Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / e1000e / netdev.c
blob24507f3b8b1708755e0631d9c28be2fe08f67493
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
53 #include "e1000.h"
55 #define DRV_VERSION "1.0.2-k4"
56 char e1000e_driver_name[] = "e1000e";
57 const char e1000e_driver_version[] = DRV_VERSION;
59 static const struct e1000_info *e1000_info_tbl[] = {
60 [board_82571] = &e1000_82571_info,
61 [board_82572] = &e1000_82572_info,
62 [board_82573] = &e1000_82573_info,
63 [board_82574] = &e1000_82574_info,
64 [board_82583] = &e1000_82583_info,
65 [board_80003es2lan] = &e1000_es2_info,
66 [board_ich8lan] = &e1000_ich8_info,
67 [board_ich9lan] = &e1000_ich9_info,
68 [board_ich10lan] = &e1000_ich10_info,
69 [board_pchlan] = &e1000_pch_info,
72 struct e1000_reg_info {
73 u32 ofs;
74 char *name;
77 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
78 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
79 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
80 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
81 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
83 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
84 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
85 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
86 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
87 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
91 /* General Registers */
92 {E1000_CTRL, "CTRL"},
93 {E1000_STATUS, "STATUS"},
94 {E1000_CTRL_EXT, "CTRL_EXT"},
96 /* Interrupt Registers */
97 {E1000_ICR, "ICR"},
99 /* RX Registers */
100 {E1000_RCTL, "RCTL"},
101 {E1000_RDLEN, "RDLEN"},
102 {E1000_RDH, "RDH"},
103 {E1000_RDT, "RDT"},
104 {E1000_RDTR, "RDTR"},
105 {E1000_RXDCTL(0), "RXDCTL"},
106 {E1000_ERT, "ERT"},
107 {E1000_RDBAL, "RDBAL"},
108 {E1000_RDBAH, "RDBAH"},
109 {E1000_RDFH, "RDFH"},
110 {E1000_RDFT, "RDFT"},
111 {E1000_RDFHS, "RDFHS"},
112 {E1000_RDFTS, "RDFTS"},
113 {E1000_RDFPC, "RDFPC"},
115 /* TX Registers */
116 {E1000_TCTL, "TCTL"},
117 {E1000_TDBAL, "TDBAL"},
118 {E1000_TDBAH, "TDBAH"},
119 {E1000_TDLEN, "TDLEN"},
120 {E1000_TDH, "TDH"},
121 {E1000_TDT, "TDT"},
122 {E1000_TIDV, "TIDV"},
123 {E1000_TXDCTL(0), "TXDCTL"},
124 {E1000_TADV, "TADV"},
125 {E1000_TARC(0), "TARC"},
126 {E1000_TDFH, "TDFH"},
127 {E1000_TDFT, "TDFT"},
128 {E1000_TDFHS, "TDFHS"},
129 {E1000_TDFTS, "TDFTS"},
130 {E1000_TDFPC, "TDFPC"},
132 /* List Terminator */
137 * e1000_regdump - register printout routine
139 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 int n = 0;
142 char rname[16];
143 u32 regs[8];
145 switch (reginfo->ofs) {
146 case E1000_RXDCTL(0):
147 for (n = 0; n < 2; n++)
148 regs[n] = __er32(hw, E1000_RXDCTL(n));
149 break;
150 case E1000_TXDCTL(0):
151 for (n = 0; n < 2; n++)
152 regs[n] = __er32(hw, E1000_TXDCTL(n));
153 break;
154 case E1000_TARC(0):
155 for (n = 0; n < 2; n++)
156 regs[n] = __er32(hw, E1000_TARC(n));
157 break;
158 default:
159 printk(KERN_INFO "%-15s %08x\n",
160 reginfo->name, __er32(hw, reginfo->ofs));
161 return;
164 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
165 printk(KERN_INFO "%-15s ", rname);
166 for (n = 0; n < 2; n++)
167 printk(KERN_CONT "%08x ", regs[n]);
168 printk(KERN_CONT "\n");
173 * e1000e_dump - Print registers, tx-ring and rx-ring
175 static void e1000e_dump(struct e1000_adapter *adapter)
177 struct net_device *netdev = adapter->netdev;
178 struct e1000_hw *hw = &adapter->hw;
179 struct e1000_reg_info *reginfo;
180 struct e1000_ring *tx_ring = adapter->tx_ring;
181 struct e1000_tx_desc *tx_desc;
182 struct my_u0 { u64 a; u64 b; } *u0;
183 struct e1000_buffer *buffer_info;
184 struct e1000_ring *rx_ring = adapter->rx_ring;
185 union e1000_rx_desc_packet_split *rx_desc_ps;
186 struct e1000_rx_desc *rx_desc;
187 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
188 u32 staterr;
189 int i = 0;
191 if (!netif_msg_hw(adapter))
192 return;
194 /* Print netdevice Info */
195 if (netdev) {
196 dev_info(&adapter->pdev->dev, "Net device Info\n");
197 printk(KERN_INFO "Device Name state "
198 "trans_start last_rx\n");
199 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
200 netdev->name,
201 netdev->state,
202 netdev->trans_start,
203 netdev->last_rx);
206 /* Print Registers */
207 dev_info(&adapter->pdev->dev, "Register Dump\n");
208 printk(KERN_INFO " Register Name Value\n");
209 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
210 reginfo->name; reginfo++) {
211 e1000_regdump(hw, reginfo);
214 /* Print TX Ring Summary */
215 if (!netdev || !netif_running(netdev))
216 goto exit;
218 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
219 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
220 " leng ntw timestamp\n");
221 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
222 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
223 0, tx_ring->next_to_use, tx_ring->next_to_clean,
224 (u64)buffer_info->dma,
225 buffer_info->length,
226 buffer_info->next_to_watch,
227 (u64)buffer_info->time_stamp);
229 /* Print TX Rings */
230 if (!netif_msg_tx_done(adapter))
231 goto rx_ring_summary;
233 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
235 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
237 * Legacy Transmit Descriptor
238 * +--------------------------------------------------------------+
239 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
240 * +--------------------------------------------------------------+
241 * 8 | Special | CSS | Status | CMD | CSO | Length |
242 * +--------------------------------------------------------------+
243 * 63 48 47 36 35 32 31 24 23 16 15 0
245 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
246 * 63 48 47 40 39 32 31 16 15 8 7 0
247 * +----------------------------------------------------------------+
248 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
249 * +----------------------------------------------------------------+
250 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
251 * +----------------------------------------------------------------+
252 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
254 * Extended Data Descriptor (DTYP=0x1)
255 * +----------------------------------------------------------------+
256 * 0 | Buffer Address [63:0] |
257 * +----------------------------------------------------------------+
258 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
259 * +----------------------------------------------------------------+
260 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
262 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
263 " [bi->dma ] leng ntw timestamp bi->skb "
264 "<-- Legacy format\n");
265 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Ext Context format\n");
268 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Data format\n");
271 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
272 tx_desc = E1000_TX_DESC(*tx_ring, i);
273 buffer_info = &tx_ring->buffer_info[i];
274 u0 = (struct my_u0 *)tx_desc;
275 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
276 "%04X %3X %016llX %p",
277 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
278 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
279 le64_to_cpu(u0->a), le64_to_cpu(u0->b),
280 (u64)buffer_info->dma, buffer_info->length,
281 buffer_info->next_to_watch, (u64)buffer_info->time_stamp,
282 buffer_info->skb);
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 printk(KERN_CONT " NTC/U\n");
285 else if (i == tx_ring->next_to_use)
286 printk(KERN_CONT " NTU\n");
287 else if (i == tx_ring->next_to_clean)
288 printk(KERN_CONT " NTC\n");
289 else
290 printk(KERN_CONT "\n");
292 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
293 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
294 16, 1, phys_to_virt(buffer_info->dma),
295 buffer_info->length, true);
298 /* Print RX Rings Summary */
299 rx_ring_summary:
300 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
301 printk(KERN_INFO "Queue [NTU] [NTC]\n");
302 printk(KERN_INFO " %5d %5X %5X\n", 0,
303 rx_ring->next_to_use, rx_ring->next_to_clean);
305 /* Print RX Rings */
306 if (!netif_msg_rx_status(adapter))
307 goto exit;
309 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
310 switch (adapter->rx_ps_pages) {
311 case 1:
312 case 2:
313 case 3:
314 /* [Extended] Packet Split Receive Descriptor Format
316 * +-----------------------------------------------------+
317 * 0 | Buffer Address 0 [63:0] |
318 * +-----------------------------------------------------+
319 * 8 | Buffer Address 1 [63:0] |
320 * +-----------------------------------------------------+
321 * 16 | Buffer Address 2 [63:0] |
322 * +-----------------------------------------------------+
323 * 24 | Buffer Address 3 [63:0] |
324 * +-----------------------------------------------------+
326 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
327 "[buffer 1 63:0 ] "
328 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
329 "[bi->skb] <-- Ext Pkt Split format\n");
330 /* [Extended] Receive Descriptor (Write-Back) Format
332 * 63 48 47 32 31 13 12 8 7 4 3 0
333 * +------------------------------------------------------+
334 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
335 * | Checksum | Ident | | Queue | | Type |
336 * +------------------------------------------------------+
337 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
338 * +------------------------------------------------------+
339 * 63 48 47 32 31 20 19 0
341 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
342 "[vl l0 ee es] "
343 "[ l3 l2 l1 hs] [reserved ] ---------------- "
344 "[bi->skb] <-- Ext Rx Write-Back format\n");
345 for (i = 0; i < rx_ring->count; i++) {
346 buffer_info = &rx_ring->buffer_info[i];
347 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
348 u1 = (struct my_u1 *)rx_desc_ps;
349 staterr =
350 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
351 if (staterr & E1000_RXD_STAT_DD) {
352 /* Descriptor Done */
353 printk(KERN_INFO "RWB[0x%03X] %016llX "
354 "%016llX %016llX %016llX "
355 "---------------- %p", i,
356 le64_to_cpu(u1->a),
357 le64_to_cpu(u1->b),
358 le64_to_cpu(u1->c),
359 le64_to_cpu(u1->d),
360 buffer_info->skb);
361 } else {
362 printk(KERN_INFO "R [0x%03X] %016llX "
363 "%016llX %016llX %016llX %016llX %p", i,
364 le64_to_cpu(u1->a),
365 le64_to_cpu(u1->b),
366 le64_to_cpu(u1->c),
367 le64_to_cpu(u1->d),
368 (u64)buffer_info->dma,
369 buffer_info->skb);
371 if (netif_msg_pktdata(adapter))
372 print_hex_dump(KERN_INFO, "",
373 DUMP_PREFIX_ADDRESS, 16, 1,
374 phys_to_virt(buffer_info->dma),
375 adapter->rx_ps_bsize0, true);
378 if (i == rx_ring->next_to_use)
379 printk(KERN_CONT " NTU\n");
380 else if (i == rx_ring->next_to_clean)
381 printk(KERN_CONT " NTC\n");
382 else
383 printk(KERN_CONT "\n");
385 break;
386 default:
387 case 0:
388 /* Legacy Receive Descriptor Format
390 * +-----------------------------------------------------+
391 * | Buffer Address [63:0] |
392 * +-----------------------------------------------------+
393 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
394 * +-----------------------------------------------------+
395 * 63 48 47 40 39 32 31 16 15 0
397 printk(KERN_INFO "Rl[desc] [address 63:0 ] "
398 "[vl er S cks ln] [bi->dma ] [bi->skb] "
399 "<-- Legacy format\n");
400 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
401 rx_desc = E1000_RX_DESC(*rx_ring, i);
402 buffer_info = &rx_ring->buffer_info[i];
403 u0 = (struct my_u0 *)rx_desc;
404 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
405 "%016llX %p",
406 i, le64_to_cpu(u0->a), le64_to_cpu(u0->b),
407 (u64)buffer_info->dma, buffer_info->skb);
408 if (i == rx_ring->next_to_use)
409 printk(KERN_CONT " NTU\n");
410 else if (i == rx_ring->next_to_clean)
411 printk(KERN_CONT " NTC\n");
412 else
413 printk(KERN_CONT "\n");
415 if (netif_msg_pktdata(adapter))
416 print_hex_dump(KERN_INFO, "",
417 DUMP_PREFIX_ADDRESS,
418 16, 1, phys_to_virt(buffer_info->dma),
419 adapter->rx_buffer_len, true);
423 exit:
424 return;
428 * e1000_desc_unused - calculate if we have unused descriptors
430 static int e1000_desc_unused(struct e1000_ring *ring)
432 if (ring->next_to_clean > ring->next_to_use)
433 return ring->next_to_clean - ring->next_to_use - 1;
435 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
439 * e1000_receive_skb - helper function to handle Rx indications
440 * @adapter: board private structure
441 * @status: descriptor status field as written by hardware
442 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
443 * @skb: pointer to sk_buff to be indicated to stack
445 static void e1000_receive_skb(struct e1000_adapter *adapter,
446 struct net_device *netdev,
447 struct sk_buff *skb,
448 u8 status, __le16 vlan)
450 skb->protocol = eth_type_trans(skb, netdev);
452 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
453 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
454 le16_to_cpu(vlan), skb);
455 else
456 napi_gro_receive(&adapter->napi, skb);
460 * e1000_rx_checksum - Receive Checksum Offload for 82543
461 * @adapter: board private structure
462 * @status_err: receive descriptor status and error fields
463 * @csum: receive descriptor csum field
464 * @sk_buff: socket buffer with received data
466 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
467 u32 csum, struct sk_buff *skb)
469 u16 status = (u16)status_err;
470 u8 errors = (u8)(status_err >> 24);
471 skb->ip_summed = CHECKSUM_NONE;
473 /* Ignore Checksum bit is set */
474 if (status & E1000_RXD_STAT_IXSM)
475 return;
476 /* TCP/UDP checksum error bit is set */
477 if (errors & E1000_RXD_ERR_TCPE) {
478 /* let the stack verify checksum errors */
479 adapter->hw_csum_err++;
480 return;
483 /* TCP/UDP Checksum has not been calculated */
484 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
485 return;
487 /* It must be a TCP or UDP packet with a valid checksum */
488 if (status & E1000_RXD_STAT_TCPCS) {
489 /* TCP checksum is good */
490 skb->ip_summed = CHECKSUM_UNNECESSARY;
491 } else {
493 * IP fragment with UDP payload
494 * Hardware complements the payload checksum, so we undo it
495 * and then put the value in host order for further stack use.
