->cpumask correctly,
6824 * and ->cpu_power to 0.
6827 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6828 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6829 struct sched_group
**sg
,
6830 cpumask_t
*tmpmask
),
6831 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6833 struct sched_group
*first
= NULL
, *last
= NULL
;
6836 cpus_clear(*covered
);
6838 for_each_cpu_mask(i
, *span
) {
6839 struct sched_group
*sg
;
6840 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6843 if (cpu_isset(i
, *covered
))
6846 cpus_clear(sg
->cpumask
);
6847 sg
->__cpu_power
= 0;
6849 for_each_cpu_mask(j
, *span
) {
6850 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6853 cpu_set(j
, *covered
);
6854 cpu_set(j
, sg
->cpumask
);
6865 #define SD_NODES_PER_DOMAIN 16
6870 * find_next_best_node - find the next node to include in a sched_domain
6871 * @node: node whose sched_domain we're building
6872 * @used_nodes: nodes already in the sched_domain
6874 * Find the next node to include in a given scheduling domain. Simply
6875 * finds the closest node not already in the @used_nodes map.
6877 * Should use nodemask_t.
6879 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6881 int i
, n
, val
, min_val
, best_node
= 0;
6885 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6886 /* Start at @node */
6887 n
= (node
+ i
) % MAX_NUMNODES
;
6889 if (!nr_cpus_node(n
))
6892 /* Skip already used nodes */
6893 if (node_isset(n
, *used_nodes
))
6896 /* Simple min distance search */
6897 val
= node_distance(node
, n
);
6899 if (val
< min_val
) {
6905 node_set(best_node
, *used_nodes
);
6910 * sched_domain_node_span - get a cpumask for a node's sched_domain
6911 * @node: node whose cpumask we're constructing
6912 * @span: resulting cpumask
6914 * Given a node, construct a good cpumask for its sched_domain to span. It
6915 * should be one that prevents unnecessary balancing, but also spreads tasks
6918 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6920 nodemask_t used_nodes
;
6921 node_to_cpumask_ptr(nodemask
, node
);
6925 nodes_clear(used_nodes
);
6927 cpus_or(*span
, *span
, *nodemask
);
6928 node_set(node
, used_nodes
);
6930 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6931 int next_node
= find_next_best_node(node
, &used_nodes
);
6933 node_to_cpumask_ptr_next(nodemask
, next_node
);
6934 cpus_or(*span
, *span
, *nodemask
);
6939 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6942 * SMT sched-domains:
6944 #ifdef CONFIG_SCHED_SMT
6945 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6946 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6949 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6953 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6959 * multi-core sched-domains:
6961 #ifdef CONFIG_SCHED_MC
6962 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6963 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6966 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6968 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6973 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6974 cpus_and(*mask
, *mask
, *cpu_map
);
6975 group
= first_cpu(*mask
);
6977 *sg
= &per_cpu(sched_group_core
, group
);
6980 #elif defined(CONFIG_SCHED_MC)
6982 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6986 *sg
= &per_cpu(sched_group_core
, cpu
);
6991 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6992 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6995 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6999 #ifdef CONFIG_SCHED_MC
7000 *mask
= cpu_coregroup_map(cpu
);
7001 cpus_and(*mask
, *mask
, *cpu_map
);
7002 group
= first_cpu(*mask
);
7003 #elif defined(CONFIG_SCHED_SMT)
7004 *mask
= per_cpu(cpu_sibling_map
, cpu
);
7005 cpus_and(*mask
, *mask
, *cpu_map
);
7006 group
= first_cpu(*mask
);
7011 *sg
= &per_cpu(sched_group_phys
, group
);
7017 * The init_sched_build_groups can't handle what we want to do with node
7018 * groups, so roll our own. Now each node has its own list of groups which
7019 * gets dynamically allocated.
7021 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
7022 static struct sched_group
***sched_group_nodes_bycpu
;
7024 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
7025 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
7027 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
7028 struct sched_group
**sg
, cpumask_t
*nodemask
)
7032 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7033 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7034 group
= first_cpu(*nodemask
);
7037 *sg
= &per_cpu(sched_group_allnodes
, group
);
7041 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7043 struct sched_group
*sg
= group_head
;
7049 for_each_cpu_mask(j
, sg
->cpumask
) {
7050 struct sched_domain
*sd
;
7052 sd
= &per_cpu(phys_domains
, j
);
7053 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7055 * Only add "power" once for each
7061 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7064 } while (sg
!= group_head
);
7069 /* Free memory allocated for various sched_group structures */
7070 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7074 for_each_cpu_mask(cpu
, *cpu_map
) {
7075 struct sched_group
**sched_group_nodes
7076 = sched_group_nodes_bycpu
[cpu
];
7078 if (!sched_group_nodes
)
7081 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7082 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7084 *nodemask
= node_to_cpumask(i
);
7085 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7086 if (cpus_empty(*nodemask
))
7096 if (oldsg
!= sched_group_nodes
[i
])
7099 kfree(sched_group_nodes
);
7100 sched_group_nodes_bycpu
[cpu
] = NULL
;
7104 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7110 * Initialize sched groups cpu_power.
7112 * cpu_power indicates the capacity of sched group, which is used while
7113 * distributing the load between different sched groups in a sched domain.
7114 * Typically cpu_power for all the groups in a sched domain will be same unless
7115 * there are asymmetries in the topology. If there are asymmetries, group
7116 * having more cpu_power will pickup more load compared to the group having
7119 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7120 * the maximum number of tasks a group can handle in the presence of other idle
7121 * or lightly loaded groups in the same sched domain.
7123 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7125 struct sched_domain
*child
;
7126 struct sched_group
*group
;
7128 WARN_ON(!sd
|| !sd
->groups
);
7130 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7135 sd
->groups
->__cpu_power
= 0;
7138 * For perf policy, if the groups in child domain share resources
7139 * (for example cores sharing some portions of the cache hierarchy
7140 * or SMT), then set this domain groups cpu_power such that each group
7141 * can handle only one task, when there are other idle groups in the
7142 * same sched domain.
