perf_counter: Make callchain samples extensible
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_counter.c
blob76dfef23f78957aa4e17d3337d5dc5221bd18ade
1 /*
2 * Performance counter x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
10 * For licencing details see kernel-base/COPYING
13 #include <linux/perf_counter.h>
14 #include <linux/capability.h>
15 #include <linux/notifier.h>
16 #include <linux/hardirq.h>
17 #include <linux/kprobes.h>
18 #include <linux/module.h>
19 #include <linux/kdebug.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 #include <linux/highmem.h>
24 #include <asm/apic.h>
25 #include <asm/stacktrace.h>
26 #include <asm/nmi.h>
28 static u64 perf_counter_mask __read_mostly;
30 struct cpu_hw_counters {
31 struct perf_counter *counters[X86_PMC_IDX_MAX];
32 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
33 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
34 unsigned long interrupts;
35 int enabled;
39 * struct x86_pmu - generic x86 pmu
41 struct x86_pmu {
42 const char *name;
43 int version;
44 int (*handle_irq)(struct pt_regs *);
45 void (*disable_all)(void);
46 void (*enable_all)(void);
47 void (*enable)(struct hw_perf_counter *, int);
48 void (*disable)(struct hw_perf_counter *, int);
49 unsigned eventsel;
50 unsigned perfctr;
51 u64 (*event_map)(int);
52 u64 (*raw_event)(u64);
53 int max_events;
54 int num_counters;
55 int num_counters_fixed;
56 int counter_bits;
57 u64 counter_mask;
58 u64 max_period;
59 u64 intel_ctrl;
62 static struct x86_pmu x86_pmu __read_mostly;
64 static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
65 .enabled = 1,
69 * Intel PerfMon v3. Used on Core2 and later.
71 static const u64 intel_perfmon_event_map[] =
73 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
74 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
75 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
76 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
77 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
78 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
79 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
82 static u64 intel_pmu_event_map(int event)
84 return intel_perfmon_event_map[event];
88 * Generalized hw caching related event table, filled
89 * in on a per model basis. A value of 0 means
90 * 'not supported', -1 means 'event makes no sense on
91 * this CPU', any other value means the raw event
92 * ID.
95 #define C(x) PERF_COUNT_HW_CACHE_##x
97 static u64 __read_mostly hw_cache_event_ids
98 [PERF_COUNT_HW_CACHE_MAX]
99 [PERF_COUNT_HW_CACHE_OP_MAX]
100 [PERF_COUNT_HW_CACHE_RESULT_MAX];
102 static const u64 nehalem_hw_cache_event_ids
103 [PERF_COUNT_HW_CACHE_MAX]
104 [PERF_COUNT_HW_CACHE_OP_MAX]
105 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
107 [ C(L1D) ] = {
108 [ C(OP_READ) ] = {
109 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
110 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
112 [ C(OP_WRITE) ] = {
113 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
114 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
116 [ C(OP_PREFETCH) ] = {
117 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
118 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
121 [ C(L1I ) ] = {
122 [ C(OP_READ) ] = {
123 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
124 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
126 [ C(OP_WRITE) ] = {
127 [ C(RESULT_ACCESS) ] = -1,
128 [ C(RESULT_MISS) ] = -1,
130 [ C(OP_PREFETCH) ] = {
131 [ C(RESULT_ACCESS) ] = 0x0,
132 [ C(RESULT_MISS) ] = 0x0,
135 [ C(LL ) ] = {
136 [ C(OP_READ) ] = {
137 [ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
138 [ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
140 [ C(OP_WRITE) ] = {
141 [ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
142 [ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
144 [ C(OP_PREFETCH) ] = {
145 [ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
146 [ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
149 [ C(DTLB) ] = {
150 [ C(OP_READ) ] = {
151 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
152 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
154 [ C(OP_WRITE) ] = {
155 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
156 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
158 [ C(OP_PREFETCH) ] = {
159 [ C(RESULT_ACCESS) ] = 0x0,
160 [ C(RESULT_MISS) ] = 0x0,
163 [ C(ITLB) ] = {
164 [ C(OP_READ) ] = {
165 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
166 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
168 [ C(OP_WRITE) ] = {
169 [ C(RESULT_ACCESS) ] = -1,
170 [ C(RESULT_MISS) ] = -1,
172 [ C(OP_PREFETCH) ] = {
173 [ C(RESULT_ACCESS) ] = -1,
174 [ C(RESULT_MISS) ] = -1,
177 [ C(BPU ) ] = {
178 [ C(OP_READ) ] = {
179 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
180 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
