ARM: vfp: fix a hole in VFP thread migration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / vfp / vfpmodule.c
blob08ff93fa533c8e0caad22766f5ba9f2bfe749c24
1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/cpu.h>
14 #include <linux/kernel.h>
15 #include <linux/notifier.h>
16 #include <linux/signal.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/init.h>
21 #include <asm/cputype.h>
22 #include <asm/thread_notify.h>
23 #include <asm/vfp.h>
25 #include "vfpinstr.h"
26 #include "vfp.h"
29 * Our undef handlers (in entry.S)
31 void vfp_testing_entry(void);
32 void vfp_support_entry(void);
33 void vfp_null_entry(void);
35 void (*vfp_vector)(void) = vfp_null_entry;
38 * Dual-use variable.
39 * Used in startup: set to non-zero if VFP checks fail
40 * After startup, holds VFP architecture
42 unsigned int VFP_arch;
45 * The pointer to the vfpstate structure of the thread which currently
46 * owns the context held in the VFP hardware, or NULL if the hardware
47 * context is invalid.
49 * For UP, this is sufficient to tell which thread owns the VFP context.
50 * However, for SMP, we also need to check the CPU number stored in the
51 * saved state too to catch migrations.
53 union vfp_state *vfp_current_hw_state[NR_CPUS];
56 * Is 'thread's most up to date state stored in this CPUs hardware?
57 * Must be called from non-preemptible context.
59 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
61 #ifdef CONFIG_SMP
62 if (thread->vfpstate.hard.cpu != cpu)
63 return false;
64 #endif
65 return vfp_current_hw_state[cpu] == &thread->vfpstate;
69 * Force a reload of the VFP context from the thread structure. We do
70 * this by ensuring that access to the VFP hardware is disabled, and
71 * clear last_VFP_context. Must be called from non-preemptible context.
73 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
75 if (vfp_state_in_hw(cpu, thread)) {
76 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
77 vfp_current_hw_state[cpu] = NULL;
79 #ifdef CONFIG_SMP
80 thread->vfpstate.hard.cpu = NR_CPUS;
81 #endif
85 * Per-thread VFP initialization.
87 static void vfp_thread_flush(struct thread_info *thread)
89 union vfp_state *vfp = &thread->vfpstate;
90 unsigned int cpu;
92 memset(vfp, 0, sizeof(union vfp_state));
94 vfp->hard.fpexc = FPEXC_EN;
95 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
96 #ifdef CONFIG_SMP
97 vfp->hard.cpu = NR_CPUS;
98 #endif
101 * Disable VFP to ensure we initialize it first. We must ensure
102 * that the modification of vfp_current_hw_state[] and hardware disable
103 * are done for the same CPU and without preemption.
105 cpu = get_cpu();
106 if (vfp_current_hw_state[cpu] == vfp)
107 vfp_current_hw_state[cpu] = NULL;
108 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
109 put_cpu();
112 static void vfp_thread_exit(struct thread_info *thread)
114 /* release case: Per-thread VFP cleanup. */
115 union vfp_state *vfp = &thread->vfpstate;
116 unsigned int cpu = get_cpu();
118 if (vfp_current_hw_state[cpu] == vfp)
119 vfp_current_hw_state[cpu] = NULL;
120 put_cpu();
123 static void vfp_thread_copy(struct thread_info *thread)
125 struct thread_info *parent = current_thread_info();
127 vfp_sync_hwstate(parent);
128 thread->vfpstate = parent->vfpstate;
129 #ifdef CONFIG_SMP
130 thread->vfpstate.hard.cpu = NR_CPUS;
131 #endif
135 * When this function is called with the following 'cmd's, the following
136 * is true while this function is being run:
137 * THREAD_NOFTIFY_SWTICH:
138 * - the previously running thread will not be scheduled onto another CPU.
139 * - the next thread to be run (v) will not be running on another CPU.
140 * - thread->cpu is the local CPU number
141 * - not preemptible as we're called in the middle of a thread switch
142 * THREAD_NOTIFY_FLUSH:
143 * - the thread (v) will be running on the local CPU, so
144 * v === current_thread_info()
145 * - thread->cpu is the local CPU number at the time it is accessed,
146 * but may change at any time.
147 * - we could be preempted if tree preempt rcu is enabled, so
148 * it is unsafe to use thread->cpu.
149 * THREAD_NOTIFY_EXIT
150 * - the thread (v) will be running on the local CPU, so
151 * v === current_thread_info()
152 * - thread->cpu is the local CPU number at the time it is accessed,
153 * but may change at any time.
154 * - we could be preempted if tree preempt rcu is enabled, so
155 * it is unsafe to use thread->cpu.
157 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
159 struct thread_info *thread = v;
160 u32 fpexc;
161 #ifdef CONFIG_SMP
162 unsigned int cpu;
163 #endif
165 switch (cmd) {
166 case THREAD_NOTIFY_SWITCH:
167 fpexc = fmrx(FPEXC);
169 #ifdef CONFIG_SMP
170 cpu = thread->cpu;
173 * On SMP, if VFP is enabled, save the old state in
174 * case the thread migrates to a different CPU. The
175 * restoring is done lazily.