497 __sum16 sum = (__force __sum16)htons(csum);
498 skb->csum = csum_unfold(~sum);
499 skb->ip_summed = CHECKSUM_COMPLETE;
501 adapter->hw_csum_good++;
505 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
506 * @adapter: address of board private structure
508 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
509 int cleaned_count)
511 struct net_device *netdev = adapter->netdev;
512 struct pci_dev *pdev = adapter->pdev;
513 struct e1000_ring *rx_ring = adapter->rx_ring;
514 struct e1000_rx_desc *rx_desc;
515 struct e1000_buffer *buffer_info;
516 struct sk_buff *skb;
517 unsigned int i;
518 unsigned int bufsz = adapter->rx_buffer_len;
520 i = rx_ring->next_to_use;
521 buffer_info = &rx_ring->buffer_info[i];
523 while (cleaned_count--) {
524 skb = buffer_info->skb;
525 if (skb) {
526 skb_trim(skb, 0);
527 goto map_skb;
530 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
531 if (!skb) {
532 /* Better luck next round */
533 adapter->alloc_rx_buff_failed++;
534 break;
537 buffer_info->skb = skb;
538 map_skb:
539 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
540 adapter->rx_buffer_len,
541 DMA_FROM_DEVICE);
542 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
543 dev_err(&pdev->dev, "RX DMA map failed\n");
544 adapter->rx_dma_failed++;
545 break;
548 rx_desc = E1000_RX_DESC(*rx_ring, i);
549 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
551 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
553 * Force memory writes to complete before letting h/w
554 * know there are new descriptors to fetch. (Only
555 * applicable for weak-ordered memory model archs,
556 * such as IA-64).
558 wmb();
559 writel(i, adapter->hw.hw_addr + rx_ring->tail);
561 i++;
562 if (i == rx_ring->count)
563 i = 0;
564 buffer_info = &rx_ring->buffer_info[i];
567 rx_ring->next_to_use = i;
571 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
572 * @adapter: address of board private structure
574 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
575 int cleaned_count)
577 struct net_device *netdev = adapter->netdev;
578 struct pci_dev *pdev = adapter->pdev;
579 union e1000_rx_desc_packet_split *rx_desc;
580 struct e1000_ring *rx_ring = adapter->rx_ring;
581 struct e1000_buffer *buffer_info;
582 struct e1000_ps_page *ps_page;
583 struct sk_buff *skb;
584 unsigned int i, j;
586 i = rx_ring->next_to_use;
587 buffer_info = &rx_ring->buffer_info[i];
589 while (cleaned_count--) {
590 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
592 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
593 ps_page = &buffer_info->ps_pages[j];
594 if (j >= adapter->rx_ps_pages) {
595 /* all unused desc entries get hw null ptr */
596 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
597 continue;
599 if (!ps_page->page) {
600 ps_page->page = alloc_page(GFP_ATOMIC);
601 if (!ps_page->page) {
602 adapter->alloc_rx_buff_failed++;
603 goto no_buffers;
605 ps_page->dma = dma_map_page(&pdev->dev,
606 ps_page->page,
607 0, PAGE_SIZE,
608 DMA_FROM_DEVICE);
609 if (dma_mapping_error(&pdev->dev,
610 ps_page->dma)) {
611 dev_err(&adapter->pdev->dev,
612 "RX DMA page map failed\n");
613 adapter->rx_dma_failed++;
614 goto no_buffers;
618 * Refresh the desc even if buffer_addrs
619 * didn't change because each write-back
620 * erases this info.
622 rx_desc->read.buffer_addr[j+1] =
623 cpu_to_le64(ps_page->dma);
626 skb = netdev_alloc_skb_ip_align(netdev,
627 adapter->rx_ps_bsize0);
629 if (!skb) {
630 adapter->alloc_rx_buff_failed++;
631 break;
634 buffer_info->skb = skb;
635 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
636 adapter->rx_ps_bsize0,
637 DMA_FROM_DEVICE);
638 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
639 dev_err(&pdev->dev, "RX DMA map failed\n");
640 adapter->rx_dma_failed++;
641 /* cleanup skb */
642 dev_kfree_skb_any(skb);
643 buffer_info->skb = NULL;
644 break;
647 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
649 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
651 * Force memory writes to complete before letting h/w
652 * know there are new descriptors to fetch. (Only
653 * applicable for weak-ordered memory model archs,
654 * such as IA-64).
656 wmb();
657 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
660 i++;
661 if (i == rx_ring->count)
662 i = 0;
663 buffer_info = &rx_ring->buffer_info[i];
666 no_buffers:
667 rx_ring->next_to_use = i;
671 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
672 * @adapter: address of board private structure
673 * @cleaned_count: number of buffers to allocate this pass
676 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
677 int cleaned_count)
679 struct net_device *netdev = adapter->netdev;
680 struct pci_dev *pdev = adapter->pdev;
681 struct e1000_rx_desc *rx_desc;
682 struct e1000_ring *rx_ring = adapter->rx_ring;
683 struct e1000_buffer *buffer_info;
684 struct sk_buff *skb;
685 unsigned int i;
686 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
688 i = rx_ring->next_to_use;
689 buffer_info = &rx_ring->buffer_info[i];
691 while (cleaned_count--) {
692 skb = buffer_info->skb;
693 if (skb) {
694 skb_trim(skb, 0);
695 goto check_page;
698 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
699 if (unlikely(!skb)) {
700 /* Better luck next round */
701 adapter->alloc_rx_buff_failed++;
702 break;
705 buffer_info->skb = skb;
706 check_page:
707 /* allocate a new page if necessary */
708 if (!buffer_info->page) {
709 buffer_info->page = alloc_page(GFP_ATOMIC);
710 if (unlikely(!buffer_info->page)) {
711 adapter->alloc_rx_buff_failed++;
712 break;
716 if (!buffer_info->dma)
717 buffer_info->dma = dma_map_page(&pdev->dev,
718 buffer_info->page, 0,
719 PAGE_SIZE,
720 DMA_FROM_DEVICE);
722 rx_desc = E1000_RX_DESC(*rx_ring, i);
723 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
725 if (unlikely(++i == rx_ring->count))
726 i = 0;
727 buffer_info = &rx_ring->buffer_info[i];
730 if (likely(rx_ring->next_to_use != i)) {
731 rx_ring->next_to_use = i;
732 if (unlikely(i-- == 0))
733 i = (rx_ring->count - 1);
735 /* Force memory writes to complete before letting h/w
736 * know there are new descriptors to fetch. (Only
737 * applicable for weak-ordered memory model archs,
738 * such as IA-64). */
739 wmb();
740 writel(i, adapter->hw.hw_addr + rx_ring->tail);
745 * e1000_clean_rx_irq - Send received data up the network stack; legacy
746 * @adapter: board private structure
748 * the return value indicates whether actual cleaning was done, there
749 * is no guarantee that everything was cleaned
751 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
752 int *work_done, int work_to_do)
754 struct net_device *netdev = adapter->netdev;
755 struct pci_dev *pdev = adapter->pdev;
756 struct e1000_hw *hw = &adapter->hw;
757 struct e1000_ring *rx_ring = adapter->rx_ring;
758 struct e1000_rx_desc *rx_desc, *next_rxd;
759 struct e1000_buffer *buffer_info, *next_buffer;
760 u32 length;
761 unsigned int i;
762 int cleaned_count = 0;
763 bool cleaned = 0;
764 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
766 i = rx_ring->next_to_clean;
767 rx_desc = E1000_RX_DESC(*rx_ring, i);
768 buffer_info = &rx_ring->buffer_info[i];
770 while (rx_desc->status & E1000_RXD_STAT_DD) {
771 struct sk_buff *skb;
772 u8 status;
774 if (*work_done >= work_to_do)
775 break;
776 (*work_done)++;
778 status = rx_desc->status;
779 skb = buffer_info->skb;
780 buffer_info->skb = NULL;
782 prefetch(skb->data - NET_IP_ALIGN);
784 i++;
785 if (i == rx_ring->count)
786 i = 0;
787 next_rxd = E1000_RX_DESC(*rx_ring, i);
788 prefetch(next_rxd);
790 next_buffer = &rx_ring->buffer_info[i];
792 cleaned = 1;
793 cleaned_count++;
794 dma_unmap_single(&pdev->dev,
795 buffer_info->dma,
796 adapter->rx_buffer_len,
797 DMA_FROM_DEVICE);
798 buffer_info->dma = 0;
800 length = le16_to_cpu(rx_desc->length);
803 * !EOP means multiple descriptors were used to store a single
804 * packet, if that's the case we need to toss it. In fact, we
805 * need to toss every packet with the EOP bit clear and the
806 * next frame that _does_ have the EOP bit set, as it is by
807 * definition only a frame fragment
809 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
810 adapter->flags2 |= FLAG2_IS_DISCARDING;
812 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
813 /* All receives must fit into a single buffer */
814 e_dbg("Receive packet consumed multiple buffers\n");
815 /* recycle */
816 buffer_info->skb = skb;
817 if (status & E1000_RXD_STAT_EOP)
818 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
819 goto next_desc;
822 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
823 /* recycle */
824 buffer_info->skb = skb;
825 goto next_desc;
828 /* adjust length to remove Ethernet CRC */
829 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
830 length -= 4;
832 total_rx_bytes += length;
833 total_rx_packets++;
836 * code added for copybreak, this should improve
837 * performance for small packets with large amounts
838 * of reassembly being done in the stack
840 if (length < copybreak) {
841 struct sk_buff *new_skb =
842 netdev_alloc_skb_ip_align(netdev, length);
843 if (new_skb) {
844 skb_copy_to_linear_data_offset(new_skb,
845 -NET_IP_ALIGN,
846 (skb->data -
847 NET_IP_ALIGN),
848 (length +
849 NET_IP_ALIGN));
850 /* save the skb in buffer_info as good */
851 buffer_info->skb = skb;
852 skb = new_skb;
854 /* else just continue with the old one */
856 /* end copybreak code */
857 skb_put(skb, length);
859 /* Receive Checksum Offload */
860 e1000_rx_checksum(adapter,
861 (u32)(status) |
862 ((u32)(rx_desc->errors) << 24),
863 le16_to_cpu(rx_desc->csum), skb);
865 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
867 next_desc:
868 rx_desc->status = 0;
870 /* return some buffers to hardware, one at a time is too slow */
871 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
872 adapter->alloc_rx_buf(adapter, cleaned_count);
873 cleaned_count = 0;
876 /* use prefetched values */
877 rx_desc = next_rxd;
878 buffer_info = next_buffer;
880 rx_ring->next_to_clean = i;
882 cleaned_count = e1000_desc_unused(rx_ring);
883 if (cleaned_count)
884 adapter->alloc_rx_buf(adapter, cleaned_count);
886 adapter->total_rx_bytes += total_rx_bytes;
887 adapter->total_rx_packets += total_rx_packets;
888 netdev->stats.rx_bytes += total_rx_bytes;
889 netdev->stats.rx_packets += total_rx_packets;
890 return cleaned;
893 static void e1000_put_txbuf(struct e1000_adapter *adapter,
894 struct e1000_buffer *buffer_info)
896 if (buffer_info->dma) {
897 if (buffer_info->mapped_as_page)
898 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
899 buffer_info->length, DMA_TO_DEVICE);
900 else
901 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
902 buffer_info->length, DMA_TO_DEVICE);
903 buffer_info->dma = 0;
905 if (buffer_info->skb) {
906 dev_kfree_skb_any(buffer_info->skb);
907 buffer_info->skb = NULL;
909 buffer_info->time_stamp = 0;
912 static void e1000_print_hw_hang(struct work_struct *work)
914 struct e1000_adapter *adapter = container_of(work,
915 struct e1000_adapter,
916 print_hang_task);
917 struct e1000_ring *tx_ring = adapter->tx_ring;
918 unsigned int i = tx_ring->next_to_clean;
919 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
920 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
921 struct e1000_hw *hw = &adapter->hw;
922 u16 phy_status, phy_1000t_status, phy_ext_status;
923 u16 pci_status;
925 e1e_rphy(hw, PHY_STATUS, &phy_status);
926 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
927 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
929 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
931 /* detected Hardware unit hang */
932 e_err("Detected Hardware Unit Hang:\n"
933 " TDH <%x>\n"
934 " TDT <%x>\n"
935 " next_to_use <%x>\n"
936 " next_to_clean <%x>\n"
937 "buffer_info[next_to_clean]:\n"
938 " time_stamp <%lx>\n"
939 " next_to_watch <%x>\n"
940 " jiffies <%lx>\n"
941 " next_to_watch.status <%x>\n"
942 "MAC Status <%x>\n"
943 "PHY Status <%x>\n"
944 "PHY 1000BASE-T Status <%x>\n"
945 "PHY Extended Status <%x>\n"
946 "PCI Status <%x>\n",
947 readl(adapter->hw.hw_addr + tx_ring->head),
948 readl(adapter->hw.hw_addr + tx_ring->tail),
949 tx_ring->next_to_use,
950 tx_ring->next_to_clean,
951 tx_ring->buffer_info[eop].time_stamp,
952 eop,
953 jiffies,
954 eop_desc->upper.fields.status,
955 er32(STATUS),
956 phy_status,
957 phy_1000t_status,
958 phy_ext_status,
959 pci_status);
963 * e1000_clean_tx_irq - Reclaim resources after transmit completes
964 * @adapter: board private structure
966 * the return value indicates whether actual cleaning was done, there
967 * is no guarantee that everything was cleaned
969 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
971 struct net_device *netdev = adapter->netdev;
972 struct e1000_hw *hw = &adapter->hw;
973 struct e1000_ring *tx_ring = adapter->tx_ring;
974 struct e1000_tx_desc *tx_desc, *eop_desc;
975 struct e1000_buffer *buffer_info;
976 unsigned int i, eop;
977 unsigned int count = 0;
978 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
980 i = tx_ring->next_to_clean;
981 eop = tx_ring->buffer_info[i].next_to_watch;
982 eop_desc = E1000_TX_DESC(*tx_ring, eop);
984 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
985 (count < tx_ring->count)) {
986 bool cleaned = false;
987 for (; !cleaned; count++) {
988 tx_desc = E1000_TX_DESC(*tx_ring, i);
989 buffer_info = &tx_ring->buffer_info[i];
990 cleaned = (i == eop);
992 if (cleaned) {
993 total_tx_packets += buffer_info->segs;
994 total_tx_bytes += buffer_info->bytecount;
997 e1000_put_txbuf(adapter, buffer_info);
998 tx_desc->upper.data = 0;
1000 i++;
1001 if (i == tx_ring->count)
1002 i = 0;
1005 if (i == tx_ring->next_to_use)
1006 break;
1007 eop = tx_ring->buffer_info[i].next_to_watch;
1008 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1011 tx_ring->next_to_clean = i;
1013 #define TX_WAKE_THRESHOLD 32
1014 if (count && netif_carrier_ok(netdev) &&
1015 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1016 /* Make sure that anybody stopping the queue after this
1017 * sees the new next_to_clean.
