m68knommu: improve code formating FEC driver
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / fec.c
blobe0d875531e6e19327ba2fc4d29810dbb9659e8b3
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire processors.
22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2006 Macq Electronique SA.
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/string.h>
31 #include <linux/ptrace.h>
32 #include <linux/errno.h>
33 #include <linux/ioport.h>
34 #include <linux/slab.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/spinlock.h>
43 #include <linux/workqueue.h>
44 #include <linux/bitops.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/pgtable.h>
50 #include <asm/cacheflush.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
54 defined(CONFIG_M520x) || defined(CONFIG_M532x)
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #include "fec.h"
58 #else
59 #include <asm/8xx_immap.h>
60 #include <asm/mpc8xx.h>
61 #include "commproc.h"
62 #endif
64 #if defined(CONFIG_FEC2)
65 #define FEC_MAX_PORTS 2
66 #else
67 #define FEC_MAX_PORTS 1
68 #endif
71 * Define the fixed address of the FEC hardware.
73 static unsigned int fec_hw[] = {
74 #if defined(CONFIG_M5272)
75 (MCF_MBAR + 0x840),
76 #elif defined(CONFIG_M527x)
77 (MCF_MBAR + 0x1000),
78 (MCF_MBAR + 0x1800),
79 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
80 (MCF_MBAR + 0x1000),
81 #elif defined(CONFIG_M520x)
82 (MCF_MBAR+0x30000),
83 #elif defined(CONFIG_M532x)
84 (MCF_MBAR+0xfc030000),
85 #else
86 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
87 #endif
90 static unsigned char fec_mac_default[] = {
91 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
95 * Some hardware gets it MAC address out of local flash memory.
96 * if this is non-zero then assume it is the address to get MAC from.
98 #if defined(CONFIG_NETtel)
99 #define FEC_FLASHMAC 0xf0006006
100 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
101 #define FEC_FLASHMAC 0xf0006000
102 #elif defined(CONFIG_CANCam)
103 #define FEC_FLASHMAC 0xf0020000
104 #elif defined (CONFIG_M5272C3)
105 #define FEC_FLASHMAC (0xffe04000 + 4)
106 #elif defined(CONFIG_MOD5272)
107 #define FEC_FLASHMAC 0xffc0406b
108 #else
109 #define FEC_FLASHMAC 0
110 #endif
112 /* Forward declarations of some structures to support different PHYs
115 typedef struct {
116 uint mii_data;
117 void (*funct)(uint mii_reg, struct net_device *dev);
118 } phy_cmd_t;
120 typedef struct {
121 uint id;
122 char *name;
124 const phy_cmd_t *config;
125 const phy_cmd_t *startup;
126 const phy_cmd_t *ack_int;
127 const phy_cmd_t *shutdown;
128 } phy_info_t;
130 /* The number of Tx and Rx buffers. These are allocated from the page
131 * pool. The code may assume these are power of two, so it it best
132 * to keep them that size.
133 * We don't need to allocate pages for the transmitter. We just use
134 * the skbuffer directly.
136 #define FEC_ENET_RX_PAGES 8
137 #define FEC_ENET_RX_FRSIZE 2048
138 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
139 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
140 #define FEC_ENET_TX_FRSIZE 2048
141 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
142 #define TX_RING_SIZE 16 /* Must be power of two */
143 #define TX_RING_MOD_MASK 15 /* for this to work */
145 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
146 #error "FEC: descriptor ring size constants too large"
147 #endif
149 /* Interrupt events/masks.
151 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
152 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
153 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
154 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
155 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
156 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
157 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
158 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
159 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
160 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
162 /* The FEC stores dest/src/type, data, and checksum for receive packets.
164 #define PKT_MAXBUF_SIZE 1518
165 #define PKT_MINBUF_SIZE 64
166 #define PKT_MAXBLR_SIZE 1520
170 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
171 * size bits. Other FEC hardware does not, so we need to take that into
172 * account when setting it.
174 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
175 defined(CONFIG_M520x) || defined(CONFIG_M532x)
176 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
177 #else
178 #define OPT_FRAME_SIZE 0
179 #endif
181 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
182 * tx_bd_base always point to the base of the buffer descriptors. The
183 * cur_rx and cur_tx point to the currently available buffer.
184 * The dirty_tx tracks the current buffer that is being sent by the
185 * controller. The cur_tx and dirty_tx are equal under both completely
186 * empty and completely full conditions. The empty/ready indicator in
187 * the buffer descriptor determines the actual condition.
189 struct fec_enet_private {
190 /* Hardware registers of the FEC device */
191 volatile fec_t *hwp;
193 struct net_device *netdev;
195 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
196 unsigned char *tx_bounce[TX_RING_SIZE];
197 struct sk_buff* tx_skbuff[TX_RING_SIZE];
198 ushort skb_cur;
199 ushort skb_dirty;
201 /* CPM dual port RAM relative addresses.
203 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
204 cbd_t *tx_bd_base;
205 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
206 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
207 uint tx_full;
208 spinlock_t lock;
210 uint phy_id;
211 uint phy_id_done;
212 uint phy_status;
213 uint phy_speed;
214 phy_info_t const *phy;
215 struct work_struct phy_task;
217 uint sequence_done;
218 uint mii_phy_task_queued;
220 uint phy_addr;
222 int index;
223 int opened;
224 int link;
225 int old_link;
226 int full_duplex;
229 static int fec_enet_open(struct net_device *dev);
230 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
231 static void fec_enet_mii(struct net_device *dev);
232 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
233 static void fec_enet_tx(struct net_device *dev);
234 static void fec_enet_rx(struct net_device *dev);
235 static int fec_enet_close(struct net_device *dev);
236 static void set_multicast_list(struct net_device *dev);
237 static void fec_restart(struct net_device *dev, int duplex);
238 static void fec_stop(struct net_device *dev);
239 static void fec_set_mac_address(struct net_device *dev);
242 /* MII processing. We keep this as simple as possible. Requests are
243 * placed on the list (if there is room). When the request is finished
244 * by the MII, an optional function may be called.
246 typedef struct mii_list {
247 uint mii_regval;
248 void (*mii_func)(uint val, struct net_device *dev);
249 struct mii_list *mii_next;
250 } mii_list_t;
252 #define NMII 20
253 static mii_list_t mii_cmds[NMII];
254 static mii_list_t *mii_free;
255 static mii_list_t *mii_head;
256 static mii_list_t *mii_tail;
258 static int mii_queue(struct net_device *dev, int request,
259 void (*func)(uint, struct net_device *));
261 /* Make MII read/write commands for the FEC.
263 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
264 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
265 (VAL & 0xffff))
266 #define mk_mii_end 0
268 /* Transmitter timeout.
270 #define TX_TIMEOUT (2*HZ)
272 /* Register definitions for the PHY.
275 #define MII_REG_CR 0 /* Control Register */
276 #define MII_REG_SR 1 /* Status Register */
277 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
278 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
279 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
280 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
281 #define MII_REG_ANER 6 /* A-N Expansion Register */
282 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
283 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
285 /* values for phy_status */
287 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
288 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
289 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
290 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
291 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
292 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
293 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
295 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
296 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
297 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
298 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
299 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
300 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
301 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
302 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
305 static int
306 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
308 struct fec_enet_private *fep;
309 volatile fec_t *fecp;
310 volatile cbd_t *bdp;
311 unsigned short status;
313 fep = netdev_priv(dev);
314 fecp = (volatile fec_t*)dev->base_addr;
316 if (!fep->link) {
317 /* Link is down or autonegotiation is in progress. */
318 return 1;
321 /* Fill in a Tx ring entry */
322 bdp = fep->cur_tx;
324 status = bdp->cbd_sc;
325 #ifndef final_version
326 if (status & BD_ENET_TX_READY) {
327 /* Ooops. All transmit buffers are full. Bail out.
328 * This should not happen, since dev->tbusy should be set.
330 printk("%s: tx queue full!.\n", dev->name);
331 return 1;
333 #endif
335 /* Clear all of the status flags.
337 status &= ~BD_ENET_TX_STATS;
339 /* Set buffer length and buffer pointer.
341 bdp->cbd_bufaddr = __pa(skb->data);
342 bdp->cbd_datlen = skb->len;
345 * On some FEC implementations data must be aligned on
346 * 4-byte boundaries. Use bounce buffers to copy data
347 * and get it aligned. Ugh.
349 if (bdp->cbd_bufaddr & 0x3) {
350 unsigned int index;
351 index = bdp - fep->tx_bd_base;
352 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
353 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
356 /* Save skb pointer.
358 fep->tx_skbuff[fep->skb_cur] = skb;
360 dev->stats.tx_bytes += skb->len;
361 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
363 /* Push the data cache so the CPM does not get stale memory
364 * data.
