mac80211: fix NULL dereference in radiotap code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / mac80211 / rx.c
blob097b42d286e24cc1cc1b98328727853c73de642d
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
32 * monitor mode reception
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
51 return skb;
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
75 int len;
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
80 if (status->flag & RX_FLAG_MACTIME_MPDU)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
88 if (status->flag & RX_FLAG_HT) /* HT info */
89 len += 3;
91 return len;
95 * ieee80211_add_rx_radiotap_header - add radiotap header
97 * add a radiotap header containing all the fields which the hardware provided.
99 static void
100 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
101 struct sk_buff *skb,
102 struct ieee80211_rate *rate,
103 int rtap_len)
105 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
106 struct ieee80211_radiotap_header *rthdr;
107 unsigned char *pos;
108 u16 rx_flags = 0;
110 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
111 memset(rthdr, 0, rtap_len);
113 /* radiotap header, set always present flags */
114 rthdr->it_present =
115 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
116 (1 << IEEE80211_RADIOTAP_CHANNEL) |
117 (1 << IEEE80211_RADIOTAP_ANTENNA) |
118 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
119 rthdr->it_len = cpu_to_le16(rtap_len);
121 pos = (unsigned char *)(rthdr+1);
123 /* the order of the following fields is important */
125 /* IEEE80211_RADIOTAP_TSFT */
126 if (status->flag & RX_FLAG_MACTIME_MPDU) {
127 put_unaligned_le64(status->mactime, pos);
128 rthdr->it_present |=
129 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
130 pos += 8;
133 /* IEEE80211_RADIOTAP_FLAGS */
134 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
135 *pos |= IEEE80211_RADIOTAP_F_FCS;
136 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
137 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
138 if (status->flag & RX_FLAG_SHORTPRE)
139 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
140 pos++;
142 /* IEEE80211_RADIOTAP_RATE */
143 if (!rate || status->flag & RX_FLAG_HT) {
145 * Without rate information don't add it. If we have,
146 * MCS information is a separate field in radiotap,
147 * added below. The byte here is needed as padding
148 * for the channel though, so initialise it to 0.
150 *pos = 0;
151 } else {
152 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
153 *pos = rate->bitrate / 5;
155 pos++;
157 /* IEEE80211_RADIOTAP_CHANNEL */
158 put_unaligned_le16(status->freq, pos);
159 pos += 2;
160 if (status->band == IEEE80211_BAND_5GHZ)
161 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
162 pos);
163 else if (status->flag & RX_FLAG_HT)
164 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
165 pos);
166 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
167 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
168 pos);
169 else if (rate)
170 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
171 pos);
172 else
173 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
174 pos += 2;
176 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
177 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
178 *pos = status->signal;
179 rthdr->it_present |=
180 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
181 pos++;
184 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
186 /* IEEE80211_RADIOTAP_ANTENNA */
187 *pos = status->antenna;
188 pos++;
190 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
192 /* IEEE80211_RADIOTAP_RX_FLAGS */
193 /* ensure 2 byte alignment for the 2 byte field as required */
194 if ((pos - (u8 *)rthdr) & 1)
195 pos++;
196 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
197 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
198 put_unaligned_le16(rx_flags, pos);
199 pos += 2;
201 if (status->flag & RX_FLAG_HT) {
202 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
203 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS |
204 IEEE80211_RADIOTAP_MCS_HAVE_GI |
205 IEEE80211_RADIOTAP_MCS_HAVE_BW;
206 *pos = 0;
207 if (status->flag & RX_FLAG_SHORT_GI)
208 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
209 if (status->flag & RX_FLAG_40MHZ)
210 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
211 pos++;
212 *pos++ = status->rate_idx;
217 * This function copies a received frame to all monitor interfaces and
218 * returns a cleaned-up SKB that no longer includes the FCS nor the
219 * radiotap header the driver might have added.
221 static struct sk_buff *
222 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
223 struct ieee80211_rate *rate)
225 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
226 struct ieee80211_sub_if_data *sdata;
227 int needed_headroom = 0;
228 struct sk_buff *skb, *skb2;
229 struct net_device *prev_dev = NULL;
230 int present_fcs_len = 0;
233 * First, we may need to make a copy of the skb because
234 * (1) we need to modify it for radiotap (if not present), and
235 * (2) the other RX handlers will modify the skb we got.
237 * We don't need to, of course, if we aren't going to return
238 * the SKB because it has a bad FCS/PLCP checksum.
241 /* room for the radiotap header based on driver features */
242 needed_headroom = ieee80211_rx_radiotap_len(local, status);
244 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
245 present_fcs_len = FCS_LEN;
247 /* make sure hdr->frame_control is on the linear part */
248 if (!pskb_may_pull(origskb, 2)) {
249 dev_kfree_skb(origskb);
250 return NULL;
253 if (!local->monitors) {
254 if (should_drop_frame(origskb, present_fcs_len)) {
255 dev_kfree_skb(origskb);
256 return NULL;
259 return remove_monitor_info(local, origskb);
262 if (should_drop_frame(origskb, present_fcs_len)) {
263 /* only need to expand headroom if necessary */
264 skb = origskb;
265 origskb = NULL;
268 * This shouldn't trigger often because most devices have an
269 * RX header they pull before we get here, and that should
270 * be big enough for our radiotap information. We should
271 * probably export the length to drivers so that we can have
272 * them allocate enough headroom to start with.
274 if (skb_headroom(skb) < needed_headroom &&
275 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
276 dev_kfree_skb(skb);
277 return NULL;
279 } else {
281 * Need to make a copy and possibly remove radiotap header
282 * and FCS from the original.
284 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
286 origskb = remove_monitor_info(local, origskb);
288 if (!skb)
289 return origskb;
292 /* prepend radiotap information */
293 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
295 skb_reset_mac_header(skb);
296 skb->ip_summed = CHECKSUM_UNNECESSARY;
297 skb->pkt_type = PACKET_OTHERHOST;
298 skb->protocol = htons(ETH_P_802_2);
300 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
301 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
302 continue;
304 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
305 continue;
307 if (!ieee80211_sdata_running(sdata))
308 continue;
310 if (prev_dev) {
311 skb2 = skb_clone(skb, GFP_ATOMIC);
312 if (skb2) {
313 skb2->dev = prev_dev;
314 netif_receive_skb(skb2);
318 prev_dev = sdata->dev;
319 sdata->dev->stats.rx_packets++;
320 sdata->dev->stats.rx_bytes += skb->len;
323 if (prev_dev) {
324 skb->dev = prev_dev;
325 netif_receive_skb(skb);
326 } else
327 dev_kfree_skb(skb);
329 return origskb;
333 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
335 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
336 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
337 int tid, seqno_idx, security_idx;
339 /* does the frame have a qos control field? */
340 if (ieee80211_is_data_qos(hdr->frame_control)) {
341 u8 *qc = ieee80211_get_qos_ctl(hdr);
342 /* frame has qos control */
343 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
344 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
345 status->rx_flags |= IEEE80211_RX_AMSDU;
347 seqno_idx = tid;
348 security_idx = tid;
349 } else {
351 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
353 * Sequence numbers for management frames, QoS data
354 * frames with a broadcast/multicast address in the
355 * Address 1 field, and all non-QoS data frames sent
356 * by QoS STAs are assigned using an additional single
357 * modulo-4096 counter, [...]
359 * We also use that counter for non-QoS STAs.
361 seqno_idx = NUM_RX_DATA_QUEUES;
362 security_idx = 0;
363 if (ieee80211_is_mgmt(hdr->frame_control))
364 security_idx = NUM_RX_DATA_QUEUES;
365 tid = 0;
368 rx->seqno_idx = seqno_idx;
369 rx->security_idx = security_idx;
370 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
371 * For now, set skb->priority to 0 for other cases. */
372 rx->skb->priority = (tid > 7) ? 0 : tid;
376 * DOC: Packet alignment
378 * Drivers always need to pass packets that are aligned to two-byte boundaries
379 * to the stack.
381 * Additionally, should, if possible, align the payload data in a way that
382 * guarantees that the contained IP header is aligned to a four-byte
383 * boundary. In the case of regular frames, this simply means aligning the
384 * payload to a four-byte boundary (because either the IP header is directly
385 * contained, or IV/RFC1042 headers that have a length divisible by four are
386 * in front of it). If the payload data is not properly aligned and the
387 * architecture doesn't support efficient unaligned operations, mac80211
388 * will align the data.
390 * With A-MSDU frames, however, the payload data address must yield two modulo
391 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
392 * push the IP header further back to a multiple of four again. Thankfully, the
393 * specs were sane enough this time around to require padding each A-MSDU
394 * subframe to a length that is a multiple of four.
396 * Padding like Atheros hardware adds which is between the 802.11 header and
397 * the payload is not supported, the driver is required to move the 802.11
398 * header to be directly in front of the payload in that case.
400 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
402 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
403 WARN_ONCE((unsigned long)rx->skb->data & 1,
404 "unaligned packet at 0x%p\n", rx->skb->data);
405 #endif
409 /* rx handlers */
411 static ieee80211_rx_result debug_noinline
412 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
414 struct ieee80211_local *local = rx->local;
415 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
416 struct sk_buff *skb = rx->skb;
418 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
419 !local->sched_scanning))
420 return RX_CONTINUE;
422 if (test_bit(SCAN_HW_SCANNING, &local->scanning) ||
423 test_bit(SCAN_SW_SCANNING, &local->scanning) ||
424 local->sched_scanning)
425 return ieee80211_scan_rx(rx->sdata, skb);
427 /* scanning finished during invoking of handlers */
428 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
429 return RX_DROP_UNUSABLE;
433 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
435 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
437 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
438 return 0;
440 return ieee80211_is_robust_mgmt_frame(hdr);
444 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
446 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
448 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
449 return 0;
451 return ieee80211_is_robust_mgmt_frame(hdr);
455 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
456 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
458 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
459 struct ieee80211_mmie *mmie;
461 if (skb->len < 24 + sizeof(*mmie) ||
462 !is_multicast_ether_addr(hdr->da))
463 return -1;
465 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
466 return -1; /* not a robust management frame */
468 mmie = (struct ieee80211_mmie *)
469 (skb->data + skb->len - sizeof(*mmie));
470 if (mmie->element_id != WLAN_EID_MMIE ||
471 mmie->length != sizeof(*mmie) - 2)
472 return -1;
474 return le16_to_cpu(mmie->key_id);
478 static ieee80211_rx_result
479 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
481 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
482 char *dev_addr = rx->sdata->vif.addr;
484 if (ieee80211_is_data(hdr->frame_control)) {
485 if (is_multicast_ether_addr(hdr->addr1)) {
486 if (ieee80211_has_tods(hdr->frame_control) ||
487 !ieee80211_has_fromds(hdr->frame_control))
488 return RX_DROP_MONITOR;
489 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
490 return RX_DROP_MONITOR;
491 } else {
492 if (!ieee80211_has_a4(hdr->frame_control))
493 return RX_DROP_MONITOR;
494 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
495 return RX_DROP_MONITOR;
499 /* If there is not an established peer link and this is not a peer link
500 * establisment frame, beacon or probe, drop the frame.