1019 smp_mb();
1021 if (netif_queue_stopped(netdev) &&
1022 !(test_bit(__E1000_DOWN, &adapter->state))) {
1023 netif_wake_queue(netdev);
1024 ++adapter->restart_queue;
1028 if (adapter->detect_tx_hung) {
1030 * Detect a transmit hang in hardware, this serializes the
1031 * check with the clearing of time_stamp and movement of i
1033 adapter->detect_tx_hung = 0;
1034 if (tx_ring->buffer_info[i].time_stamp &&
1035 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1036 + (adapter->tx_timeout_factor * HZ)) &&
1037 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1038 schedule_work(&adapter->print_hang_task);
1039 netif_stop_queue(netdev);
1042 adapter->total_tx_bytes += total_tx_bytes;
1043 adapter->total_tx_packets += total_tx_packets;
1044 netdev->stats.tx_bytes += total_tx_bytes;
1045 netdev->stats.tx_packets += total_tx_packets;
1046 return (count < tx_ring->count);
1050 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1051 * @adapter: board private structure
1053 * the return value indicates whether actual cleaning was done, there
1054 * is no guarantee that everything was cleaned
1056 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1057 int *work_done, int work_to_do)
1059 struct e1000_hw *hw = &adapter->hw;
1060 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1061 struct net_device *netdev = adapter->netdev;
1062 struct pci_dev *pdev = adapter->pdev;
1063 struct e1000_ring *rx_ring = adapter->rx_ring;
1064 struct e1000_buffer *buffer_info, *next_buffer;
1065 struct e1000_ps_page *ps_page;
1066 struct sk_buff *skb;
1067 unsigned int i, j;
1068 u32 length, staterr;
1069 int cleaned_count = 0;
1070 bool cleaned = 0;
1071 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1073 i = rx_ring->next_to_clean;
1074 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1075 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1076 buffer_info = &rx_ring->buffer_info[i];
1078 while (staterr & E1000_RXD_STAT_DD) {
1079 if (*work_done >= work_to_do)
1080 break;
1081 (*work_done)++;
1082 skb = buffer_info->skb;
1084 /* in the packet split case this is header only */
1085 prefetch(skb->data - NET_IP_ALIGN);
1087 i++;
1088 if (i == rx_ring->count)
1089 i = 0;
1090 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1091 prefetch(next_rxd);
1093 next_buffer = &rx_ring->buffer_info[i];
1095 cleaned = 1;
1096 cleaned_count++;
1097 dma_unmap_single(&pdev->dev, buffer_info->dma,
1098 adapter->rx_ps_bsize0,
1099 DMA_FROM_DEVICE);
1100 buffer_info->dma = 0;
1102 /* see !EOP comment in other rx routine */
1103 if (!(staterr & E1000_RXD_STAT_EOP))
1104 adapter->flags2 |= FLAG2_IS_DISCARDING;
1106 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1107 e_dbg("Packet Split buffers didn't pick up the full "
1108 "packet\n");
1109 dev_kfree_skb_irq(skb);
1110 if (staterr & E1000_RXD_STAT_EOP)
1111 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1112 goto next_desc;
1115 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1116 dev_kfree_skb_irq(skb);
1117 goto next_desc;
1120 length = le16_to_cpu(rx_desc->wb.middle.length0);
1122 if (!length) {
1123 e_dbg("Last part of the packet spanning multiple "
1124 "descriptors\n");
1125 dev_kfree_skb_irq(skb);
1126 goto next_desc;
1129 /* Good Receive */
1130 skb_put(skb, length);
1134 * this looks ugly, but it seems compiler issues make it
1135 * more efficient than reusing j
1137 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1140 * page alloc/put takes too long and effects small packet
1141 * throughput, so unsplit small packets and save the alloc/put
1142 * only valid in softirq (napi) context to call kmap_*
1144 if (l1 && (l1 <= copybreak) &&
1145 ((length + l1) <= adapter->rx_ps_bsize0)) {
1146 u8 *vaddr;
1148 ps_page = &buffer_info->ps_pages[0];
1151 * there is no documentation about how to call
1152 * kmap_atomic, so we can't hold the mapping
1153 * very long
1155 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1156 PAGE_SIZE, DMA_FROM_DEVICE);
1157 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1158 memcpy(skb_tail_pointer(skb), vaddr, l1);
1159 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1160 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1161 PAGE_SIZE, DMA_FROM_DEVICE);
1163 /* remove the CRC */
1164 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1165 l1 -= 4;
1167 skb_put(skb, l1);
1168 goto copydone;
1169 } /* if */
1172 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1173 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1174 if (!length)
1175 break;
1177 ps_page = &buffer_info->ps_pages[j];
1178 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1179 DMA_FROM_DEVICE);
1180 ps_page->dma = 0;
1181 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1182 ps_page->page = NULL;
1183 skb->len += length;
1184 skb->data_len += length;
1185 skb->truesize += length;
1188 /* strip the ethernet crc, problem is we're using pages now so
1189 * this whole operation can get a little cpu intensive
1191 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1192 pskb_trim(skb, skb->len - 4);
1194 copydone:
1195 total_rx_bytes += skb->len;
1196 total_rx_packets++;
1198 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1199 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1201 if (rx_desc->wb.upper.header_status &
1202 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1203 adapter->rx_hdr_split++;
1205 e1000_receive_skb(adapter, netdev, skb,
1206 staterr, rx_desc->wb.middle.vlan);
1208 next_desc:
1209 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1210 buffer_info->skb = NULL;
1212 /* return some buffers to hardware, one at a time is too slow */
1213 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1214 adapter->alloc_rx_buf(adapter, cleaned_count);
1215 cleaned_count = 0;
1218 /* use prefetched values */
1219 rx_desc = next_rxd;
1220 buffer_info = next_buffer;
1222 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1224 rx_ring->next_to_clean = i;
1226 cleaned_count = e1000_desc_unused(rx_ring);
1227 if (cleaned_count)
1228 adapter->alloc_rx_buf(adapter, cleaned_count);
1230 adapter->total_rx_bytes += total_rx_bytes;
1231 adapter->total_rx_packets += total_rx_packets;
1232 netdev->stats.rx_bytes += total_rx_bytes;
1233 netdev->stats.rx_packets += total_rx_packets;
1234 return cleaned;
1238 * e1000_consume_page - helper function
1240 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1241 u16 length)
1243 bi->page = NULL;
1244 skb->len += length;
1245 skb->data_len += length;
1246 skb->truesize += length;
1250 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1251 * @adapter: board private structure
1253 * the return value indicates whether actual cleaning was done, there
1254 * is no guarantee that everything was cleaned
1257 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1258 int *work_done, int work_to_do)
1260 struct net_device *netdev = adapter->netdev;
1261 struct pci_dev *pdev = adapter->pdev;
1262 struct e1000_ring *rx_ring = adapter->rx_ring;
1263 struct e1000_rx_desc *rx_desc, *next_rxd;
1264 struct e1000_buffer *buffer_info, *next_buffer;
1265 u32 length;
1266 unsigned int i;
1267 int cleaned_count = 0;
1268 bool cleaned = false;
1269 unsigned int total_rx_bytes=0, total_rx_packets=0;
1271 i = rx_ring->next_to_clean;
1272 rx_desc = E1000_RX_DESC(*rx_ring, i);
1273 buffer_info = &rx_ring->buffer_info[i];
1275 while (rx_desc->status & E1000_RXD_STAT_DD) {
1276 struct sk_buff *skb;
1277 u8 status;
1279 if (*work_done >= work_to_do)
1280 break;
1281 (*work_done)++;
1283 status = rx_desc->status;
1284 skb = buffer_info->skb;
1285 buffer_info->skb = NULL;
1287 ++i;
1288 if (i == rx_ring->count)
1289 i = 0;
1290 next_rxd = E1000_RX_DESC(*rx_ring, i);
1291 prefetch(next_rxd);
1293 next_buffer = &rx_ring->buffer_info[i];
1295 cleaned = true;
1296 cleaned_count++;
1297 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1298 DMA_FROM_DEVICE);
1299 buffer_info->dma = 0;
1301 length = le16_to_cpu(rx_desc->length);
1303 /* errors is only valid for DD + EOP descriptors */
1304 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1305 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1306 /* recycle both page and skb */
1307 buffer_info->skb = skb;
1308 /* an error means any chain goes out the window
1309 * too */
1310 if (rx_ring->rx_skb_top)
1311 dev_kfree_skb(rx_ring->rx_skb_top);
1312 rx_ring->rx_skb_top = NULL;
1313 goto next_desc;
1316 #define rxtop rx_ring->rx_skb_top
1317 if (!(status & E1000_RXD_STAT_EOP)) {
1318 /* this descriptor is only the beginning (or middle) */
1319 if (!rxtop) {
1320 /* this is the beginning of a chain */
1321 rxtop = skb;
1322 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1323 0, length);
1324 } else {
1325 /* this is the middle of a chain */
1326 skb_fill_page_desc(rxtop,
1327 skb_shinfo(rxtop)->nr_frags,
1328 buffer_info->page, 0, length);
1329 /* re-use the skb, only consumed the page */
1330 buffer_info->skb = skb;
1332 e1000_consume_page(buffer_info, rxtop, length);
1333 goto next_desc;
1334 } else {
1335 if (rxtop) {
1336 /* end of the chain */
1337 skb_fill_page_desc(rxtop,
1338 skb_shinfo(rxtop)->nr_frags,
1339 buffer_info->page, 0, length);
1340 /* re-use the current skb, we only consumed the
1341 * page */
1342 buffer_info->skb = skb;
1343 skb = rxtop;
1344 rxtop = NULL;
1345 e1000_consume_page(buffer_info, skb, length);
1346 } else {
1347 /* no chain, got EOP, this buf is the packet
1348 * copybreak to save the put_page/alloc_page */
1349 if (length <= copybreak &&
1350 skb_tailroom(skb) >= length) {
1351 u8 *vaddr;
1352 vaddr = kmap_atomic(buffer_info->page,
1353 KM_SKB_DATA_SOFTIRQ);
1354 memcpy(skb_tail_pointer(skb), vaddr,
1355 length);
1356 kunmap_atomic(vaddr,
1357 KM_SKB_DATA_SOFTIRQ);
1358 /* re-use the page, so don't erase
1359 * buffer_info->page */
1360 skb_put(skb, length);
1361 } else {
1362 skb_fill_page_desc(skb, 0,
1363 buffer_info->page, 0,
1364 length);
1365 e1000_consume_page(buffer_info, skb,
1366 length);
1371 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1372 e1000_rx_checksum(adapter,
1373 (u32)(status) |
1374 ((u32)(rx_desc->errors) << 24),
1375 le16_to_cpu(rx_desc->csum), skb);
1377 /* probably a little skewed due to removing CRC */
1378 total_rx_bytes += skb->len;
1379 total_rx_packets++;
1381 /* eth type trans needs skb->data to point to something */
1382 if (!pskb_may_pull(skb, ETH_HLEN)) {
1383 e_err("pskb_may_pull failed.\n");
1384 dev_kfree_skb(skb);
1385 goto next_desc;
1388 e1000_receive_skb(adapter, netdev, skb, status,
1389 rx_desc->special);
1391 next_desc:
1392 rx_desc->status = 0;
1394 /* return some buffers to hardware, one at a time is too slow */
1395 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1396 adapter->alloc_rx_buf(adapter, cleaned_count);
1397 cleaned_count = 0;
1400 /* use prefetched values */
1401 rx_desc = next_rxd;
1402 buffer_info = next_buffer;
1404 rx_ring->next_to_clean = i;
1406 cleaned_count = e1000_desc_unused(rx_ring);
1407 if (cleaned_count)
1408 adapter->alloc_rx_buf(adapter, cleaned_count);
1410 adapter->total_rx_bytes += total_rx_bytes;
1411 adapter->total_rx_packets += total_rx_packets;
1412 netdev->stats.rx_bytes += total_rx_bytes;
1413 netdev->stats.rx_packets += total_rx_packets;
1414 return cleaned;
1418 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1419 * @adapter: board private structure
1421 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1423 struct e1000_ring *rx_ring = adapter->rx_ring;
1424 struct e1000_buffer *buffer_info;
1425 struct e1000_ps_page *ps_page;
1426 struct pci_dev *pdev = adapter->pdev;
1427 unsigned int i, j;
1429 /* Free all the Rx ring sk_buffs */
1430 for (i = 0; i < rx_ring->count; i++) {
1431 buffer_info = &rx_ring->buffer_info[i];
1432 if (buffer_info->dma) {
1433 if (adapter->clean_rx == e1000_clean_rx_irq)
1434 dma_unmap_single(&pdev->dev, buffer_info->dma,
1435 adapter->rx_buffer_len,
1436 DMA_FROM_DEVICE);
1437 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1438 dma_unmap_page(&pdev->dev, buffer_info->dma,
1439 PAGE_SIZE,
1440 DMA_FROM_DEVICE);
1441 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1442 dma_unmap_single(&pdev->dev, buffer_info->dma,
1443 adapter->rx_ps_bsize0,
1444 DMA_FROM_DEVICE);
1445 buffer_info->dma = 0;
1448 if (buffer_info->page) {
1449 put_page(buffer_info->page);
1450 buffer_info->page = NULL;
1453 if (buffer_info->skb) {
1454 dev_kfree_skb(buffer_info->skb);
1455 buffer_info->skb = NULL;
1458 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1459 ps_page = &buffer_info->ps_pages[j];
1460 if (!ps_page->page)
1461 break;
1462 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1463 DMA_FROM_DEVICE);
1464 ps_page->dma = 0;
1465 put_page(ps_page->page);
1466 ps_page->page = NULL;
1470 /* there also may be some cached data from a chained receive */
1471 if (rx_ring->rx_skb_top) {
1472 dev_kfree_skb(rx_ring->rx_skb_top);
1473 rx_ring->rx_skb_top = NULL;
1476 /* Zero out the descriptor ring */
1477 memset(rx_ring->desc, 0, rx_ring->size);
1479 rx_ring->next_to_clean = 0;
1480 rx_ring->next_to_use = 0;
1481 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1483 writel(0, adapter->hw.hw_addr + rx_ring->head);
1484 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1487 static void e1000e_downshift_workaround(struct work_struct *work)
1489 struct e1000_adapter *adapter = container_of(work,
1490 struct e1000_adapter, downshift_task);
1492 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1496 * e1000_intr_msi - Interrupt Handler