366 flush_dcache_range((unsigned long)skb->data,
367 (unsigned long)skb->data + skb->len);
369 spin_lock_irq(&fep->lock);
371 /* Send it on its way. Tell FEC it's ready, interrupt when done,
372 * it's the last BD of the frame, and to put the CRC on the end.
375 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
376 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
377 bdp->cbd_sc = status;
379 dev->trans_start = jiffies;
381 /* Trigger transmission start */
382 fecp->fec_x_des_active = 0;
384 /* If this was the last BD in the ring, start at the beginning again.
386 if (status & BD_ENET_TX_WRAP) {
387 bdp = fep->tx_bd_base;
388 } else {
389 bdp++;
392 if (bdp == fep->dirty_tx) {
393 fep->tx_full = 1;
394 netif_stop_queue(dev);
397 fep->cur_tx = (cbd_t *)bdp;
399 spin_unlock_irq(&fep->lock);
401 return 0;
404 static void
405 fec_timeout(struct net_device *dev)
407 struct fec_enet_private *fep = netdev_priv(dev);
409 printk("%s: transmit timed out.\n", dev->name);
410 dev->stats.tx_errors++;
411 #ifndef final_version
413 int i;
414 cbd_t *bdp;
416 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
417 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
418 (unsigned long)fep->dirty_tx,
419 (unsigned long)fep->cur_rx);
421 bdp = fep->tx_bd_base;
422 printk(" tx: %u buffers\n", TX_RING_SIZE);
423 for (i = 0 ; i < TX_RING_SIZE; i++) {
424 printk(" %08x: %04x %04x %08x\n",
425 (uint) bdp,
426 bdp->cbd_sc,
427 bdp->cbd_datlen,
428 (int) bdp->cbd_bufaddr);
429 bdp++;
432 bdp = fep->rx_bd_base;
433 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
434 for (i = 0 ; i < RX_RING_SIZE; i++) {
435 printk(" %08x: %04x %04x %08x\n",
436 (uint) bdp,
437 bdp->cbd_sc,
438 bdp->cbd_datlen,
439 (int) bdp->cbd_bufaddr);
440 bdp++;
443 #endif
444 fec_restart(dev, fep->full_duplex);
445 netif_wake_queue(dev);
448 /* The interrupt handler.
449 * This is called from the MPC core interrupt.
451 static irqreturn_t
452 fec_enet_interrupt(int irq, void * dev_id)
454 struct net_device *dev = dev_id;
455 volatile fec_t *fecp;
456 uint int_events;
457 int handled = 0;
459 fecp = (volatile fec_t*)dev->base_addr;
461 /* Get the interrupt events that caused us to be here.
463 while ((int_events = fecp->fec_ievent) != 0) {
464 fecp->fec_ievent = int_events;
466 /* Handle receive event in its own function.
468 if (int_events & FEC_ENET_RXF) {
469 handled = 1;
470 fec_enet_rx(dev);
473 /* Transmit OK, or non-fatal error. Update the buffer
474 descriptors. FEC handles all errors, we just discover
475 them as part of the transmit process.
477 if (int_events & FEC_ENET_TXF) {
478 handled = 1;
479 fec_enet_tx(dev);
482 if (int_events & FEC_ENET_MII) {
483 handled = 1;
484 fec_enet_mii(dev);
488 return IRQ_RETVAL(handled);
492 static void
493 fec_enet_tx(struct net_device *dev)
495 struct fec_enet_private *fep;
496 volatile cbd_t *bdp;
497 unsigned short status;
498 struct sk_buff *skb;
500 fep = netdev_priv(dev);
501 spin_lock(&fep->lock);
502 bdp = fep->dirty_tx;
504 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
505 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
507 skb = fep->tx_skbuff[fep->skb_dirty];
508 /* Check for errors. */
509 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
510 BD_ENET_TX_RL | BD_ENET_TX_UN |
511 BD_ENET_TX_CSL)) {
512 dev->stats.tx_errors++;
513 if (status & BD_ENET_TX_HB) /* No heartbeat */
514 dev->stats.tx_heartbeat_errors++;
515 if (status & BD_ENET_TX_LC) /* Late collision */
516 dev->stats.tx_window_errors++;
517 if (status & BD_ENET_TX_RL) /* Retrans limit */
518 dev->stats.tx_aborted_errors++;
519 if (status & BD_ENET_TX_UN) /* Underrun */
520 dev->stats.tx_fifo_errors++;
521 if (status & BD_ENET_TX_CSL) /* Carrier lost */
522 dev->stats.tx_carrier_errors++;
523 } else {
524 dev->stats.tx_packets++;
527 #ifndef final_version
528 if (status & BD_ENET_TX_READY)
529 printk("HEY! Enet xmit interrupt and TX_READY.\n");
530 #endif
531 /* Deferred means some collisions occurred during transmit,
532 * but we eventually sent the packet OK.
534 if (status & BD_ENET_TX_DEF)
535 dev->stats.collisions++;
537 /* Free the sk buffer associated with this last transmit.
539 dev_kfree_skb_any(skb);
540 fep->tx_skbuff[fep->skb_dirty] = NULL;
541 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
543 /* Update pointer to next buffer descriptor to be transmitted.
545 if (status & BD_ENET_TX_WRAP)
546 bdp = fep->tx_bd_base;
547 else
548 bdp++;
550 /* Since we have freed up a buffer, the ring is no longer
551 * full.
553 if (fep->tx_full) {
554 fep->tx_full = 0;
555 if (netif_queue_stopped(dev))
556 netif_wake_queue(dev);
559 fep->dirty_tx = (cbd_t *)bdp;
560 spin_unlock(&fep->lock);
564 /* During a receive, the cur_rx points to the current incoming buffer.
565 * When we update through the ring, if the next incoming buffer has
566 * not been given to the system, we just set the empty indicator,
567 * effectively tossing the packet.
569 static void
570 fec_enet_rx(struct net_device *dev)
572 struct fec_enet_private *fep;
573 volatile fec_t *fecp;
574 volatile cbd_t *bdp;
575 unsigned short status;
576 struct sk_buff *skb;
577 ushort pkt_len;
578 __u8 *data;
580 #ifdef CONFIG_M532x
581 flush_cache_all();
582 #endif
584 fep = netdev_priv(dev);
585 fecp = (volatile fec_t*)dev->base_addr;
587 /* First, grab all of the stats for the incoming packet.
588 * These get messed up if we get called due to a busy condition.
590 bdp = fep->cur_rx;
592 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
594 #ifndef final_version
595 /* Since we have allocated space to hold a complete frame,
596 * the last indicator should be set.
598 if ((status & BD_ENET_RX_LAST) == 0)
599 printk("FEC ENET: rcv is not +last\n");
600 #endif
602 if (!fep->opened)
603 goto rx_processing_done;
605 /* Check for errors. */
606 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
607 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
608 dev->stats.rx_errors++;
609 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
610 /* Frame too long or too short. */
611 dev->stats.rx_length_errors++;
613 if (status & BD_ENET_RX_NO) /* Frame alignment */
614 dev->stats.rx_frame_errors++;
615 if (status & BD_ENET_RX_CR) /* CRC Error */
616 dev->stats.rx_crc_errors++;
617 if (status & BD_ENET_RX_OV) /* FIFO overrun */
618 dev->stats.rx_fifo_errors++;
621 /* Report late collisions as a frame error.
622 * On this error, the BD is closed, but we don't know what we
623 * have in the buffer. So, just drop this frame on the floor.
625 if (status & BD_ENET_RX_CL) {
626 dev->stats.rx_errors++;
627 dev->stats.rx_frame_errors++;
628 goto rx_processing_done;
631 /* Process the incoming frame.
633 dev->stats.rx_packets++;
634 pkt_len = bdp->cbd_datlen;
635 dev->stats.rx_bytes += pkt_len;
636 data = (__u8*)__va(bdp->cbd_bufaddr);
638 /* This does 16 byte alignment, exactly what we need.
639 * The packet length includes FCS, but we don't want to
640 * include that when passing upstream as it messes up
641 * bridging applications.
643 skb = dev_alloc_skb(pkt_len-4);
645 if (skb == NULL) {
646 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
647 dev->stats.rx_dropped++;
648 } else {
649 skb_put(skb,pkt_len-4); /* Make room */
650 skb_copy_to_linear_data(skb, data, pkt_len-4);
651 skb->protocol=eth_type_trans(skb,dev);
652 netif_rx(skb);
654 rx_processing_done:
656 /* Clear the status flags for this buffer.
658 status &= ~BD_ENET_RX_STATS;
660 /* Mark the buffer empty.
662 status |= BD_ENET_RX_EMPTY;
663 bdp->cbd_sc = status;
665 /* Update BD pointer to next entry.