7144 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7146 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7147 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7152 * add cpu_power of each child group to this groups cpu_power
7154 group
= child
->groups
;
7156 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7157 group
= group
->next
;
7158 } while (group
!= child
->groups
);
7162 * Initializers for schedule domains
7163 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7166 #define SD_INIT(sd, type) sd_init_##type(sd)
7167 #define SD_INIT_FUNC(type) \
7168 static noinline void sd_init_##type(struct sched_domain *sd) \
7170 memset(sd, 0, sizeof(*sd)); \
7171 *sd = SD_##type##_INIT; \
7172 sd->level = SD_LV_##type; \
7177 SD_INIT_FUNC(ALLNODES
)
7180 #ifdef CONFIG_SCHED_SMT
7181 SD_INIT_FUNC(SIBLING
)
7183 #ifdef CONFIG_SCHED_MC
7188 * To minimize stack usage kmalloc room for cpumasks and share the
7189 * space as the usage in build_sched_domains() dictates. Used only
7190 * if the amount of space is significant.
7193 cpumask_t tmpmask
; /* make this one first */
7196 cpumask_t this_sibling_map
;
7197 cpumask_t this_core_map
;
7199 cpumask_t send_covered
;
7202 cpumask_t domainspan
;
7204 cpumask_t notcovered
;
7209 #define SCHED_CPUMASK_ALLOC 1
7210 #define SCHED_CPUMASK_FREE(v) kfree(v)
7211 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7213 #define SCHED_CPUMASK_ALLOC 0
7214 #define SCHED_CPUMASK_FREE(v)
7215 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7218 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7219 ((unsigned long)(a) + offsetof(struct allmasks, v))
7221 static int default_relax_domain_level
= -1;
7223 static int __init
setup_relax_domain_level(char *str
)
7225 default_relax_domain_level
= simple_strtoul(str
, NULL
, 0);
7228 __setup("relax_domain_level=", setup_relax_domain_level
);
7230 static void set_domain_attribute(struct sched_domain
*sd
,
7231 struct sched_domain_attr
*attr
)
7235 if (!attr
|| attr
->relax_domain_level
< 0) {
7236 if (default_relax_domain_level
< 0)
7239 request
= default_relax_domain_level
;
7241 request
= attr
->relax_domain_level
;
7242 if (request
< sd
->level
) {
7243 /* turn off idle balance on this domain */
7244 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7246 /* turn on idle balance on this domain */
7247 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7252 * Build sched domains for a given set of cpus and attach the sched domains
7253 * to the individual cpus
7255 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7256 struct sched_domain_attr
*attr
)
7259 struct root_domain
*rd
;
7260 SCHED_CPUMASK_DECLARE(allmasks
);
7263 struct sched_group
**sched_group_nodes
= NULL
;
7264 int sd_allnodes
= 0;
7267 * Allocate the per-node list of sched groups
7269 sched_group_nodes
= kcalloc(MAX_NUMNODES
, sizeof(struct sched_group
*),
7271 if (!sched_group_nodes
) {
7272 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7277 rd
= alloc_rootdomain();
7279 printk(KERN_WARNING
"Cannot alloc root domain\n");
7281 kfree(sched_group_nodes
);
7286 #if SCHED_CPUMASK_ALLOC
7287 /* get space for all scratch cpumask variables */
7288 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7290 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7293 kfree(sched_group_nodes
);
7298 tmpmask
= (cpumask_t
*)allmasks
;
7302 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7306 * Set up domains for cpus specified by the cpu_map.
7308 for_each_cpu_mask(i
, *cpu_map
) {
7309 struct sched_domain
*sd
= NULL
, *p
;
7310 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7312 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7313 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7316 if (cpus_weight(*cpu_map
) >
7317 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7318 sd
= &per_cpu(allnodes_domains
, i
);
7319 SD_INIT(sd
, ALLNODES
);
7320 set_domain_attribute(sd
, attr
);
7321 sd
->span
= *cpu_map
;
7322 sd
->first_cpu
= first_cpu(sd
->span
);
7323 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7329 sd
= &per_cpu(node_domains
, i
);
7331 set_domain_attribute(sd
, attr
);
7332 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7333 sd
->first_cpu
= first_cpu(sd
->span
);
7337 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7341 sd
= &per_cpu(phys_domains
, i
);
7343 set_domain_attribute(sd
, attr
);
7344 sd
->span
= *nodemask
;
7345 sd
->first_cpu
= first_cpu(sd
->span
);
7349 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7351 #ifdef CONFIG_SCHED_MC
7353 sd
= &per_cpu(core_domains
, i
);
7355 set_domain_attribute(sd
, attr
);
7356 sd
->span
= cpu_coregroup_map(i
);
7357 sd
->first_cpu
= first_cpu(sd
->span
);
7358 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7361 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7364 #ifdef CONFIG_SCHED_SMT
7366 sd
= &per_cpu(cpu_domains
, i
);
7367 SD_INIT(sd
, SIBLING
);
7368 set_domain_attribute(sd
, attr
);
7369 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7370 sd
->first_cpu
= first_cpu(sd
->span
);
7371 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7374 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7378 #ifdef CONFIG_SCHED_SMT
7379 /* Set up CPU (sibling) groups */
7380 for_each_cpu_mask(i
, *cpu_map
) {
7381 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7382 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7384 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7385 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7386 if (i
!= first_cpu(*this_sibling_map
))
7389 init_sched_build_groups(this_sibling_map
, cpu_map
,
7391 send_covered
, tmpmask
);
7395 #ifdef CONFIG_SCHED_MC
7396 /* Set up multi-core groups */
7397 for_each_cpu_mask(i
, *cpu_map
) {
7398 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7399 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7401 *this_core_map
= cpu_coregroup_map(i