182 [ C(OP_WRITE) ] = {
183 [ C(RESULT_ACCESS) ] = -1,
184 [ C(RESULT_MISS) ] = -1,
186 [ C(OP_PREFETCH) ] = {
187 [ C(RESULT_ACCESS) ] = -1,
188 [ C(RESULT_MISS) ] = -1,
193 static const u64 core2_hw_cache_event_ids
194 [PERF_COUNT_HW_CACHE_MAX]
195 [PERF_COUNT_HW_CACHE_OP_MAX]
196 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
198 [ C(L1D) ] = {
199 [ C(OP_READ) ] = {
200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
201 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
203 [ C(OP_WRITE) ] = {
204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
205 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
207 [ C(OP_PREFETCH) ] = {
208 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
209 [ C(RESULT_MISS) ] = 0,
212 [ C(L1I ) ] = {
213 [ C(OP_READ) ] = {
214 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
215 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
217 [ C(OP_WRITE) ] = {
218 [ C(RESULT_ACCESS) ] = -1,
219 [ C(RESULT_MISS) ] = -1,
221 [ C(OP_PREFETCH) ] = {
222 [ C(RESULT_ACCESS) ] = 0,
223 [ C(RESULT_MISS) ] = 0,
226 [ C(LL ) ] = {
227 [ C(OP_READ) ] = {
228 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
229 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
231 [ C(OP_WRITE) ] = {
232 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
233 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
235 [ C(OP_PREFETCH) ] = {
236 [ C(RESULT_ACCESS) ] = 0,
237 [ C(RESULT_MISS) ] = 0,
240 [ C(DTLB) ] = {
241 [ C(OP_READ) ] = {
242 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
243 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
245 [ C(OP_WRITE) ] = {
246 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
247 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
249 [ C(OP_PREFETCH) ] = {
250 [ C(RESULT_ACCESS) ] = 0,
251 [ C(RESULT_MISS) ] = 0,
254 [ C(ITLB) ] = {
255 [ C(OP_READ) ] = {
256 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
257 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
259 [ C(OP_WRITE) ] = {
260 [ C(RESULT_ACCESS) ] = -1,
261 [ C(RESULT_MISS) ] = -1,
263 [ C(OP_PREFETCH) ] = {
264 [ C(RESULT_ACCESS) ] = -1,
265 [ C(RESULT_MISS) ] = -1,
268 [ C(BPU ) ] = {
269 [ C(OP_READ) ] = {
270 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
271 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
273 [ C(OP_WRITE) ] = {
274 [ C(RESULT_ACCESS) ] = -1,
275 [ C(RESULT_MISS) ] = -1,
277 [ C(OP_PREFETCH) ] = {
278 [ C(RESULT_ACCESS) ] = -1,
279 [ C(RESULT_MISS) ] = -1,
284 static const u64 atom_hw_cache_event_ids
285 [PERF_COUNT_HW_CACHE_MAX]
286 [PERF_COUNT_HW_CACHE_OP_MAX]
287 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
289 [ C(L1D) ] = {
290 [ C(OP_READ) ] = {
291 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
292 [ C(RESULT_MISS) ] = 0,
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
296 [ C(RESULT_MISS) ] = 0,
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = 0x0,
300 [ C(RESULT_MISS) ] = 0,
303 [ C(L1I ) ] = {
304 [ C(OP_READ) ] = {
305 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
306 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = -1,
310 [ C(RESULT_MISS) ] = -1,
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = 0,
314 [ C(RESULT_MISS) ] = 0,
317 [ C(LL ) ] = {
318 [ C(OP_READ) ] = {
319 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
320 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
322 [ C(OP_WRITE) ] = {
323 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
324 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
326 [ C(OP_PREFETCH) ] = {
327 [ C(RESULT_ACCESS) ] = 0,
328 [ C(RESULT_MISS) ] = 0,
331 [ C(DTLB) ] = {
332 [ C(OP_READ) ] = {
333 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
334 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
336 [ C(OP_WRITE) ] = {
337 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
338 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
340 [ C(OP_PREFETCH) ] = {
341 [ C(RESULT_ACCESS) ] = 0,
342 [ C(RESULT_MISS) ] = 0,
345 [ C(ITLB) ] = {
346 [ C(OP_READ) ] = {
347 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
348 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
350 [ C(OP_WRITE) ] = {
351 [ C(RESULT_ACCESS) ] = -1,
352 [ C(RESULT_MISS) ] = -1,
354 [ C(OP_PREFETCH) ] = {
355 [ C(RESULT_ACCESS) ] = -1,
356 [ C(RESULT_MISS) ] = -1,
359 [ C(BPU ) ] = {
360 [ C(OP_READ) ] = {
361 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
362 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
364 [ C(OP_WRITE) ] = {
365 [ C(RESULT_ACCESS) ] = -1,
366 [ C(RESULT_MISS) ] = -1,
368 [ C(OP_PREFETCH) ] = {
369 [ C(RESULT_ACCESS) ] = -1,
370 [ C(RESULT_MISS) ] = -1,
375 static u64 intel_pmu_raw_event(u64 event)
377 #define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
378 #define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