667 if (status & BD_ENET_RX_WRAP)
668 bdp = fep->rx_bd_base;
669 else
670 bdp++;
672 #if 1
673 /* Doing this here will keep the FEC running while we process
674 * incoming frames. On a heavily loaded network, we should be
675 * able to keep up at the expense of system resources.
677 fecp->fec_r_des_active = 0;
678 #endif
679 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
680 fep->cur_rx = (cbd_t *)bdp;
682 #if 0
683 /* Doing this here will allow us to process all frames in the
684 * ring before the FEC is allowed to put more there. On a heavily
685 * loaded network, some frames may be lost. Unfortunately, this
686 * increases the interrupt overhead since we can potentially work
687 * our way back to the interrupt return only to come right back
688 * here.
690 fecp->fec_r_des_active = 0;
691 #endif
695 /* called from interrupt context */
696 static void
697 fec_enet_mii(struct net_device *dev)
699 struct fec_enet_private *fep;
700 volatile fec_t *ep;
701 mii_list_t *mip;
702 uint mii_reg;
704 fep = netdev_priv(dev);
705 ep = fep->hwp;
706 mii_reg = ep->fec_mii_data;
708 spin_lock(&fep->lock);
710 if ((mip = mii_head) == NULL) {
711 printk("MII and no head!\n");
712 goto unlock;
715 if (mip->mii_func != NULL)
716 (*(mip->mii_func))(mii_reg, dev);
718 mii_head = mip->mii_next;
719 mip->mii_next = mii_free;
720 mii_free = mip;
722 if ((mip = mii_head) != NULL)
723 ep->fec_mii_data = mip->mii_regval;
725 unlock:
726 spin_unlock(&fep->lock);
729 static int
730 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
732 struct fec_enet_private *fep;
733 unsigned long flags;
734 mii_list_t *mip;
735 int retval;
737 /* Add PHY address to register command.
739 fep = netdev_priv(dev);
740 regval |= fep->phy_addr << 23;
742 retval = 0;
744 spin_lock_irqsave(&fep->lock,flags);
746 if ((mip = mii_free) != NULL) {
747 mii_free = mip->mii_next;
748 mip->mii_regval = regval;
749 mip->mii_func = func;
750 mip->mii_next = NULL;
751 if (mii_head) {
752 mii_tail->mii_next = mip;
753 mii_tail = mip;
754 } else {
755 mii_head = mii_tail = mip;
756 fep->hwp->fec_mii_data = regval;
758 } else {
759 retval = 1;
762 spin_unlock_irqrestore(&fep->lock,flags);
764 return(retval);
767 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
769 int k;
771 if(!c)
772 return;
774 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
775 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
779 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
781 struct fec_enet_private *fep = netdev_priv(dev);
782 volatile uint *s = &(fep->phy_status);
783 uint status;
785 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
787 if (mii_reg & 0x0004)
788 status |= PHY_STAT_LINK;
789 if (mii_reg & 0x0010)
790 status |= PHY_STAT_FAULT;
791 if (mii_reg & 0x0020)
792 status |= PHY_STAT_ANC;
793 *s = status;
796 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
798 struct fec_enet_private *fep = netdev_priv(dev);
799 volatile uint *s = &(fep->phy_status);
800 uint status;
802 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
804 if (mii_reg & 0x1000)
805 status |= PHY_CONF_ANE;
806 if (mii_reg & 0x4000)
807 status |= PHY_CONF_LOOP;
808 *s = status;
811 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
813 struct fec_enet_private *fep = netdev_priv(dev);
814 volatile uint *s = &(fep->phy_status);
815 uint status;
817 status = *s & ~(PHY_CONF_SPMASK);
819 if (mii_reg & 0x0020)
820 status |= PHY_CONF_10HDX;
821 if (mii_reg & 0x0040)
822 status |= PHY_CONF_10FDX;
823 if (mii_reg & 0x0080)
824 status |= PHY_CONF_100HDX;
825 if (mii_reg & 0x00100)
826 status |= PHY_CONF_100FDX;
827 *s = status;
830 /* ------------------------------------------------------------------------- */
831 /* The Level one LXT970 is used by many boards */
833 #define MII_LXT970_MIRROR 16 /* Mirror register */
834 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
835 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
836 #define MII_LXT970_CONFIG 19 /* Configuration Register */
837 #define MII_LXT970_CSR 20 /* Chip Status Register */
839 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
841 struct fec_enet_private *fep = netdev_priv(dev);
842 volatile uint *s = &(fep->phy_status);
843 uint status;
845 status = *s & ~(PHY_STAT_SPMASK);
846 if (mii_reg & 0x0800) {
847 if (mii_reg & 0x1000)
848 status |= PHY_STAT_100FDX;
849 else
850 status |= PHY_STAT_100HDX;
851 } else {
852 if (mii_reg & 0x1000)
853 status |= PHY_STAT_10FDX;
854 else
855 status |= PHY_STAT_10HDX;
857 *s = status;
860 static phy_cmd_t const phy_cmd_lxt970_config[] = {
861 { mk_mii_read(MII_REG_CR), mii_parse_cr },
862 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
863 { mk_mii_end, }
865 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
866 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
867 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
868 { mk_mii_end, }
870 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
871 /* read SR and ISR to acknowledge */
872 { mk_mii_read(MII_REG_SR), mii_parse_sr },
873 { mk_mii_read(MII_LXT970_ISR), NULL },
875 /* find out the current status */
876 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
877 { mk_mii_end, }
879 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
880 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
881 { mk_mii_end, }
883 static phy_info_t const phy_info_lxt970 = {
884 .id = 0x07810000,
885 .name = "LXT970",
886 .config = phy_cmd_lxt970_config,
887 .startup = phy_cmd_lxt970_startup,
888 .ack_int = phy_cmd_lxt970_ack_int,
889 .shutdown = phy_cmd_lxt970_shutdown
892 /* ------------------------------------------------------------------------- */
893 /* The Level one LXT971 is used on some of my custom boards */
895 /* register definitions for the 971 */
897 #define MII_LXT971_PCR 16 /* Port Control Register */
898 #define MII_LXT971_SR2 17 /* Status Register 2 */
899 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
900 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
901 #define MII_LXT971_LCR 20 /* LED Control Register */
902 #define MII_LXT971_TCR 30 /* Transmit Control Register */
905 * I had some nice ideas of running the MDIO faster...
906 * The 971 should support 8MHz and I tried it, but things acted really
907 * weird, so 2.5 MHz ought to be enough for anyone...
910 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
912 struct fec_enet_private *fep = netdev_priv(dev);
913 volatile uint *s = &(fep->phy_status);
914 uint status;
916 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
918 if (mii_reg & 0x0400) {
919 fep->link = 1;
920 status |= PHY_STAT_LINK;
921 } else {
922 fep->link = 0;
924 if (mii_reg & 0x0080)
925 status |= PHY_STAT_ANC;
926 if (mii_reg & 0x4000) {
927 if (mii_reg & 0x0200)
928 status |= PHY_STAT_100FDX;
929 else
930 status |= PHY_STAT_100HDX;
931 } else {
932 if (mii_reg & 0x0200)
933 status |= PHY_STAT_10FDX;
934 else
935 status |= PHY_STAT_10HDX;
937 if (mii_reg & 0x0008)
938 status |= PHY_STAT_FAULT;
940 *s = status;
943 static phy_cmd_t const phy_cmd_lxt971_config[] = {
944 /* limit to 10MBit because my prototype board
945 * doesn't work with 100. */
946 { mk_mii_read(MII_REG_CR), mii_parse_cr },
947 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
948 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
949 { mk_mii_end, }
951 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
952 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
953 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
954 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
955 /* Somehow does the 971 tell me that the link is down
956 * the first read after power-up.
957 * read here to get a valid value in ack_int */
958 { mk_mii_read(MII_REG_SR), mii_parse_sr },
959 { mk_mii_end, }
961 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
962 /* acknowledge the int before reading status ! */
963 { mk_mii_read(MII_LXT971_ISR), NULL },
964 /* find out the current status */
965 { mk_mii_read(MII_REG_SR), mii_parse_sr },
966 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
967 { mk_mii_end, }
969 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
970 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
971 { mk_mii_end, }
973 static phy_info_t const phy_info_lxt971 = {
974 .id = 0x0001378e,
975 .name = "LXT971",
976 .config = phy_cmd_lxt971_config,
977 .startup = phy_cmd_lxt971_startup,
978 .ack_int = phy_cmd_lxt971_ack_int,
979 .shutdown = phy_cmd_lxt971_shutdown
982 /* ------------------------------------------------------------------------- */
983 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
985 /* register definitions */
987 #define MII_QS6612_MCR 17 /* Mode Control Register */
988 #define MII_QS6612_FTR 27 /* Factory Test Register */
989 #define MII_QS6612_MCO 28 /* Misc. Control Register */
990 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
991 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
992 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
994 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
996 struct fec_enet_private *fep = netdev_priv(dev);
997 volatile uint *s = &(fep->phy_status);
998 uint status;
1000 status = *s & ~(PHY_STAT_SPMASK);
1002 switch((mii_reg >> 2) & 7) {
1003 case 1: status |= PHY_STAT_10HDX; break;
1004 case 2: status |= PHY_STAT_100HDX; break;
1005 case 5: status |= PHY_STAT_10FDX; break;
1006 case 6: status |= PHY_STAT_100FDX; break;
1009 *s = status;
1012 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1013 /* The PHY powers up isolated on the RPX,
1014 * so send a command to allow operation.