);
7402 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7403 if (i
!= first_cpu(*this_core_map
))
7406 init_sched_build_groups(this_core_map
, cpu_map
,
7408 send_covered
, tmpmask
);
7412 /* Set up physical groups */
7413 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7414 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7415 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7417 *nodemask
= node_to_cpumask(i
);
7418 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7419 if (cpus_empty(*nodemask
))
7422 init_sched_build_groups(nodemask
, cpu_map
,
7424 send_covered
, tmpmask
);
7428 /* Set up node groups */
7430 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7432 init_sched_build_groups(cpu_map
, cpu_map
,
7433 &cpu_to_allnodes_group
,
7434 send_covered
, tmpmask
);
7437 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
7438 /* Set up node groups */
7439 struct sched_group
*sg
, *prev
;
7440 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7441 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7442 SCHED_CPUMASK_VAR(covered
, allmasks
);
7445 *nodemask
= node_to_cpumask(i
);
7446 cpus_clear(*covered
);
7448 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7449 if (cpus_empty(*nodemask
)) {
7450 sched_group_nodes
[i
] = NULL
;
7454 sched_domain_node_span(i
, domainspan
);
7455 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7457 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7459 printk(KERN_WARNING
"Can not alloc domain group for "
7463 sched_group_nodes
[i
] = sg
;
7464 for_each_cpu_mask(j
, *nodemask
) {
7465 struct sched_domain
*sd
;
7467 sd
= &per_cpu(node_domains
, j
);
7470 sg
->__cpu_power
= 0;
7471 sg
->cpumask
= *nodemask
;
7473 cpus_or(*covered
, *covered
, *nodemask
);
7476 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
7477 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7478 int n
= (i
+ j
) % MAX_NUMNODES
;
7479 node_to_cpumask_ptr(pnodemask
, n
);
7481 cpus_complement(*notcovered
, *covered
);
7482 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7483 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7484 if (cpus_empty(*tmpmask
))
7487 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7488 if (cpus_empty(*tmpmask
))
7491 sg
= kmalloc_node(sizeof(struct sched_group
),
7495 "Can not alloc domain group for node %d\n", j
);
7498 sg
->__cpu_power
= 0;
7499 sg
->cpumask
= *tmpmask
;
7500 sg
->next
= prev
->next
;
7501 cpus_or(*covered
, *covered
, *tmpmask
);
7508 /* Calculate CPU power for physical packages and nodes */
7509 #ifdef CONFIG_SCHED_SMT
7510 for_each_cpu_mask(i
, *cpu_map
) {
7511 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7513 init_sched_groups_power(i
, sd
);
7516 #ifdef CONFIG_SCHED_MC
7517 for_each_cpu_mask(i
, *cpu_map
) {
7518 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7520 init_sched_groups_power(i
, sd
);
7524 for_each_cpu_mask(i
, *cpu_map
) {
7525 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7527 init_sched_groups_power(i
, sd
);
7531 for (i
= 0; i
< MAX_NUMNODES
; i
++)
7532 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7535 struct sched_group
*sg
;
7537 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7539 init_numa_sched_groups_power(sg
);
7543 /* Attach the domains */
7544 for_each_cpu_mask(i
, *cpu_map
) {
7545 struct sched_domain
*sd
;
7546 #ifdef CONFIG_SCHED_SMT
7547 sd
= &per_cpu(cpu_domains
, i
);
7548 #elif defined(CONFIG_SCHED_MC)
7549 sd
= &per_cpu(core_domains
, i
);
7551 sd
= &per_cpu(phys_domains
, i
);
7553 cpu_attach_domain(sd
, rd
, i
);
7556 SCHED_CPUMASK_FREE((void *)allmasks
);
7561 free_sched_groups(cpu_map
, tmpmask
);
7562 SCHED_CPUMASK_FREE((void *)allmasks
);
7567 static int build_sched_domains(const cpumask_t
*cpu_map
)
7569 return __build_sched_domains(cpu_map
, NULL
);
7572 static cpumask_t
*doms_cur
; /* current sched domains */
7573 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7574 static struct sched_domain_attr
*dattr_cur
; /* attribues of custom domains
7578 * Special case: If a kmalloc of a doms_cur partition (array of
7579 * cpumask_t) fails, then fallback to a single sched domain,
7580 * as determined by the single cpumask_t fallback_doms.
7582 static cpumask_t fallback_doms
;
7584 void __attribute__((weak
)) arch_update_cpu_topology(void)
7589 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7590 * For now this just excludes isolated cpus, but could be used to
7591 * exclude other special cases in the future.
7593 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7597 arch_update_cpu_topology();
7599 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7601 doms_cur
= &fallback_doms
;
7602 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7604 err
= build_sched_domains(doms_cur
);
7605 register_sched_domain_sysctl();
7610 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7613 free_sched_groups(cpu_map
, tmpmask
);
7617 * Detach sched domains from a group of cpus specified in cpu_map
7618 * These cpus will now be attached to the NULL domain
7620 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7625 unregister_sched_domain_sysctl();
7627 for_each_cpu_mask(i
, *cpu_map
)
7628 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7629 synchronize_sched();
7630 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7633 /* handle null as "default" */
7634 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7635 struct sched_domain_attr
*new, int idx_new
)
7637 struct sched_domain_attr tmp
;
7644 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7645 new ? (new + idx_new
) : &tmp
,
7646 sizeof(struct sched_domain_attr
));
7650 * Partition sched domains as specified by the 'ndoms_new'
7651 * cpumasks in the array doms_new[] of cpumasks. This compares
7652 * doms_new[] to the current sched domain partitioning, doms_cur[].
7653 * It destroys each deleted domain and builds each new domain.