503 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
504 struct ieee80211_mgmt *mgmt;
506 if (!ieee80211_is_mgmt(hdr->frame_control))
507 return RX_DROP_MONITOR;
509 if (ieee80211_is_action(hdr->frame_control)) {
510 u8 category;
511 mgmt = (struct ieee80211_mgmt *)hdr;
512 category = mgmt->u.action.category;
513 if (category != WLAN_CATEGORY_MESH_ACTION &&
514 category != WLAN_CATEGORY_SELF_PROTECTED)
515 return RX_DROP_MONITOR;
516 return RX_CONTINUE;
519 if (ieee80211_is_probe_req(hdr->frame_control) ||
520 ieee80211_is_probe_resp(hdr->frame_control) ||
521 ieee80211_is_beacon(hdr->frame_control) ||
522 ieee80211_is_auth(hdr->frame_control))
523 return RX_CONTINUE;
525 return RX_DROP_MONITOR;
529 return RX_CONTINUE;
532 #define SEQ_MODULO 0x1000
533 #define SEQ_MASK 0xfff
535 static inline int seq_less(u16 sq1, u16 sq2)
537 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
540 static inline u16 seq_inc(u16 sq)
542 return (sq + 1) & SEQ_MASK;
545 static inline u16 seq_sub(u16 sq1, u16 sq2)
547 return (sq1 - sq2) & SEQ_MASK;
551 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
552 struct tid_ampdu_rx *tid_agg_rx,
553 int index)
555 struct ieee80211_local *local = hw_to_local(hw);
556 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
557 struct ieee80211_rx_status *status;
559 lockdep_assert_held(&tid_agg_rx->reorder_lock);
561 if (!skb)
562 goto no_frame;
564 /* release the frame from the reorder ring buffer */
565 tid_agg_rx->stored_mpdu_num--;
566 tid_agg_rx->reorder_buf[index] = NULL;
567 status = IEEE80211_SKB_RXCB(skb);
568 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
569 skb_queue_tail(&local->rx_skb_queue, skb);
571 no_frame:
572 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
575 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
576 struct tid_ampdu_rx *tid_agg_rx,
577 u16 head_seq_num)
579 int index;
581 lockdep_assert_held(&tid_agg_rx->reorder_lock);
583 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
584 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
585 tid_agg_rx->buf_size;
586 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
591 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
592 * the skb was added to the buffer longer than this time ago, the earlier
593 * frames that have not yet been received are assumed to be lost and the skb
594 * can be released for processing. This may also release other skb's from the
595 * reorder buffer if there are no additional gaps between the frames.
597 * Callers must hold tid_agg_rx->reorder_lock.
599 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
601 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
602 struct tid_ampdu_rx *tid_agg_rx)
604 int index, j;
606 lockdep_assert_held(&tid_agg_rx->reorder_lock);
608 /* release the buffer until next missing frame */
609 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
610 tid_agg_rx->buf_size;
611 if (!tid_agg_rx->reorder_buf[index] &&
612 tid_agg_rx->stored_mpdu_num > 1) {
614 * No buffers ready to be released, but check whether any
615 * frames in the reorder buffer have timed out.
617 int skipped = 1;
618 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
619 j = (j + 1) % tid_agg_rx->buf_size) {
620 if (!tid_agg_rx->reorder_buf[j]) {
621 skipped++;
622 continue;
624 if (skipped &&
625 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
626 HT_RX_REORDER_BUF_TIMEOUT))
627 goto set_release_timer;
629 #ifdef CONFIG_MAC80211_HT_DEBUG
630 if (net_ratelimit())
631 wiphy_debug(hw->wiphy,
632 "release an RX reorder frame due to timeout on earlier frames\n");
633 #endif
634 ieee80211_release_reorder_frame(hw, tid_agg_rx, j);
637 * Increment the head seq# also for the skipped slots.
639 tid_agg_rx->head_seq_num =
640 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
641 skipped = 0;
643 } else while (tid_agg_rx->reorder_buf[index]) {
644 ieee80211_release_reorder_frame(hw, tid_agg_rx, index);
645 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
646 tid_agg_rx->buf_size;
649 if (tid_agg_rx->stored_mpdu_num) {
650 j = index = seq_sub(tid_agg_rx->head_seq_num,
651 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
653 for (; j != (index - 1) % tid_agg_rx->buf_size;
654 j = (j + 1) % tid_agg_rx->buf_size) {
655 if (tid_agg_rx->reorder_buf[j])
656 break;
659 set_release_timer:
661 mod_timer(&tid_agg_rx->reorder_timer,
662 tid_agg_rx->reorder_time[j] + 1 +
663 HT_RX_REORDER_BUF_TIMEOUT);
664 } else {
665 del_timer(&tid_agg_rx->reorder_timer);
670 * As this function belongs to the RX path it must be under
671 * rcu_read_lock protection. It returns false if the frame
672 * can be processed immediately, true if it was consumed.
674 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
675 struct tid_ampdu_rx *tid_agg_rx,
676 struct sk_buff *skb)
678 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
679 u16 sc = le16_to_cpu(hdr->seq_ctrl);
680 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
681 u16 head_seq_num, buf_size;
682 int index;
683 bool ret = true;
685 spin_lock(&tid_agg_rx->reorder_lock);
687 buf_size = tid_agg_rx->buf_size;
688 head_seq_num = tid_agg_rx->head_seq_num;
690 /* frame with out of date sequence number */
691 if (seq_less(mpdu_seq_num, head_seq_num)) {
692 dev_kfree_skb(skb);
693 goto out;
697 * If frame the sequence number exceeds our buffering window
698 * size release some previous frames to make room for this one.
700 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
701 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
702 /* release stored frames up to new head to stack */
703 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num);
706 /* Now the new frame is always in the range of the reordering buffer */
708 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
710 /* check if we already stored this frame */
711 if (tid_agg_rx->reorder_buf[index]) {
712 dev_kfree_skb(skb);
713 goto out;
717 * If the current MPDU is in the right order and nothing else
718 * is stored we can process it directly, no need to buffer it.
719 * If it is first but there's something stored, we may be able
720 * to release frames after this one.
722 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
723 tid_agg_rx->stored_mpdu_num == 0) {
724 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
725 ret = false;
726 goto out;
729 /* put the frame in the reordering buffer */
730 tid_agg_rx->reorder_buf[index] = skb;
731 tid_agg_rx->reorder_time[index] = jiffies;
732 tid_agg_rx->stored_mpdu_num++;
733 ieee80211_sta_reorder_release(hw, tid_agg_rx);
735 out:
736 spin_unlock(&tid_agg_rx->reorder_lock);
737 return ret;
741 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
742 * true if the MPDU was buffered, false if it should be processed.
744 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx)
746 struct sk_buff *skb = rx->skb;
747 struct ieee80211_local *local = rx->local;
748 struct ieee80211_hw *hw = &local->hw;
749 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
750 struct sta_info *sta = rx->sta;
751 struct tid_ampdu_rx *tid_agg_rx;
752 u16 sc;
753 int tid;
755 if (!ieee80211_is_data_qos(hdr->frame_control))
756 goto dont_reorder;
759 * filter the QoS data rx stream according to
760 * STA/TID and check if this STA/TID is on aggregation
763 if (!sta)
764 goto dont_reorder;
766 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
768 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
769 if (!tid_agg_rx)
770 goto dont_reorder;
772 /* qos null data frames are excluded */
773 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
774 goto dont_reorder;
776 /* new, potentially un-ordered, ampdu frame - process it */
778 /* reset session timer */
779 if (tid_agg_rx->timeout)
780 mod_timer(&tid_agg_rx->session_timer,
781 TU_TO_EXP_TIME(tid_agg_rx->timeout));
783 /* if this mpdu is fragmented - terminate rx aggregation session */
784 sc = le16_to_cpu(hdr->seq_ctrl);
785 if (sc & IEEE80211_SCTL_FRAG) {
786 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
787 skb_queue_tail(&rx->sdata->skb_queue, skb);
788 ieee80211_queue_work(&local->hw, &rx->sdata->work);
789 return;
793 * No locking needed -- we will only ever process one
794 * RX packet at a time, and thus own tid_agg_rx. All
795 * other code manipulating it needs to (and does) make
796 * sure that we cannot get to it any more before doing
797 * anything with it.
799 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb))
800 return;
802 dont_reorder:
803 skb_queue_tail(&local->rx_skb_queue, skb);
806 static ieee80211_rx_result debug_noinline
807 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
809 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
810 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
812 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
813 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
814 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
815 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
816 hdr->seq_ctrl)) {
817 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
818 rx->local->dot11FrameDuplicateCount++;
819 rx->sta->num_duplicates++;
821 return RX_DROP_UNUSABLE;
822 } else
823 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
826 if (unlikely(rx->skb->len < 16)) {
827 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
828 return RX_DROP_MONITOR;
831 /* Drop disallowed frame classes based on STA auth/assoc state;
832 * IEEE 802.11, Chap 5.5.
834 * mac80211 filters only based on association state, i.e. it drops
835 * Class 3 frames from not associated stations. hostapd sends
836 * deauth/disassoc frames when needed. In addition, hostapd is
837 * responsible for filtering on both auth and assoc states.