1016 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1018 /* parse cr and anar to get some info */
1019 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1020 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1021 { mk_mii_end, }
1023 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1024 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1025 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1026 { mk_mii_end, }
1028 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1029 /* we need to read ISR, SR and ANER to acknowledge */
1030 { mk_mii_read(MII_QS6612_ISR), NULL },
1031 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1032 { mk_mii_read(MII_REG_ANER), NULL },
1034 /* read pcr to get info */
1035 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1036 { mk_mii_end, }
1038 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1039 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1040 { mk_mii_end, }
1042 static phy_info_t const phy_info_qs6612 = {
1043 .id = 0x00181440,
1044 .name = "QS6612",
1045 .config = phy_cmd_qs6612_config,
1046 .startup = phy_cmd_qs6612_startup,
1047 .ack_int = phy_cmd_qs6612_ack_int,
1048 .shutdown = phy_cmd_qs6612_shutdown
1051 /* ------------------------------------------------------------------------- */
1052 /* AMD AM79C874 phy */
1054 /* register definitions for the 874 */
1056 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1057 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1058 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1059 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1060 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1061 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1062 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1064 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1066 struct fec_enet_private *fep = netdev_priv(dev);
1067 volatile uint *s = &(fep->phy_status);
1068 uint status;
1070 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1072 if (mii_reg & 0x0080)
1073 status |= PHY_STAT_ANC;
1074 if (mii_reg & 0x0400)
1075 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1076 else
1077 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1079 *s = status;
1082 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1083 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1084 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1085 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1086 { mk_mii_end, }
1088 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1089 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1090 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1091 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1092 { mk_mii_end, }
1094 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1095 /* find out the current status */
1096 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1097 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1098 /* we only need to read ISR to acknowledge */
1099 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1100 { mk_mii_end, }
1102 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1103 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1104 { mk_mii_end, }
1106 static phy_info_t const phy_info_am79c874 = {
1107 .id = 0x00022561,
1108 .name = "AM79C874",
1109 .config = phy_cmd_am79c874_config,
1110 .startup = phy_cmd_am79c874_startup,
1111 .ack_int = phy_cmd_am79c874_ack_int,
1112 .shutdown = phy_cmd_am79c874_shutdown
1116 /* ------------------------------------------------------------------------- */
1117 /* Kendin KS8721BL phy */
1119 /* register definitions for the 8721 */
1121 #define MII_KS8721BL_RXERCR 21
1122 #define MII_KS8721BL_ICSR 22
1123 #define MII_KS8721BL_PHYCR 31
1125 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1126 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1127 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1128 { mk_mii_end, }
1130 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1131 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1132 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1133 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1134 { mk_mii_end, }
1136 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1137 /* find out the current status */
1138 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1139 /* we only need to read ISR to acknowledge */
1140 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1141 { mk_mii_end, }
1143 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1144 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1145 { mk_mii_end, }
1147 static phy_info_t const phy_info_ks8721bl = {
1148 .id = 0x00022161,
1149 .name = "KS8721BL",
1150 .config = phy_cmd_ks8721bl_config,
1151 .startup = phy_cmd_ks8721bl_startup,
1152 .ack_int = phy_cmd_ks8721bl_ack_int,
1153 .shutdown = phy_cmd_ks8721bl_shutdown
1156 /* ------------------------------------------------------------------------- */
1157 /* register definitions for the DP83848 */
1159 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1161 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1163 struct fec_enet_private *fep = dev->priv;
1164 volatile uint *s = &(fep->phy_status);
1166 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1168 /* Link up */
1169 if (mii_reg & 0x0001) {
1170 fep->link = 1;
1171 *s |= PHY_STAT_LINK;
1172 } else
1173 fep->link = 0;
1174 /* Status of link */
1175 if (mii_reg & 0x0010) /* Autonegotioation complete */
1176 *s |= PHY_STAT_ANC;
1177 if (mii_reg & 0x0002) { /* 10MBps? */
1178 if (mii_reg & 0x0004) /* Full Duplex? */
1179 *s |= PHY_STAT_10FDX;
1180 else
1181 *s |= PHY_STAT_10HDX;
1182 } else { /* 100 Mbps? */
1183 if (mii_reg & 0x0004) /* Full Duplex? */
1184 *s |= PHY_STAT_100FDX;
1185 else
1186 *s |= PHY_STAT_100HDX;
1188 if (mii_reg & 0x0008)
1189 *s |= PHY_STAT_FAULT;
1192 static phy_info_t phy_info_dp83848= {
1193 0x020005c9,
1194 "DP83848",
1196 (const phy_cmd_t []) { /* config */
1197 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1198 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1199 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1200 { mk_mii_end, }
1202 (const phy_cmd_t []) { /* startup - enable interrupts */
1203 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1204 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1205 { mk_mii_end, }
1207 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1208 { mk_mii_end, }
1210 (const phy_cmd_t []) { /* shutdown */
1211 { mk_mii_end, }
1215 /* ------------------------------------------------------------------------- */
1217 static phy_info_t const * const phy_info[] = {
1218 &phy_info_lxt970,
1219 &phy_info_lxt971,
1220 &phy_info_qs6612,
1221 &phy_info_am79c874,
1222 &phy_info_ks8721bl,
1223 &phy_info_dp83848,
1224 NULL
1227 /* ------------------------------------------------------------------------- */
1228 #if !defined(CONFIG_M532x)
1229 #ifdef CONFIG_RPXCLASSIC
1230 static void
1231 mii_link_interrupt(void *dev_id);
1232 #else
1233 static irqreturn_t
1234 mii_link_interrupt(int irq, void * dev_id);
1235 #endif
1236 #endif
1238 #if defined(CONFIG_M5272)
1240 * Code specific to Coldfire 5272 setup.
1242 static void __inline__ fec_request_intrs(struct net_device *dev)
1244 volatile unsigned long *icrp;
1245 static const struct idesc {
1246 char *name;
1247 unsigned short irq;
1248 irq_handler_t handler;
1249 } *idp, id[] = {
1250 { "fec(RX)", 86, fec_enet_interrupt },
1251 { "fec(TX)", 87, fec_enet_interrupt },
1252 { "fec(OTHER)", 88, fec_enet_interrupt },
1253 { "fec(MII)", 66, mii_link_interrupt },
1254 { NULL },
1257 /* Setup interrupt handlers. */
1258 for (idp = id; idp->name; idp++) {
1259 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1260 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1263 /* Unmask interrupt at ColdFire 5272 SIM */
1264 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1265 *icrp = 0x00000ddd;
1266 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1267 *icrp = 0x0d000000;
1270 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1272 volatile fec_t *fecp;
1274 fecp = fep->hwp;
1275 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1276 fecp->fec_x_cntrl = 0x00;
1279 * Set MII speed to 2.5 MHz
1280 * See 5272 manual section 11.5.8: MSCR
1282 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1283 fecp->fec_mii_speed = fep->phy_speed;
1285 fec_restart(dev, 0);
1288 static void __inline__ fec_get_mac(struct net_device *dev)
1290 struct fec_enet_private *fep = netdev_priv(dev);
1291 volatile fec_t *fecp;
1292 unsigned char *iap, tmpaddr[ETH_ALEN];
1294 fecp = fep->hwp;
1296 if (FEC_FLASHMAC) {
1298 * Get MAC address from FLASH.
1299 * If it is all 1's or 0's, use the default.
1301 iap = (unsigned char *)FEC_FLASHMAC;
1302 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1303 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1304 iap = fec_mac_default;
1305 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1306 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1307 iap = fec_mac_default;
1308 } else {
1309 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1310 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1311 iap = &tmpaddr[0];
1314 memcpy(dev->dev_addr, iap, ETH_ALEN);
1316 /* Adjust MAC if using default MAC address */
1317 if (iap == fec_mac_default)
1318 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1321 static void __inline__ fec_enable_phy_intr(void)
1325 static void __inline__ fec_disable_phy_intr(void)
1327 volatile unsigned long *icrp;
1328 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1329 *icrp = 0x08000000;
1332 static void __inline__ fec_phy_ack_intr(void)
1334 volatile unsigned long *icrp;
1335 /* Acknowledge the interrupt */
1336 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1337 *icrp = 0x0d000000;
1340 static void __inline__ fec_localhw_setup(void)
1345 * Do not need to make region uncached on 5272.