7655 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7656 * The masks don't intersect (don't overlap.) We should setup one
7657 * sched domain for each mask. CPUs not in any of the cpumasks will
7658 * not be load balanced. If the same cpumask appears both in the
7659 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7662 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7663 * ownership of it and will kfree it when done with it. If the caller
7664 * failed the kmalloc call, then it can pass in doms_new == NULL,
7665 * and partition_sched_domains() will fallback to the single partition
7668 * Call with hotplug lock held
7670 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7671 struct sched_domain_attr
*dattr_new
)
7675 mutex_lock(&sched_domains_mutex
);
7677 /* always unregister in case we don't destroy any domains */
7678 unregister_sched_domain_sysctl();
7680 if (doms_new
== NULL
) {
7682 doms_new
= &fallback_doms
;
7683 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7687 /* Destroy deleted domains */
7688 for (i
= 0; i
< ndoms_cur
; i
++) {
7689 for (j
= 0; j
< ndoms_new
; j
++) {
7690 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7691 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7694 /* no match - a current sched domain not in new doms_new[] */
7695 detach_destroy_domains(doms_cur
+ i
);
7700 /* Build new domains */
7701 for (i
= 0; i
< ndoms_new
; i
++) {
7702 for (j
= 0; j
< ndoms_cur
; j
++) {
7703 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7704 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7707 /* no match - add a new doms_new */
7708 __build_sched_domains(doms_new
+ i
,
7709 dattr_new
? dattr_new
+ i
: NULL
);
7714 /* Remember the new sched domains */
7715 if (doms_cur
!= &fallback_doms
)
7717 kfree(dattr_cur
); /* kfree(NULL) is safe */
7718 doms_cur
= doms_new
;
7719 dattr_cur
= dattr_new
;
7720 ndoms_cur
= ndoms_new
;
7722 register_sched_domain_sysctl();
7724 mutex_unlock(&sched_domains_mutex
);
7727 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7728 int arch_reinit_sched_domains(void)
7733 mutex_lock(&sched_domains_mutex
);
7734 detach_destroy_domains(&cpu_online_map
);
7735 err
= arch_init_sched_domains(&cpu_online_map
);
7736 mutex_unlock(&sched_domains_mutex
);
7742 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7746 if (buf
[0] != '0' && buf
[0] != '1')
7750 sched_smt_power_savings
= (buf
[0] == '1');
7752 sched_mc_power_savings
= (buf
[0] == '1');
7754 ret
= arch_reinit_sched_domains();
7756 return ret
? ret
: count
;
7759 #ifdef CONFIG_SCHED_MC
7760 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7762 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7764 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7765 const char *buf
, size_t count
)
7767 return sched_power_savings_store(buf
, count
, 0);
7769 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7770 sched_mc_power_savings_store
);
7773 #ifdef CONFIG_SCHED_SMT
7774 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7776 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7778 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7779 const char *buf
, size_t count
)
7781 return sched_power_savings_store(buf
, count
, 1);
7783 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7784 sched_smt_power_savings_store
);
7787 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7791 #ifdef CONFIG_SCHED_SMT
7793 err
= sysfs_create_file(&cls
->kset
.kobj
,
7794 &attr_sched_smt_power_savings
.attr
);
7796 #ifdef CONFIG_SCHED_MC
7797 if (!err
&& mc_capable())
7798 err
= sysfs_create_file(&cls
->kset
.kobj
,
7799 &attr_sched_mc_power_savings
.attr
);
7806 * Force a reinitialization of the sched domains hierarchy. The domains
7807 * and groups cannot be updated in place without racing with the balancing
7808 * code, so we temporarily attach all running cpus to the NULL domain
7809 * which will prevent rebalancing while the sched domains are recalculated.
7811 static int update_sched_domains(struct notifier_block
*nfb
,
7812 unsigned long action
, void *hcpu
)
7815 case CPU_UP_PREPARE
:
7816 case CPU_UP_PREPARE_FROZEN
:
7817 case CPU_DOWN_PREPARE
:
7818 case CPU_DOWN_PREPARE_FROZEN
:
7819 detach_destroy_domains(&cpu_online_map
);
7822 case CPU_UP_CANCELED
:
7823 case CPU_UP_CANCELED_FROZEN
:
7824 case CPU_DOWN_FAILED
:
7825 case CPU_DOWN_FAILED_FROZEN
:
7827 case CPU_ONLINE_FROZEN
:
7829 case CPU_DEAD_FROZEN
:
7831 * Fall through and re-initialise the domains.
7838 /* The hotplug lock is already held by cpu_up/cpu_down */
7839 arch_init_sched_domains(&cpu_online_map
);
7844 void __init
sched_init_smp(void)
7846 cpumask_t non_isolated_cpus
;
7848 #if defined(CONFIG_NUMA)
7849 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7851 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7854 mutex_lock(&sched_domains_mutex
);
7855 arch_init_sched_domains(&cpu_online_map
);
7856 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7857 if (cpus_empty(non_isolated_cpus
))
7858 cpu_set(smp_processor_id(), non_isolated_cpus
);
7859 mutex_unlock(&sched_domains_mutex
);
7861 /* XXX: Theoretical race here - CPU may be hotplugged now */
7862 hotcpu_notifier(update_sched_domains
, 0);
7865 /* Move init over to a non-isolated CPU */
7866 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7868 sched_init_granularity();
7871 void __init
sched_init_smp(void)
7873 sched_init_granularity();
7875 #endif /* CONFIG_SMP */
7877 int in_sched_functions(unsigned long addr
)
7879 return in_lock_functions(addr
) ||
7880 (addr
>= (unsigned long)__sched_text_start
7881 && addr
< (unsigned long)__sched_text_end
);
7884 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7886 cfs_rq
->tasks_timeline
= RB_ROOT
;
7887 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7888 #ifdef CONFIG_FAIR_GROUP_SCHED
7891 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7894 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7896 struct rt_prio_array
*array
;
7899 array
= &rt_rq
->active
;
7900 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7901 INIT_LIST_HEAD(array
->queue
+ i
);
7902 __clear_bit(i
, array
->bitmap
);
7904 /* delimiter for bitsearch: */
7905 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7907 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7908 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7911 rt_rq
->rt_nr_migratory
= 0;
7912 rt_rq
->overloaded
= 0;
7916 rt_rq
->rt_throttled
= 0;
7917 rt_rq
->rt_runtime
= 0;
7918 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7920 #ifdef CONFIG_RT_GROUP_SCHED
7921 rt_rq
->rt_nr_boosted
= 0;
7926 #ifdef CONFIG_FAIR_GROUP_SCHED
7927 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7928 struct sched_entity
*se
, int cpu
, int add
,
7929 struct sched_entity
*parent
)
7931 struct rq
*rq
= cpu_rq(cpu
);
7932 tg
->cfs_rq
[cpu
] = cfs_rq
;
7933 init_cfs_rq(cfs_rq
, rq
);
7936 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7939 /* se could be NULL for init_task_group */
7944 se
->cfs_rq
= &rq
->cfs
;
7946 se
->cfs_rq
= parent
->my_q
;
7949 se
->load
.weight
= tg
->shares
;
7950 se
->load
.inv_weight
= 0;
7951 se
->parent
= parent
;
7955 #ifdef CONFIG_RT_GROUP_SCHED
7956 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7957 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7958 struct sched_rt_entity
*parent
)
7960 struct rq
*rq
= cpu_rq(cpu
);
7962 tg
->rt_rq
[cpu
] = rt_rq
;
7963 init_rt_rq(rt_rq
, rq
);
7965 rt_rq
->rt_se
= rt_se
;
7966 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7968 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7970 tg
->rt_se
[cpu
] = rt_se
;
7975 rt_se
->rt_rq
= &rq
->rt
;
7977 rt_se
->rt_rq
= parent
->my_q
;
7979 rt_se
->rt_rq
= &rq
->rt
;
7980 rt_se
->my_q
= rt_rq
;
7981 rt_se
->parent
= parent
;
7982 INIT_LIST_HEAD(&rt_se
->run_list
);
7986 void __init
sched_init(void)
7989 unsigned long alloc_size
= 0, ptr
;
7991 #ifdef CONFIG_FAIR_GROUP_SCHED
7992 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7994 #ifdef CONFIG_RT_GROUP_SCHED
7995 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7997 #ifdef CONFIG_USER_SCHED
8001 * As sched_init() is called before page_alloc is setup,
8002 * we use alloc_bootmem().