840 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
841 return ieee80211_rx_mesh_check(rx);
843 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
844 ieee80211_is_pspoll(hdr->frame_control)) &&
845 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
846 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
847 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
848 if (rx->sta && rx->sta->dummy &&
849 ieee80211_is_data_present(hdr->frame_control)) {
850 u16 ethertype;
851 u8 *payload;
853 payload = rx->skb->data +
854 ieee80211_hdrlen(hdr->frame_control);
855 ethertype = (payload[6] << 8) | payload[7];
856 if (cpu_to_be16(ethertype) ==
857 rx->sdata->control_port_protocol)
858 return RX_CONTINUE;
860 return RX_DROP_MONITOR;
863 return RX_CONTINUE;
867 static ieee80211_rx_result debug_noinline
868 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
870 struct sk_buff *skb = rx->skb;
871 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
872 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
873 int keyidx;
874 int hdrlen;
875 ieee80211_rx_result result = RX_DROP_UNUSABLE;
876 struct ieee80211_key *sta_ptk = NULL;
877 int mmie_keyidx = -1;
878 __le16 fc;
881 * Key selection 101
883 * There are four types of keys:
884 * - GTK (group keys)
885 * - IGTK (group keys for management frames)
886 * - PTK (pairwise keys)
887 * - STK (station-to-station pairwise keys)
889 * When selecting a key, we have to distinguish between multicast
890 * (including broadcast) and unicast frames, the latter can only
891 * use PTKs and STKs while the former always use GTKs and IGTKs.
892 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
893 * unicast frames can also use key indices like GTKs. Hence, if we
894 * don't have a PTK/STK we check the key index for a WEP key.
896 * Note that in a regular BSS, multicast frames are sent by the
897 * AP only, associated stations unicast the frame to the AP first
898 * which then multicasts it on their behalf.
900 * There is also a slight problem in IBSS mode: GTKs are negotiated
901 * with each station, that is something we don't currently handle.
902 * The spec seems to expect that one negotiates the same key with
903 * every station but there's no such requirement; VLANs could be
904 * possible.
908 * No point in finding a key and decrypting if the frame is neither
909 * addressed to us nor a multicast frame.
911 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
912 return RX_CONTINUE;
914 /* start without a key */
915 rx->key = NULL;
917 if (rx->sta)
918 sta_ptk = rcu_dereference(rx->sta->ptk);
920 fc = hdr->frame_control;
922 if (!ieee80211_has_protected(fc))
923 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
925 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
926 rx->key = sta_ptk;
927 if ((status->flag & RX_FLAG_DECRYPTED) &&
928 (status->flag & RX_FLAG_IV_STRIPPED))
929 return RX_CONTINUE;
930 /* Skip decryption if the frame is not protected. */
931 if (!ieee80211_has_protected(fc))
932 return RX_CONTINUE;
933 } else if (mmie_keyidx >= 0) {
934 /* Broadcast/multicast robust management frame / BIP */
935 if ((status->flag & RX_FLAG_DECRYPTED) &&
936 (status->flag & RX_FLAG_IV_STRIPPED))
937 return RX_CONTINUE;
939 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
940 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
941 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
942 if (rx->sta)
943 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
944 if (!rx->key)
945 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
946 } else if (!ieee80211_has_protected(fc)) {
948 * The frame was not protected, so skip decryption. However, we
949 * need to set rx->key if there is a key that could have been
950 * used so that the frame may be dropped if encryption would
951 * have been expected.
953 struct ieee80211_key *key = NULL;
954 struct ieee80211_sub_if_data *sdata = rx->sdata;
955 int i;
957 if (ieee80211_is_mgmt(fc) &&
958 is_multicast_ether_addr(hdr->addr1) &&
959 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
960 rx->key = key;
961 else {
962 if (rx->sta) {
963 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
964 key = rcu_dereference(rx->sta->gtk[i]);
965 if (key)
966 break;
969 if (!key) {
970 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
971 key = rcu_dereference(sdata->keys[i]);
972 if (key)
973 break;
976 if (key)
977 rx->key = key;
979 return RX_CONTINUE;
980 } else {
981 u8 keyid;
983 * The device doesn't give us the IV so we won't be
984 * able to look up the key. That's ok though, we
985 * don't need to decrypt the frame, we just won't
986 * be able to keep statistics accurate.
987 * Except for key threshold notifications, should
988 * we somehow allow the driver to tell us which key
989 * the hardware used if this flag is set?
991 if ((status->flag & RX_FLAG_DECRYPTED) &&
992 (status->flag & RX_FLAG_IV_STRIPPED))
993 return RX_CONTINUE;
995 hdrlen = ieee80211_hdrlen(fc);
997 if (rx->skb->len < 8 + hdrlen)
998 return RX_DROP_UNUSABLE; /* TODO: count this? */
1001 * no need to call ieee80211_wep_get_keyidx,
1002 * it verifies a bunch of things we've done already
1004 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1005 keyidx = keyid >> 6;
1007 /* check per-station GTK first, if multicast packet */
1008 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1009 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1011 /* if not found, try default key */
1012 if (!rx->key) {
1013 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1016 * RSNA-protected unicast frames should always be
1017 * sent with pairwise or station-to-station keys,
1018 * but for WEP we allow using a key index as well.
1020 if (rx->key &&
1021 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1022 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1023 !is_multicast_ether_addr(hdr->addr1))
1024 rx->key = NULL;
1028 if (rx->key) {
1029 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1030 return RX_DROP_MONITOR;
1032 rx->key->tx_rx_count++;
1033 /* TODO: add threshold stuff again */
1034 } else {
1035 return RX_DROP_MONITOR;
1038 if (skb_linearize(rx->skb))
1039 return RX_DROP_UNUSABLE;
1040 /* the hdr variable is invalid now! */
1042 switch (rx->key->conf.cipher) {
1043 case WLAN_CIPHER_SUITE_WEP40:
1044 case WLAN_CIPHER_SUITE_WEP104:
1045 /* Check for weak IVs if possible */
1046 if (rx->sta && ieee80211_is_data(fc) &&
1047 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1048 !(status->flag & RX_FLAG_DECRYPTED)) &&
1049 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1050 rx->sta->wep_weak_iv_count++;
1052 result = ieee80211_crypto_wep_decrypt(rx);
1053 break;
1054 case WLAN_CIPHER_SUITE_TKIP:
1055 result = ieee80211_crypto_tkip_decrypt(rx);
1056 break;
1057 case WLAN_CIPHER_SUITE_CCMP:
1058 result = ieee80211_crypto_ccmp_decrypt(rx);
1059 break;
1060 case WLAN_CIPHER_SUITE_AES_CMAC:
1061 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1062 break;
1063 default:
1065 * We can reach here only with HW-only algorithms
1066 * but why didn't it decrypt the frame?!
1068 return RX_DROP_UNUSABLE;
1071 /* either the frame has been decrypted or will be dropped */
1072 status->flag |= RX_FLAG_DECRYPTED;
1074 return result;
1077 static ieee80211_rx_result debug_noinline
1078 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1080 struct ieee80211_local *local;
1081 struct ieee80211_hdr *hdr;
1082 struct sk_buff *skb;
1084 local = rx->local;
1085 skb = rx->skb;
1086 hdr = (struct ieee80211_hdr *) skb->data;
1088 if (!local->pspolling)
1089 return RX_CONTINUE;
1091 if (!ieee80211_has_fromds(hdr->frame_control))
1092 /* this is not from AP */
1093 return RX_CONTINUE;
1095 if (!ieee80211_is_data(hdr->frame_control))
1096 return RX_CONTINUE;
1098 if (!ieee80211_has_moredata(hdr->frame_control)) {
1099 /* AP has no more frames buffered for us */
1100 local->pspolling = false;
1101 return RX_CONTINUE;
1104 /* more data bit is set, let's request a new frame from the AP */
1105 ieee80211_send_pspoll(local, rx->sdata);
1107 return RX_CONTINUE;
1110 static void ap_sta_ps_start(struct sta_info *sta)
1112 struct ieee80211_sub_if_data *sdata = sta->sdata;
1113 struct ieee80211_local *local = sdata->local;
1115 atomic_inc(&sdata->bss->num_sta_ps);
1116 set_sta_flag(sta, WLAN_STA_PS_STA);
1117 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1118 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1120 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1121 sdata->name, sta->sta.addr, sta->sta.aid);
1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1125 static void ap_sta_ps_end(struct sta_info *sta)
1127 struct ieee80211_sub_if_data *sdata = sta->sdata;
1129 atomic_dec(&sdata->bss->num_sta_ps);
1131 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1132 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1133 sdata->name, sta->sta.addr, sta->sta.aid);
1134 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1136 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1137 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1138 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1139 sdata->name, sta->sta.addr, sta->sta.aid);
1140 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1141 return;
1144 ieee80211_sta_ps_deliver_wakeup(sta);
1147 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1149 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1150 bool in_ps;
1152 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1154 /* Don't let the same PS state be set twice */
1155 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1156 if ((start && in_ps) || (!start && !in_ps))
1157 return -EINVAL;
1159 if (start)
1160 ap_sta_ps_start(sta_inf);
1161 else
1162 ap_sta_ps_end(sta_inf);
1164 return 0;
1166 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1168 static ieee80211_rx_result debug_noinline
1169 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1171 struct ieee80211_sub_if_data *sdata = rx->sdata;
1172 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1173 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1174 int tid, ac;
1176 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1177 return RX_CONTINUE;
1179 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1180 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1181 return RX_CONTINUE;
1184 * The device handles station powersave, so don't do anything about
1185 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1186 * it to mac80211 since they're handled.)
1188 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1189 return RX_CONTINUE;
1192 * Don't do anything if the station isn't already asleep. In
1193 * the uAPSD case, the station will probably be marked asleep,
1194 * in the PS-Poll case the station must be confused ...