1347 static void __inline__ fec_uncache(unsigned long addr)
1351 /* ------------------------------------------------------------------------- */
1353 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1356 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1357 * the 5270/5271/5274/5275 and 5280/5282 setups.
1359 static void __inline__ fec_request_intrs(struct net_device *dev)
1361 struct fec_enet_private *fep;
1362 int b;
1363 static const struct idesc {
1364 char *name;
1365 unsigned short irq;
1366 } *idp, id[] = {
1367 { "fec(TXF)", 23 },
1368 { "fec(TXB)", 24 },
1369 { "fec(TXFIFO)", 25 },
1370 { "fec(TXCR)", 26 },
1371 { "fec(RXF)", 27 },
1372 { "fec(RXB)", 28 },
1373 { "fec(MII)", 29 },
1374 { "fec(LC)", 30 },
1375 { "fec(HBERR)", 31 },
1376 { "fec(GRA)", 32 },
1377 { "fec(EBERR)", 33 },
1378 { "fec(BABT)", 34 },
1379 { "fec(BABR)", 35 },
1380 { NULL },
1383 fep = netdev_priv(dev);
1384 b = (fep->index) ? 128 : 64;
1386 /* Setup interrupt handlers. */
1387 for (idp = id; idp->name; idp++) {
1388 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1389 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1392 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1394 volatile unsigned char *icrp;
1395 volatile unsigned long *imrp;
1396 int i, ilip;
1398 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1399 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1400 MCFINTC_ICR0);
1401 for (i = 23, ilip = 0x28; (i < 36); i++)
1402 icrp[i] = ilip--;
1404 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1405 MCFINTC_IMRH);
1406 *imrp &= ~0x0000000f;
1407 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1408 MCFINTC_IMRL);
1409 *imrp &= ~0xff800001;
1412 #if defined(CONFIG_M528x)
1413 /* Set up gpio outputs for MII lines */
1415 volatile u16 *gpio_paspar;
1416 volatile u8 *gpio_pehlpar;
1418 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1419 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1420 *gpio_paspar |= 0x0f00;
1421 *gpio_pehlpar = 0xc0;
1423 #endif
1425 #if defined(CONFIG_M527x)
1426 /* Set up gpio outputs for MII lines */
1428 volatile u8 *gpio_par_fec;
1429 volatile u16 *gpio_par_feci2c;
1431 gpio_par_feci2c = (volatile u16 *)(MCF_IPSBAR + 0x100082);
1432 /* Set up gpio outputs for FEC0 MII lines */
1433 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100078);
1435 *gpio_par_feci2c |= 0x0f00;
1436 *gpio_par_fec |= 0xc0;
1438 #if defined(CONFIG_FEC2)
1439 /* Set up gpio outputs for FEC1 MII lines */
1440 gpio_par_fec = (volatile u8 *)(MCF_IPSBAR + 0x100079);
1442 *gpio_par_feci2c |= 0x00a0;
1443 *gpio_par_fec |= 0xc0;
1444 #endif /* CONFIG_FEC2 */
1446 #endif /* CONFIG_M527x */
1449 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1451 volatile fec_t *fecp;
1453 fecp = fep->hwp;
1454 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1455 fecp->fec_x_cntrl = 0x00;
1458 * Set MII speed to 2.5 MHz
1459 * See 5282 manual section 17.5.4.7: MSCR
1461 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1462 fecp->fec_mii_speed = fep->phy_speed;
1464 fec_restart(dev, 0);
1467 static void __inline__ fec_get_mac(struct net_device *dev)
1469 struct fec_enet_private *fep = netdev_priv(dev);
1470 volatile fec_t *fecp;
1471 unsigned char *iap, tmpaddr[ETH_ALEN];
1473 fecp = fep->hwp;
1475 if (FEC_FLASHMAC) {
1477 * Get MAC address from FLASH.
1478 * If it is all 1's or 0's, use the default.
1480 iap = FEC_FLASHMAC;
1481 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1482 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1483 iap = fec_mac_default;
1484 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1485 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1486 iap = fec_mac_default;
1487 } else {
1488 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1489 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1490 iap = &tmpaddr[0];
1493 memcpy(dev->dev_addr, iap, ETH_ALEN);
1495 /* Adjust MAC if using default MAC address */
1496 if (iap == fec_mac_default)
1497 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1500 static void __inline__ fec_enable_phy_intr(void)
1504 static void __inline__ fec_disable_phy_intr(void)
1508 static void __inline__ fec_phy_ack_intr(void)
1512 static void __inline__ fec_localhw_setup(void)
1517 * Do not need to make region uncached on 5272.
1519 static void __inline__ fec_uncache(unsigned long addr)
1523 /* ------------------------------------------------------------------------- */
1525 #elif defined(CONFIG_M520x)
1528 * Code specific to Coldfire 520x
1530 static void __inline__ fec_request_intrs(struct net_device *dev)
1532 struct fec_enet_private *fep;
1533 int b;
1534 static const struct idesc {
1535 char *name;
1536 unsigned short irq;
1537 } *idp, id[] = {
1538 { "fec(TXF)", 23 },
1539 { "fec(TXB)", 24 },
1540 { "fec(TXFIFO)", 25 },
1541 { "fec(TXCR)", 26 },
1542 { "fec(RXF)", 27 },
1543 { "fec(RXB)", 28 },
1544 { "fec(MII)", 29 },
1545 { "fec(LC)", 30 },
1546 { "fec(HBERR)", 31 },
1547 { "fec(GRA)", 32 },
1548 { "fec(EBERR)", 33 },
1549 { "fec(BABT)", 34 },
1550 { "fec(BABR)", 35 },
1551 { NULL },
1554 fep = netdev_priv(dev);
1555 b = 64 + 13;
1557 /* Setup interrupt handlers. */
1558 for (idp = id; idp->name; idp++) {
1559 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1560 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1563 /* Unmask interrupts at ColdFire interrupt controller */
1565 volatile unsigned char *icrp;
1566 volatile unsigned long *imrp;
1568 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
1569 MCFINTC_ICR0);
1570 for (b = 36; (b < 49); b++)
1571 icrp[b] = 0x04;
1572 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
1573 MCFINTC_IMRH);
1574 *imrp &= ~0x0001FFF0;
1576 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
1577 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
1580 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1582 volatile fec_t *fecp;
1584 fecp = fep->hwp;
1585 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1586 fecp->fec_x_cntrl = 0x00;
1589 * Set MII speed to 2.5 MHz
1590 * See 5282 manual section 17.5.4.7: MSCR
1592 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1593 fecp->fec_mii_speed = fep->phy_speed;
1595 fec_restart(dev, 0);
1598 static void __inline__ fec_get_mac(struct net_device *dev)
1600 struct fec_enet_private *fep = netdev_priv(dev);
1601 volatile fec_t *fecp;
1602 unsigned char *iap, tmpaddr[ETH_ALEN];
1604 fecp = fep->hwp;
1606 if (FEC_FLASHMAC) {
1608 * Get MAC address from FLASH.
1609 * If it is all 1's or 0's, use the default.