1497 * @irq: interrupt number
1498 * @data: pointer to a network interface device structure
1500 static irqreturn_t e1000_intr_msi(int irq, void *data)
1502 struct net_device *netdev = data;
1503 struct e1000_adapter *adapter = netdev_priv(netdev);
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 icr = er32(ICR);
1508 * read ICR disables interrupts using IAM
1511 if (icr & E1000_ICR_LSC) {
1512 hw->mac.get_link_status = 1;
1514 * ICH8 workaround-- Call gig speed drop workaround on cable
1515 * disconnect (LSC) before accessing any PHY registers
1517 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1518 (!(er32(STATUS) & E1000_STATUS_LU)))
1519 schedule_work(&adapter->downshift_task);
1522 * 80003ES2LAN workaround-- For packet buffer work-around on
1523 * link down event; disable receives here in the ISR and reset
1524 * adapter in watchdog
1526 if (netif_carrier_ok(netdev) &&
1527 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1528 /* disable receives */
1529 u32 rctl = er32(RCTL);
1530 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1531 adapter->flags |= FLAG_RX_RESTART_NOW;
1533 /* guard against interrupt when we're going down */
1534 if (!test_bit(__E1000_DOWN, &adapter->state))
1535 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1538 if (napi_schedule_prep(&adapter->napi)) {
1539 adapter->total_tx_bytes = 0;
1540 adapter->total_tx_packets = 0;
1541 adapter->total_rx_bytes = 0;
1542 adapter->total_rx_packets = 0;
1543 __napi_schedule(&adapter->napi);
1546 return IRQ_HANDLED;
1550 * e1000_intr - Interrupt Handler
1551 * @irq: interrupt number
1552 * @data: pointer to a network interface device structure
1554 static irqreturn_t e1000_intr(int irq, void *data)
1556 struct net_device *netdev = data;
1557 struct e1000_adapter *adapter = netdev_priv(netdev);
1558 struct e1000_hw *hw = &adapter->hw;
1559 u32 rctl, icr = er32(ICR);
1561 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1562 return IRQ_NONE; /* Not our interrupt */
1565 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1566 * not set, then the adapter didn't send an interrupt
1568 if (!(icr & E1000_ICR_INT_ASSERTED))
1569 return IRQ_NONE;
1572 * Interrupt Auto-Mask...upon reading ICR,
1573 * interrupts are masked. No need for the
1574 * IMC write
1577 if (icr & E1000_ICR_LSC) {
1578 hw->mac.get_link_status = 1;
1580 * ICH8 workaround-- Call gig speed drop workaround on cable
1581 * disconnect (LSC) before accessing any PHY registers
1583 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1584 (!(er32(STATUS) & E1000_STATUS_LU)))
1585 schedule_work(&adapter->downshift_task);
1588 * 80003ES2LAN workaround--
1589 * For packet buffer work-around on link down event;
1590 * disable receives here in the ISR and
1591 * reset adapter in watchdog
1593 if (netif_carrier_ok(netdev) &&
1594 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1595 /* disable receives */
1596 rctl = er32(RCTL);
1597 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1598 adapter->flags |= FLAG_RX_RESTART_NOW;
1600 /* guard against interrupt when we're going down */
1601 if (!test_bit(__E1000_DOWN, &adapter->state))
1602 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1605 if (napi_schedule_prep(&adapter->napi)) {
1606 adapter->total_tx_bytes = 0;
1607 adapter->total_tx_packets = 0;
1608 adapter->total_rx_bytes = 0;
1609 adapter->total_rx_packets = 0;
1610 __napi_schedule(&adapter->napi);
1613 return IRQ_HANDLED;
1616 static irqreturn_t e1000_msix_other(int irq, void *data)
1618 struct net_device *netdev = data;
1619 struct e1000_adapter *adapter = netdev_priv(netdev);
1620 struct e1000_hw *hw = &adapter->hw;
1621 u32 icr = er32(ICR);
1623 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1624 if (!test_bit(__E1000_DOWN, &adapter->state))
1625 ew32(IMS, E1000_IMS_OTHER);
1626 return IRQ_NONE;
1629 if (icr & adapter->eiac_mask)
1630 ew32(ICS, (icr & adapter->eiac_mask));
1632 if (icr & E1000_ICR_OTHER) {
1633 if (!(icr & E1000_ICR_LSC))
1634 goto no_link_interrupt;
1635 hw->mac.get_link_status = 1;
1636 /* guard against interrupt when we're going down */
1637 if (!test_bit(__E1000_DOWN, &adapter->state))
1638 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1641 no_link_interrupt:
1642 if (!test_bit(__E1000_DOWN, &adapter->state))
1643 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1645 return IRQ_HANDLED;
1649 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1651 struct net_device *netdev = data;
1652 struct e1000_adapter *adapter = netdev_priv(netdev);
1653 struct e1000_hw *hw = &adapter->hw;
1654 struct e1000_ring *tx_ring = adapter->tx_ring;
1657 adapter->total_tx_bytes = 0;
1658 adapter->total_tx_packets = 0;
1660 if (!e1000_clean_tx_irq(adapter))
1661 /* Ring was not completely cleaned, so fire another interrupt */
1662 ew32(ICS, tx_ring->ims_val);
1664 return IRQ_HANDLED;
1667 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1669 struct net_device *netdev = data;
1670 struct e1000_adapter *adapter = netdev_priv(netdev);
1672 /* Write the ITR value calculated at the end of the
1673 * previous interrupt.
1675 if (adapter->rx_ring->set_itr) {
1676 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1677 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1678 adapter->rx_ring->set_itr = 0;
1681 if (napi_schedule_prep(&adapter->napi)) {
1682 adapter->total_rx_bytes = 0;
1683 adapter->total_rx_packets = 0;
1684 __napi_schedule(&adapter->napi);
1686 return IRQ_HANDLED;
1690 * e1000_configure_msix - Configure MSI-X hardware
1692 * e1000_configure_msix sets up the hardware to properly
1693 * generate MSI-X interrupts.
1695 static void e1000_configure_msix(struct e1000_adapter *adapter)
1697 struct e1000_hw *hw = &adapter->hw;
1698 struct e1000_ring *rx_ring = adapter->rx_ring;
1699 struct e1000_ring *tx_ring = adapter->tx_ring;
1700 int vector = 0;
1701 u32 ctrl_ext, ivar = 0;
1703 adapter->eiac_mask = 0;
1705 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1706 if (hw->mac.type == e1000_82574) {
1707 u32 rfctl = er32(RFCTL);
1708 rfctl |= E1000_RFCTL_ACK_DIS;
1709 ew32(RFCTL, rfctl);
1712 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1713 /* Configure Rx vector */
1714 rx_ring->ims_val = E1000_IMS_RXQ0;
1715 adapter->eiac_mask |= rx_ring->ims_val;
1716 if (rx_ring->itr_val)
1717 writel(1000000000 / (rx_ring->itr_val * 256),
1718 hw->hw_addr + rx_ring->itr_register);
1719 else
1720 writel(1, hw->hw_addr + rx_ring->itr_register);
1721 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1723 /* Configure Tx vector */
1724 tx_ring->ims_val = E1000_IMS_TXQ0;
1725 vector++;
1726 if (tx_ring->itr_val)
1727 writel(1000000000 / (tx_ring->itr_val * 256),
1728 hw->hw_addr + tx_ring->itr_register);
1729 else
1730 writel(1, hw->hw_addr + tx_ring->itr_register);
1731 adapter->eiac_mask |= tx_ring->ims_val;
1732 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1734 /* set vector for Other Causes, e.g. link changes */
1735 vector++;
1736 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1737 if (rx_ring->itr_val)
1738 writel(1000000000 / (rx_ring->itr_val * 256),
1739 hw->hw_addr + E1000_EITR_82574(vector));
1740 else
1741 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1743 /* Cause Tx interrupts on every write back */
1744 ivar |= (1 << 31);
1746 ew32(IVAR, ivar);
1748 /* enable MSI-X PBA support */
1749 ctrl_ext = er32(CTRL_EXT);
1750 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1752 /* Auto-Mask Other interrupts upon ICR read */
1753 #define E1000_EIAC_MASK_82574 0x01F00000
1754 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1755 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1756 ew32(CTRL_EXT, ctrl_ext);
1757 e1e_flush();
1760 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1762 if (adapter->msix_entries) {
1763 pci_disable_msix(adapter->pdev);
1764 kfree(adapter->msix_entries);
1765 adapter->msix_entries = NULL;
1766 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1767 pci_disable_msi(adapter->pdev);
1768 adapter->flags &= ~FLAG_MSI_ENABLED;
1773 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1775 * Attempt to configure interrupts using the best available
1776 * capabilities of the hardware and kernel.
1778 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1780 int err;
1781 int numvecs, i;
1784 switch (adapter->int_mode) {
1785 case E1000E_INT_MODE_MSIX:
1786 if (adapter->flags & FLAG_HAS_MSIX) {
1787 numvecs = 3; /* RxQ0, TxQ0 and other */
1788 adapter->msix_entries = kcalloc(numvecs,
1789 sizeof(struct msix_entry),
1790 GFP_KERNEL);
1791 if (adapter->msix_entries) {
1792 for (i = 0; i < numvecs; i++)
1793 adapter->msix_entries[i].entry = i;
1795 err = pci_enable_msix(adapter->pdev,
1796 adapter->msix_entries,
1797 numvecs);
1798 if (err == 0)
1799 return;
1801 /* MSI-X failed, so fall through and try MSI */
1802 e_err("Failed to initialize MSI-X interrupts. "
1803 "Falling back to MSI interrupts.\n");
1804 e1000e_reset_interrupt_capability(adapter);
1806 adapter->int_mode = E1000E_INT_MODE_MSI;
1807 /* Fall through */
1808 case E1000E_INT_MODE_MSI:
1809 if (!pci_enable_msi(adapter->pdev)) {
1810 adapter->flags |= FLAG_MSI_ENABLED;
1811 } else {
1812 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1813 e_err("Failed to initialize MSI interrupts. Falling "
1814 "back to legacy interrupts.\n");
1816 /* Fall through */
1817 case E1000E_INT_MODE_LEGACY:
1818 /* Don't do anything; this is the system default */
1819 break;
1824 * e1000_request_msix - Initialize MSI-X interrupts
1826 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1827 * kernel.
1829 static int e1000_request_msix(struct e1000_adapter *adapter)
1831 struct net_device *netdev = adapter->netdev;
1832 int err = 0, vector = 0;
1834 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1835 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1836 else
1837 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1838 err = request_irq(adapter->msix_entries[vector].vector,
1839 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1840 netdev);
1841 if (err)
1842 goto out;
1843 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1844 adapter->rx_ring->itr_val = adapter->itr;
1845 vector++;
1847 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1848 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1849 else
1850 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1851 err = request_irq(adapter->msix_entries[vector].vector,
1852 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1853 netdev);
1854 if (err)
1855 goto out;
1856 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1857 adapter->tx_ring->itr_val = adapter->itr;
1858 vector++;
1860 err = request_irq(adapter->msix_entries[vector].vector,
1861 e1000_msix_other, 0, netdev->name, netdev);
1862 if (err)
1863 goto out;
1865 e1000_configure_msix(adapter);
1866 return 0;
1867 out:
1868 return err;
1872 * e1000_request_irq - initialize interrupts
1874 * Attempts to configure interrupts using the best available
1875 * capabilities of the hardware and kernel.
1877 static int e1000_request_irq(struct e1000_adapter *adapter)
1879 struct net_device *netdev = adapter->netdev;
1880 int err;
1882 if (adapter->msix_entries) {
1883 err = e1000_request_msix(adapter);
1884 if (!err)
1885 return err;
1886 /* fall back to MSI */
1887 e1000e_reset_interrupt_capability(adapter);
1888 adapter->int_mode = E1000E_INT_MODE_MSI;
1889 e1000e_set_interrupt_capability(adapter);
1891 if (adapter->flags & FLAG_MSI_ENABLED) {
1892 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1893 netdev->name, netdev);
1894 if (!err)
1895 return err;
1897 /* fall back to legacy interrupt */
1898 e1000e_reset_interrupt_capability(adapter);
1899 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1902 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1903 netdev->name, netdev);
1904 if (err)
1905 e_err("Unable to allocate interrupt, Error: %d\n", err);
1907 return err;
1910 static void e1000_free_irq(struct e1000_adapter *adapter)
1912 struct net_device *netdev = adapter->netdev;
1914 if (adapter->msix_entries) {
1915 int vector = 0;
1917 free_irq(adapter->msix_entries[vector].vector, netdev);
1918 vector++;
1920 free_irq(adapter->msix_entries[vector].vector, netdev);
1921 vector++;
1923 /* Other Causes interrupt vector */
1924 free_irq(adapter->msix_entries[vector].vector, netdev);
1925 return;
1928 free_irq(adapter->pdev->irq, netdev);
1932 * e1000_irq_disable - Mask off interrupt generation on the NIC
1934 static void e1000_irq_disable(struct e1000_adapter *adapter)
1936 struct e1000_hw *hw = &adapter->hw;
1938 ew32(IMC, ~0);
1939 if (adapter->msix_entries)
1940 ew32(EIAC_82574, 0);
1941 e1e_flush();
1942 synchronize_irq(adapter->pdev->irq);
1946 * e1000_irq_enable - Enable default interrupt generation settings
1948 static void e1000_irq_enable(struct e1000_adapter *adapter)
1950 struct e1000_hw *hw = &adapter->hw;
1952 if (adapter->msix_entries) {
1953 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1954 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1955 } else {
1956 ew32(IMS, IMS_ENABLE_MASK);
1958 e1e_flush();
1962 * e1000_get_hw_control - get control of the h/w from f/w
1963 * @adapter: address of board private structure
1965 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1966 * For ASF and Pass Through versions of f/w this means that
1967 * the driver is loaded. For AMT version (only with 82573)
1968 * of the f/w this means that the network i/f is open.