379 #define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
380 #define CORE_EVNTSEL_INV_MASK 0x00800000ULL
381 #define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
383 #define CORE_EVNTSEL_MASK \
384 (CORE_EVNTSEL_EVENT_MASK | \
385 CORE_EVNTSEL_UNIT_MASK | \
386 CORE_EVNTSEL_EDGE_MASK | \
387 CORE_EVNTSEL_INV_MASK | \
388 CORE_EVNTSEL_COUNTER_MASK)
390 return event & CORE_EVNTSEL_MASK;
393 static const u64 amd_hw_cache_event_ids
394 [PERF_COUNT_HW_CACHE_MAX]
395 [PERF_COUNT_HW_CACHE_OP_MAX]
396 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
398 [ C(L1D) ] = {
399 [ C(OP_READ) ] = {
400 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
401 [ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
403 [ C(OP_WRITE) ] = {
404 [ C(RESULT_ACCESS) ] = 0x0042, /* Data Cache Refills from L2 */
405 [ C(RESULT_MISS) ] = 0,
407 [ C(OP_PREFETCH) ] = {
408 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
409 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
412 [ C(L1I ) ] = {
413 [ C(OP_READ) ] = {
414 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
415 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
417 [ C(OP_WRITE) ] = {
418 [ C(RESULT_ACCESS) ] = -1,
419 [ C(RESULT_MISS) ] = -1,
421 [ C(OP_PREFETCH) ] = {
422 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
423 [ C(RESULT_MISS) ] = 0,
426 [ C(LL ) ] = {
427 [ C(OP_READ) ] = {
428 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
429 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
431 [ C(OP_WRITE) ] = {
432 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
433 [ C(RESULT_MISS) ] = 0,
435 [ C(OP_PREFETCH) ] = {
436 [ C(RESULT_ACCESS) ] = 0,
437 [ C(RESULT_MISS) ] = 0,
440 [ C(DTLB) ] = {
441 [ C(OP_READ) ] = {
442 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
443 [ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
445 [ C(OP_WRITE) ] = {
446 [ C(RESULT_ACCESS) ] = 0,
447 [ C(RESULT_MISS) ] = 0,
449 [ C(OP_PREFETCH) ] = {
450 [ C(RESULT_ACCESS) ] = 0,
451 [ C(RESULT_MISS) ] = 0,
454 [ C(ITLB) ] = {
455 [ C(OP_READ) ] = {
456 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
457 [ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
459 [ C(OP_WRITE) ] = {
460 [ C(RESULT_ACCESS) ] = -1,
461 [ C(RESULT_MISS) ] = -1,
463 [ C(OP_PREFETCH) ] = {
464 [ C(RESULT_ACCESS) ] = -1,
465 [ C(RESULT_MISS) ] = -1,
468 [ C(BPU ) ] = {
469 [ C(OP_READ) ] = {
470 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
471 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
473 [ C(OP_WRITE) ] = {
474 [ C(RESULT_ACCESS) ] = -1,
475 [ C(RESULT_MISS) ] = -1,
477 [ C(OP_PREFETCH) ] = {
478 [ C(RESULT_ACCESS) ] = -1,
479 [ C(RESULT_MISS) ] = -1,
485 * AMD Performance Monitor K7 and later.
487 static const u64 amd_perfmon_event_map[] =
489 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
490 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
491 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
492 [PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
493 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
494 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
497 static u64 amd_pmu_event_map(int event)
499 return amd_perfmon_event_map[event];
502 static u64 amd_pmu_raw_event(u64 event)
504 #define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
505 #define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
506 #define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
507 #define K7_EVNTSEL_INV_MASK 0x000800000ULL
508 #define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
510 #define K7_EVNTSEL_MASK \
511 (K7_EVNTSEL_EVENT_MASK | \
512 K7_EVNTSEL_UNIT_MASK | \
513 K7_EVNTSEL_EDGE_MASK | \
514 K7_EVNTSEL_INV_MASK | \
515 K7_EVNTSEL_COUNTER_MASK)
517 return event & K7_EVNTSEL_MASK;
521 * Propagate counter elapsed time into the generic counter.
522 * Can only be executed on the CPU where the counter is active.
523 * Returns the delta events processed.
525 static u64
526 x86_perf_counter_update(struct perf_counter *counter,
527 struct hw_perf_counter *hwc, int idx)
529 int shift = 64 - x86_pmu.counter_bits;
530 u64 prev_raw_count, new_raw_count;
531 s64 delta;
534 * Careful: an NMI might modify the previous counter value.
536 * Our tactic to handle this is to first atomically read and
537 * exchange a new raw count - then add that new-prev delta
538 * count to the generic counter atomically:
540 again:
541 prev_raw_count = atomic64_read(&hwc->prev_count);
542 rdmsrl(hwc->counter_base + idx, new_raw_count);
544 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
545 new_raw_count) != prev_raw_count)
546 goto again;
549 * Now we have the new raw value and have updated the prev
550 * timestamp already. We can now calculate the elapsed delta
551 * (counter-)time and add that to the generic counter.
553 * Careful, not all hw sign-extends above the physical width
554 * of the count.