1611 iap = FEC_FLASHMAC;
1612 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1613 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1614 iap = fec_mac_default;
1615 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1616 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1617 iap = fec_mac_default;
1618 } else {
1619 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1620 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1621 iap = &tmpaddr[0];
1624 memcpy(dev->dev_addr, iap, ETH_ALEN);
1626 /* Adjust MAC if using default MAC address */
1627 if (iap == fec_mac_default)
1628 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1631 static void __inline__ fec_enable_phy_intr(void)
1635 static void __inline__ fec_disable_phy_intr(void)
1639 static void __inline__ fec_phy_ack_intr(void)
1643 static void __inline__ fec_localhw_setup(void)
1647 static void __inline__ fec_uncache(unsigned long addr)
1651 /* ------------------------------------------------------------------------- */
1653 #elif defined(CONFIG_M532x)
1655 * Code specific for M532x
1657 static void __inline__ fec_request_intrs(struct net_device *dev)
1659 struct fec_enet_private *fep;
1660 int b;
1661 static const struct idesc {
1662 char *name;
1663 unsigned short irq;
1664 } *idp, id[] = {
1665 { "fec(TXF)", 36 },
1666 { "fec(TXB)", 37 },
1667 { "fec(TXFIFO)", 38 },
1668 { "fec(TXCR)", 39 },
1669 { "fec(RXF)", 40 },
1670 { "fec(RXB)", 41 },
1671 { "fec(MII)", 42 },
1672 { "fec(LC)", 43 },
1673 { "fec(HBERR)", 44 },
1674 { "fec(GRA)", 45 },
1675 { "fec(EBERR)", 46 },
1676 { "fec(BABT)", 47 },
1677 { "fec(BABR)", 48 },
1678 { NULL },
1681 fep = netdev_priv(dev);
1682 b = (fep->index) ? 128 : 64;
1684 /* Setup interrupt handlers. */
1685 for (idp = id; idp->name; idp++) {
1686 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
1687 printk("FEC: Could not allocate %s IRQ(%d)!\n",
1688 idp->name, b+idp->irq);
1691 /* Unmask interrupts */
1692 MCF_INTC0_ICR36 = 0x2;
1693 MCF_INTC0_ICR37 = 0x2;
1694 MCF_INTC0_ICR38 = 0x2;
1695 MCF_INTC0_ICR39 = 0x2;
1696 MCF_INTC0_ICR40 = 0x2;
1697 MCF_INTC0_ICR41 = 0x2;
1698 MCF_INTC0_ICR42 = 0x2;
1699 MCF_INTC0_ICR43 = 0x2;
1700 MCF_INTC0_ICR44 = 0x2;
1701 MCF_INTC0_ICR45 = 0x2;
1702 MCF_INTC0_ICR46 = 0x2;
1703 MCF_INTC0_ICR47 = 0x2;
1704 MCF_INTC0_ICR48 = 0x2;
1706 MCF_INTC0_IMRH &= ~(
1707 MCF_INTC_IMRH_INT_MASK36 |
1708 MCF_INTC_IMRH_INT_MASK37 |
1709 MCF_INTC_IMRH_INT_MASK38 |
1710 MCF_INTC_IMRH_INT_MASK39 |
1711 MCF_INTC_IMRH_INT_MASK40 |
1712 MCF_INTC_IMRH_INT_MASK41 |
1713 MCF_INTC_IMRH_INT_MASK42 |
1714 MCF_INTC_IMRH_INT_MASK43 |
1715 MCF_INTC_IMRH_INT_MASK44 |
1716 MCF_INTC_IMRH_INT_MASK45 |
1717 MCF_INTC_IMRH_INT_MASK46 |
1718 MCF_INTC_IMRH_INT_MASK47 |
1719 MCF_INTC_IMRH_INT_MASK48 );
1721 /* Set up gpio outputs for MII lines */
1722 MCF_GPIO_PAR_FECI2C |= (0 |
1723 MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
1724 MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
1725 MCF_GPIO_PAR_FEC = (0 |
1726 MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
1727 MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
1730 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1732 volatile fec_t *fecp;
1734 fecp = fep->hwp;
1735 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1736 fecp->fec_x_cntrl = 0x00;
1739 * Set MII speed to 2.5 MHz
1741 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1742 fecp->fec_mii_speed = fep->phy_speed;
1744 fec_restart(dev, 0);
1747 static void __inline__ fec_get_mac(struct net_device *dev)
1749 struct fec_enet_private *fep = netdev_priv(dev);
1750 volatile fec_t *fecp;
1751 unsigned char *iap, tmpaddr[ETH_ALEN];
1753 fecp = fep->hwp;
1755 if (FEC_FLASHMAC) {
1757 * Get MAC address from FLASH.
1758 * If it is all 1's or 0's, use the default.
1760 iap = FEC_FLASHMAC;
1761 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1762 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1763 iap = fec_mac_default;
1764 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1765 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1766 iap = fec_mac_default;
1767 } else {
1768 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1769 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1770 iap = &tmpaddr[0];
1773 memcpy(dev->dev_addr, iap, ETH_ALEN);
1775 /* Adjust MAC if using default MAC address */
1776 if (iap == fec_mac_default)
1777 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1780 static void __inline__ fec_enable_phy_intr(void)
1784 static void __inline__ fec_disable_phy_intr(void)
1788 static void __inline__ fec_phy_ack_intr(void)
1792 static void __inline__ fec_localhw_setup(void)
1797 * Do not need to make region uncached on 532x.
1799 static void __inline__ fec_uncache(unsigned long addr)
1803 /* ------------------------------------------------------------------------- */
1806 #else
1809 * Code specific to the MPC860T setup.
1811 static void __inline__ fec_request_intrs(struct net_device *dev)
1813 volatile immap_t *immap;
1815 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1817 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1818 panic("Could not allocate FEC IRQ!");
1820 #ifdef CONFIG_RPXCLASSIC
1821 /* Make Port C, bit 15 an input that causes interrupts.
1823 immap->im_ioport.iop_pcpar &= ~0x0001;
1824 immap->im_ioport.iop_pcdir &= ~0x0001;
1825 immap->im_ioport.iop_pcso &= ~0x0001;
1826 immap->im_ioport.iop_pcint |= 0x0001;
1827 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1829 /* Make LEDS reflect Link status.
1831 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1832 #endif
1833 #ifdef CONFIG_FADS
1834 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1835 panic("Could not allocate MII IRQ!");
1836 #endif
1839 static void __inline__ fec_get_mac(struct net_device *dev)
1841 bd_t *bd;
1843 bd = (bd_t *)__res;
1844 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1846 #ifdef CONFIG_RPXCLASSIC
1847 /* The Embedded Planet boards have only one MAC address in
1848 * the EEPROM, but can have two Ethernet ports. For the
1849 * FEC port, we create another address by setting one of
1850 * the address bits above something that would have (up to
1851 * now) been allocated.
1853 dev->dev_adrd[3] |= 0x80;
1854 #endif
1857 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1859 extern uint _get_IMMR(void);
1860 volatile immap_t *immap;
1861 volatile fec_t *fecp;
1863 fecp = fep->hwp;
1864 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1866 /* Configure all of port D for MII.
1868 immap->im_ioport.iop_pdpar = 0x1fff;
1870 /* Bits moved from Rev. D onward.
1872 if ((_get_IMMR() & 0xffff) < 0x0501)
1873 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1874 else
1875 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1877 /* Set MII speed to 2.5 MHz
1879 fecp->fec_mii_speed = fep->phy_speed =
1880 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1883 static void __inline__ fec_enable_phy_intr(void)
1885 volatile fec_t *fecp;
1887 fecp = fep->hwp;
1889 /* Enable MII command finished interrupt
1891 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1894 static void __inline__ fec_disable_phy_intr(void)
1898 static void __inline__ fec_phy_ack_intr(void)
1902 static void __inline__ fec_localhw_setup(void)
1904 volatile fec_t *fecp;
1906 fecp = fep->hwp;
1907 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1908 /* Enable big endian and don't care about SDMA FC.
1910 fecp->fec_fun_code = 0x78000000;
1913 static void __inline__ fec_uncache(unsigned long addr)
1915 pte_t *pte;
1916 pte = va_to_pte(mem_addr);
1917 pte_val(*pte) |= _PAGE_NO_CACHE;
1918 flush_tlb_page(init_mm.mmap, mem_addr);
1921 #endif
1923 /* ------------------------------------------------------------------------- */
1925 static void mii_display_status(struct net_device *dev)
1927 struct fec_enet_private *fep = netdev_priv(dev);
1928 volatile uint *s = &(fep->phy_status);
1930 if (!fep->link && !fep->old_link) {
1931 /* Link is still down - don't print anything */
1932 return;
1935 printk("%s: status: ", dev->name);
1937 if (!fep->link) {
1938 printk("link down");
1939 } else {
1940 printk("link up");
1942 switch(*s & PHY_STAT_SPMASK) {
1943 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1944 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1945 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1946 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1947 default:
1948 printk(", Unknown speed/duplex");
1951 if (*s & PHY_STAT_ANC)
1952 printk(", auto-negotiation complete");
1955 if (*s & PHY_STAT_FAULT)
1956 printk(", remote fault");
1958 printk(".\n");
1961 static void mii_display_config(struct work_struct *work)
1963 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1964 struct net_device *dev = fep->netdev;
1965 uint status = fep->phy_status;
1968 ** When we get here, phy_task is already removed from
1969 ** the workqueue. It is thus safe to allow to reuse it.
1971 fep->mii_phy_task_queued = 0;
1972 printk("%s: config: auto-negotiation ", dev->name);
1974 if (status & PHY_CONF_ANE)
1975 printk("on");
1976 else
1977 printk("off");
1979 if (status & PHY_CONF_100FDX)
1980 printk(", 100FDX");
1981 if (status & PHY_CONF_100HDX)
1982 printk(", 100HDX");
1983 if (status & PHY_CONF_10FDX)
1984 printk(", 10FDX");
1985 if (status & PHY_CONF_10HDX)
1986 printk(", 10HDX");
1987 if (!(status & PHY_CONF_SPMASK))
1988 printk(", No speed/duplex selected?");
1990 if (status & PHY_CONF_LOOP)
1991 printk(", loopback enabled");
1993 printk(".\n");
1995 fep->sequence_done = 1;
1998 static void mii_relink(struct work_struct *work)
2000 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
2001 struct net_device *dev = fep->netdev;
2002 int duplex;
2005 ** When we get here, phy_task is already removed from
2006 ** the workqueue. It is thus safe to allow to reuse it.