1970 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1972 struct e1000_hw *hw = &adapter->hw;
1973 u32 ctrl_ext;
1974 u32 swsm;
1976 /* Let firmware know the driver has taken over */
1977 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1978 swsm = er32(SWSM);
1979 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1980 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1981 ctrl_ext = er32(CTRL_EXT);
1982 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1987 * e1000_release_hw_control - release control of the h/w to f/w
1988 * @adapter: address of board private structure
1990 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1991 * For ASF and Pass Through versions of f/w this means that the
1992 * driver is no longer loaded. For AMT version (only with 82573) i
1993 * of the f/w this means that the network i/f is closed.
1996 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1998 struct e1000_hw *hw = &adapter->hw;
1999 u32 ctrl_ext;
2000 u32 swsm;
2002 /* Let firmware taken over control of h/w */
2003 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2004 swsm = er32(SWSM);
2005 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2006 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2007 ctrl_ext = er32(CTRL_EXT);
2008 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2013 * @e1000_alloc_ring - allocate memory for a ring structure
2015 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2016 struct e1000_ring *ring)
2018 struct pci_dev *pdev = adapter->pdev;
2020 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2021 GFP_KERNEL);
2022 if (!ring->desc)
2023 return -ENOMEM;
2025 return 0;
2029 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2030 * @adapter: board private structure
2032 * Return 0 on success, negative on failure
2034 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2036 struct e1000_ring *tx_ring = adapter->tx_ring;
2037 int err = -ENOMEM, size;
2039 size = sizeof(struct e1000_buffer) * tx_ring->count;
2040 tx_ring->buffer_info = vmalloc(size);
2041 if (!tx_ring->buffer_info)
2042 goto err;
2043 memset(tx_ring->buffer_info, 0, size);
2045 /* round up to nearest 4K */
2046 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2047 tx_ring->size = ALIGN(tx_ring->size, 4096);
2049 err = e1000_alloc_ring_dma(adapter, tx_ring);
2050 if (err)
2051 goto err;
2053 tx_ring->next_to_use = 0;
2054 tx_ring->next_to_clean = 0;
2056 return 0;
2057 err:
2058 vfree(tx_ring->buffer_info);
2059 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2060 return err;
2064 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2065 * @adapter: board private structure
2067 * Returns 0 on success, negative on failure
2069 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2071 struct e1000_ring *rx_ring = adapter->rx_ring;
2072 struct e1000_buffer *buffer_info;
2073 int i, size, desc_len, err = -ENOMEM;
2075 size = sizeof(struct e1000_buffer) * rx_ring->count;
2076 rx_ring->buffer_info = vmalloc(size);
2077 if (!rx_ring->buffer_info)
2078 goto err;
2079 memset(rx_ring->buffer_info, 0, size);
2081 for (i = 0; i < rx_ring->count; i++) {
2082 buffer_info = &rx_ring->buffer_info[i];
2083 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2084 sizeof(struct e1000_ps_page),
2085 GFP_KERNEL);
2086 if (!buffer_info->ps_pages)
2087 goto err_pages;
2090 desc_len = sizeof(union e1000_rx_desc_packet_split);
2092 /* Round up to nearest 4K */
2093 rx_ring->size = rx_ring->count * desc_len;
2094 rx_ring->size = ALIGN(rx_ring->size, 4096);
2096 err = e1000_alloc_ring_dma(adapter, rx_ring);
2097 if (err)
2098 goto err_pages;
2100 rx_ring->next_to_clean = 0;
2101 rx_ring->next_to_use = 0;
2102 rx_ring->rx_skb_top = NULL;
2104 return 0;
2106 err_pages:
2107 for (i = 0; i < rx_ring->count; i++) {
2108 buffer_info = &rx_ring->buffer_info[i];
2109 kfree(buffer_info->ps_pages);
2111 err:
2112 vfree(rx_ring->buffer_info);
2113 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2114 return err;
2118 * e1000_clean_tx_ring - Free Tx Buffers
2119 * @adapter: board private structure
2121 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2123 struct e1000_ring *tx_ring = adapter->tx_ring;
2124 struct e1000_buffer *buffer_info;
2125 unsigned long size;
2126 unsigned int i;
2128 for (i = 0; i < tx_ring->count; i++) {
2129 buffer_info = &tx_ring->buffer_info[i];
2130 e1000_put_txbuf(adapter, buffer_info);
2133 size = sizeof(struct e1000_buffer) * tx_ring->count;
2134 memset(tx_ring->buffer_info, 0, size);
2136 memset(tx_ring->desc, 0, tx_ring->size);
2138 tx_ring->next_to_use = 0;
2139 tx_ring->next_to_clean = 0;
2141 writel(0, adapter->hw.hw_addr + tx_ring->head);
2142 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2146 * e1000e_free_tx_resources - Free Tx Resources per Queue
2147 * @adapter: board private structure
2149 * Free all transmit software resources
2151 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2153 struct pci_dev *pdev = adapter->pdev;
2154 struct e1000_ring *tx_ring = adapter->tx_ring;
2156 e1000_clean_tx_ring(adapter);
2158 vfree(tx_ring->buffer_info);
2159 tx_ring->buffer_info = NULL;
2161 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2162 tx_ring->dma);
2163 tx_ring->desc = NULL;
2167 * e1000e_free_rx_resources - Free Rx Resources
2168 * @adapter: board private structure
2170 * Free all receive software resources
2173 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2175 struct pci_dev *pdev = adapter->pdev;
2176 struct e1000_ring *rx_ring = adapter->rx_ring;
2177 int i;
2179 e1000_clean_rx_ring(adapter);
2181 for (i = 0; i < rx_ring->count; i++) {
2182 kfree(rx_ring->buffer_info[i].ps_pages);
2185 vfree(rx_ring->buffer_info);
2186 rx_ring->buffer_info = NULL;
2188 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2189 rx_ring->dma);
2190 rx_ring->desc = NULL;
2194 * e1000_update_itr - update the dynamic ITR value based on statistics
2195 * @adapter: pointer to adapter
2196 * @itr_setting: current adapter->itr
2197 * @packets: the number of packets during this measurement interval
2198 * @bytes: the number of bytes during this measurement interval
2200 * Stores a new ITR value based on packets and byte
2201 * counts during the last interrupt. The advantage of per interrupt
2202 * computation is faster updates and more accurate ITR for the current
2203 * traffic pattern. Constants in this function were computed
2204 * based on theoretical maximum wire speed and thresholds were set based
2205 * on testing data as well as attempting to minimize response time
2206 * while increasing bulk throughput. This functionality is controlled
2207 * by the InterruptThrottleRate module parameter.
2209 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2210 u16 itr_setting, int packets,
2211 int bytes)
2213 unsigned int retval = itr_setting;
2215 if (packets == 0)
2216 goto update_itr_done;
2218 switch (itr_setting) {
2219 case lowest_latency:
2220 /* handle TSO and jumbo frames */
2221 if (bytes/packets > 8000)
2222 retval = bulk_latency;
2223 else if ((packets < 5) && (bytes > 512)) {
2224 retval = low_latency;
2226 break;
2227 case low_latency: /* 50 usec aka 20000 ints/s */
2228 if (bytes > 10000) {
2229 /* this if handles the TSO accounting */
2230 if (bytes/packets > 8000) {
2231 retval = bulk_latency;
2232 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2233 retval = bulk_latency;
2234 } else if ((packets > 35)) {
2235 retval = lowest_latency;
2237 } else if (bytes/packets > 2000) {
2238 retval = bulk_latency;
2239 } else if (packets <= 2 && bytes < 512) {
2240 retval = lowest_latency;
2242 break;
2243 case bulk_latency: /* 250 usec aka 4000 ints/s */
2244 if (bytes > 25000) {
2245 if (packets > 35) {
2246 retval = low_latency;
2248 } else if (bytes < 6000) {
2249 retval = low_latency;
2251 break;
2254 update_itr_done:
2255 return retval;
2258 static void e1000_set_itr(struct e1000_adapter *adapter)
2260 struct e1000_hw *hw = &adapter->hw;
2261 u16 current_itr;
2262 u32 new_itr = adapter->itr;
2264 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2265 if (adapter->link_speed != SPEED_1000) {
2266 current_itr = 0;
2267 new_itr = 4000;
2268 goto set_itr_now;
2271 adapter->tx_itr = e1000_update_itr(adapter,
2272 adapter->tx_itr,
2273 adapter->total_tx_packets,
2274 adapter->total_tx_bytes);
2275 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2276 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2277 adapter->tx_itr = low_latency;
2279 adapter->rx_itr = e1000_update_itr(adapter,
2280 adapter->rx_itr,
2281 adapter->total_rx_packets,
2282 adapter->total_rx_bytes);
2283 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2284 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2285 adapter->rx_itr = low_latency;
2287 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2289 switch (current_itr) {
2290 /* counts and packets in update_itr are dependent on these numbers */
2291 case lowest_latency:
2292 new_itr = 70000;
2293 break;
2294 case low_latency:
2295 new_itr = 20000; /* aka hwitr = ~200 */
2296 break;
2297 case bulk_latency:
2298 new_itr = 4000;
2299 break;
2300 default:
2301 break;
2304 set_itr_now:
2305 if (new_itr != adapter->itr) {
2307 * this attempts to bias the interrupt rate towards Bulk
2308 * by adding intermediate steps when interrupt rate is
2309 * increasing
2311 new_itr = new_itr > adapter->itr ?
2312 min(adapter->itr + (new_itr >> 2), new_itr) :
2313 new_itr;
2314 adapter->itr = new_itr;
2315 adapter->rx_ring->itr_val = new_itr;
2316 if (adapter->msix_entries)
2317 adapter->rx_ring->set_itr = 1;
2318 else
2319 ew32(ITR, 1000000000 / (new_itr * 256));
2324 * e1000_alloc_queues - Allocate memory for all rings
2325 * @adapter: board private structure to initialize
2327 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2329 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2330 if (!adapter->tx_ring)
2331 goto err;
2333 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2334 if (!adapter->rx_ring)
2335 goto err;
2337 return 0;
2338 err:
2339 e_err("Unable to allocate memory for queues\n");
2340 kfree(adapter->rx_ring);
2341 kfree(adapter->tx_ring);
2342 return -ENOMEM;
2346 * e1000_clean - NAPI Rx polling callback
2347 * @napi: struct associated with this polling callback
2348 * @budget: amount of packets driver is allowed to process this poll
2350 static int e1000_clean(struct napi_struct *napi, int budget)
2352 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2353 struct e1000_hw *hw = &adapter->hw;
2354 struct net_device *poll_dev = adapter->netdev;
2355 int tx_cleaned = 1, work_done = 0;
2357 adapter = netdev_priv(poll_dev);
2359 if (adapter->msix_entries &&
2360 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2361 goto clean_rx;
2363 tx_cleaned = e1000_clean_tx_irq(adapter);
2365 clean_rx:
2366 adapter->clean_rx(adapter, &work_done, budget);
2368 if (!tx_cleaned)
2369 work_done = budget;
2371 /* If budget not fully consumed, exit the polling mode */
2372 if (work_done < budget) {
2373 if (adapter->itr_setting & 3)
2374 e1000_set_itr(adapter);
2375 napi_complete(napi);
2376 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2377 if (adapter->msix_entries)
2378 ew32(IMS, adapter->rx_ring->ims_val);
2379 else
2380 e1000_irq_enable(adapter);
2384 return work_done;
2387 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2389 struct e1000_adapter *adapter = netdev_priv(netdev);
2390 struct e1000_hw *hw = &adapter->hw;
2391 u32 vfta, index;
2393 /* don't update vlan cookie if already programmed */
2394 if ((adapter->hw.mng_cookie.status &
2395 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2396 (vid == adapter->mng_vlan_id))
2397 return;
2399 /* add VID to filter table */
2400 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2401 index = (vid >> 5) & 0x7F;
2402 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2403 vfta |= (1 << (vid & 0x1F));
2404 hw->mac.ops.write_vfta(hw, index, vfta);
2408 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2410 struct e1000_adapter *adapter = netdev_priv(netdev);
2411 struct e1000_hw *hw = &adapter->hw;
2412 u32 vfta, index;
2414 if (!test_bit(__E1000_DOWN, &adapter->state))
2415 e1000_irq_disable(adapter);
2416 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2418 if (!test_bit(__E1000_DOWN, &adapter->state))
2419 e1000_irq_enable(adapter);
2421 if ((adapter->hw.mng_cookie.status &
2422 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2423 (vid == adapter->mng_vlan_id)) {
2424 /* release control to f/w */
2425 e1000_release_hw_control(adapter);
2426 return;
2429 /* remove VID from filter table */
2430 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2431 index = (vid >> 5) & 0x7F;
2432 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2433 vfta &= ~(1 << (vid & 0x1F));
2434 hw->mac.ops.write_vfta(hw, index, vfta);
2438 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2440 struct net_device *netdev = adapter->netdev;
2441 u16 vid = adapter->hw.mng_cookie.vlan_id;
2442 u16 old_vid = adapter->mng_vlan_id;
2444 if (!adapter->vlgrp)
2445 return;
2447 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2448 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2449 if (adapter->hw.mng_cookie.status &
2450 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2451 e1000_vlan_rx_add_vid(netdev, vid);
2452 adapter->mng_vlan_id = vid;
2455 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2456 (vid != old_vid) &&
2457 !vlan_group_get_device(adapter->vlgrp, old_vid))
2458 e1000_vlan_rx_kill_vid(netdev, old_vid);
2459 } else {
2460 adapter->mng_vlan_id = vid;
2465 static void e1000_vlan_rx_register(struct net_device *netdev,
2466 struct vlan_group *grp)
2468 struct e1000_adapter *adapter = netdev_priv(netdev);
2469 struct e1000_hw *hw = &adapter->hw;
2470 u32 ctrl, rctl;
2472 if (!test_bit(__E1000_DOWN, &adapter->state))
2473 e1000_irq_disable(adapter);
2474 adapter->vlgrp = grp;
2476 if (grp) {
2477 /* enable VLAN tag insert/strip */
2478 ctrl = er32(CTRL);
2479 ctrl |= E1000_CTRL_VME;
2480 ew32(CTRL, ctrl);
2482 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2483 /* enable VLAN receive filtering */
2484 rctl = er32(RCTL);
2485 rctl &= ~E1000_RCTL_CFIEN;
2486 ew32(RCTL, rctl);
2487 e1000_update_mng_vlan(adapter);
2489 } else {
2490 /* disable VLAN tag insert/strip */
2491 ctrl = er32(CTRL);
2492 ctrl &= ~E1000_CTRL_VME;
2493 ew32(CTRL, ctrl);
2495 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2496 if (adapter->mng_vlan_id !=
2497 (u16)E1000_MNG_VLAN_NONE) {
2498 e1000_vlan_rx_kill_vid(netdev,
2499 adapter->mng_vlan_id);
2500 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2505 if (!test_bit(__E1000_DOWN, &adapter->state))
2506 e1000_irq_enable(adapter);
2509 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2511 u16 vid;
2513 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2515 if (!adapter->vlgrp)
2516 return;
2518 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2519 if (!vlan_group_get_device(adapter->vlgrp, vid))
2520 continue;
2521 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2525 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2527 struct e1000_hw *hw = &adapter->hw;
2528 u32 manc, manc2h, mdef, i, j;
2530 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2531 return;
2533 manc = er32(MANC);
2536 * enable receiving management packets to the host. this will probably
2537 * generate destination unreachable messages from the host OS, but
2538 * the packets will be handled on SMBUS
2540 manc |= E1000_MANC_EN_MNG2HOST;
2541 manc2h = er32(MANC2H);
2543 switch (hw->mac.type) {
2544 default:
2545 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2546 break;
2547 case e1000_82574:
2548 case e1000_82583:
2550 * Check if IPMI pass-through decision filter already exists;
2551 * if so, enable it.