177 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
178 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
179 #endif
182 * Always disable VFP so we can lazily save/restore the
183 * old state.
185 fmxr(FPEXC, fpexc & ~FPEXC_EN);
186 break;
188 case THREAD_NOTIFY_FLUSH:
189 vfp_thread_flush(thread);
190 break;
192 case THREAD_NOTIFY_EXIT:
193 vfp_thread_exit(thread);
194 break;
196 case THREAD_NOTIFY_COPY:
197 vfp_thread_copy(thread);
198 break;
201 return NOTIFY_DONE;
204 static struct notifier_block vfp_notifier_block = {
205 .notifier_call = vfp_notifier,
209 * Raise a SIGFPE for the current process.
210 * sicode describes the signal being raised.
212 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
214 siginfo_t info;
216 memset(&info, 0, sizeof(info));
218 info.si_signo = SIGFPE;
219 info.si_code = sicode;
220 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
223 * This is the same as NWFPE, because it's not clear what
224 * this is used for
226 current->thread.error_code = 0;
227 current->thread.trap_no = 6;
229 send_sig_info(SIGFPE, &info, current);
232 static void vfp_panic(char *reason, u32 inst)
234 int i;
236 printk(KERN_ERR "VFP: Error: %s\n", reason);
237 printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
238 fmrx(FPEXC), fmrx(FPSCR), inst);
239 for (i = 0; i < 32; i += 2)
240 printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
241 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
245 * Process bitmask of exception conditions.
247 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
249 int si_code = 0;
251 pr_debug("VFP: raising exceptions %08x\n", exceptions);
253 if (exceptions == VFP_EXCEPTION_ERROR) {
254 vfp_panic("unhandled bounce", inst);
255 vfp_raise_sigfpe(0, regs);
256 return;
260 * If any of the status flags are set, update the FPSCR.
261 * Comparison instructions always return at least one of
262 * these flags set.
264 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
265 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
267 fpscr |= exceptions;
269 fmxr(FPSCR, fpscr);
271 #define RAISE(stat,en,sig) \
272 if (exceptions & stat && fpscr & en) \
273 si_code = sig;
276 * These are arranged in priority order, least to highest.
278 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
279 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
280 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
281 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
282 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
284 if (si_code)
285 vfp_raise_sigfpe(si_code, regs);
289 * Emulate a VFP instruction.
291 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
293 u32 exceptions = VFP_EXCEPTION_ERROR;
295 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
297 if (INST_CPRTDO(inst)) {
298 if (!INST_CPRT(inst)) {
300 * CPDO
302 if (vfp_single(inst)) {
303 exceptions = vfp_single_cpdo(inst, fpscr);
304 } else {
305 exceptions = vfp_double_cpdo(inst, fpscr);
307 } else {
309 * A CPRT instruction can not appear in FPINST2, nor
310 * can it cause an exception. Therefore, we do not
311 * have to emulate it.
314 } else {
316 * A CPDT instruction can not appear in FPINST2, nor can
317 * it cause an exception. Therefore, we do not have to
318 * emulate it.
321 return exceptions & ~VFP_NAN_FLAG;
325 * Package up a bounce condition.
327 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
329 u32 fpscr, orig_fpscr, fpsid, exceptions;
331 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
334 * At this point, FPEXC can have the following configuration:
336 * EX DEX IXE
337 * 0 1 x - synchronous exception
338 * 1 x 0 - asynchronous exception
339 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
340 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
341 * implementation), undefined otherwise
343 * Clear various bits and enable access to the VFP so we can
344 * handle the bounce.
346 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
348 fpsid = fmrx(FPSID);
349 orig_fpscr = fpscr = fmrx(FPSCR);
352 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
354 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
355 && (fpscr & FPSCR_IXE)) {
357 * Synchronous exception, emulate the trigger instruction
359 goto emulate;
362 if (fpexc & FPEXC_EX) {
363 #ifndef CONFIG_CPU_FEROCEON
365 * Asynchronous exception. The instruction is read from FPINST
366 * and the interrupted instruction has to be restarted.
368 trigger = fmrx(FPINST);
369 regs->ARM_pc -= 4;
370 #endif
371 } else if (!(fpexc & FPEXC_DEX)) {
373 * Illegal combination of bits. It can be caused by an
374 * unallocated VFP instruction but with FPSCR.IXE set and not
375 * on VFP subarch 1.
377 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
378 goto exit;
382 * Modify fpscr to indicate the number of iterations remaining.
383 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
384 * whether FPEXC.VECITR or FPSCR.LEN is used.
386 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
387 u32 len;
389 len = fpexc + (1 << FPEXC_LENGTH_BIT);
391 fpscr &= ~FPSCR_LENGTH_MASK;
392 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
396 * Handle the first FP instruction. We used to take note of the
397 * FPEXC bounce reason, but this appears to be unreliable.
398 * Emulate the bounced instruction instead.