2008 fep->mii_phy_task_queued = 0;
2009 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
2010 mii_display_status(dev);
2011 fep->old_link = fep->link;
2013 if (fep->link) {
2014 duplex = 0;
2015 if (fep->phy_status
2016 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
2017 duplex = 1;
2018 fec_restart(dev, duplex);
2019 } else
2020 fec_stop(dev);
2022 #if 0
2023 enable_irq(fep->mii_irq);
2024 #endif
2028 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
2029 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
2031 struct fec_enet_private *fep = netdev_priv(dev);
2034 ** We cannot queue phy_task twice in the workqueue. It
2035 ** would cause an endless loop in the workqueue.
2036 ** Fortunately, if the last mii_relink entry has not yet been
2037 ** executed now, it will do the job for the current interrupt,
2038 ** which is just what we want.
2040 if (fep->mii_phy_task_queued)
2041 return;
2043 fep->mii_phy_task_queued = 1;
2044 INIT_WORK(&fep->phy_task, mii_relink);
2045 schedule_work(&fep->phy_task);
2048 /* mii_queue_config is called in interrupt context from fec_enet_mii */
2049 static void mii_queue_config(uint mii_reg, struct net_device *dev)
2051 struct fec_enet_private *fep = netdev_priv(dev);
2053 if (fep->mii_phy_task_queued)
2054 return;
2056 fep->mii_phy_task_queued = 1;
2057 INIT_WORK(&fep->phy_task, mii_display_config);
2058 schedule_work(&fep->phy_task);
2061 phy_cmd_t const phy_cmd_relink[] = {
2062 { mk_mii_read(MII_REG_CR), mii_queue_relink },
2063 { mk_mii_end, }
2065 phy_cmd_t const phy_cmd_config[] = {
2066 { mk_mii_read(MII_REG_CR), mii_queue_config },
2067 { mk_mii_end, }
2070 /* Read remainder of PHY ID.
2072 static void
2073 mii_discover_phy3(uint mii_reg, struct net_device *dev)
2075 struct fec_enet_private *fep;
2076 int i;
2078 fep = netdev_priv(dev);
2079 fep->phy_id |= (mii_reg & 0xffff);
2080 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
2082 for(i = 0; phy_info[i]; i++) {
2083 if(phy_info[i]->id == (fep->phy_id >> 4))
2084 break;
2087 if (phy_info[i])
2088 printk(" -- %s\n", phy_info[i]->name);
2089 else
2090 printk(" -- unknown PHY!\n");
2092 fep->phy = phy_info[i];
2093 fep->phy_id_done = 1;
2096 /* Scan all of the MII PHY addresses looking for someone to respond
2097 * with a valid ID. This usually happens quickly.
2099 static void
2100 mii_discover_phy(uint mii_reg, struct net_device *dev)
2102 struct fec_enet_private *fep;
2103 volatile fec_t *fecp;
2104 uint phytype;
2106 fep = netdev_priv(dev);
2107 fecp = fep->hwp;
2109 if (fep->phy_addr < 32) {
2110 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
2112 /* Got first part of ID, now get remainder.
2114 fep->phy_id = phytype << 16;
2115 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
2116 mii_discover_phy3);
2117 } else {
2118 fep->phy_addr++;
2119 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
2120 mii_discover_phy);
2122 } else {
2123 printk("FEC: No PHY device found.\n");
2124 /* Disable external MII interface */
2125 fecp->fec_mii_speed = fep->phy_speed = 0;
2126 fec_disable_phy_intr();
2130 /* This interrupt occurs when the PHY detects a link change.
2132 #ifdef CONFIG_RPXCLASSIC
2133 static void
2134 mii_link_interrupt(void *dev_id)
2135 #else
2136 static irqreturn_t
2137 mii_link_interrupt(int irq, void * dev_id)
2138 #endif
2140 struct net_device *dev = dev_id;
2141 struct fec_enet_private *fep = netdev_priv(dev);
2143 fec_phy_ack_intr();
2145 #if 0
2146 disable_irq(fep->mii_irq); /* disable now, enable later */
2147 #endif
2149 mii_do_cmd(dev, fep->phy->ack_int);
2150 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
2152 return IRQ_HANDLED;
2155 static int
2156 fec_enet_open(struct net_device *dev)
2158 struct fec_enet_private *fep = netdev_priv(dev);
2160 /* I should reset the ring buffers here, but I don't yet know
2161 * a simple way to do that.
2163 fec_set_mac_address(dev);
2165 fep->sequence_done = 0;
2166 fep->link = 0;
2168 if (fep->phy) {
2169 mii_do_cmd(dev, fep->phy->ack_int);
2170 mii_do_cmd(dev, fep->phy->config);
2171 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
2173 /* Poll until the PHY tells us its configuration
2174 * (not link state).
2175 * Request is initiated by mii_do_cmd above, but answer
2176 * comes by interrupt.
2177 * This should take about 25 usec per register at 2.5 MHz,
2178 * and we read approximately 5 registers.
2180 while(!fep->sequence_done)
2181 schedule();
2183 mii_do_cmd(dev, fep->phy->startup);
2185 /* Set the initial link state to true. A lot of hardware
2186 * based on this device does not implement a PHY interrupt,
2187 * so we are never notified of link change.
2189 fep->link = 1;
2190 } else {
2191 fep->link = 1; /* lets just try it and see */
2192 /* no phy, go full duplex, it's most likely a hub chip */
2193 fec_restart(dev, 1);
2196 netif_start_queue(dev);
2197 fep->opened = 1;
2198 return 0; /* Success */
2201 static int
2202 fec_enet_close(struct net_device *dev)
2204 struct fec_enet_private *fep = netdev_priv(dev);
2206 /* Don't know what to do yet.
2208 fep->opened = 0;
2209 netif_stop_queue(dev);
2210 fec_stop(dev);
2212 return 0;
2215 /* Set or clear the multicast filter for this adaptor.
2216 * Skeleton taken from sunlance driver.
2217 * The CPM Ethernet implementation allows Multicast as well as individual
2218 * MAC address filtering. Some of the drivers check to make sure it is
2219 * a group multicast address, and discard those that are not. I guess I
2220 * will do the same for now, but just remove the test if you want
2221 * individual filtering as well (do the upper net layers want or support
2222 * this kind of feature?).
2225 #define HASH_BITS 6 /* #bits in hash */
2226 #define CRC32_POLY 0xEDB88320
2228 static void set_multicast_list(struct net_device *dev)
2230 struct fec_enet_private *fep;
2231 volatile fec_t *ep;
2232 struct dev_mc_list *dmi;
2233 unsigned int i, j, bit, data, crc;
2234 unsigned char hash;
2236 fep = netdev_priv(dev);
2237 ep = fep->hwp;
2239 if (dev->flags&IFF_PROMISC) {
2240 ep->fec_r_cntrl |= 0x0008;
2241 } else {
2243 ep->fec_r_cntrl &= ~0x0008;
2245 if (dev->flags & IFF_ALLMULTI) {
2246 /* Catch all multicast addresses, so set the
2247 * filter to all 1's.
2249 ep->fec_hash_table_high = 0xffffffff;
2250 ep->fec_hash_table_low = 0xffffffff;
2251 } else {
2252 /* Clear filter and add the addresses in hash register.
2254 ep->fec_hash_table_high = 0;
2255 ep->fec_hash_table_low = 0;
2257 dmi = dev->mc_list;
2259 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
2261 /* Only support group multicast for now.
2263 if (!(dmi->dmi_addr[0] & 1))
2264 continue;
2266 /* calculate crc32 value of mac address
2268 crc = 0xffffffff;
2270 for (i = 0; i < dmi->dmi_addrlen; i++)
2272 data = dmi->dmi_addr[i];
2273 for (bit = 0; bit < 8; bit++, data >>= 1)
2275 crc = (crc >> 1) ^
2276 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2280 /* only upper 6 bits (HASH_BITS) are used
2281 which point to specific bit in he hash registers
2283 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2285 if (hash > 31)
2286 ep->fec_hash_table_high |= 1 << (hash - 32);
2287 else
2288 ep->fec_hash_table_low |= 1 << hash;
2294 /* Set a MAC change in hardware.
2296 static void
2297 fec_set_mac_address(struct net_device *dev)
2299 volatile fec_t *fecp;
2301 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
2303 /* Set station address. */
2304 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
2305 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
2306 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
2307 (dev->dev_addr[4] << 24);
2311 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
2314 * XXX: We need to clean up on failure exits here.
2316 int __init fec_enet_init(struct net_device *dev)
2318 struct fec_enet_private *fep = netdev_priv(dev);
2319 unsigned long mem_addr;
2320 volatile cbd_t *bdp;
2321 cbd_t *cbd_base;
2322 volatile fec_t *fecp;
2323 int i, j;
2324 static int index = 0;
2326 /* Only allow us to be probed once. */
2327 if (index >= FEC_MAX_PORTS)
2328 return -ENXIO;
2330 /* Allocate memory for buffer descriptors.