8005 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8007 #ifdef CONFIG_FAIR_GROUP_SCHED
8008 init_task_group
.se
= (struct sched_entity
**)ptr
;
8009 ptr
+= nr_cpu_ids
* sizeof(void **);
8011 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8012 ptr
+= nr_cpu_ids
* sizeof(void **);
8014 #ifdef CONFIG_USER_SCHED
8015 root_task_group
.se
= (struct sched_entity
**)ptr
;
8016 ptr
+= nr_cpu_ids
* sizeof(void **);
8018 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8019 ptr
+= nr_cpu_ids
* sizeof(void **);
8022 #ifdef CONFIG_RT_GROUP_SCHED
8023 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8024 ptr
+= nr_cpu_ids
* sizeof(void **);
8026 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8027 ptr
+= nr_cpu_ids
* sizeof(void **);
8029 #ifdef CONFIG_USER_SCHED
8030 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8031 ptr
+= nr_cpu_ids
* sizeof(void **);
8033 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8034 ptr
+= nr_cpu_ids
* sizeof(void **);
8041 init_defrootdomain();
8044 init_rt_bandwidth(&def_rt_bandwidth
,
8045 global_rt_period(), global_rt_runtime());
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8049 global_rt_period(), global_rt_runtime());
8050 #ifdef CONFIG_USER_SCHED
8051 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8052 global_rt_period(), RUNTIME_INF
);
8056 #ifdef CONFIG_GROUP_SCHED
8057 list_add(&init_task_group
.list
, &task_groups
);
8058 INIT_LIST_HEAD(&init_task_group
.children
);
8060 #ifdef CONFIG_USER_SCHED
8061 INIT_LIST_HEAD(&root_task_group
.children
);
8062 init_task_group
.parent
= &root_task_group
;
8063 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8067 for_each_possible_cpu(i
) {
8071 spin_lock_init(&rq
->lock
);
8072 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
8074 init_cfs_rq(&rq
->cfs
, rq
);
8075 init_rt_rq(&rq
->rt
, rq
);
8076 #ifdef CONFIG_FAIR_GROUP_SCHED
8077 init_task_group
.shares
= init_task_group_load
;
8078 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8079 #ifdef CONFIG_CGROUP_SCHED
8081 * How much cpu bandwidth does init_task_group get?
8083 * In case of task-groups formed thr' the cgroup filesystem, it
8084 * gets 100% of the cpu resources in the system. This overall
8085 * system cpu resource is divided among the tasks of
8086 * init_task_group and its child task-groups in a fair manner,
8087 * based on each entity's (task or task-group's) weight
8088 * (se->load.weight).
8090 * In other words, if init_task_group has 10 tasks of weight
8091 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8092 * then A0's share of the cpu resource is:
8094 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8096 * We achieve this by letting init_task_group's tasks sit
8097 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8099 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8100 #elif defined CONFIG_USER_SCHED
8101 root_task_group
.shares
= NICE_0_LOAD
;
8102 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8104 * In case of task-groups formed thr' the user id of tasks,
8105 * init_task_group represents tasks belonging to root user.
8106 * Hence it forms a sibling of all subsequent groups formed.
8107 * In this case, init_task_group gets only a fraction of overall
8108 * system cpu resource, based on the weight assigned to root
8109 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8110 * by letting tasks of init_task_group sit in a separate cfs_rq
8111 * (init_cfs_rq) and having one entity represent this group of
8112 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8114 init_tg_cfs_entry(&init_task_group
,
8115 &per_cpu(init_cfs_rq
, i
),
8116 &per_cpu(init_sched_entity
, i
), i
, 1,
8117 root_task_group
.se
[i
]);
8120 #endif /* CONFIG_FAIR_GROUP_SCHED */
8122 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8123 #ifdef CONFIG_RT_GROUP_SCHED
8124 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8125 #ifdef CONFIG_CGROUP_SCHED
8126 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8127 #elif defined CONFIG_USER_SCHED
8128 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8129 init_tg_rt_entry(&init_task_group
,
8130 &per_cpu(init_rt_rq
, i
),
8131 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8132 root_task_group
.rt_se
[i
]);
8136 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8137 rq
->cpu_load
[j
] = 0;
8141 rq
->active_balance
= 0;
8142 rq
->next_balance
= jiffies
;
8145 rq
->migration_thread
= NULL
;
8146 INIT_LIST_HEAD(&rq
->migration_queue
);
8147 rq_attach_root(rq
, &def_root_domain
);
8150 atomic_set(&rq
->nr_iowait
, 0);
8153 set_load_weight(&init_task
);
8155 #ifdef CONFIG_PREEMPT_NOTIFIERS
8156 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8160 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
8163 #ifdef CONFIG_RT_MUTEXES
8164 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8168 * The boot idle thread does lazy MMU switching as well:
8170 atomic_inc(&init_mm
.mm_count
);
8171 enter_lazy_tlb(&init_mm
, current
);
8174 * Make us the idle thread. Technically, schedule() should not be
8175 * called from this thread, however somewhere below it might be,
8176 * but because we are the idle thread, we just pick up running again
8177 * when this runqueue becomes "idle".