1196 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1197 return RX_CONTINUE;
1199 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1200 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1201 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1202 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1203 else
1204 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1207 /* Free PS Poll skb here instead of returning RX_DROP that would
1208 * count as an dropped frame. */
1209 dev_kfree_skb(rx->skb);
1211 return RX_QUEUED;
1212 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1213 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1214 ieee80211_has_pm(hdr->frame_control) &&
1215 (ieee80211_is_data_qos(hdr->frame_control) ||
1216 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1217 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1218 ac = ieee802_1d_to_ac[tid & 7];
1221 * If this AC is not trigger-enabled do nothing.
1223 * NB: This could/should check a separate bitmap of trigger-
1224 * enabled queues, but for now we only implement uAPSD w/o
1225 * TSPEC changes to the ACs, so they're always the same.
1227 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1228 return RX_CONTINUE;
1230 /* if we are in a service period, do nothing */
1231 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1232 return RX_CONTINUE;
1234 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1235 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1236 else
1237 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1240 return RX_CONTINUE;
1243 static ieee80211_rx_result debug_noinline
1244 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1246 struct sta_info *sta = rx->sta;
1247 struct sk_buff *skb = rx->skb;
1248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1249 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1251 if (!sta)
1252 return RX_CONTINUE;
1255 * Update last_rx only for IBSS packets which are for the current
1256 * BSSID to avoid keeping the current IBSS network alive in cases
1257 * where other STAs start using different BSSID.
1259 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1260 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1261 NL80211_IFTYPE_ADHOC);
1262 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) {
1263 sta->last_rx = jiffies;
1264 if (ieee80211_is_data(hdr->frame_control)) {
1265 sta->last_rx_rate_idx = status->rate_idx;
1266 sta->last_rx_rate_flag = status->flag;
1269 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1271 * Mesh beacons will update last_rx when if they are found to
1272 * match the current local configuration when processed.
1274 sta->last_rx = jiffies;
1275 if (ieee80211_is_data(hdr->frame_control)) {
1276 sta->last_rx_rate_idx = status->rate_idx;
1277 sta->last_rx_rate_flag = status->flag;
1281 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1282 return RX_CONTINUE;
1284 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1285 ieee80211_sta_rx_notify(rx->sdata, hdr);
1287 sta->rx_fragments++;
1288 sta->rx_bytes += rx->skb->len;
1289 sta->last_signal = status->signal;
1290 ewma_add(&sta->avg_signal, -status->signal);
1293 * Change STA power saving mode only at the end of a frame
1294 * exchange sequence.
1296 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1297 !ieee80211_has_morefrags(hdr->frame_control) &&
1298 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1299 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1300 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1301 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1303 * Ignore doze->wake transitions that are
1304 * indicated by non-data frames, the standard
1305 * is unclear here, but for example going to
1306 * PS mode and then scanning would cause a
1307 * doze->wake transition for the probe request,
1308 * and that is clearly undesirable.
1310 if (ieee80211_is_data(hdr->frame_control) &&
1311 !ieee80211_has_pm(hdr->frame_control))
1312 ap_sta_ps_end(sta);
1313 } else {
1314 if (ieee80211_has_pm(hdr->frame_control))
1315 ap_sta_ps_start(sta);
1320 * Drop (qos-)data::nullfunc frames silently, since they
1321 * are used only to control station power saving mode.
1323 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1324 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1325 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1328 * If we receive a 4-addr nullfunc frame from a STA
1329 * that was not moved to a 4-addr STA vlan yet, drop
1330 * the frame to the monitor interface, to make sure
1331 * that hostapd sees it
1333 if (ieee80211_has_a4(hdr->frame_control) &&
1334 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1335 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1336 !rx->sdata->u.vlan.sta)))
1337 return RX_DROP_MONITOR;
1339 * Update counter and free packet here to avoid
1340 * counting this as a dropped packed.
1342 sta->rx_packets++;
1343 dev_kfree_skb(rx->skb);
1344 return RX_QUEUED;
1347 return RX_CONTINUE;
1348 } /* ieee80211_rx_h_sta_process */
1350 static inline struct ieee80211_fragment_entry *
1351 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1352 unsigned int frag, unsigned int seq, int rx_queue,
1353 struct sk_buff **skb)
1355 struct ieee80211_fragment_entry *entry;
1356 int idx;
1358 idx = sdata->fragment_next;
1359 entry = &sdata->fragments[sdata->fragment_next++];
1360 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1361 sdata->fragment_next = 0;
1363 if (!skb_queue_empty(&entry->skb_list)) {
1364 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1365 struct ieee80211_hdr *hdr =
1366 (struct ieee80211_hdr *) entry->skb_list.next->data;
1367 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1368 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1369 "addr1=%pM addr2=%pM\n",
1370 sdata->name, idx,
1371 jiffies - entry->first_frag_time, entry->seq,
1372 entry->last_frag, hdr->addr1, hdr->addr2);
1373 #endif
1374 __skb_queue_purge(&entry->skb_list);
1377 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1378 *skb = NULL;
1379 entry->first_frag_time = jiffies;
1380 entry->seq = seq;
1381 entry->rx_queue = rx_queue;
1382 entry->last_frag = frag;
1383 entry->ccmp = 0;
1384 entry->extra_len = 0;
1386 return entry;
1389 static inline struct ieee80211_fragment_entry *
1390 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1391 unsigned int frag, unsigned int seq,
1392 int rx_queue, struct ieee80211_hdr *hdr)
1394 struct ieee80211_fragment_entry *entry;
1395 int i, idx;
1397 idx = sdata->fragment_next;
1398 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1399 struct ieee80211_hdr *f_hdr;
1401 idx--;
1402 if (idx < 0)
1403 idx = IEEE80211_FRAGMENT_MAX - 1;
1405 entry = &sdata->fragments[idx];
1406 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1407 entry->rx_queue != rx_queue ||
1408 entry->last_frag + 1 != frag)
1409 continue;
1411 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1414 * Check ftype and addresses are equal, else check next fragment
1416 if (((hdr->frame_control ^ f_hdr->frame_control) &
1417 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1418 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1419 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1420 continue;
1422 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1423 __skb_queue_purge(&entry->skb_list);
1424 continue;
1426 return entry;
1429 return NULL;
1432 static ieee80211_rx_result debug_noinline
1433 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1435 struct ieee80211_hdr *hdr;
1436 u16 sc;
1437 __le16 fc;
1438 unsigned int frag, seq;
1439 struct ieee80211_fragment_entry *entry;
1440 struct sk_buff *skb;
1441 struct ieee80211_rx_status *status;
1443 hdr = (struct ieee80211_hdr *)rx->skb->data;
1444 fc = hdr->frame_control;
1445 sc = le16_to_cpu(hdr->seq_ctrl);
1446 frag = sc & IEEE80211_SCTL_FRAG;
1448 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1449 (rx->skb)->len < 24 ||
1450 is_multicast_ether_addr(hdr->addr1))) {
1451 /* not fragmented */
1452 goto out;
1454 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1456 if (skb_linearize(rx->skb))
1457 return RX_DROP_UNUSABLE;
1460 * skb_linearize() might change the skb->data and
1461 * previously cached variables (in this case, hdr) need to
1462 * be refreshed with the new data.
1464 hdr = (struct ieee80211_hdr *)rx->skb->data;
1465 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1467 if (frag == 0) {
1468 /* This is the first fragment of a new frame. */
1469 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1470 rx->seqno_idx, &(rx->skb));
1471 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1472 ieee80211_has_protected(fc)) {
1473 int queue = rx->security_idx;
1474 /* Store CCMP PN so that we can verify that the next
1475 * fragment has a sequential PN value. */
1476 entry->ccmp = 1;
1477 memcpy(entry->last_pn,
1478 rx->key->u.ccmp.rx_pn[queue],
1479 CCMP_PN_LEN);
1481 return RX_QUEUED;
1484 /* This is a fragment for a frame that should already be pending in
1485 * fragment cache. Add this fragment to the end of the pending entry.
1487 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1488 rx->seqno_idx, hdr);
1489 if (!entry) {
1490 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1491 return RX_DROP_MONITOR;
1494 /* Verify that MPDUs within one MSDU have sequential PN values.
1495 * (IEEE 802.11i, 8.3.3.4.5) */
1496 if (entry->ccmp) {
1497 int i;
1498 u8 pn[CCMP_PN_LEN], *rpn;
1499 int queue;
1500 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1501 return RX_DROP_UNUSABLE;
1502 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1503 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1504 pn[i]++;
1505 if (pn[i])
1506 break;
1508 queue = rx->security_idx;
1509 rpn = rx->key->u.ccmp.rx_pn[queue];
1510 if (memcmp(pn, rpn, CCMP_PN_LEN))
1511 return RX_DROP_UNUSABLE;
1512 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1515 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1516 __skb_queue_tail(&entry->skb_list, rx->skb);
1517 entry->last_frag = frag;
1518 entry->extra_len += rx->skb->len;
1519 if (ieee80211_has_morefrags(fc)) {
1520 rx->skb = NULL;
1521 return RX_QUEUED;
1524 rx->skb = __skb_dequeue(&entry->skb_list);
1525 if (skb_tailroom(rx->skb) < entry->extra_len) {
1526 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1527 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1528 GFP_ATOMIC))) {
1529 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1530 __skb_queue_purge(&entry->skb_list);
1531 return RX_DROP_UNUSABLE;
1534 while ((skb = __skb_dequeue(&entry->skb_list))) {
1535 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1536 dev_kfree_skb(skb);
1539 /* Complete frame has been reassembled - process it now */
1540 status = IEEE80211_SKB_RXCB(rx->skb);
1541 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1543 out:
1544 if (rx->sta)
1545 rx->sta->rx_packets++;
1546 if (is_multicast_ether_addr(hdr->addr1))
1547 rx->local->dot11MulticastReceivedFrameCount++;
1548 else
1549 ieee80211_led_rx(rx->local);
1550 return RX_CONTINUE;
1553 static ieee80211_rx_result debug_noinline
1554 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1556 u8 *data = rx->skb->data;
1557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1559 if (!ieee80211_is_data_qos(hdr->frame_control))
1560 return RX_CONTINUE;
1562 /* remove the qos control field, update frame type and meta-data */
1563 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1564 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1565 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1566 /* change frame type to non QOS */
1567 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1569 return RX_CONTINUE;
1572 static int
1573 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1575 if (unlikely(!rx->sta ||
1576 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1577 return -EACCES;
1579 return 0;
1582 static int
1583 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1585 struct sk_buff *skb = rx->skb;
1586 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1589 * Pass through unencrypted frames if the hardware has
1590 * decrypted them already.