556 delta = (new_raw_count << shift) - (prev_raw_count << shift);
557 delta >>= shift;
559 atomic64_add(delta, &counter->count);
560 atomic64_sub(delta, &hwc->period_left);
562 return new_raw_count;
565 static atomic_t active_counters;
566 static DEFINE_MUTEX(pmc_reserve_mutex);
568 static bool reserve_pmc_hardware(void)
570 int i;
572 if (nmi_watchdog == NMI_LOCAL_APIC)
573 disable_lapic_nmi_watchdog();
575 for (i = 0; i < x86_pmu.num_counters; i++) {
576 if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
577 goto perfctr_fail;
580 for (i = 0; i < x86_pmu.num_counters; i++) {
581 if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
582 goto eventsel_fail;
585 return true;
587 eventsel_fail:
588 for (i--; i >= 0; i--)
589 release_evntsel_nmi(x86_pmu.eventsel + i);
591 i = x86_pmu.num_counters;
593 perfctr_fail:
594 for (i--; i >= 0; i--)
595 release_perfctr_nmi(x86_pmu.perfctr + i);
597 if (nmi_watchdog == NMI_LOCAL_APIC)
598 enable_lapic_nmi_watchdog();
600 return false;
603 static void release_pmc_hardware(void)
605 int i;
607 for (i = 0; i < x86_pmu.num_counters; i++) {
608 release_perfctr_nmi(x86_pmu.perfctr + i);
609 release_evntsel_nmi(x86_pmu.eventsel + i);
612 if (nmi_watchdog == NMI_LOCAL_APIC)
613 enable_lapic_nmi_watchdog();
616 static void hw_perf_counter_destroy(struct perf_counter *counter)
618 if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
619 release_pmc_hardware();
620 mutex_unlock(&pmc_reserve_mutex);
624 static inline int x86_pmu_initialized(void)
626 return x86_pmu.handle_irq != NULL;
629 static inline int
630 set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
632 unsigned int cache_type, cache_op, cache_result;
633 u64 config, val;
635 config = attr->config;
637 cache_type = (config >> 0) & 0xff;
638 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
639 return -EINVAL;
641 cache_op = (config >> 8) & 0xff;
642 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
643 return -EINVAL;
645 cache_result = (config >> 16) & 0xff;
646 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
647 return -EINVAL;
649 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
651 if (val == 0)
652 return -ENOENT;
654 if (val == -1)
655 return -EINVAL;
657 hwc->config |= val;
659 return 0;
663 * Setup the hardware configuration for a given attr_type
665 static int __hw_perf_counter_init(struct perf_counter *counter)
667 struct perf_counter_attr *attr = &counter->attr;
668 struct hw_perf_counter *hwc = &counter->hw;
669 int err;
671 if (!x86_pmu_initialized())
672 return -ENODEV;
674 err = 0;
675 if (!atomic_inc_not_zero(&active_counters)) {
676 mutex_lock(&pmc_reserve_mutex);
677 if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
678 err = -EBUSY;
679 else
680 atomic_inc(&active_counters);
681 mutex_unlock(&pmc_reserve_mutex);
683 if (err)
684 return err;
687 * Generate PMC IRQs:
688 * (keep 'enabled' bit clear for now)
690 hwc->config = ARCH_PERFMON_EVENTSEL_INT;
693 * Count user and OS events unless requested not to.
695 if (!attr->exclude_user)
696 hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
697 if (!attr->exclude_kernel)
698 hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
700 if (!hwc->sample_period) {
701 hwc->sample_period = x86_pmu.max_period;
702 hwc->last_period = hwc->sample_period;
703 atomic64_set(&hwc->period_left, hwc->sample_period);
706 counter->destroy = hw_perf_counter_destroy;
709 * Raw event type provide the config in the event structure
711 if (attr->type == PERF_TYPE_RAW) {
712 hwc->config |= x86_pmu.raw_event(attr->config);
713 return 0;
716 if (attr->type == PERF_TYPE_HW_CACHE)
717 return set_ext_hw_attr(hwc, attr);
719 if (attr->config >= x86_pmu.max_events)
720 return -EINVAL;
722 * The generic map:
724 hwc->config |= x86_pmu.event_map(attr->config);
726 return 0;
729 static void intel_pmu_disable_all(void)
731 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
734 static void amd_pmu_disable_all(void)
736 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
737 int idx;
739 if (!cpuc->enabled)
740 return;
742 cpuc->enabled = 0;
744 * ensure we write the disable before we start disabling the
745 * counters proper, so that amd_pmu_enable_counter() does the
746 * right thing.
748 barrier();
750 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
751 u64 val;
753 if (!test_bit(idx, cpuc->active_mask))
754 continue;
755 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
756 if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
757 continue;
758 val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
759 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
763 void hw_perf_disable(void)
765 if (!x86_pmu_initialized())
766 return;
767 return x86_pmu.disable_all();
770 static void intel_pmu_enable_all(void)
772 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
775 static void amd_pmu_enable_all(void)
777 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
778 int idx;
780 if (cpuc->enabled)
781 return;
783 cpuc->enabled = 1;
784 barrier();
786 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
787 u64 val;
789 if (!test_bit(idx, cpuc->active_mask))
790 continue;
791 rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
792 if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
793 continue;
794 val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
795 wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
799 void hw_perf_enable(void)
801 if (!x86_pmu_initialized())
802 return;
803 x86_pmu.enable_all();
806 static inline u64 intel_pmu_get_status(void)
808 u64 status;
810 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
812 return status;
815 static inline void intel_pmu_ack_status(u64 ack)
817 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
820 static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
822 int err;
823 err = checking_wrmsrl(hwc->config_base + idx,
824 hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
827 static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
829 int err;
830 err = checking_wrmsrl(hwc->config_base + idx,
831 hwc->config);
834 static inline void
835 intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
837 int idx = __idx - X86_PMC_IDX_FIXED;
838 u64 ctrl_val, mask;
839 int err;
841 mask = 0xfULL << (idx * 4);
843 rdmsrl(hwc->config_base, ctrl_val);
844 ctrl_val &= ~mask;
845 err = checking_wrmsrl(hwc->config_base, ctrl_val);
848 static inline void
849 intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
851 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
852 intel_pmu_disable_fixed(hwc, idx);
853 return;
856 x86_pmu_disable_counter(hwc, idx);
859 static inline void
860 amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
862 x86_pmu_disable_counter(hwc, idx);
865 static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
868 * Set the next IRQ period, based on the hwc->period_left value.