2553 for (i = 0, j = 0; i < 8; i++) {
2554 mdef = er32(MDEF(i));
2556 /* Ignore filters with anything other than IPMI ports */
2557 if (mdef & !(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2558 continue;
2560 /* Enable this decision filter in MANC2H */
2561 if (mdef)
2562 manc2h |= (1 << i);
2564 j |= mdef;
2567 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2568 break;
2570 /* Create new decision filter in an empty filter */
2571 for (i = 0, j = 0; i < 8; i++)
2572 if (er32(MDEF(i)) == 0) {
2573 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2574 E1000_MDEF_PORT_664));
2575 manc2h |= (1 << 1);
2576 j++;
2577 break;
2580 if (!j)
2581 e_warn("Unable to create IPMI pass-through filter\n");
2582 break;
2585 ew32(MANC2H, manc2h);
2586 ew32(MANC, manc);
2590 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2591 * @adapter: board private structure
2593 * Configure the Tx unit of the MAC after a reset.
2595 static void e1000_configure_tx(struct e1000_adapter *adapter)
2597 struct e1000_hw *hw = &adapter->hw;
2598 struct e1000_ring *tx_ring = adapter->tx_ring;
2599 u64 tdba;
2600 u32 tdlen, tctl, tipg, tarc;
2601 u32 ipgr1, ipgr2;
2603 /* Setup the HW Tx Head and Tail descriptor pointers */
2604 tdba = tx_ring->dma;
2605 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2606 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2607 ew32(TDBAH, (tdba >> 32));
2608 ew32(TDLEN, tdlen);
2609 ew32(TDH, 0);
2610 ew32(TDT, 0);
2611 tx_ring->head = E1000_TDH;
2612 tx_ring->tail = E1000_TDT;
2614 /* Set the default values for the Tx Inter Packet Gap timer */
2615 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2616 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2617 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2619 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2620 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2622 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2623 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2624 ew32(TIPG, tipg);
2626 /* Set the Tx Interrupt Delay register */
2627 ew32(TIDV, adapter->tx_int_delay);
2628 /* Tx irq moderation */
2629 ew32(TADV, adapter->tx_abs_int_delay);
2631 /* Program the Transmit Control Register */
2632 tctl = er32(TCTL);
2633 tctl &= ~E1000_TCTL_CT;
2634 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2635 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2637 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2638 tarc = er32(TARC(0));
2640 * set the speed mode bit, we'll clear it if we're not at
2641 * gigabit link later
2643 #define SPEED_MODE_BIT (1 << 21)
2644 tarc |= SPEED_MODE_BIT;
2645 ew32(TARC(0), tarc);
2648 /* errata: program both queues to unweighted RR */
2649 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2650 tarc = er32(TARC(0));
2651 tarc |= 1;
2652 ew32(TARC(0), tarc);
2653 tarc = er32(TARC(1));
2654 tarc |= 1;
2655 ew32(TARC(1), tarc);
2658 /* Setup Transmit Descriptor Settings for eop descriptor */
2659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2661 /* only set IDE if we are delaying interrupts using the timers */
2662 if (adapter->tx_int_delay)
2663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2665 /* enable Report Status bit */
2666 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2668 ew32(TCTL, tctl);
2670 e1000e_config_collision_dist(hw);
2674 * e1000_setup_rctl - configure the receive control registers
2675 * @adapter: Board private structure
2677 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2678 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2679 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2681 struct e1000_hw *hw = &adapter->hw;
2682 u32 rctl, rfctl;
2683 u32 psrctl = 0;
2684 u32 pages = 0;
2686 /* Program MC offset vector base */
2687 rctl = er32(RCTL);
2688 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2689 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2690 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2691 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2693 /* Do not Store bad packets */
2694 rctl &= ~E1000_RCTL_SBP;
2696 /* Enable Long Packet receive */
2697 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2698 rctl &= ~E1000_RCTL_LPE;
2699 else
2700 rctl |= E1000_RCTL_LPE;
2702 /* Some systems expect that the CRC is included in SMBUS traffic. The
2703 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2704 * host memory when this is enabled
2706 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2707 rctl |= E1000_RCTL_SECRC;
2709 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2710 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2711 u16 phy_data;
2713 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2714 phy_data &= 0xfff8;
2715 phy_data |= (1 << 2);
2716 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2718 e1e_rphy(hw, 22, &phy_data);
2719 phy_data &= 0x0fff;
2720 phy_data |= (1 << 14);
2721 e1e_wphy(hw, 0x10, 0x2823);
2722 e1e_wphy(hw, 0x11, 0x0003);
2723 e1e_wphy(hw, 22, phy_data);
2726 /* Setup buffer sizes */
2727 rctl &= ~E1000_RCTL_SZ_4096;
2728 rctl |= E1000_RCTL_BSEX;
2729 switch (adapter->rx_buffer_len) {
2730 case 2048:
2731 default:
2732 rctl |= E1000_RCTL_SZ_2048;
2733 rctl &= ~E1000_RCTL_BSEX;
2734 break;
2735 case 4096:
2736 rctl |= E1000_RCTL_SZ_4096;
2737 break;
2738 case 8192:
2739 rctl |= E1000_RCTL_SZ_8192;
2740 break;
2741 case 16384:
2742 rctl |= E1000_RCTL_SZ_16384;
2743 break;
2747 * 82571 and greater support packet-split where the protocol
2748 * header is placed in skb->data and the packet data is
2749 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2750 * In the case of a non-split, skb->data is linearly filled,
2751 * followed by the page buffers. Therefore, skb->data is
2752 * sized to hold the largest protocol header.
2754 * allocations using alloc_page take too long for regular MTU
2755 * so only enable packet split for jumbo frames
2757 * Using pages when the page size is greater than 16k wastes
2758 * a lot of memory, since we allocate 3 pages at all times
2759 * per packet.
2761 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2762 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2763 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2764 adapter->rx_ps_pages = pages;
2765 else
2766 adapter->rx_ps_pages = 0;
2768 if (adapter->rx_ps_pages) {
2769 /* Configure extra packet-split registers */
2770 rfctl = er32(RFCTL);
2771 rfctl |= E1000_RFCTL_EXTEN;
2773 * disable packet split support for IPv6 extension headers,
2774 * because some malformed IPv6 headers can hang the Rx
2776 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2777 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2779 ew32(RFCTL, rfctl);
2781 /* Enable Packet split descriptors */
2782 rctl |= E1000_RCTL_DTYP_PS;
2784 psrctl |= adapter->rx_ps_bsize0 >>
2785 E1000_PSRCTL_BSIZE0_SHIFT;
2787 switch (adapter->rx_ps_pages) {
2788 case 3:
2789 psrctl |= PAGE_SIZE <<
2790 E1000_PSRCTL_BSIZE3_SHIFT;
2791 case 2:
2792 psrctl |= PAGE_SIZE <<
2793 E1000_PSRCTL_BSIZE2_SHIFT;
2794 case 1:
2795 psrctl |= PAGE_SIZE >>
2796 E1000_PSRCTL_BSIZE1_SHIFT;
2797 break;
2800 ew32(PSRCTL, psrctl);
2803 ew32(RCTL, rctl);
2804 /* just started the receive unit, no need to restart */
2805 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2809 * e1000_configure_rx - Configure Receive Unit after Reset
2810 * @adapter: board private structure
2812 * Configure the Rx unit of the MAC after a reset.
2814 static void e1000_configure_rx(struct e1000_adapter *adapter)
2816 struct e1000_hw *hw = &adapter->hw;
2817 struct e1000_ring *rx_ring = adapter->rx_ring;
2818 u64 rdba;
2819 u32 rdlen, rctl, rxcsum, ctrl_ext;
2821 if (adapter->rx_ps_pages) {
2822 /* this is a 32 byte descriptor */
2823 rdlen = rx_ring->count *
2824 sizeof(union e1000_rx_desc_packet_split);
2825 adapter->clean_rx = e1000_clean_rx_irq_ps;
2826 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2827 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2828 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2829 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2830 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2831 } else {
2832 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2833 adapter->clean_rx = e1000_clean_rx_irq;
2834 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2837 /* disable receives while setting up the descriptors */
2838 rctl = er32(RCTL);
2839 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2840 e1e_flush();
2841 msleep(10);
2843 /* set the Receive Delay Timer Register */
2844 ew32(RDTR, adapter->rx_int_delay);
2846 /* irq moderation */
2847 ew32(RADV, adapter->rx_abs_int_delay);
2848 if (adapter->itr_setting != 0)
2849 ew32(ITR, 1000000000 / (adapter->itr * 256));
2851 ctrl_ext = er32(CTRL_EXT);
2852 /* Auto-Mask interrupts upon ICR access */
2853 ctrl_ext |= E1000_CTRL_EXT_IAME;
2854 ew32(IAM, 0xffffffff);
2855 ew32(CTRL_EXT, ctrl_ext);
2856 e1e_flush();
2859 * Setup the HW Rx Head and Tail Descriptor Pointers and
2860 * the Base and Length of the Rx Descriptor Ring
2862 rdba = rx_ring->dma;
2863 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2864 ew32(RDBAH, (rdba >> 32));
2865 ew32(RDLEN, rdlen);
2866 ew32(RDH, 0);
2867 ew32(RDT, 0);
2868 rx_ring->head = E1000_RDH;
2869 rx_ring->tail = E1000_RDT;
2871 /* Enable Receive Checksum Offload for TCP and UDP */
2872 rxcsum = er32(RXCSUM);
2873 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2874 rxcsum |= E1000_RXCSUM_TUOFL;
2877 * IPv4 payload checksum for UDP fragments must be
2878 * used in conjunction with packet-split.
2880 if (adapter->rx_ps_pages)
2881 rxcsum |= E1000_RXCSUM_IPPCSE;
2882 } else {
2883 rxcsum &= ~E1000_RXCSUM_TUOFL;
2884 /* no need to clear IPPCSE as it defaults to 0 */
2886 ew32(RXCSUM, rxcsum);
2889 * Enable early receives on supported devices, only takes effect when
2890 * packet size is equal or larger than the specified value (in 8 byte
2891 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2893 if (adapter->flags & FLAG_HAS_ERT) {
2894 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2895 u32 rxdctl = er32(RXDCTL(0));
2896 ew32(RXDCTL(0), rxdctl | 0x3);
2897 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2899 * With jumbo frames and early-receive enabled,
2900 * excessive C-state transition latencies result in
2901 * dropped transactions.
2903 pm_qos_update_request(
2904 adapter->netdev->pm_qos_req, 55);
2905 } else {
2906 pm_qos_update_request(
2907 adapter->netdev->pm_qos_req,
2908 PM_QOS_DEFAULT_VALUE);
2912 /* Enable Receives */
2913 ew32(RCTL, rctl);
2917 * e1000_update_mc_addr_list - Update Multicast addresses
2918 * @hw: pointer to the HW structure
2919 * @mc_addr_list: array of multicast addresses to program
2920 * @mc_addr_count: number of multicast addresses to program
2922 * Updates the Multicast Table Array.
2923 * The caller must have a packed mc_addr_list of multicast addresses.
2925 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2926 u32 mc_addr_count)
2928 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2932 * e1000_set_multi - Multicast and Promiscuous mode set
2933 * @netdev: network interface device structure
2935 * The set_multi entry point is called whenever the multicast address
2936 * list or the network interface flags are updated. This routine is
2937 * responsible for configuring the hardware for proper multicast,
2938 * promiscuous mode, and all-multi behavior.