1592 if (status->flag & RX_FLAG_DECRYPTED)
1593 return 0;
1595 /* Drop unencrypted frames if key is set. */
1596 if (unlikely(!ieee80211_has_protected(fc) &&
1597 !ieee80211_is_nullfunc(fc) &&
1598 ieee80211_is_data(fc) &&
1599 (rx->key || rx->sdata->drop_unencrypted)))
1600 return -EACCES;
1602 return 0;
1605 static int
1606 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1608 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1609 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1610 __le16 fc = hdr->frame_control;
1613 * Pass through unencrypted frames if the hardware has
1614 * decrypted them already.
1616 if (status->flag & RX_FLAG_DECRYPTED)
1617 return 0;
1619 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1620 if (unlikely(!ieee80211_has_protected(fc) &&
1621 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1622 rx->key)) {
1623 if (ieee80211_is_deauth(fc))
1624 cfg80211_send_unprot_deauth(rx->sdata->dev,
1625 rx->skb->data,
1626 rx->skb->len);
1627 else if (ieee80211_is_disassoc(fc))
1628 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1629 rx->skb->data,
1630 rx->skb->len);
1631 return -EACCES;
1633 /* BIP does not use Protected field, so need to check MMIE */
1634 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1635 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1636 if (ieee80211_is_deauth(fc))
1637 cfg80211_send_unprot_deauth(rx->sdata->dev,
1638 rx->skb->data,
1639 rx->skb->len);
1640 else if (ieee80211_is_disassoc(fc))
1641 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1642 rx->skb->data,
1643 rx->skb->len);
1644 return -EACCES;
1647 * When using MFP, Action frames are not allowed prior to
1648 * having configured keys.
1650 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1651 ieee80211_is_robust_mgmt_frame(
1652 (struct ieee80211_hdr *) rx->skb->data)))
1653 return -EACCES;
1656 return 0;
1659 static int
1660 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1662 struct ieee80211_sub_if_data *sdata = rx->sdata;
1663 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1664 bool check_port_control = false;
1665 struct ethhdr *ehdr;
1666 int ret;
1668 *port_control = false;
1669 if (ieee80211_has_a4(hdr->frame_control) &&
1670 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1671 return -1;
1673 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1674 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1676 if (!sdata->u.mgd.use_4addr)
1677 return -1;
1678 else
1679 check_port_control = true;
1682 if (is_multicast_ether_addr(hdr->addr1) &&
1683 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1684 return -1;
1686 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1687 if (ret < 0)
1688 return ret;
1690 ehdr = (struct ethhdr *) rx->skb->data;
1691 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1692 *port_control = true;
1693 else if (check_port_control)
1694 return -1;
1696 return 0;
1700 * requires that rx->skb is a frame with ethernet header
1702 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1704 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1705 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1706 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1709 * Allow EAPOL frames to us/the PAE group address regardless
1710 * of whether the frame was encrypted or not.
1712 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1713 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1714 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1715 return true;
1717 if (ieee80211_802_1x_port_control(rx) ||
1718 ieee80211_drop_unencrypted(rx, fc))
1719 return false;
1721 return true;
1725 * requires that rx->skb is a frame with ethernet header
1727 static void
1728 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1730 struct ieee80211_sub_if_data *sdata = rx->sdata;
1731 struct net_device *dev = sdata->dev;
1732 struct sk_buff *skb, *xmit_skb;
1733 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1734 struct sta_info *dsta;
1735 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1737 skb = rx->skb;
1738 xmit_skb = NULL;
1740 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1741 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1742 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1743 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1744 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1745 if (is_multicast_ether_addr(ehdr->h_dest)) {
1747 * send multicast frames both to higher layers in
1748 * local net stack and back to the wireless medium
1750 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1751 if (!xmit_skb && net_ratelimit())
1752 printk(KERN_DEBUG "%s: failed to clone "
1753 "multicast frame\n", dev->name);
1754 } else {
1755 dsta = sta_info_get(sdata, skb->data);
1756 if (dsta) {
1758 * The destination station is associated to
1759 * this AP (in this VLAN), so send the frame
1760 * directly to it and do not pass it to local
1761 * net stack.
1763 xmit_skb = skb;
1764 skb = NULL;
1769 if (skb) {
1770 int align __maybe_unused;
1772 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1774 * 'align' will only take the values 0 or 2 here
1775 * since all frames are required to be aligned
1776 * to 2-byte boundaries when being passed to
1777 * mac80211. That also explains the __skb_push()
1778 * below.
1780 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1781 if (align) {
1782 if (WARN_ON(skb_headroom(skb) < 3)) {
1783 dev_kfree_skb(skb);
1784 skb = NULL;
1785 } else {
1786 u8 *data = skb->data;
1787 size_t len = skb_headlen(skb);
1788 skb->data -= align;
1789 memmove(skb->data, data, len);
1790 skb_set_tail_pointer(skb, len);
1793 #endif
1795 if (skb) {
1796 /* deliver to local stack */
1797 skb->protocol = eth_type_trans(skb, dev);
1798 memset(skb->cb, 0, sizeof(skb->cb));
1799 netif_receive_skb(skb);
1803 if (xmit_skb) {
1804 /* send to wireless media */
1805 xmit_skb->protocol = htons(ETH_P_802_3);
1806 skb_reset_network_header(xmit_skb);
1807 skb_reset_mac_header(xmit_skb);
1808 dev_queue_xmit(xmit_skb);
1812 static ieee80211_rx_result debug_noinline
1813 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1815 struct net_device *dev = rx->sdata->dev;
1816 struct sk_buff *skb = rx->skb;
1817 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1818 __le16 fc = hdr->frame_control;
1819 struct sk_buff_head frame_list;
1820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1822 if (unlikely(!ieee80211_is_data(fc)))
1823 return RX_CONTINUE;
1825 if (unlikely(!ieee80211_is_data_present(fc)))
1826 return RX_DROP_MONITOR;
1828 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1829 return RX_CONTINUE;
1831 if (ieee80211_has_a4(hdr->frame_control) &&
1832 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1833 !rx->sdata->u.vlan.sta)
1834 return RX_DROP_UNUSABLE;
1836 if (is_multicast_ether_addr(hdr->addr1) &&
1837 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1838 rx->sdata->u.vlan.sta) ||
1839 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1840 rx->sdata->u.mgd.use_4addr)))
1841 return RX_DROP_UNUSABLE;
1843 skb->dev = dev;
1844 __skb_queue_head_init(&frame_list);
1846 if (skb_linearize(skb))
1847 return RX_DROP_UNUSABLE;
1849 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1850 rx->sdata->vif.type,
1851 rx->local->hw.extra_tx_headroom, true);
1853 while (!skb_queue_empty(&frame_list)) {
1854 rx->skb = __skb_dequeue(&frame_list);
1856 if (!ieee80211_frame_allowed(rx, fc)) {
1857 dev_kfree_skb(rx->skb);
1858 continue;
1860 dev->stats.rx_packets++;
1861 dev->stats.rx_bytes += rx->skb->len;
1863 ieee80211_deliver_skb(rx);
1866 return RX_QUEUED;
1869 #ifdef CONFIG_MAC80211_MESH
1870 static ieee80211_rx_result
1871 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1873 struct ieee80211_hdr *hdr;
1874 struct ieee80211s_hdr *mesh_hdr;
1875 unsigned int hdrlen;
1876 struct sk_buff *skb = rx->skb, *fwd_skb;
1877 struct ieee80211_local *local = rx->local;
1878 struct ieee80211_sub_if_data *sdata = rx->sdata;
1879 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1881 hdr = (struct ieee80211_hdr *) skb->data;
1882 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1883 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1885 /* frame is in RMC, don't forward */
1886 if (ieee80211_is_data(hdr->frame_control) &&
1887 is_multicast_ether_addr(hdr->addr1) &&
1888 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata))
1889 return RX_DROP_MONITOR;
1891 if (!ieee80211_is_data(hdr->frame_control))
1892 return RX_CONTINUE;
1894 if (!mesh_hdr->ttl)
1895 /* illegal frame */
1896 return RX_DROP_MONITOR;
1898 if (ieee80211_queue_stopped(&local->hw, skb_get_queue_mapping(skb))) {
1899 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1900 dropped_frames_congestion);
1901 return RX_DROP_MONITOR;
1904 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1905 struct mesh_path *mppath;
1906 char *proxied_addr;
1907 char *mpp_addr;
1909 if (is_multicast_ether_addr(hdr->addr1)) {
1910 mpp_addr = hdr->addr3;
1911 proxied_addr = mesh_hdr->eaddr1;
1912 } else {
1913 mpp_addr = hdr->addr4;
1914 proxied_addr = mesh_hdr->eaddr2;
1917 rcu_read_lock();
1918 mppath = mpp_path_lookup(proxied_addr, sdata);
1919 if (!mppath) {
1920 mpp_path_add(proxied_addr, mpp_addr, sdata);
1921 } else {
1922 spin_lock_bh(&mppath->state_lock);
1923 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1924 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1925 spin_unlock_bh(&mppath->state_lock);
1927 rcu_read_unlock();
1930 /* Frame has reached destination. Don't forward */
1931 if (!is_multicast_ether_addr(hdr->addr1) &&
1932 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1933 return RX_CONTINUE;
1935 mesh_hdr->ttl--;
1937 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1938 if (!mesh_hdr->ttl)
1939 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1940 dropped_frames_ttl);
1941 else {
1942 struct ieee80211_hdr *fwd_hdr;
1943 struct ieee80211_tx_info *info;
1945 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1947 if (!fwd_skb && net_ratelimit())
1948 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1949 sdata->name);
1950 if (!fwd_skb)
1951 goto out;
1953 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1954 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1955 info = IEEE80211_SKB_CB(fwd_skb);
1956 memset(info, 0, sizeof(*info));
1957 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1958 info->control.vif = &rx->sdata->vif;
1959 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
1960 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1961 fwded_mcast);
1962 skb_set_queue_mapping(fwd_skb,
1963 ieee80211_select_queue(sdata, fwd_skb));
1964 ieee80211_set_qos_hdr(sdata, fwd_skb);
1965 } else {
1966 int err;
1968 * Save TA to addr1 to send TA a path error if a
1969 * suitable next hop is not found
1971 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1972 ETH_ALEN);