869 * To be called with the counter disabled in hw:
871 static int
872 x86_perf_counter_set_period(struct perf_counter *counter,
873 struct hw_perf_counter *hwc, int idx)
875 s64 left = atomic64_read(&hwc->period_left);
876 s64 period = hwc->sample_period;
877 int err, ret = 0;
880 * If we are way outside a reasoable range then just skip forward:
882 if (unlikely(left <= -period)) {
883 left = period;
884 atomic64_set(&hwc->period_left, left);
885 hwc->last_period = period;
886 ret = 1;
889 if (unlikely(left <= 0)) {
890 left += period;
891 atomic64_set(&hwc->period_left, left);
892 hwc->last_period = period;
893 ret = 1;
896 * Quirk: certain CPUs dont like it if just 1 event is left:
898 if (unlikely(left < 2))
899 left = 2;
901 if (left > x86_pmu.max_period)
902 left = x86_pmu.max_period;
904 per_cpu(prev_left[idx], smp_processor_id()) = left;
907 * The hw counter starts counting from this counter offset,
908 * mark it to be able to extra future deltas:
910 atomic64_set(&hwc->prev_count, (u64)-left);
912 err = checking_wrmsrl(hwc->counter_base + idx,
913 (u64)(-left) & x86_pmu.counter_mask);
915 return ret;
918 static inline void
919 intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
921 int idx = __idx - X86_PMC_IDX_FIXED;
922 u64 ctrl_val, bits, mask;
923 int err;
926 * Enable IRQ generation (0x8),
927 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
928 * if requested:
930 bits = 0x8ULL;
931 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
932 bits |= 0x2;
933 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
934 bits |= 0x1;
935 bits <<= (idx * 4);
936 mask = 0xfULL << (idx * 4);
938 rdmsrl(hwc->config_base, ctrl_val);
939 ctrl_val &= ~mask;
940 ctrl_val |= bits;
941 err = checking_wrmsrl(hwc->config_base, ctrl_val);
944 static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
946 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
947 intel_pmu_enable_fixed(hwc, idx);
948 return;
951 x86_pmu_enable_counter(hwc, idx);
954 static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
956 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
958 if (cpuc->enabled)
959 x86_pmu_enable_counter(hwc, idx);
960 else
961 x86_pmu_disable_counter(hwc, idx);
964 static int
965 fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
967 unsigned int event;
969 if (!x86_pmu.num_counters_fixed)
970 return -1;
973 * Quirk, IA32_FIXED_CTRs do not work on current Atom processors:
975 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
976 boot_cpu_data.x86_model == 28)
977 return -1;
979 event = hwc->config & ARCH_PERFMON_EVENT_MASK;
981 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
982 return X86_PMC_IDX_FIXED_INSTRUCTIONS;
983 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
984 return X86_PMC_IDX_FIXED_CPU_CYCLES;
985 if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
986 return X86_PMC_IDX_FIXED_BUS_CYCLES;
988 return -1;
992 * Find a PMC slot for the freshly enabled / scheduled in counter:
994 static int x86_pmu_enable(struct perf_counter *counter)
996 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
997 struct hw_perf_counter *hwc = &counter->hw;
998 int idx;
1000 idx = fixed_mode_idx(counter, hwc);
1001 if (idx >= 0) {
1003 * Try to get the fixed counter, if that is already taken
1004 * then try to get a generic counter:
1006 if (test_and_set_bit(idx, cpuc->used_mask))
1007 goto try_generic;
1009 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1011 * We set it so that counter_base + idx in wrmsr/rdmsr maps to
1012 * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
1014 hwc->counter_base =
1015 MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
1016 hwc->idx = idx;
1017 } else {
1018 idx = hwc->idx;
1019 /* Try to get the previous generic counter again */
1020 if (test_and_set_bit(idx, cpuc->used_mask)) {
1021 try_generic:
1022 idx = find_first_zero_bit(cpuc->used_mask,
1023 x86_pmu.num_counters);
1024 if (idx == x86_pmu.num_counters)
1025 return -EAGAIN;
1027 set_bit(idx, cpuc->used_mask);
1028 hwc->idx = idx;
1030 hwc->config_base = x86_pmu.eventsel;
1031 hwc->counter_base = x86_pmu.perfctr;
1034 perf_counters_lapic_init();
1036 x86_pmu.disable(hwc, idx);
1038 cpuc->counters[idx] = counter;
1039 set_bit(idx, cpuc->active_mask);
1041 x86_perf_counter_set_period(counter, hwc, idx);
1042 x86_pmu.enable(hwc, idx);
1044 return 0;
1047 static void x86_pmu_unthrottle(struct perf_counter *counter)
1049 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1050 struct hw_perf_counter *hwc = &counter->hw;
1052 if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
1053 cpuc->counters[hwc->idx] != counter))
1054 return;
1056 x86_pmu.enable(hwc, hwc->idx);
1059 void perf_counter_print_debug(void)
1061 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1062 struct cpu_hw_counters *cpuc;
1063 unsigned long flags;
1064 int cpu, idx;
1066 if (!x86_pmu.num_counters)
1067 return;
1069 local_irq_save(flags);
1071 cpu = smp_processor_id();
1072 cpuc = &per_cpu(cpu_hw_counters, cpu);
1074 if (x86_pmu.version >= 2) {
1075 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1076 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1077 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1078 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1080 pr_info("\n");
1081 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1082 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1083 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1084 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1086 pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
1088 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1089 rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