2940 static void e1000_set_multi(struct net_device *netdev)
2942 struct e1000_adapter *adapter = netdev_priv(netdev);
2943 struct e1000_hw *hw = &adapter->hw;
2944 struct netdev_hw_addr *ha;
2945 u8 *mta_list;
2946 u32 rctl;
2947 int i;
2949 /* Check for Promiscuous and All Multicast modes */
2951 rctl = er32(RCTL);
2953 if (netdev->flags & IFF_PROMISC) {
2954 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2955 rctl &= ~E1000_RCTL_VFE;
2956 } else {
2957 if (netdev->flags & IFF_ALLMULTI) {
2958 rctl |= E1000_RCTL_MPE;
2959 rctl &= ~E1000_RCTL_UPE;
2960 } else {
2961 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2963 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2964 rctl |= E1000_RCTL_VFE;
2967 ew32(RCTL, rctl);
2969 if (!netdev_mc_empty(netdev)) {
2970 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2971 if (!mta_list)
2972 return;
2974 /* prepare a packed array of only addresses. */
2975 i = 0;
2976 netdev_for_each_mc_addr(ha, netdev)
2977 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
2979 e1000_update_mc_addr_list(hw, mta_list, i);
2980 kfree(mta_list);
2981 } else {
2983 * if we're called from probe, we might not have
2984 * anything to do here, so clear out the list
2986 e1000_update_mc_addr_list(hw, NULL, 0);
2991 * e1000_configure - configure the hardware for Rx and Tx
2992 * @adapter: private board structure
2994 static void e1000_configure(struct e1000_adapter *adapter)
2996 e1000_set_multi(adapter->netdev);
2998 e1000_restore_vlan(adapter);
2999 e1000_init_manageability_pt(adapter);
3001 e1000_configure_tx(adapter);
3002 e1000_setup_rctl(adapter);
3003 e1000_configure_rx(adapter);
3004 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3008 * e1000e_power_up_phy - restore link in case the phy was powered down
3009 * @adapter: address of board private structure
3011 * The phy may be powered down to save power and turn off link when the
3012 * driver is unloaded and wake on lan is not enabled (among others)
3013 * *** this routine MUST be followed by a call to e1000e_reset ***
3015 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3017 if (adapter->hw.phy.ops.power_up)
3018 adapter->hw.phy.ops.power_up(&adapter->hw);
3020 adapter->hw.mac.ops.setup_link(&adapter->hw);
3024 * e1000_power_down_phy - Power down the PHY
3026 * Power down the PHY so no link is implied when interface is down.
3027 * The PHY cannot be powered down if management or WoL is active.
3029 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3031 /* WoL is enabled */
3032 if (adapter->wol)
3033 return;
3035 if (adapter->hw.phy.ops.power_down)
3036 adapter->hw.phy.ops.power_down(&adapter->hw);
3040 * e1000e_reset - bring the hardware into a known good state
3042 * This function boots the hardware and enables some settings that
3043 * require a configuration cycle of the hardware - those cannot be
3044 * set/changed during runtime. After reset the device needs to be
3045 * properly configured for Rx, Tx etc.
3047 void e1000e_reset(struct e1000_adapter *adapter)
3049 struct e1000_mac_info *mac = &adapter->hw.mac;
3050 struct e1000_fc_info *fc = &adapter->hw.fc;
3051 struct e1000_hw *hw = &adapter->hw;
3052 u32 tx_space, min_tx_space, min_rx_space;
3053 u32 pba = adapter->pba;
3054 u16 hwm;
3056 /* reset Packet Buffer Allocation to default */
3057 ew32(PBA, pba);
3059 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3061 * To maintain wire speed transmits, the Tx FIFO should be
3062 * large enough to accommodate two full transmit packets,
3063 * rounded up to the next 1KB and expressed in KB. Likewise,
3064 * the Rx FIFO should be large enough to accommodate at least
3065 * one full receive packet and is similarly rounded up and
3066 * expressed in KB.
3068 pba = er32(PBA);
3069 /* upper 16 bits has Tx packet buffer allocation size in KB */
3070 tx_space = pba >> 16;
3071 /* lower 16 bits has Rx packet buffer allocation size in KB */
3072 pba &= 0xffff;
3074 * the Tx fifo also stores 16 bytes of information about the tx
3075 * but don't include ethernet FCS because hardware appends it
3077 min_tx_space = (adapter->max_frame_size +
3078 sizeof(struct e1000_tx_desc) -
3079 ETH_FCS_LEN) * 2;
3080 min_tx_space = ALIGN(min_tx_space, 1024);
3081 min_tx_space >>= 10;
3082 /* software strips receive CRC, so leave room for it */
3083 min_rx_space = adapter->max_frame_size;
3084 min_rx_space = ALIGN(min_rx_space, 1024);
3085 min_rx_space >>= 10;
3088 * If current Tx allocation is less than the min Tx FIFO size,
3089 * and the min Tx FIFO size is less than the current Rx FIFO
3090 * allocation, take space away from current Rx allocation
3092 if ((tx_space < min_tx_space) &&
3093 ((min_tx_space - tx_space) < pba)) {
3094 pba -= min_tx_space - tx_space;
3097 * if short on Rx space, Rx wins and must trump tx
3098 * adjustment or use Early Receive if available
3100 if ((pba < min_rx_space) &&
3101 (!(adapter->flags & FLAG_HAS_ERT)))
3102 /* ERT enabled in e1000_configure_rx */
3103 pba = min_rx_space;
3106 ew32(PBA, pba);
3111 * flow control settings
3113 * The high water mark must be low enough to fit one full frame
3114 * (or the size used for early receive) above it in the Rx FIFO.
3115 * Set it to the lower of:
3116 * - 90% of the Rx FIFO size, and
3117 * - the full Rx FIFO size minus the early receive size (for parts
3118 * with ERT support assuming ERT set to E1000_ERT_2048), or
3119 * - the full Rx FIFO size minus one full frame
3121 if (hw->mac.type == e1000_pchlan) {
3123 * Workaround PCH LOM adapter hangs with certain network
3124 * loads. If hangs persist, try disabling Tx flow control.
3126 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3127 fc->high_water = 0x3500;
3128 fc->low_water = 0x1500;
3129 } else {
3130 fc->high_water = 0x5000;
3131 fc->low_water = 0x3000;
3133 fc->refresh_time = 0x1000;
3134 } else {
3135 if ((adapter->flags & FLAG_HAS_ERT) &&
3136 (adapter->netdev->mtu > ETH_DATA_LEN))
3137 hwm = min(((pba << 10) * 9 / 10),
3138 ((pba << 10) - (E1000_ERT_2048 << 3)));
3139 else
3140 hwm = min(((pba << 10) * 9 / 10),
3141 ((pba << 10) - adapter->max_frame_size));
3143 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3144 fc->low_water = fc->high_water - 8;
3147 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3148 fc->pause_time = 0xFFFF;
3149 else
3150 fc->pause_time = E1000_FC_PAUSE_TIME;
3151 fc->send_xon = 1;
3152 fc->current_mode = fc->requested_mode;
3154 /* Allow time for pending master requests to run */
3155 mac->ops.reset_hw(hw);
3158 * For parts with AMT enabled, let the firmware know
3159 * that the network interface is in control
3161 if (adapter->flags & FLAG_HAS_AMT)
3162 e1000_get_hw_control(adapter);
3164 ew32(WUC, 0);
3165 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
3166 e1e_wphy(&adapter->hw, BM_WUC, 0);
3168 if (mac->ops.init_hw(hw))
3169 e_err("Hardware Error\n");
3171 e1000_update_mng_vlan(adapter);
3173 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3174 ew32(VET, ETH_P_8021Q);
3176 e1000e_reset_adaptive(hw);
3177 e1000_get_phy_info(hw);
3179 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3180 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3181 u16 phy_data = 0;
3183 * speed up time to link by disabling smart power down, ignore
3184 * the return value of this function because there is nothing
3185 * different we would do if it failed
3187 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3188 phy_data &= ~IGP02E1000_PM_SPD;
3189 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3193 int e1000e_up(struct e1000_adapter *adapter)
3195 struct e1000_hw *hw = &adapter->hw;
3197 /* DMA latency requirement to workaround early-receive/jumbo issue */
3198 if (adapter->flags & FLAG_HAS_ERT)
3199 adapter->netdev->pm_qos_req =
3200 pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
3201 PM_QOS_DEFAULT_VALUE);
3203 /* hardware has been reset, we need to reload some things */
3204 e1000_configure(adapter);
3206 clear_bit(__E1000_DOWN, &adapter->state);
3208 napi_enable(&adapter->napi);
3209 if (adapter->msix_entries)
3210 e1000_configure_msix(adapter);
3211 e1000_irq_enable(adapter);
3213 netif_wake_queue(adapter->netdev);
3215 /* fire a link change interrupt to start the watchdog */
3216 if (adapter->msix_entries)
3217 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3218 else
3219 ew32(ICS, E1000_ICS_LSC);
3221 return 0;
3224 void e1000e_down(struct e1000_adapter *adapter)
3226 struct net_device *netdev = adapter->netdev;
3227 struct e1000_hw *hw = &adapter->hw;
3228 u32 tctl, rctl;
3231 * signal that we're down so the interrupt handler does not
3232 * reschedule our watchdog timer
3234 set_bit(__E1000_DOWN, &adapter->state);
3236 /* disable receives in the hardware */
3237 rctl = er32(RCTL);
3238 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3239 /* flush and sleep below */
3241 netif_stop_queue(netdev);
3243 /* disable transmits in the hardware */
3244 tctl = er32(TCTL);
3245 tctl &= ~E1000_TCTL_EN;
3246 ew32(TCTL, tctl);
3247 /* flush both disables and wait for them to finish */
3248 e1e_flush();
3249 msleep(10);
3251 napi_disable(&adapter->napi);
3252 e1000_irq_disable(adapter);
3254 del_timer_sync(&adapter->watchdog_timer);
3255 del_timer_sync(&adapter->phy_info_timer);
3257 netif_carrier_off(netdev);
3258 adapter->link_speed = 0;
3259 adapter->link_duplex = 0;
3261 if (!pci_channel_offline(adapter->pdev))
3262 e1000e_reset(adapter);
3263 e1000_clean_tx_ring(adapter);
3264 e1000_clean_rx_ring(adapter);
3266 if (adapter->flags & FLAG_HAS_ERT) {
3267 pm_qos_remove_request(
3268 adapter->netdev->pm_qos_req);
3269 adapter->netdev->pm_qos_req = NULL;
3273 * TODO: for power management, we could drop the link and
3274 * pci_disable_device here.
3278 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3280 might_sleep();
3281 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3282 msleep(1);
3283 e1000e_down(adapter);
3284 e1000e_up(adapter);
3285 clear_bit(__E1000_RESETTING, &adapter->state);
3289 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3290 * @adapter: board private structure to initialize
3292 * e1000_sw_init initializes the Adapter private data structure.
3293 * Fields are initialized based on PCI device information and
3294 * OS network device settings (MTU size).
3296 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3298 struct net_device *netdev = adapter->netdev;
3300 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3301 adapter->rx_ps_bsize0 = 128;
3302 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3303 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3305 e1000e_set_interrupt_capability(adapter);
3307 if (e1000_alloc_queues(adapter))
3308 return -ENOMEM;
3310 /* Explicitly disable IRQ since the NIC can be in any state. */
3311 e1000_irq_disable(adapter);
3313 set_bit(__E1000_DOWN, &adapter->state);
3314 return 0;
3318 * e1000_intr_msi_test - Interrupt Handler
3319 * @irq: interrupt number
3320 * @data: pointer to a network interface device structure
3322 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3324 struct net_device *netdev = data;
3325 struct e1000_adapter *adapter = netdev_priv(netdev);
3326 struct e1000_hw *hw = &adapter->hw;
3327 u32 icr = er32(ICR);
3329 e_dbg("icr is %08X\n", icr);
3330 if (icr & E1000_ICR_RXSEQ) {
3331 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3332 wmb();
3335 return IRQ_HANDLED;
3339 * e1000_test_msi_interrupt - Returns 0 for successful test
3340 * @adapter: board private struct
3342 * code flow taken from tg3.c
3344 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3346 struct net_device *netdev = adapter->netdev;
3347 struct e1000_hw *hw = &adapter->hw;
3348 int err;
3350 /* poll_enable hasn't been called yet, so don't need disable */
3351 /* clear any pending events */
3352 er32(ICR);
3354 /* free the real vector and request a test handler */
3355 e1000_free_irq(adapter);
3356 e1000e_reset_interrupt_capability(adapter);
3358 /* Assume that the test fails, if it succeeds then the test
3359 * MSI irq handler will unset this flag */
3360 adapter->flags |= FLAG_MSI_TEST_FAILED;
3362 err = pci_enable_msi(adapter->pdev);
3363 if (err)
3364 goto msi_test_failed;
3366 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3367 netdev->name, netdev);
3368 if (err) {
3369 pci_disable_msi(adapter->pdev);
3370 goto msi_test_failed;
3373 wmb();
3375 e1000_irq_enable(adapter);
3377 /* fire an unusual interrupt on the test handler */
3378 ew32(ICS, E1000_ICS_RXSEQ);
3379 e1e_flush();
3380 msleep(50);
3382 e1000_irq_disable(adapter);
3384 rmb();
3386 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3387 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3388 err = -EIO;
3389 e_info("MSI interrupt test failed!\n");
3392 free_irq(adapter->pdev->irq, netdev);
3393 pci_disable_msi(adapter->pdev);
3395 if (err == -EIO)
3396 goto msi_test_failed;
3398 /* okay so the test worked, restore settings */
3399 e_dbg("MSI interrupt test succeeded!\n");
3400 msi_test_failed:
3401 e1000e_set_interrupt_capability(adapter);
3402 e1000_request_irq(adapter);
3403 return err;
3407 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3408 * @adapter: board private struct
3410 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3412 static int e1000_test_msi(struct e1000_adapter *adapter)
3414 int err;
3415 u16 pci_cmd;
3417 if (!(adapter->flags & FLAG_MSI_ENABLED))
3418 return 0;
3420 /* disable SERR in case the MSI write causes a master abort */
3421 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3422 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3423 pci_cmd & ~PCI_COMMAND_SERR);
3425 err = e1000_test_msi_interrupt(adapter);
3427 /* restore previous setting of command word */
3428 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3430 /* success ! */
3431 if (!err)
3432 return 0;
3434 /* EIO means MSI test failed */
3435 if (err != -EIO)
3436 return err;
3438 /* back to INTx mode */
3439 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3441 e1000_free_irq(adapter);
3443 err = e1000_request_irq(adapter);
3445 return err;
3449 * e1000_open - Called when a network interface is made active
3450 * @netdev: network interface device structure
3452 * Returns 0 on success, negative value on failure
3454 * The open entry point is called when a network interface is made
3455 * active by the system (IFF_UP). At this point all resources needed
3456 * for transmit and receive operations are allocated, the interrupt
3457 * handler is registered with the OS, the watchdog timer is started,
3458 * and the stack is notified that the interface is ready.