1973 err = mesh_nexthop_lookup(fwd_skb, sdata);
1974 /* Failed to immediately resolve next hop:
1975 * fwded frame was dropped or will be added
1976 * later to the pending skb queue. */
1977 if (err)
1978 return RX_DROP_MONITOR;
1980 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1981 fwded_unicast);
1983 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1984 fwded_frames);
1985 ieee80211_add_pending_skb(local, fwd_skb);
1989 out:
1990 if (is_multicast_ether_addr(hdr->addr1) ||
1991 sdata->dev->flags & IFF_PROMISC)
1992 return RX_CONTINUE;
1993 else
1994 return RX_DROP_MONITOR;
1996 #endif
1998 static ieee80211_rx_result debug_noinline
1999 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2001 struct ieee80211_sub_if_data *sdata = rx->sdata;
2002 struct ieee80211_local *local = rx->local;
2003 struct net_device *dev = sdata->dev;
2004 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2005 __le16 fc = hdr->frame_control;
2006 bool port_control;
2007 int err;
2009 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2010 return RX_CONTINUE;
2012 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2013 return RX_DROP_MONITOR;
2016 * Allow the cooked monitor interface of an AP to see 4-addr frames so
2017 * that a 4-addr station can be detected and moved into a separate VLAN
2019 if (ieee80211_has_a4(hdr->frame_control) &&
2020 sdata->vif.type == NL80211_IFTYPE_AP)
2021 return RX_DROP_MONITOR;
2023 err = __ieee80211_data_to_8023(rx, &port_control);
2024 if (unlikely(err))
2025 return RX_DROP_UNUSABLE;
2027 if (!ieee80211_frame_allowed(rx, fc))
2028 return RX_DROP_MONITOR;
2030 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2031 unlikely(port_control) && sdata->bss) {
2032 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2033 u.ap);
2034 dev = sdata->dev;
2035 rx->sdata = sdata;
2038 rx->skb->dev = dev;
2040 dev->stats.rx_packets++;
2041 dev->stats.rx_bytes += rx->skb->len;
2043 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2044 !is_multicast_ether_addr(
2045 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2046 (!local->scanning &&
2047 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2048 mod_timer(&local->dynamic_ps_timer, jiffies +
2049 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2052 ieee80211_deliver_skb(rx);
2054 return RX_QUEUED;
2057 static ieee80211_rx_result debug_noinline
2058 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
2060 struct ieee80211_local *local = rx->local;
2061 struct ieee80211_hw *hw = &local->hw;
2062 struct sk_buff *skb = rx->skb;
2063 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2064 struct tid_ampdu_rx *tid_agg_rx;
2065 u16 start_seq_num;
2066 u16 tid;
2068 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2069 return RX_CONTINUE;
2071 if (ieee80211_is_back_req(bar->frame_control)) {
2072 struct {
2073 __le16 control, start_seq_num;
2074 } __packed bar_data;
2076 if (!rx->sta)
2077 return RX_DROP_MONITOR;
2079 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2080 &bar_data, sizeof(bar_data)))
2081 return RX_DROP_MONITOR;
2083 tid = le16_to_cpu(bar_data.control) >> 12;
2085 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2086 if (!tid_agg_rx)
2087 return RX_DROP_MONITOR;
2089 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2091 /* reset session timer */
2092 if (tid_agg_rx->timeout)
2093 mod_timer(&tid_agg_rx->session_timer,
2094 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2096 spin_lock(&tid_agg_rx->reorder_lock);
2097 /* release stored frames up to start of BAR */
2098 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num);
2099 spin_unlock(&tid_agg_rx->reorder_lock);
2101 kfree_skb(skb);
2102 return RX_QUEUED;
2106 * After this point, we only want management frames,
2107 * so we can drop all remaining control frames to
2108 * cooked monitor interfaces.
2110 return RX_DROP_MONITOR;
2113 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2114 struct ieee80211_mgmt *mgmt,
2115 size_t len)
2117 struct ieee80211_local *local = sdata->local;
2118 struct sk_buff *skb;
2119 struct ieee80211_mgmt *resp;
2121 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
2122 /* Not to own unicast address */
2123 return;
2126 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2127 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2128 /* Not from the current AP or not associated yet. */
2129 return;
2132 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2133 /* Too short SA Query request frame */
2134 return;
2137 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2138 if (skb == NULL)
2139 return;
2141 skb_reserve(skb, local->hw.extra_tx_headroom);
2142 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2143 memset(resp, 0, 24);
2144 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2145 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2146 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2147 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2148 IEEE80211_STYPE_ACTION);
2149 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2150 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2151 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2152 memcpy(resp->u.action.u.sa_query.trans_id,
2153 mgmt->u.action.u.sa_query.trans_id,
2154 WLAN_SA_QUERY_TR_ID_LEN);
2156 ieee80211_tx_skb(sdata, skb);
2159 static ieee80211_rx_result debug_noinline
2160 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2162 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2163 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2166 * From here on, look only at management frames.
2167 * Data and control frames are already handled,
2168 * and unknown (reserved) frames are useless.
2170 if (rx->skb->len < 24)
2171 return RX_DROP_MONITOR;
2173 if (!ieee80211_is_mgmt(mgmt->frame_control))
2174 return RX_DROP_MONITOR;
2176 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2177 return RX_DROP_MONITOR;
2179 if (ieee80211_drop_unencrypted_mgmt(rx))
2180 return RX_DROP_UNUSABLE;
2182 return RX_CONTINUE;
2185 static ieee80211_rx_result debug_noinline
2186 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2188 struct ieee80211_local *local = rx->local;
2189 struct ieee80211_sub_if_data *sdata = rx->sdata;
2190 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2191 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2192 int len = rx->skb->len;
2194 if (!ieee80211_is_action(mgmt->frame_control))
2195 return RX_CONTINUE;
2197 /* drop too small frames */
2198 if (len < IEEE80211_MIN_ACTION_SIZE)
2199 return RX_DROP_UNUSABLE;
2201 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2202 return RX_DROP_UNUSABLE;
2204 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2205 return RX_DROP_UNUSABLE;
2207 switch (mgmt->u.action.category) {
2208 case WLAN_CATEGORY_BACK:
2210 * The aggregation code is not prepared to handle
2211 * anything but STA/AP due to the BSSID handling;
2212 * IBSS could work in the code but isn't supported
2213 * by drivers or the standard.
2215 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2216 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2217 sdata->vif.type != NL80211_IFTYPE_AP)
2218 break;
2220 /* verify action_code is present */
2221 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2222 break;
2224 switch (mgmt->u.action.u.addba_req.action_code) {
2225 case WLAN_ACTION_ADDBA_REQ:
2226 if (len < (IEEE80211_MIN_ACTION_SIZE +
2227 sizeof(mgmt->u.action.u.addba_req)))
2228 goto invalid;
2229 break;
2230 case WLAN_ACTION_ADDBA_RESP:
2231 if (len < (IEEE80211_MIN_ACTION_SIZE +
2232 sizeof(mgmt->u.action.u.addba_resp)))
2233 goto invalid;
2234 break;
2235 case WLAN_ACTION_DELBA:
2236 if (len < (IEEE80211_MIN_ACTION_SIZE +
2237 sizeof(mgmt->u.action.u.delba)))
2238 goto invalid;
2239 break;
2240 default:
2241 goto invalid;
2244 goto queue;
2245 case WLAN_CATEGORY_SPECTRUM_MGMT:
2246 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2247 break;
2249 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2250 break;
2252 /* verify action_code is present */
2253 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2254 break;
2256 switch (mgmt->u.action.u.measurement.action_code) {
2257 case WLAN_ACTION_SPCT_MSR_REQ:
2258 if (len < (IEEE80211_MIN_ACTION_SIZE +
2259 sizeof(mgmt->u.action.u.measurement)))
2260 break;
2261 ieee80211_process_measurement_req(sdata, mgmt, len);
2262 goto handled;
2263 case WLAN_ACTION_SPCT_CHL_SWITCH:
2264 if (len < (IEEE80211_MIN_ACTION_SIZE +
2265 sizeof(mgmt->u.action.u.chan_switch)))
2266 break;
2268 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2269 break;
2271 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2272 break;
2274 goto queue;
2276 break;
2277 case WLAN_CATEGORY_SA_QUERY:
2278 if (len < (IEEE80211_MIN_ACTION_SIZE +
2279 sizeof(mgmt->u.action.u.sa_query)))
2280 break;
2282 switch (mgmt->u.action.u.sa_query.action) {
2283 case WLAN_ACTION_SA_QUERY_REQUEST:
2284 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2285 break;
2286 ieee80211_process_sa_query_req(sdata, mgmt, len);
2287 goto handled;
2289 break;
2290 case WLAN_CATEGORY_SELF_PROTECTED:
2291 switch (mgmt->u.action.u.self_prot.action_code) {
2292 case WLAN_SP_MESH_PEERING_OPEN:
2293 case WLAN_SP_MESH_PEERING_CLOSE:
2294 case WLAN_SP_MESH_PEERING_CONFIRM:
2295 if (!ieee80211_vif_is_mesh(&sdata->vif))
2296 goto invalid;
2297 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE)
2298 /* userspace handles this frame */
2299 break;
2300 goto queue;
2301 case WLAN_SP_MGK_INFORM:
2302 case WLAN_SP_MGK_ACK:
2303 if (!ieee80211_vif_is_mesh(&sdata->vif))
2304 goto invalid;
2305 break;
2307 break;
2308 case WLAN_CATEGORY_MESH_ACTION:
2309 if (!ieee80211_vif_is_mesh(&sdata->vif))
2310 break;
2311 if (mesh_action_is_path_sel(mgmt) &&
2312 (!mesh_path_sel_is_hwmp(sdata)))
2313 break;
2314 goto queue;
2317 return RX_CONTINUE;
2319 invalid:
2320 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2321 /* will return in the next handlers */
2322 return RX_CONTINUE;
2324 handled:
2325 if (rx->sta)
2326 rx->sta->rx_packets++;
2327 dev_kfree_skb(rx->skb);
2328 return RX_QUEUED;
2330 queue:
2331 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2332 skb_queue_tail(&sdata->skb_queue, rx->skb);
2333 ieee80211_queue_work(&local->hw, &sdata->work);
2334 if (rx->sta)
2335 rx->sta->rx_packets++;
2336 return RX_QUEUED;
2339 static ieee80211_rx_result debug_noinline
2340 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2342 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2344 /* skip known-bad action frames and return them in the next handler */
2345 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2346 return RX_CONTINUE;
2349 * Getting here means the kernel doesn't know how to handle
2350 * it, but maybe userspace does ... include returned frames
2351 * so userspace can register for those to know whether ones
2352 * it transmitted were processed or returned.