1090 rdmsrl(x86_pmu.perfctr + idx, pmc_count);
1092 prev_left = per_cpu(prev_left[idx], cpu);
1094 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1095 cpu, idx, pmc_ctrl);
1096 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1097 cpu, idx, pmc_count);
1098 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1099 cpu, idx, prev_left);
1101 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1102 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1104 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1105 cpu, idx, pmc_count);
1107 local_irq_restore(flags);
1110 static void x86_pmu_disable(struct perf_counter *counter)
1112 struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
1113 struct hw_perf_counter *hwc = &counter->hw;
1114 int idx = hwc->idx;
1117 * Must be done before we disable, otherwise the nmi handler
1118 * could reenable again:
1120 clear_bit(idx, cpuc->active_mask);
1121 x86_pmu.disable(hwc, idx);
1124 * Make sure the cleared pointer becomes visible before we
1125 * (potentially) free the counter:
1127 barrier();
1130 * Drain the remaining delta count out of a counter
1131 * that we are disabling:
1133 x86_perf_counter_update(counter, hwc, idx);
1134 cpuc->counters[idx] = NULL;
1135 clear_bit(idx, cpuc->used_mask);
1139 * Save and restart an expired counter. Called by NMI contexts,
1140 * so it has to be careful about preempting normal counter ops:
1142 static int intel_pmu_save_and_restart(struct perf_counter *counter)
1144 struct hw_perf_counter *hwc = &counter->hw;
1145 int idx = hwc->idx;
1146 int ret;
1148 x86_perf_counter_update(counter, hwc, idx);
1149 ret = x86_perf_counter_set_period(counter, hwc, idx);
1151 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1152 intel_pmu_enable_counter(hwc, idx);
1154 return ret;
1157 static void intel_pmu_reset(void)
1159 unsigned long flags;
1160 int idx;
1162 if (!x86_pmu.num_counters)
1163 return;
1165 local_irq_save(flags);
1167 printk("clearing PMU state on CPU#%d\n", smp_processor_id());
1169 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1170 checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
1171 checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
1173 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1174 checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1177 local_irq_restore(flags);
1182 * This handler is triggered by the local APIC, so the APIC IRQ handling
1183 * rules apply:
1185 static int intel_pmu_handle_irq(struct pt_regs *regs)
1187 struct perf_sample_data data;
1188 struct cpu_hw_counters *cpuc;
1189 int bit, cpu, loops;
1190 u64 ack, status;
1192 data.regs = regs;
1193 data.addr = 0;
1195 cpu = smp_processor_id();
1196 cpuc = &per_cpu(cpu_hw_counters, cpu);
1198 perf_disable();
1199 status = intel_pmu_get_status();
1200 if (!status) {
1201 perf_enable();
1202 return 0;
1205 loops = 0;
1206 again:
1207 if (++loops > 100) {
1208 WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
1209 perf_counter_print_debug();
1210 intel_pmu_reset();
1211 perf_enable();
1212 return 1;
1215 inc_irq_stat(apic_perf_irqs);
1216 ack = status;
1217 for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1218 struct perf_counter *counter = cpuc->counters[bit];
1220 clear_bit(bit, (unsigned long *) &status);
1221 if (!test_bit(bit, cpuc->active_mask))
1222 continue;
1224 if (!intel_pmu_save_and_restart(counter))
1225 continue;
1227 data.period = counter->hw.last_period;
1229 if (perf_counter_overflow(counter, 1, &data))
1230 intel_pmu_disable_counter(&counter->hw, bit);
1233 intel_pmu_ack_status(ack);
1236 * Repeat if there is more work to be done:
1238 status = intel_pmu_get_status();
1239 if (status)
1240 goto again;
1242 perf_enable();
1244 return 1;
1247 static int amd_pmu_handle_irq(struct pt_regs *regs)
1249 struct perf_sample_data data;
1250 struct cpu_hw_counters *cpuc;
1251 struct perf_counter *counter;
1252 struct hw_perf_counter *hwc;
1253 int cpu, idx, handled = 0;
1254 u64 val;
1256 data.regs = regs;
1257 data.addr = 0;
1259 cpu = smp_processor_id();
1260 cpuc = &per_cpu(cpu_hw_counters, cpu);
1262 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1263 if (!test_bit(idx, cpuc->active_mask))
1264 continue;
1266 counter = cpuc->counters[idx];
1267 hwc = &counter->hw;
1269 val = x86_perf_counter_update(counter, hwc, idx);
1270 if (val & (1ULL << (x86_pmu.counter_bits - 1)))
1271 continue;
1274 * counter overflow
1276 handled = 1;
1277 data.period = counter->hw.last_period;
1279 if (!x86_perf_counter_set_period(counter, hwc, idx))
1280 continue;
1282 if (perf_counter_overflow(counter, 1, &data))
1283 amd_pmu_disable_counter(hwc, idx);
1286 if (handled)
1287 inc_irq_stat(apic_perf_irqs);
1289 return handled;
1292 void smp_perf_pending_interrupt(struct pt_regs *regs)
1294 irq_enter();
1295 ack_APIC_irq();
1296 inc_irq_stat(apic_pending_irqs);
1297 perf_counter_do_pending();
1298 irq_exit();
1301 void set_perf_counter_pending(void)
1303 apic->send_IPI_self(LOCAL_PENDING_VECTOR);
1306 void perf_counters_lapic_init(void)
1308 if (!x86_pmu_initialized())
1309 return;
1312 * Always use NMI for PMU
1314 apic_write(APIC_LVTPC, APIC_DM_NMI);
1317 static int __kprobes
1318 perf_counter_nmi_handler(struct notifier_block *self,
1319 unsigned long cmd, void *__args)
1321 struct die_args *args = __args;
1322 struct pt_regs *regs;
1324 if (!atomic_read(&active_counters))
1325 return NOTIFY_DONE;
1327 switch (cmd) {
1328 case DIE_NMI:
1329 case DIE_NMI_IPI:
1330 break;
1332 default:
1333 return NOTIFY_DONE;
1336 regs = args->regs;
1338 apic_write(APIC_LVTPC, APIC_DM_NMI);
1340 * Can't rely on the handled return value to say it was our NMI, two
1341 * counters could trigger 'simultaneously' raising two back-to-back NMIs.