8179 init_idle(current
, smp_processor_id());
8181 * During early bootup we pretend to be a normal task:
8183 current
->sched_class
= &fair_sched_class
;
8185 scheduler_running
= 1;
8188 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8189 void __might_sleep(char *file
, int line
)
8192 static unsigned long prev_jiffy
; /* ratelimiting */
8194 if ((in_atomic() || irqs_disabled()) &&
8195 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8196 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8198 prev_jiffy
= jiffies
;
8199 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8200 " context at %s:%d\n", file
, line
);
8201 printk("in_atomic():%d, irqs_disabled():%d\n",
8202 in_atomic(), irqs_disabled());
8203 debug_show_held_locks(current
);
8204 if (irqs_disabled())
8205 print_irqtrace_events(current
);
8210 EXPORT_SYMBOL(__might_sleep
);
8213 #ifdef CONFIG_MAGIC_SYSRQ
8214 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8218 update_rq_clock(rq
);
8219 on_rq
= p
->se
.on_rq
;
8221 deactivate_task(rq
, p
, 0);
8222 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8224 activate_task(rq
, p
, 0);
8225 resched_task(rq
->curr
);
8229 void normalize_rt_tasks(void)
8231 struct task_struct
*g
, *p
;
8232 unsigned long flags
;
8235 read_lock_irqsave(&tasklist_lock
, flags
);
8236 do_each_thread(g
, p
) {
8238 * Only normalize user tasks:
8243 p
->se
.exec_start
= 0;
8244 #ifdef CONFIG_SCHEDSTATS
8245 p
->se
.wait_start
= 0;
8246 p
->se
.sleep_start
= 0;
8247 p
->se
.block_start
= 0;
8252 * Renice negative nice level userspace
8255 if (TASK_NICE(p
) < 0 && p
->mm
)
8256 set_user_nice(p
, 0);
8260 spin_lock(&p
->pi_lock
);
8261 rq
= __task_rq_lock(p
);
8263 normalize_task(rq
, p
);
8265 __task_rq_unlock(rq
);
8266 spin_unlock(&p
->pi_lock
);
8267 } while_each_thread(g
, p
);
8269 read_unlock_irqrestore(&tasklist_lock
, flags
);
8272 #endif /* CONFIG_MAGIC_SYSRQ */
8276 * These functions are only useful for the IA64 MCA handling.
8278 * They can only be called when the whole system has been
8279 * stopped - every CPU needs to be quiescent, and no scheduling
8280 * activity can take place. Using them for anything else would
8281 * be a serious bug, and as a result, they aren't even visible
8282 * under any other configuration.
8286 * curr_task - return the current task for a given cpu.
8287 * @cpu: the processor in question.
8289 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8291 struct task_struct
*curr_task(int cpu
)
8293 return cpu_curr(cpu
);
8297 * set_curr_task - set the current task for a given cpu.
8298 * @cpu: the processor in question.
8299 * @p: the task pointer to set.
8301 * Description: This function must only be used when non-maskable interrupts
8302 * are serviced on a separate stack. It allows the architecture to switch the
8303 * notion of the current task on a cpu in a non-blocking manner. This function
8304 * must be called with all CPU's synchronized, and interrupts disabled, the
8305 * and caller must save the original value of the current task (see
8306 * curr_task() above) and restore that value before reenabling interrupts and
8307 * re-starting the system.
8309 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8311 void set_curr_task(int cpu
, struct task_struct
*p
)
8318 #ifdef CONFIG_FAIR_GROUP_SCHED
8319 static void free_fair_sched_group(struct task_group
*tg
)
8323 for_each_possible_cpu(i
) {
8325 kfree(tg
->cfs_rq
[i
]);
8335 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8337 struct cfs_rq
*cfs_rq
;
8338 struct sched_entity
*se
, *parent_se
;
8342 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8345 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8349 tg
->shares
= NICE_0_LOAD
;
8351 for_each_possible_cpu(i
) {
8354 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8355 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8359 se
= kmalloc_node(sizeof(struct sched_entity
),
8360 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8364 parent_se
= parent
? parent
->se
[i
] : NULL
;
8365 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8374 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8376 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8377 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8380 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8382 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8385 static inline void free_fair_sched_group(struct task_group
*tg
)
8390 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8395 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8399 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8404 #ifdef CONFIG_RT_GROUP_SCHED
8405 static void free_rt_sched_group(struct task_group
*tg
)
8409 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8411 for_each_possible_cpu(i
) {
8413 kfree(tg
->rt_rq
[i
]);
8415 kfree(tg
->rt_se
[i
]);
8423 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8425 struct rt_rq
*rt_rq
;
8426 struct sched_rt_entity
*rt_se
, *parent_se
;
8430 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8433 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8437 init_rt_bandwidth(&tg
->rt_bandwidth
,
8438 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8440 for_each_possible_cpu(i
) {
8443 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8444 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8448 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8449 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8453 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8454 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8463 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8465 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8466 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8469 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8471 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8474 static inline void free_rt_sched_group(struct task_group
*tg
)
8479 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8484 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8488 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8493 #ifdef CONFIG_GROUP_SCHED
8494 static void free_sched_group(struct task_group
*tg
)
8496 free_fair_sched_group(tg
);
8497 free_rt_sched_group(tg
);
8501 /* allocate runqueue etc for a new task group */
8502 struct task_group
*sched_create_group(struct task_group
*parent
)
8504 struct task_group
*tg
;
8505 unsigned long flags
;
8508 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8510 return ERR_PTR(-ENOMEM
);
8512 if (!alloc_fair_sched_group(tg
, parent
))
8515 if (!alloc_rt_sched_group(tg
, parent
))
8518 spin_lock_irqsave(&task_group_lock
, flags
);
8519 for_each_possible_cpu(i
) {
8520 register_fair_sched_group(tg
, i
);
8521 register_rt_sched_group(tg
, i
);
8523 list_add_rcu(&tg
->list
, &task_groups
);
8525 WARN_ON(!parent
); /* root should already exist */
8527 tg
->parent
= parent
;
8528 list_add_rcu(&tg
->siblings
, &parent
->children
);
8529 INIT_LIST_HEAD(&tg
->children
);
8530 spin_unlock_irqrestore(&task_group_lock
, flags
);
8535 free_sched_group(tg
);
8536 return ERR_PTR(-ENOMEM
);
8539 /* rcu callback to free various structures associated with a task group */
8540 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8542 /* now it should be safe to free those cfs_rqs */
8543 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8546 /* Destroy runqueue etc associated with a task group */
8547 void sched_destroy_group(struct task_group
*tg
)
8549 unsigned long flags
;
8552 spin_lock_irqsave(&task_group_lock
, flags
);
8553 for_each_possible_cpu(i
) {
8554 unregister_fair_sched_group(tg
, i
);
8555 unregister_rt_sched_group(tg
, i
);
8557 list_del_rcu(&tg
->list
);
8558 list_del_rcu(&tg
->siblings
);
8559 spin_unlock_irqrestore(&task_group_lock
, flags
);
8561 /* wait for possible concurrent references to cfs_rqs complete */
8562 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8565 /* change task's runqueue when it moves between groups.