2355 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2356 rx->skb->data, rx->skb->len,
2357 GFP_ATOMIC)) {
2358 if (rx->sta)
2359 rx->sta->rx_packets++;
2360 dev_kfree_skb(rx->skb);
2361 return RX_QUEUED;
2365 return RX_CONTINUE;
2368 static ieee80211_rx_result debug_noinline
2369 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2371 struct ieee80211_local *local = rx->local;
2372 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2373 struct sk_buff *nskb;
2374 struct ieee80211_sub_if_data *sdata = rx->sdata;
2375 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2377 if (!ieee80211_is_action(mgmt->frame_control))
2378 return RX_CONTINUE;
2381 * For AP mode, hostapd is responsible for handling any action
2382 * frames that we didn't handle, including returning unknown
2383 * ones. For all other modes we will return them to the sender,
2384 * setting the 0x80 bit in the action category, as required by
2385 * 802.11-2007 7.3.1.11.
2386 * Newer versions of hostapd shall also use the management frame
2387 * registration mechanisms, but older ones still use cooked
2388 * monitor interfaces so push all frames there.
2390 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2391 (sdata->vif.type == NL80211_IFTYPE_AP ||
2392 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2393 return RX_DROP_MONITOR;
2395 /* do not return rejected action frames */
2396 if (mgmt->u.action.category & 0x80)
2397 return RX_DROP_UNUSABLE;
2399 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2400 GFP_ATOMIC);
2401 if (nskb) {
2402 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2404 nmgmt->u.action.category |= 0x80;
2405 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2406 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2408 memset(nskb->cb, 0, sizeof(nskb->cb));
2410 ieee80211_tx_skb(rx->sdata, nskb);
2412 dev_kfree_skb(rx->skb);
2413 return RX_QUEUED;
2416 static ieee80211_rx_result debug_noinline
2417 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2419 struct ieee80211_sub_if_data *sdata = rx->sdata;
2420 ieee80211_rx_result rxs;
2421 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2422 __le16 stype;
2424 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2425 if (rxs != RX_CONTINUE)
2426 return rxs;
2428 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2430 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2431 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2432 sdata->vif.type != NL80211_IFTYPE_STATION)
2433 return RX_DROP_MONITOR;
2435 switch (stype) {
2436 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2437 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2438 /* process for all: mesh, mlme, ibss */
2439 break;
2440 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2441 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2442 if (is_multicast_ether_addr(mgmt->da) &&
2443 !is_broadcast_ether_addr(mgmt->da))
2444 return RX_DROP_MONITOR;
2446 /* process only for station */
2447 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2448 return RX_DROP_MONITOR;
2449 break;
2450 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2451 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2452 /* process only for ibss */
2453 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2454 return RX_DROP_MONITOR;
2455 break;
2456 default:
2457 return RX_DROP_MONITOR;
2460 /* queue up frame and kick off work to process it */
2461 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2462 skb_queue_tail(&sdata->skb_queue, rx->skb);
2463 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2464 if (rx->sta)
2465 rx->sta->rx_packets++;
2467 return RX_QUEUED;
2470 /* TODO: use IEEE80211_RX_FRAGMENTED */
2471 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2472 struct ieee80211_rate *rate)
2474 struct ieee80211_sub_if_data *sdata;
2475 struct ieee80211_local *local = rx->local;
2476 struct ieee80211_rtap_hdr {
2477 struct ieee80211_radiotap_header hdr;
2478 u8 flags;
2479 u8 rate_or_pad;
2480 __le16 chan_freq;
2481 __le16 chan_flags;
2482 } __packed *rthdr;
2483 struct sk_buff *skb = rx->skb, *skb2;
2484 struct net_device *prev_dev = NULL;
2485 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2488 * If cooked monitor has been processed already, then
2489 * don't do it again. If not, set the flag.
2491 if (rx->flags & IEEE80211_RX_CMNTR)
2492 goto out_free_skb;
2493 rx->flags |= IEEE80211_RX_CMNTR;
2495 if (skb_headroom(skb) < sizeof(*rthdr) &&
2496 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2497 goto out_free_skb;
2499 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2500 memset(rthdr, 0, sizeof(*rthdr));
2501 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2502 rthdr->hdr.it_present =
2503 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2504 (1 << IEEE80211_RADIOTAP_CHANNEL));
2506 if (rate) {
2507 rthdr->rate_or_pad = rate->bitrate / 5;
2508 rthdr->hdr.it_present |=
2509 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2511 rthdr->chan_freq = cpu_to_le16(status->freq);
2513 if (status->band == IEEE80211_BAND_5GHZ)
2514 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2515 IEEE80211_CHAN_5GHZ);
2516 else
2517 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2518 IEEE80211_CHAN_2GHZ);
2520 skb_set_mac_header(skb, 0);
2521 skb->ip_summed = CHECKSUM_UNNECESSARY;
2522 skb->pkt_type = PACKET_OTHERHOST;
2523 skb->protocol = htons(ETH_P_802_2);
2525 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2526 if (!ieee80211_sdata_running(sdata))
2527 continue;
2529 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2530 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2531 continue;
2533 if (prev_dev) {
2534 skb2 = skb_clone(skb, GFP_ATOMIC);
2535 if (skb2) {
2536 skb2->dev = prev_dev;
2537 netif_receive_skb(skb2);
2541 prev_dev = sdata->dev;
2542 sdata->dev->stats.rx_packets++;
2543 sdata->dev->stats.rx_bytes += skb->len;
2546 if (prev_dev) {
2547 skb->dev = prev_dev;
2548 netif_receive_skb(skb);
2549 return;
2552 out_free_skb:
2553 dev_kfree_skb(skb);
2556 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2557 ieee80211_rx_result res)
2559 switch (res) {
2560 case RX_DROP_MONITOR:
2561 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2562 if (rx->sta)
2563 rx->sta->rx_dropped++;
2564 /* fall through */
2565 case RX_CONTINUE: {
2566 struct ieee80211_rate *rate = NULL;
2567 struct ieee80211_supported_band *sband;
2568 struct ieee80211_rx_status *status;
2570 status = IEEE80211_SKB_RXCB((rx->skb));
2572 sband = rx->local->hw.wiphy->bands[status->band];
2573 if (!(status->flag & RX_FLAG_HT))
2574 rate = &sband->bitrates[status->rate_idx];
2576 ieee80211_rx_cooked_monitor(rx, rate);
2577 break;
2579 case RX_DROP_UNUSABLE:
2580 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2581 if (rx->sta)
2582 rx->sta->rx_dropped++;
2583 dev_kfree_skb(rx->skb);
2584 break;
2585 case RX_QUEUED:
2586 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2587 break;
2591 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx)
2593 ieee80211_rx_result res = RX_DROP_MONITOR;
2594 struct sk_buff *skb;
2596 #define CALL_RXH(rxh) \
2597 do { \
2598 res = rxh(rx); \
2599 if (res != RX_CONTINUE) \
2600 goto rxh_next; \
2601 } while (0);
2603 spin_lock(&rx->local->rx_skb_queue.lock);
2604 if (rx->local->running_rx_handler)
2605 goto unlock;
2607 rx->local->running_rx_handler = true;
2609 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) {
2610 spin_unlock(&rx->local->rx_skb_queue.lock);
2613 * all the other fields are valid across frames
2614 * that belong to an aMPDU since they are on the
2615 * same TID from the same station
2617 rx->skb = skb;
2619 CALL_RXH(ieee80211_rx_h_decrypt)
2620 CALL_RXH(ieee80211_rx_h_check_more_data)
2621 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2622 CALL_RXH(ieee80211_rx_h_sta_process)
2623 CALL_RXH(ieee80211_rx_h_defragment)
2624 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2625 /* must be after MMIC verify so header is counted in MPDU mic */
2626 #ifdef CONFIG_MAC80211_MESH
2627 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2628 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2629 #endif
2630 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2631 CALL_RXH(ieee80211_rx_h_amsdu)
2632 CALL_RXH(ieee80211_rx_h_data)
2633 CALL_RXH(ieee80211_rx_h_ctrl);
2634 CALL_RXH(ieee80211_rx_h_mgmt_check)
2635 CALL_RXH(ieee80211_rx_h_action)
2636 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2637 CALL_RXH(ieee80211_rx_h_action_return)
2638 CALL_RXH(ieee80211_rx_h_mgmt)
2640 rxh_next:
2641 ieee80211_rx_handlers_result(rx, res);
2642 spin_lock(&rx->local->rx_skb_queue.lock);
2643 #undef CALL_RXH
2646 rx->local->running_rx_handler = false;
2648 unlock:
2649 spin_unlock(&rx->local->rx_skb_queue.lock);
2652 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2654 ieee80211_rx_result res = RX_DROP_MONITOR;
2656 #define CALL_RXH(rxh) \
2657 do { \
2658 res = rxh(rx); \
2659 if (res != RX_CONTINUE) \
2660 goto rxh_next; \
2661 } while (0);
2663 CALL_RXH(ieee80211_rx_h_passive_scan)
2664 CALL_RXH(ieee80211_rx_h_check)
2666 ieee80211_rx_reorder_ampdu(rx);
2668 ieee80211_rx_handlers(rx);
2669 return;
2671 rxh_next:
2672 ieee80211_rx_handlers_result(rx, res);
2674 #undef CALL_RXH
2678 * This function makes calls into the RX path, therefore
2679 * it has to be invoked under RCU read lock.