1343 * If the first NMI handles both, the latter will be empty and daze
1344 * the CPU.
1346 x86_pmu.handle_irq(regs);
1348 return NOTIFY_STOP;
1351 static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
1352 .notifier_call = perf_counter_nmi_handler,
1353 .next = NULL,
1354 .priority = 1
1357 static struct x86_pmu intel_pmu = {
1358 .name = "Intel",
1359 .handle_irq = intel_pmu_handle_irq,
1360 .disable_all = intel_pmu_disable_all,
1361 .enable_all = intel_pmu_enable_all,
1362 .enable = intel_pmu_enable_counter,
1363 .disable = intel_pmu_disable_counter,
1364 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
1365 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
1366 .event_map = intel_pmu_event_map,
1367 .raw_event = intel_pmu_raw_event,
1368 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
1370 * Intel PMCs cannot be accessed sanely above 32 bit width,
1371 * so we install an artificial 1<<31 period regardless of
1372 * the generic counter period:
1374 .max_period = (1ULL << 31) - 1,
1377 static struct x86_pmu amd_pmu = {
1378 .name = "AMD",
1379 .handle_irq = amd_pmu_handle_irq,
1380 .disable_all = amd_pmu_disable_all,
1381 .enable_all = amd_pmu_enable_all,
1382 .enable = amd_pmu_enable_counter,
1383 .disable = amd_pmu_disable_counter,
1384 .eventsel = MSR_K7_EVNTSEL0,
1385 .perfctr = MSR_K7_PERFCTR0,
1386 .event_map = amd_pmu_event_map,
1387 .raw_event = amd_pmu_raw_event,
1388 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
1389 .num_counters = 4,
1390 .counter_bits = 48,
1391 .counter_mask = (1ULL << 48) - 1,
1392 /* use highest bit to detect overflow */
1393 .max_period = (1ULL << 47) - 1,
1396 static int intel_pmu_init(void)
1398 union cpuid10_edx edx;
1399 union cpuid10_eax eax;
1400 unsigned int unused;
1401 unsigned int ebx;
1402 int version;
1404 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
1405 return -ENODEV;
1408 * Check whether the Architectural PerfMon supports
1409 * Branch Misses Retired Event or not.