8566 * The caller of this function should have put the task in its new group
8567 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8568 * reflect its new group.
8570 void sched_move_task(struct task_struct
*tsk
)
8573 unsigned long flags
;
8576 rq
= task_rq_lock(tsk
, &flags
);
8578 update_rq_clock(rq
);
8580 running
= task_current(rq
, tsk
);
8581 on_rq
= tsk
->se
.on_rq
;
8584 dequeue_task(rq
, tsk
, 0);
8585 if (unlikely(running
))
8586 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8588 set_task_rq(tsk
, task_cpu(tsk
));
8590 #ifdef CONFIG_FAIR_GROUP_SCHED
8591 if (tsk
->sched_class
->moved_group
)
8592 tsk
->sched_class
->moved_group(tsk
);
8595 if (unlikely(running
))
8596 tsk
->sched_class
->set_curr_task(rq
);
8598 enqueue_task(rq
, tsk
, 0);
8600 task_rq_unlock(rq
, &flags
);
8604 #ifdef CONFIG_FAIR_GROUP_SCHED
8605 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8607 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8612 dequeue_entity(cfs_rq
, se
, 0);
8614 se
->load
.weight
= shares
;
8615 se
->load
.inv_weight
= 0;
8618 enqueue_entity(cfs_rq
, se
, 0);
8621 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8623 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8624 struct rq
*rq
= cfs_rq
->rq
;
8625 unsigned long flags
;
8627 spin_lock_irqsave(&rq
->lock
, flags
);
8628 __set_se_shares(se
, shares
);
8629 spin_unlock_irqrestore(&rq
->lock
, flags
);
8632 static DEFINE_MUTEX(shares_mutex
);
8634 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8637 unsigned long flags
;
8640 * We can't change the weight of the root cgroup.
8645 if (shares
< MIN_SHARES
)
8646 shares
= MIN_SHARES
;
8647 else if (shares
> MAX_SHARES
)
8648 shares
= MAX_SHARES
;
8650 mutex_lock(&shares_mutex
);
8651 if (tg
->shares
== shares
)
8654 spin_lock_irqsave(&task_group_lock
, flags
);
8655 for_each_possible_cpu(i
)
8656 unregister_fair_sched_group(tg
, i
);
8657 list_del_rcu(&tg
->siblings
);
8658 spin_unlock_irqrestore(&task_group_lock
, flags
);
8660 /* wait for any ongoing reference to this group to finish */
8661 synchronize_sched();
8664 * Now we are free to modify the group's share on each cpu
8665 * w/o tripping rebalance_share or load_balance_fair.
8667 tg
->shares
= shares
;
8668 for_each_possible_cpu(i
) {
8672 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8673 set_se_shares(tg
->se
[i
], shares
);
8677 * Enable load balance activity on this group, by inserting it back on
8678 * each cpu's rq->leaf_cfs_rq_list.
8680 spin_lock_irqsave(&task_group_lock
, flags
);
8681 for_each_possible_cpu(i
)
8682 register_fair_sched_group(tg
, i
);
8683 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8684 spin_unlock_irqrestore(&task_group_lock
, flags
);
8686 mutex_unlock(&shares_mutex
);
8690 unsigned long sched_group_shares(struct task_group
*tg
)
8696 #ifdef CONFIG_RT_GROUP_SCHED
8698 * Ensure that the real time constraints are schedulable.
8700 static DEFINE_MUTEX(rt_constraints_mutex
);
8702 static unsigned long to_ratio(u64 period
, u64 runtime
)
8704 if (runtime
== RUNTIME_INF
)
8707 return div64_u64(runtime
<< 16, period
);
8710 #ifdef CONFIG_CGROUP_SCHED
8711 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8713 struct task_group
*tgi
, *parent
= tg
->parent
;
8714 unsigned long total
= 0;
8717 if (global_rt_period() < period
)
8720 return to_ratio(period
, runtime
) <
8721 to_ratio(global_rt_period(), global_rt_runtime());
8724 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8728 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8732 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8733 tgi
->rt_bandwidth
.rt_runtime
);
8737 return total
+ to_ratio(period
, runtime
) <
8738 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8739 parent
->rt_bandwidth
.rt_runtime
);
8741 #elif defined CONFIG_USER_SCHED
8742 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8744 struct task_group
*tgi
;
8745 unsigned long total
= 0;
8746 unsigned long global_ratio
=
8747 to_ratio(global_rt_period(), global_rt_runtime());
8750 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8754 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8755 tgi
->rt_bandwidth
.rt_runtime
);
8759 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8763 /* Must be called with tasklist_lock held */
8764 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8766 struct task_struct
*g
, *p
;
8767 do_each_thread(g
, p
) {
8768 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8770 } while_each_thread(g
, p
);
8774 static int tg_set_bandwidth(struct task_group
*tg
,
8775 u64 rt_period
, u64 rt_runtime
)
8779 mutex_lock(&rt_constraints_mutex
);
8780 read_lock(&tasklist_lock
);
8781 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8785 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8790 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8791 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8792 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8794 for_each_possible_cpu(i
) {
8795 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8797 spin_lock(&rt_rq
->rt_runtime_lock
);
8798 rt_rq
->rt_runtime
= rt_runtime
;
8799 spin_unlock(&rt_rq
->rt_runtime_lock
);
8801 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8803 read_unlock(&tasklist_lock
);
8804 mutex_unlock(&rt_constraints_mutex
);
8809 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8811 u64 rt_runtime
, rt_period
;
8813 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8814 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8815 if (rt_runtime_us
< 0)
8816 rt_runtime
= RUNTIME_INF
;
8818 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8821 long sched_group_rt_runtime(struct task_group
*tg
)
8825 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8828 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8829 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8830 return rt_runtime_us
;
8833 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8835 u64 rt_runtime
, rt_period
;
8837 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8838 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8840 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8843 long sched_group_rt_period(struct task_group
*tg
)
8847 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8848 do_div(rt_period_us
, NSEC_PER_USEC
);
8849 return rt_period_us
;
8852 static int sched_rt_global_constraints(void)
8856 mutex_lock(&rt_constraints_mutex
);
8857 if (!__rt_schedulable(NULL
, 1, 0))
8859 mutex_unlock(&rt_constraints_mutex
);
8864 static int sched_rt_global_constraints(void)
8866 unsigned long flags
;
8869 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8870 for_each_possible_cpu(i
) {
8871 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8873 spin_lock(&rt_rq