2681 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2683 struct ieee80211_rx_data rx = {
2684 .sta = sta,
2685 .sdata = sta->sdata,
2686 .local = sta->local,
2687 /* This is OK -- must be QoS data frame */
2688 .security_idx = tid,
2689 .seqno_idx = tid,
2690 .flags = 0,
2692 struct tid_ampdu_rx *tid_agg_rx;
2694 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2695 if (!tid_agg_rx)
2696 return;
2698 spin_lock(&tid_agg_rx->reorder_lock);
2699 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx);
2700 spin_unlock(&tid_agg_rx->reorder_lock);
2702 ieee80211_rx_handlers(&rx);
2705 /* main receive path */
2707 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2708 struct ieee80211_hdr *hdr)
2710 struct ieee80211_sub_if_data *sdata = rx->sdata;
2711 struct sk_buff *skb = rx->skb;
2712 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2713 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2714 int multicast = is_multicast_ether_addr(hdr->addr1);
2716 switch (sdata->vif.type) {
2717 case NL80211_IFTYPE_STATION:
2718 if (!bssid && !sdata->u.mgd.use_4addr)
2719 return 0;
2720 if (!multicast &&
2721 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2722 if (!(sdata->dev->flags & IFF_PROMISC) ||
2723 sdata->u.mgd.use_4addr)
2724 return 0;
2725 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2727 break;
2728 case NL80211_IFTYPE_ADHOC:
2729 if (!bssid)
2730 return 0;
2731 if (ieee80211_is_beacon(hdr->frame_control)) {
2732 return 1;
2734 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2735 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2736 return 0;
2737 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2738 } else if (!multicast &&
2739 compare_ether_addr(sdata->vif.addr,
2740 hdr->addr1) != 0) {
2741 if (!(sdata->dev->flags & IFF_PROMISC))
2742 return 0;
2743 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2744 } else if (!rx->sta) {
2745 int rate_idx;
2746 if (status->flag & RX_FLAG_HT)
2747 rate_idx = 0; /* TODO: HT rates */
2748 else
2749 rate_idx = status->rate_idx;
2750 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2751 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2753 break;
2754 case NL80211_IFTYPE_MESH_POINT:
2755 if (!multicast &&
2756 compare_ether_addr(sdata->vif.addr,
2757 hdr->addr1) != 0) {
2758 if (!(sdata->dev->flags & IFF_PROMISC))
2759 return 0;
2761 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2763 break;
2764 case NL80211_IFTYPE_AP_VLAN:
2765 case NL80211_IFTYPE_AP:
2766 if (!bssid) {
2767 if (compare_ether_addr(sdata->vif.addr,
2768 hdr->addr1))
2769 return 0;
2770 } else if (!ieee80211_bssid_match(bssid,
2771 sdata->vif.addr)) {
2772 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) &&
2773 !ieee80211_is_beacon(hdr->frame_control) &&
2774 !(ieee80211_is_action(hdr->frame_control) &&
2775 sdata->vif.p2p))
2776 return 0;
2777 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2779 break;
2780 case NL80211_IFTYPE_WDS:
2781 if (bssid || !ieee80211_is_data(hdr->frame_control))
2782 return 0;
2783 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2784 return 0;
2785 break;
2786 default:
2787 /* should never get here */
2788 WARN_ON(1);
2789 break;
2792 return 1;
2796 * This function returns whether or not the SKB
2797 * was destined for RX processing or not, which,
2798 * if consume is true, is equivalent to whether
2799 * or not the skb was consumed.
2801 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2802 struct sk_buff *skb, bool consume)
2804 struct ieee80211_local *local = rx->local;
2805 struct ieee80211_sub_if_data *sdata = rx->sdata;
2806 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2807 struct ieee80211_hdr *hdr = (void *)skb->data;
2808 int prepares;
2810 rx->skb = skb;
2811 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2812 prepares = prepare_for_handlers(rx, hdr);
2814 if (!prepares)
2815 return false;
2817 if (!consume) {
2818 skb = skb_copy(skb, GFP_ATOMIC);
2819 if (!skb) {
2820 if (net_ratelimit())
2821 wiphy_debug(local->hw.wiphy,
2822 "failed to copy skb for %s\n",
2823 sdata->name);
2824 return true;
2827 rx->skb = skb;
2830 ieee80211_invoke_rx_handlers(rx);
2831 return true;
2835 * This is the actual Rx frames handler. as it blongs to Rx path it must
2836 * be called with rcu_read_lock protection.
2838 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2839 struct sk_buff *skb)
2841 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2842 struct ieee80211_local *local = hw_to_local(hw);
2843 struct ieee80211_sub_if_data *sdata;
2844 struct ieee80211_hdr *hdr;
2845 __le16 fc;
2846 struct ieee80211_rx_data rx;
2847 struct ieee80211_sub_if_data *prev;
2848 struct sta_info *sta, *tmp, *prev_sta;
2849 int err = 0;
2851 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2852 memset(&rx, 0, sizeof(rx));
2853 rx.skb = skb;
2854 rx.local = local;
2856 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2857 local->dot11ReceivedFragmentCount++;
2859 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2860 test_bit(SCAN_SW_SCANNING, &local->scanning)))
2861 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2863 if (ieee80211_is_mgmt(fc))
2864 err = skb_linearize(skb);
2865 else
2866 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2868 if (err) {
2869 dev_kfree_skb(skb);
2870 return;
2873 hdr = (struct ieee80211_hdr *)skb->data;
2874 ieee80211_parse_qos(&rx);
2875 ieee80211_verify_alignment(&rx);
2877 if (ieee80211_is_data(fc)) {
2878 prev_sta = NULL;
2880 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) {
2881 if (!prev_sta) {
2882 prev_sta = sta;
2883 continue;
2886 rx.sta = prev_sta;
2887 rx.sdata = prev_sta->sdata;
2888 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2890 prev_sta = sta;
2893 if (prev_sta) {
2894 rx.sta = prev_sta;
2895 rx.sdata = prev_sta->sdata;
2897 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2898 return;
2899 goto out;
2903 prev = NULL;
2905 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2906 if (!ieee80211_sdata_running(sdata))
2907 continue;
2909 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2910 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2911 continue;
2914 * frame is destined for this interface, but if it's
2915 * not also for the previous one we handle that after
2916 * the loop to avoid copying the SKB once too much
2919 if (!prev) {
2920 prev = sdata;
2921 continue;
2924 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2925 rx.sdata = prev;
2926 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2928 prev = sdata;
2931 if (prev) {
2932 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2);
2933 rx.sdata = prev;
2935 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2936 return;
2939 out:
2940 dev_kfree_skb(skb);
2944 * This is the receive path handler. It is called by a low level driver when an
2945 * 802.11 MPDU is received from the hardware.
2947 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2949 struct ieee80211_local *local = hw_to_local(hw);
2950 struct ieee80211_rate *rate = NULL;
2951 struct ieee80211_supported_band *sband;
2952 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2954 WARN_ON_ONCE(softirq_count() == 0);
2956 if (WARN_ON(status->band < 0 ||
2957 status->band >= IEEE80211_NUM_BANDS))
2958 goto drop;
2960 sband = local->hw.wiphy->bands[status->band];
2961 if (WARN_ON(!sband))
2962 goto drop;
2965 * If we're suspending, it is possible although not too likely
2966 * that we'd be receiving frames after having already partially
2967 * quiesced the stack. We can't process such frames then since
2968 * that might, for example, cause stations to be added or other
2969 * driver callbacks be invoked.
2971 if (unlikely(local->quiescing || local->suspended))
2972 goto drop;
2975 * The same happens when we're not even started,
2976 * but that's worth a warning.
2978 if (WARN_ON(!local->started))
2979 goto drop;
2981 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2983 * Validate the rate, unless a PLCP error means that
2984 * we probably can't have a valid rate here anyway.
2987 if (status->flag & RX_FLAG_HT) {
2989 * rate_idx is MCS index, which can be [0-76]
2990 * as documented on:
2992 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2994 * Anything else would be some sort of driver or
2995 * hardware error. The driver should catch hardware
2996 * errors.
2998 if (WARN((status->rate_idx < 0 ||
2999 status->rate_idx > 76),
3000 "Rate marked as an HT rate but passed "
3001 "status->rate_idx is not "
3002 "an MCS index [0-76]: %d (0x%02x)\n",
3003 status->rate_idx,
3004 status->rate_idx))
3005 goto drop;
3006 } else {
3007 if (WARN_ON(status->rate_idx < 0 ||
3008 status->rate_idx >= sband->n_bitrates))
3009 goto drop;
3010 rate = &sband->bitrates[status->rate_idx];
3014 status->rx_flags = 0;
3017 * key references and virtual interfaces are protected using RCU
3018 * and this requires that we are in a read-side RCU section during
3019 * receive processing
3021 rcu_read_lock();
3024 * Frames with failed FCS/PLCP checksum are not returned,
3025 * all other frames are returned without radiotap header
3026 * if it was previously present.
3027 * Also, frames with less than 16 bytes are dropped.
3029 skb = ieee80211_rx_monitor(local, skb, rate);
3030 if (!skb) {
3031 rcu_read_unlock();
3032 return;
3035 ieee80211_tpt_led_trig_rx(local,
3036 ((struct ieee80211_hdr *)skb->data)->frame_control,
3037 skb->len);
3038 __ieee80211_rx_handle_packet(hw, skb);
3040 rcu_read_unlock();
3042 return;
3043 drop:
3044 kfree_skb(skb);
3046 EXPORT_SYMBOL(ieee80211_rx);
3048 /* This is a version of the rx handler that can be called from hard irq
3049 * context. Post the skb on the queue and schedule the tasklet */
3050 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3052 struct ieee80211_local *local = hw_to_local(hw);
3054 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3056 skb->pkt_type = IEEE80211_RX_MSG;
3057 skb_queue_tail(&local->skb_queue, skb);
3058 tasklet_schedule(&local->tasklet);
3060 EXPORT_SYMBOL(ieee80211_rx_irqsafe);