1411 cpuid(10, &eax.full, &ebx, &unused, &edx.full);
1412 if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
1413 return -ENODEV;
1415 version = eax.split.version_id;
1416 if (version < 2)
1417 return -ENODEV;
1419 x86_pmu = intel_pmu;
1420 x86_pmu.version = version;
1421 x86_pmu.num_counters = eax.split.num_counters;
1422 x86_pmu.counter_bits = eax.split.bit_width;
1423 x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
1426 * Quirk: v2 perfmon does not report fixed-purpose counters, so
1427 * assume at least 3 counters:
1429 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1431 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
1434 * Install the hw-cache-events table:
1436 switch (boot_cpu_data.x86_model) {
1437 case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1438 case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
1439 case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
1440 case 29: /* six-core 45 nm xeon "Dunnington" */
1441 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
1442 sizeof(hw_cache_event_ids));
1444 pr_cont("Core2 events, ");
1445 break;
1446 default:
1447 case 26:
1448 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
1449 sizeof(hw_cache_event_ids));
1451 pr_cont("Nehalem/Corei7 events, ");
1452 break;
1453 case 28:
1454 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
1455 sizeof(hw_cache_event_ids));
1457 pr_cont("Atom events, ");
1458 break;
1460 return 0;
1463 static int amd_pmu_init(void)
1465 /* Performance-monitoring supported from K7 and later: */
1466 if (boot_cpu_data.x86 < 6)
1467 return -ENODEV;
1469 x86_pmu = amd_pmu;
1471 /* Events are common for all AMDs */
1472 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
1473 sizeof(hw_cache_event_ids));
1475 return 0;
1478 void __init init_hw_perf_counters(void)
1480 int err;
1482 pr_info("Performance Counters: ");
1484 switch (boot_cpu_data.x86_vendor) {
1485 case X86_VENDOR_INTEL:
1486 err = intel_pmu_init();
1487 break;
1488 case X86_VENDOR_AMD:
1489 err = amd_pmu_init();
1490 break;
1491 default:
1492 return;
1494 if (err != 0) {
1495 pr_cont("no PMU driver, software counters only.\n");
1496 return;
1499 pr_cont("%s PMU driver.\n", x86_pmu.name);
1501 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1502 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1503 WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
1504 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1506 perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
1507 perf_max_counters = x86_pmu.num_counters;
1509 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1510 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1511 WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
1512 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1515 perf_counter_mask |=
1516 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1518 perf_counters_lapic_init();
1519 register_die_notifier(&perf_counter_nmi_notifier);
1521 pr_info("... version: %d\n", x86_pmu.version);
1522 pr_info("... bit width: %d\n", x86_pmu.counter_bits);
1523 pr_info("... generic counters: %d\n", x86_pmu.num_counters);
1524 pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
1525 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1526 pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
1527 pr_info("... counter mask: %016Lx\n", perf_counter_mask);
1530 static inline void x86_pmu_read(struct perf_counter *counter)
1532 x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
1535 static const struct pmu pmu = {
1536 .enable = x86_pmu_enable,
1537 .disable = x86_pmu_disable,
1538 .read = x86_pmu_read,
1539 .unthrottle = x86_pmu_unthrottle,
1542 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
1544 int err;
1546 err = __hw_perf_counter_init(counter);
1547 if (err)
1548 return ERR_PTR(err);
1550 return &pmu;
1554 * callchain support
1557 static inline
1558 void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1560 if (entry->nr < PERF_MAX_STACK_DEPTH)
1561 entry->ip[entry->nr++] = ip;
1564 static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
1565 static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
1568 static void
1569 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1571 /* Ignore warnings */
1574 static void backtrace_warning(void *data, char *msg)
1576 /* Ignore warnings */
1579 static int backtrace_stack(void *data, char *name)
1581 /* Process all stacks: */
1582 return 0;
1585 static void backtrace_address(void *data, unsigned long addr, int reliable)
1587 struct perf_callchain_entry *entry = data;
1589 if (reliable)
1590 callchain_store(entry, addr);
1593 static const struct stacktrace_ops backtrace_ops = {
1594 .warning = backtrace_warning,
1595 .warning_symbol = backtrace_warning_symbol,
1596 .stack = backtrace_stack,
1597 .address = backtrace_address,
1600 #include "../dumpstack.h"
1602 static void
1603 perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
1605 callchain_store(entry, PERF_CONTEXT_KERNEL);
1606 callchain_store(entry, regs->ip);
1608 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1612 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
1614 static unsigned long
1615 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
1617 unsigned long offset, addr = (unsigned long)from;
1618 int type = in_nmi() ? KM_NMI : KM_IRQ0;
1619 unsigned long size, len = 0;
1620 struct page *page;
1621 void *map;
1622 int ret;
1624 do {
1625 ret = __get_user_pages_fast(addr, 1, 0, &page);
1626 if (!ret)
1627 break;
1629 offset = addr & (PAGE_SIZE - 1);
1630 size = min(PAGE_SIZE - offset, n - len);
1632 map = kmap_atomic(page, type);
1633 memcpy(to, map+offset, size);
1634 kunmap_atomic(map, type);
1635 put_page(page);
1637 len += size;
1638 to += size;
1639 addr += size;
1641 } while (len < n);
1643 return len;
1646 static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
1648 unsigned long bytes;
1650 bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
1652 return bytes == sizeof(*frame);
1655 static void
1656 perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
1658 struct stack_frame frame;
1659 const void __user *fp;
1661 if (!user_mode(regs))
1662 regs = task_pt_regs(current);
1664 fp = (void __user *)regs->bp;
1666 callchain_store(entry, PERF_CONTEXT_USER);
1667 callchain_store(entry, regs->ip);
1669 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1670 frame.next_frame = NULL;
1671 frame.return_address = 0;
1673 if (!copy_stack_frame(fp, &frame))
1674 break;
1676 if ((unsigned long)fp < regs->sp)
1677 break;
1679 callchain_store(entry, frame.return_address);
1680 fp = frame.next_frame;
1684 static void
1685 perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
1687 int is_user;
1689 if (!regs)
1690 return;
1692 is_user = user_mode(regs);
1694 if (!current || current->pid == 0)
1695 return;
1697 if (is_user && current->state != TASK_RUNNING)
1698 return;
1700 if (!is_user)
1701 perf_callchain_kernel(regs, entry);
1703 if (current->mm)
1704 perf_callchain_user(regs, entry);
1707 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1709 struct perf_callchain_entry *entry;
1711 if (in_nmi())
1712 entry = &__get_cpu_var(nmi_entry);
1713 else
1714 entry = &__get_cpu_var(irq_entry);
1716 entry->nr = 0;
1718 perf_do_callchain(regs, entry);
1720 return entry;