2332 mem_addr = __get_free_page(GFP_KERNEL);
2333 if (mem_addr == 0) {
2334 printk("FEC: allocate descriptor memory failed?\n");
2335 return -ENOMEM;
2338 /* Create an Ethernet device instance.
2340 fecp = (volatile fec_t *) fec_hw[index];
2342 fep->index = index;
2343 fep->hwp = fecp;
2344 fep->netdev = dev;
2346 /* Whack a reset. We should wait for this.
2348 fecp->fec_ecntrl = 1;
2349 udelay(10);
2351 /* Set the Ethernet address. If using multiple Enets on the 8xx,
2352 * this needs some work to get unique addresses.
2354 * This is our default MAC address unless the user changes
2355 * it via eth_mac_addr (our dev->set_mac_addr handler).
2357 fec_get_mac(dev);
2359 cbd_base = (cbd_t *)mem_addr;
2360 /* XXX: missing check for allocation failure */
2362 fec_uncache(mem_addr);
2364 /* Set receive and transmit descriptor base.
2366 fep->rx_bd_base = cbd_base;
2367 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2369 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2370 fep->cur_rx = fep->rx_bd_base;
2372 fep->skb_cur = fep->skb_dirty = 0;
2374 /* Initialize the receive buffer descriptors.
2376 bdp = fep->rx_bd_base;
2377 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2379 /* Allocate a page.
2381 mem_addr = __get_free_page(GFP_KERNEL);
2382 /* XXX: missing check for allocation failure */
2384 fec_uncache(mem_addr);
2386 /* Initialize the BD for every fragment in the page.
2388 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2389 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2390 bdp->cbd_bufaddr = __pa(mem_addr);
2391 mem_addr += FEC_ENET_RX_FRSIZE;
2392 bdp++;
2396 /* Set the last buffer to wrap.
2398 bdp--;
2399 bdp->cbd_sc |= BD_SC_WRAP;
2401 /* ...and the same for transmmit.
2403 bdp = fep->tx_bd_base;
2404 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2405 if (j >= FEC_ENET_TX_FRPPG) {
2406 mem_addr = __get_free_page(GFP_KERNEL);
2407 j = 1;
2408 } else {
2409 mem_addr += FEC_ENET_TX_FRSIZE;
2410 j++;
2412 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2414 /* Initialize the BD for every fragment in the page.
2416 bdp->cbd_sc = 0;
2417 bdp->cbd_bufaddr = 0;
2418 bdp++;
2421 /* Set the last buffer to wrap.
2423 bdp--;
2424 bdp->cbd_sc |= BD_SC_WRAP;
2426 /* Set receive and transmit descriptor base.
2428 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2429 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2431 /* Install our interrupt handlers. This varies depending on
2432 * the architecture.
2434 fec_request_intrs(dev);
2436 fecp->fec_hash_table_high = 0;
2437 fecp->fec_hash_table_low = 0;
2438 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2439 fecp->fec_ecntrl = 2;
2440 fecp->fec_r_des_active = 0;
2442 dev->base_addr = (unsigned long)fecp;
2444 /* The FEC Ethernet specific entries in the device structure. */
2445 dev->open = fec_enet_open;
2446 dev->hard_start_xmit = fec_enet_start_xmit;
2447 dev->tx_timeout = fec_timeout;
2448 dev->watchdog_timeo = TX_TIMEOUT;
2449 dev->stop = fec_enet_close;
2450 dev->set_multicast_list = set_multicast_list;
2452 for (i=0; i<NMII-1; i++)
2453 mii_cmds[i].mii_next = &mii_cmds[i+1];
2454 mii_free = mii_cmds;
2456 /* setup MII interface */
2457 fec_set_mii(dev, fep);
2459 /* Clear and enable interrupts */
2460 fecp->fec_ievent = 0xffc00000;
2461 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2462 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2464 /* Queue up command to detect the PHY and initialize the
2465 * remainder of the interface.
2467 fep->phy_id_done = 0;
2468 fep->phy_addr = 0;
2469 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2471 index++;
2472 return 0;
2475 /* This function is called to start or restart the FEC during a link
2476 * change. This only happens when switching between half and full
2477 * duplex.
2479 static void
2480 fec_restart(struct net_device *dev, int duplex)
2482 struct fec_enet_private *fep;
2483 volatile cbd_t *bdp;
2484 volatile fec_t *fecp;
2485 int i;
2487 fep = netdev_priv(dev);
2488 fecp = fep->hwp;
2490 /* Whack a reset. We should wait for this.
2492 fecp->fec_ecntrl = 1;
2493 udelay(10);
2495 /* Clear any outstanding interrupt.
2497 fecp->fec_ievent = 0xffc00000;
2498 fec_enable_phy_intr();
2500 /* Set station address.
2502 fec_set_mac_address(dev);
2504 /* Reset all multicast.
2506 fecp->fec_hash_table_high = 0;
2507 fecp->fec_hash_table_low = 0;
2509 /* Set maximum receive buffer size.
2511 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2513 fec_localhw_setup();
2515 /* Set receive and transmit descriptor base.
2517 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2518 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2520 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2521 fep->cur_rx = fep->rx_bd_base;
2523 /* Reset SKB transmit buffers.
2525 fep->skb_cur = fep->skb_dirty = 0;
2526 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2527 if (fep->tx_skbuff[i] != NULL) {
2528 dev_kfree_skb_any(fep->tx_skbuff[i]);
2529 fep->tx_skbuff[i] = NULL;
2533 /* Initialize the receive buffer descriptors.
2535 bdp = fep->rx_bd_base;
2536 for (i=0; i<RX_RING_SIZE; i++) {
2538 /* Initialize the BD for every fragment in the page.
2540 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2541 bdp++;
2544 /* Set the last buffer to wrap.
2546 bdp--;
2547 bdp->cbd_sc |= BD_SC_WRAP;
2549 /* ...and the same for transmmit.
2551 bdp = fep->tx_bd_base;
2552 for (i=0; i<TX_RING_SIZE; i++) {
2554 /* Initialize the BD for every fragment in the page.
2556 bdp->cbd_sc = 0;
2557 bdp->cbd_bufaddr = 0;
2558 bdp++;
2561 /* Set the last buffer to wrap.
2563 bdp--;
2564 bdp->cbd_sc |= BD_SC_WRAP;
2566 /* Enable MII mode.
2568 if (duplex) {
2569 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2570 fecp->fec_x_cntrl = 0x04; /* FD enable */
2571 } else {
2572 /* MII enable|No Rcv on Xmit */
2573 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2574 fecp->fec_x_cntrl = 0x00;
2576 fep->full_duplex = duplex;
2578 /* Set MII speed.
2580 fecp->fec_mii_speed = fep->phy_speed;
2582 /* And last, enable the transmit and receive processing.
2584 fecp->fec_ecntrl = 2;
2585 fecp->fec_r_des_active = 0;
2587 /* Enable interrupts we wish to service.
2589 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2590 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2593 static void
2594 fec_stop(struct net_device *dev)
2596 volatile fec_t *fecp;
2597 struct fec_enet_private *fep;
2599 fep = netdev_priv(dev);
2600 fecp = fep->hwp;
2603 ** We cannot expect a graceful transmit stop without link !!!
2605 if (fep->link)
2607 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2608 udelay(10);
2609 if (!(fecp->fec_ievent & FEC_ENET_GRA))
2610 printk("fec_stop : Graceful transmit stop did not complete !\n");
2613 /* Whack a reset. We should wait for this.
2615 fecp->fec_ecntrl = 1;
2616 udelay(10);
2618 /* Clear outstanding MII command interrupts.
2620 fecp->fec_ievent = FEC_ENET_MII;
2621 fec_enable_phy_intr();
2623 fecp->fec_imask = FEC_ENET_MII;
2624 fecp->fec_mii_speed = fep->phy_speed;
2627 static int __init fec_enet_module_init(void)
2629 struct net_device *dev;
2630 int i, j, err;
2631 DECLARE_MAC_BUF(mac);
2633 printk("FEC ENET Version 0.2\n");
2635 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2636 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2637 if (!dev)
2638 return -ENOMEM;
2639 err = fec_enet_init(dev);
2640 if (err) {
2641 free_netdev(dev);
2642 continue;
2644 if (register_netdev(dev) != 0) {
2645 /* XXX: missing cleanup here */
2646 free_netdev(dev);
2647 return -EIO;
2650 printk("%s: ethernet %s\n",
2651 dev->name, print_mac(mac, dev->dev_addr));
2653 return 0;
2656 module_init(fec_enet_module_init);
2658 MODULE_LICENSE("GPL");