400 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
401 if (exceptions)
402 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
405 * If there isn't a second FP instruction, exit now. Note that
406 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
408 if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
409 goto exit;
412 * The barrier() here prevents fpinst2 being read
413 * before the condition above.
415 barrier();
416 trigger = fmrx(FPINST2);
418 emulate:
419 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
420 if (exceptions)
421 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
422 exit:
423 preempt_enable();
426 static void vfp_enable(void *unused)
428 u32 access = get_copro_access();
431 * Enable full access to VFP (cp10 and cp11)
433 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
436 #ifdef CONFIG_PM
437 #include <linux/syscore_ops.h>
439 static int vfp_pm_suspend(void)
441 struct thread_info *ti = current_thread_info();
442 u32 fpexc = fmrx(FPEXC);
444 /* if vfp is on, then save state for resumption */
445 if (fpexc & FPEXC_EN) {
446 printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
447 vfp_save_state(&ti->vfpstate, fpexc);
449 /* disable, just in case */
450 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
453 /* clear any information we had about last context state */
454 memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
456 return 0;
459 static void vfp_pm_resume(void)
461 /* ensure we have access to the vfp */
462 vfp_enable(NULL);
464 /* and disable it to ensure the next usage restores the state */
465 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
468 static struct syscore_ops vfp_pm_syscore_ops = {
469 .suspend = vfp_pm_suspend,
470 .resume = vfp_pm_resume,
473 static void vfp_pm_init(void)
475 register_syscore_ops(&vfp_pm_syscore_ops);
478 #else
479 static inline void vfp_pm_init(void) { }
480 #endif /* CONFIG_PM */
483 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
484 * with the hardware state.
486 void vfp_sync_hwstate(struct thread_info *thread)
488 unsigned int cpu = get_cpu();
490 if (vfp_state_in_hw(cpu, thread)) {
491 u32 fpexc = fmrx(FPEXC);
494 * Save the last VFP state on this CPU.
496 fmxr(FPEXC, fpexc | FPEXC_EN);
497 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
498 fmxr(FPEXC, fpexc);
501 put_cpu();
504 /* Ensure that the thread reloads the hardware VFP state on the next use. */
505 void vfp_flush_hwstate(struct thread_info *thread)
507 unsigned int cpu = get_cpu();
509 vfp_force_reload(cpu, thread);
511 put_cpu();
515 * VFP hardware can lose all context when a CPU goes offline.
516 * As we will be running in SMP mode with CPU hotplug, we will save the
517 * hardware state at every thread switch. We clear our held state when
518 * a CPU has been killed, indicating that the VFP hardware doesn't contain
519 * a threads VFP state. When a CPU starts up, we re-enable access to the
520 * VFP hardware.
522 * Both CPU_DYING and CPU_STARTING are called on the CPU which
523 * is being offlined/onlined.
525 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
526 void *hcpu)
528 if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
529 vfp_force_reload((long)hcpu, current_thread_info());
530 } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
531 vfp_enable(NULL);
532 return NOTIFY_OK;
536 * VFP support code initialisation.
538 static int __init vfp_init(void)
540 unsigned int vfpsid;
541 unsigned int cpu_arch = cpu_architecture();
543 if (cpu_arch >= CPU_ARCH_ARMv6)
544 vfp_enable(NULL);
547 * First check that there is a VFP that we can use.
548 * The handler is already setup to just log calls, so
549 * we just need to read the VFPSID register.
551 vfp_vector = vfp_testing_entry;
552 barrier();
553 vfpsid = fmrx(FPSID);
554 barrier();
555 vfp_vector = vfp_null_entry;
557 printk(KERN_INFO "VFP support v0.3: ");
558 if (VFP_arch)
559 printk("not present\n");
560 else if (vfpsid & FPSID_NODOUBLE) {
561 printk("no double precision support\n");
562 } else {
563 hotcpu_notifier(vfp_hotplug, 0);
565 smp_call_function(vfp_enable, NULL, 1);
567 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
568 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
569 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
570 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
571 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
572 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
573 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
575 vfp_vector = vfp_support_entry;
577 thread_register_notifier(&vfp_notifier_block);
578 vfp_pm_init();
581 * We detected VFP, and the support code is
582 * in place; report VFP support to userspace.
584 elf_hwcap |= HWCAP_VFP;
585 #ifdef CONFIG_VFPv3
586 if (VFP_arch >= 2) {
587 elf_hwcap |= HWCAP_VFPv3;
590 * Check for VFPv3 D16. CPUs in this configuration
591 * only have 16 x 64bit registers.
593 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
594 elf_hwcap |= HWCAP_VFPv3D16;
596 #endif
597 #ifdef CONFIG_NEON
599 * Check for the presence of the Advanced SIMD
600 * load/store instructions, integer and single
601 * precision floating point operations. Only check
602 * for NEON if the hardware has the MVFR registers.
604 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
605 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
606 elf_hwcap |= HWCAP_NEON;
608 #endif
610 return 0;
613 late_initcall(vfp_init);