->rt_runtime_lock
);
8874 rt_rq
->rt_runtime
= global_rt_runtime();
8875 spin_unlock(&rt_rq
->rt_runtime_lock
);
8877 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8883 int sched_rt_handler(struct ctl_table
*table
, int write
,
8884 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8888 int old_period
, old_runtime
;
8889 static DEFINE_MUTEX(mutex
);
8892 old_period
= sysctl_sched_rt_period
;
8893 old_runtime
= sysctl_sched_rt_runtime
;
8895 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8897 if (!ret
&& write
) {
8898 ret
= sched_rt_global_constraints();
8900 sysctl_sched_rt_period
= old_period
;
8901 sysctl_sched_rt_runtime
= old_runtime
;
8903 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8904 def_rt_bandwidth
.rt_period
=
8905 ns_to_ktime(global_rt_period());
8908 mutex_unlock(&mutex
);
8913 #ifdef CONFIG_CGROUP_SCHED
8915 /* return corresponding task_group object of a cgroup */
8916 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8918 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8919 struct task_group
, css
);
8922 static struct cgroup_subsys_state
*
8923 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8925 struct task_group
*tg
, *parent
;
8927 if (!cgrp
->parent
) {
8928 /* This is early initialization for the top cgroup */
8929 init_task_group
.css
.cgroup
= cgrp
;
8930 return &init_task_group
.css
;
8933 parent
= cgroup_tg(cgrp
->parent
);
8934 tg
= sched_create_group(parent
);
8936 return ERR_PTR(-ENOMEM
);
8938 /* Bind the cgroup to task_group object we just created */
8939 tg
->css
.cgroup
= cgrp
;
8945 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8947 struct task_group
*tg
= cgroup_tg(cgrp
);
8949 sched_destroy_group(tg
);
8953 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8954 struct task_struct
*tsk
)
8956 #ifdef CONFIG_RT_GROUP_SCHED
8957 /* Don't accept realtime tasks when there is no way for them to run */
8958 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8961 /* We don't support RT-tasks being in separate groups */
8962 if (tsk
->sched_class
!= &fair_sched_class
)
8970 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8971 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8973 sched_move_task(tsk
);
8976 #ifdef CONFIG_FAIR_GROUP_SCHED
8977 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8980 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8983 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8985 struct task_group
*tg
= cgroup_tg(cgrp
);
8987 return (u64
) tg
->shares
;
8991 #ifdef CONFIG_RT_GROUP_SCHED
8992 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8995 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8998 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9000 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9003 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9006 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9009 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9011 return sched_group_rt_period(cgroup_tg(cgrp
));
9015 static struct cftype cpu_files
[] = {
9016 #ifdef CONFIG_FAIR_GROUP_SCHED
9019 .read_u64
= cpu_shares_read_u64
,
9020 .write_u64
= cpu_shares_write_u64
,
9023 #ifdef CONFIG_RT_GROUP_SCHED
9025 .name
= "rt_runtime_us",
9026 .read_s64
= cpu_rt_runtime_read
,
9027 .write_s64
= cpu_rt_runtime_write
,
9030 .name
= "rt_period_us",
9031 .read_u64
= cpu_rt_period_read_uint
,
9032 .write_u64
= cpu_rt_period_write_uint
,
9037 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9039 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9042 struct cgroup_subsys cpu_cgroup_subsys
= {
9044 .create
= cpu_cgroup_create
,
9045 .destroy
= cpu_cgroup_destroy
,
9046 .can_attach
= cpu_cgroup_can_attach
,
9047 .attach
= cpu_cgroup_attach
,
9048 .populate
= cpu_cgroup_populate
,
9049 .subsys_id
= cpu_cgroup_subsys_id
,
9053 #endif /* CONFIG_CGROUP_SCHED */
9055 #ifdef CONFIG_CGROUP_CPUACCT
9058 * CPU accounting code for task groups.
9060 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9061 * (balbir@in.ibm.com).
9064 /* track cpu usage of a group of tasks */
9066 struct cgroup_subsys_state css
;
9067 /* cpuusage holds pointer to a u64-type object on every cpu */
9071 struct cgroup_subsys cpuacct_subsys
;
9073 /* return cpu accounting group corresponding to this container */
9074 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9076 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9077 struct cpuacct
, css
);
9080 /* return cpu accounting group to which this task belongs */
9081 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9083 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9084 struct cpuacct
, css
);
9087 /* create a new cpu accounting group */
9088 static struct cgroup_subsys_state
*cpuacct_create(
9089 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9091 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9094 return ERR_PTR(-ENOMEM
);
9096 ca
->cpuusage
= alloc_percpu(u64
);
9097 if (!ca
->cpuusage
) {
9099 return ERR_PTR(-ENOMEM
);
9105 /* destroy an existing cpu accounting group */
9107 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9109 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9111 free_percpu(ca
->cpuusage
);
9115 /* return total cpu usage (in nanoseconds) of a group */
9116 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9118 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9119 u64 totalcpuusage
= 0;
9122 for_each_possible_cpu(i
) {
9123 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9126 * Take rq->lock to make 64-bit addition safe on 32-bit
9129 spin_lock_irq(&cpu_rq(i
)->lock
);
9130 totalcpuusage
+= *cpuusage
;
9131 spin_unlock_irq(&cpu_rq(i
)->lock
);
9134 return totalcpuusage
;
9137 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9140 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9149 for_each_possible_cpu(i
) {
9150 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9152 spin_lock_irq(&cpu_rq(i
)->lock
);
9154 spin_unlock_irq(&cpu_rq(i
)->lock
);
9160 static struct cftype files
[] = {
9163 .read_u64
= cpuusage_read
,
9164 .write_u64
= cpuusage_write
,
9168 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9170 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9174 * charge this task's execution time to its accounting group.
9176 * called with rq->lock held.
9178 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9182 if (!cpuacct_subsys
.active
)
9187 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9189 *cpuusage
+= cputime
;
9193 struct cgroup_subsys cpuacct_subsys
= {
9195 .create
= cpuacct_create
,
9196 .destroy
= cpuacct_destroy
,
9197 .populate
= cpuacct_populate
,
9198 .subsys_id
= cpuacct_subsys_id
,
9200 #endif /* CONFIG_CGROUP_CPUACCT */