3460 static int e1000_open(struct net_device *netdev)
3462 struct e1000_adapter *adapter = netdev_priv(netdev);
3463 struct e1000_hw *hw = &adapter->hw;
3464 struct pci_dev *pdev = adapter->pdev;
3465 int err;
3467 /* disallow open during test */
3468 if (test_bit(__E1000_TESTING, &adapter->state))
3469 return -EBUSY;
3471 pm_runtime_get_sync(&pdev->dev);
3473 netif_carrier_off(netdev);
3475 /* allocate transmit descriptors */
3476 err = e1000e_setup_tx_resources(adapter);
3477 if (err)
3478 goto err_setup_tx;
3480 /* allocate receive descriptors */
3481 err = e1000e_setup_rx_resources(adapter);
3482 if (err)
3483 goto err_setup_rx;
3486 * If AMT is enabled, let the firmware know that the network
3487 * interface is now open and reset the part to a known state.
3489 if (adapter->flags & FLAG_HAS_AMT) {
3490 e1000_get_hw_control(adapter);
3491 e1000e_reset(adapter);
3494 e1000e_power_up_phy(adapter);
3496 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3497 if ((adapter->hw.mng_cookie.status &
3498 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3499 e1000_update_mng_vlan(adapter);
3502 * before we allocate an interrupt, we must be ready to handle it.
3503 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3504 * as soon as we call pci_request_irq, so we have to setup our
3505 * clean_rx handler before we do so.
3507 e1000_configure(adapter);
3509 err = e1000_request_irq(adapter);
3510 if (err)
3511 goto err_req_irq;
3514 * Work around PCIe errata with MSI interrupts causing some chipsets to
3515 * ignore e1000e MSI messages, which means we need to test our MSI
3516 * interrupt now
3518 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3519 err = e1000_test_msi(adapter);
3520 if (err) {
3521 e_err("Interrupt allocation failed\n");
3522 goto err_req_irq;
3526 /* From here on the code is the same as e1000e_up() */
3527 clear_bit(__E1000_DOWN, &adapter->state);
3529 napi_enable(&adapter->napi);
3531 e1000_irq_enable(adapter);
3533 netif_start_queue(netdev);
3535 adapter->idle_check = true;
3536 pm_runtime_put(&pdev->dev);
3538 /* fire a link status change interrupt to start the watchdog */
3539 if (adapter->msix_entries)
3540 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3541 else
3542 ew32(ICS, E1000_ICS_LSC);
3544 return 0;
3546 err_req_irq:
3547 e1000_release_hw_control(adapter);
3548 e1000_power_down_phy(adapter);
3549 e1000e_free_rx_resources(adapter);
3550 err_setup_rx:
3551 e1000e_free_tx_resources(adapter);
3552 err_setup_tx:
3553 e1000e_reset(adapter);
3554 pm_runtime_put_sync(&pdev->dev);
3556 return err;
3560 * e1000_close - Disables a network interface
3561 * @netdev: network interface device structure
3563 * Returns 0, this is not allowed to fail
3565 * The close entry point is called when an interface is de-activated
3566 * by the OS. The hardware is still under the drivers control, but
3567 * needs to be disabled. A global MAC reset is issued to stop the
3568 * hardware, and all transmit and receive resources are freed.
3570 static int e1000_close(struct net_device *netdev)
3572 struct e1000_adapter *adapter = netdev_priv(netdev);
3573 struct pci_dev *pdev = adapter->pdev;
3575 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3577 pm_runtime_get_sync(&pdev->dev);
3579 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3580 e1000e_down(adapter);
3581 e1000_free_irq(adapter);
3583 e1000_power_down_phy(adapter);
3585 e1000e_free_tx_resources(adapter);
3586 e1000e_free_rx_resources(adapter);
3589 * kill manageability vlan ID if supported, but not if a vlan with
3590 * the same ID is registered on the host OS (let 8021q kill it)
3592 if ((adapter->hw.mng_cookie.status &
3593 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3594 !(adapter->vlgrp &&
3595 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3596 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3599 * If AMT is enabled, let the firmware know that the network
3600 * interface is now closed
3602 if (adapter->flags & FLAG_HAS_AMT)
3603 e1000_release_hw_control(adapter);
3605 pm_runtime_put_sync(&pdev->dev);
3607 return 0;
3610 * e1000_set_mac - Change the Ethernet Address of the NIC
3611 * @netdev: network interface device structure
3612 * @p: pointer to an address structure
3614 * Returns 0 on success, negative on failure
3616 static int e1000_set_mac(struct net_device *netdev, void *p)
3618 struct e1000_adapter *adapter = netdev_priv(netdev);
3619 struct sockaddr *addr = p;
3621 if (!is_valid_ether_addr(addr->sa_data))
3622 return -EADDRNOTAVAIL;
3624 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3625 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3627 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3629 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3630 /* activate the work around */
3631 e1000e_set_laa_state_82571(&adapter->hw, 1);
3634 * Hold a copy of the LAA in RAR[14] This is done so that
3635 * between the time RAR[0] gets clobbered and the time it
3636 * gets fixed (in e1000_watchdog), the actual LAA is in one
3637 * of the RARs and no incoming packets directed to this port
3638 * are dropped. Eventually the LAA will be in RAR[0] and
3639 * RAR[14]
3641 e1000e_rar_set(&adapter->hw,
3642 adapter->hw.mac.addr,
3643 adapter->hw.mac.rar_entry_count - 1);
3646 return 0;
3650 * e1000e_update_phy_task - work thread to update phy
3651 * @work: pointer to our work struct
3653 * this worker thread exists because we must acquire a
3654 * semaphore to read the phy, which we could msleep while
3655 * waiting for it, and we can't msleep in a timer.
3657 static void e1000e_update_phy_task(struct work_struct *work)
3659 struct e1000_adapter *adapter = container_of(work,
3660 struct e1000_adapter, update_phy_task);
3661 e1000_get_phy_info(&adapter->hw);
3665 * Need to wait a few seconds after link up to get diagnostic information from
3666 * the phy
3668 static void e1000_update_phy_info(unsigned long data)
3670 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3671 schedule_work(&adapter->update_phy_task);
3675 * e1000e_update_stats - Update the board statistics counters
3676 * @adapter: board private structure
3678 void e1000e_update_stats(struct e1000_adapter *adapter)
3680 struct net_device *netdev = adapter->netdev;
3681 struct e1000_hw *hw = &adapter->hw;
3682 struct pci_dev *pdev = adapter->pdev;
3683 u16 phy_data;
3686 * Prevent stats update while adapter is being reset, or if the pci
3687 * connection is down.
3689 if (adapter->link_speed == 0)
3690 return;
3691 if (pci_channel_offline(pdev))
3692 return;
3694 adapter->stats.crcerrs += er32(CRCERRS);
3695 adapter->stats.gprc += er32(GPRC);
3696 adapter->stats.gorc += er32(GORCL);
3697 er32(GORCH); /* Clear gorc */
3698 adapter->stats.bprc += er32(BPRC);
3699 adapter->stats.mprc += er32(MPRC);
3700 adapter->stats.roc += er32(ROC);
3702 adapter->stats.mpc += er32(MPC);
3703 if ((hw->phy.type == e1000_phy_82578) ||
3704 (hw->phy.type == e1000_phy_82577)) {
3705 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3706 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3707 adapter->stats.scc += phy_data;
3709 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3710 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3711 adapter->stats.ecol += phy_data;
3713 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3714 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3715 adapter->stats.mcc += phy_data;
3717 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3718 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3719 adapter->stats.latecol += phy_data;
3721 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3722 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3723 adapter->stats.dc += phy_data;
3724 } else {
3725 adapter->stats.scc += er32(SCC);
3726 adapter->stats.ecol += er32(ECOL);
3727 adapter->stats.mcc += er32(MCC);
3728 adapter->stats.latecol += er32(LATECOL);
3729 adapter->stats.dc += er32(DC);
3731 adapter->stats.xonrxc += er32(XONRXC);
3732 adapter->stats.xontxc += er32(XONTXC);
3733 adapter->stats.xoffrxc += er32(XOFFRXC);
3734 adapter->stats.xofftxc += er32(XOFFTXC);
3735 adapter->stats.gptc += er32(GPTC);
3736 adapter->stats.gotc += er32(GOTCL);
3737 er32(GOTCH); /* Clear gotc */
3738 adapter->stats.rnbc += er32(RNBC);
3739 adapter->stats.ruc += er32(RUC);
3741 adapter->stats.mptc += er32(MPTC);
3742 adapter->stats.bptc += er32(BPTC);
3744 /* used for adaptive IFS */
3746 hw->mac.tx_packet_delta = er32(TPT);
3747 adapter->stats.tpt += hw->mac.tx_packet_delta;
3748 if ((hw->phy.type == e1000_phy_82578) ||
3749 (hw->phy.type == e1000_phy_82577)) {
3750 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3751 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3752 hw->mac.collision_delta = phy_data;
3753 } else {
3754 hw->mac.collision_delta = er32(COLC);
3756 adapter->stats.colc += hw->mac.collision_delta;
3758 adapter->stats.algnerrc += er32(ALGNERRC);
3759 adapter->stats.rxerrc += er32(RXERRC);
3760 if ((hw->phy.type == e1000_phy_82578) ||
3761 (hw->phy.type == e1000_phy_82577)) {
3762 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3763 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3764 adapter->stats.tncrs += phy_data;
3765 } else {
3766 if ((hw->mac.type != e1000_82574) &&
3767 (hw->mac.type != e1000_82583))
3768 adapter->stats.tncrs += er32(TNCRS);
3770 adapter->stats.cexterr += er32(CEXTERR);
3771 adapter->stats.tsctc += er32(TSCTC);
3772 adapter->stats.tsctfc += er32(TSCTFC);
3774 /* Fill out the OS statistics structure */
3775 netdev->stats.multicast = adapter->stats.mprc;
3776 netdev->stats.collisions = adapter->stats.colc;
3778 /* Rx Errors */
3781 * RLEC on some newer hardware can be incorrect so build
3782 * our own version based on RUC and ROC
3784 netdev->stats.rx_errors = adapter->stats.rxerrc +
3785 adapter->stats.crcerrs + adapter->stats.algnerrc +
3786 adapter->stats.ruc + adapter->stats.roc +
3787 adapter->stats.cexterr;
3788 netdev->stats.rx_length_errors = adapter->stats.ruc +
3789 adapter->stats.roc;
3790 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3791 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3792 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3794 /* Tx Errors */
3795 netdev->stats.tx_errors = adapter->stats.ecol +
3796 adapter->stats.latecol;
3797 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3798 netdev->stats.tx_window_errors = adapter->stats.latecol;
3799 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3801 /* Tx Dropped needs to be maintained elsewhere */
3803 /* Management Stats */
3804 adapter->stats.mgptc += er32(MGTPTC);
3805 adapter->stats.mgprc += er32(MGTPRC);
3806 adapter->stats.mgpdc += er32(MGTPDC);
3810 * e1000_phy_read_status - Update the PHY register status snapshot
3811 * @adapter: board private structure
3813 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3815 struct e1000_hw *hw = &adapter->hw;
3816 struct e1000_phy_regs *phy = &adapter->phy_regs;
3817 int ret_val;
3819 if ((er32(STATUS) & E1000_STATUS_LU) &&
3820 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3821 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3822 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3823 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3824 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3825 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3826 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3827 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3828 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3829 if (ret_val)
3830 e_warn("Error reading PHY register\n");
3831 } else {
3833 * Do not read PHY registers if link is not up
3834 * Set values to typical power-on defaults
3836 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3837 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3838 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3839 BMSR_ERCAP);
3840 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3841 ADVERTISE_ALL | ADVERTISE_CSMA);
3842 phy->lpa = 0;
3843 phy->expansion = EXPANSION_ENABLENPAGE;
3844 phy->ctrl1000 = ADVERTISE_1000FULL;
3845 phy->stat1000 = 0;
3846 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3850 static void e1000_print_link_info(struct e1000_adapter *adapter)
3852 struct e1000_hw *hw = &adapter->hw;
3853 u32 ctrl = er32(CTRL);
3855 /* Link status message must follow this format for user tools */
3856 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3857 "Flow Control: %s\n",
3858 adapter->netdev->name,
3859 adapter->link_speed,
3860 (adapter->link_duplex == FULL_DUPLEX) ?
3861 "Full Duplex" : "Half Duplex",
3862 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3863 "RX/TX" :
3864 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3865 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3868 bool e1000e_has_link(struct e1000_adapter *adapter)
3870 struct e1000_hw *hw = &adapter->hw;
3871 bool link_active = 0;
3872 s32 ret_val = 0;
3875 * get_link_status is set on LSC (link status) interrupt or
3876 * Rx sequence error interrupt. get_link_status will stay
3877 * false until the check_for_link establishes link
3878 * for copper adapters ONLY
3880 switch (hw->phy.media_type) {
3881 case e1000_media_type_copper:
3882 if (hw->mac.get_link_status) {
3883 ret_val = hw->mac.ops.check_for_link(hw);
3884 link_active = !hw->mac.get_link_status;
3885 } else {
3886 link_active = 1;
3888 break;
3889 case e1000_media_type_fiber:
3890 ret_val = hw->mac.ops.check_for_link(hw);
3891 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3892 break;
3893 case e1000_media_type_internal_serdes:
3894 ret_val = hw->mac.ops.check_for_link(hw);
3895 link_active = adapter->hw.mac.serdes_has_link;
3896 break;
3897 default:
3898 case e1000_media_type_unknown:
3899 break;
3902 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3903 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3904 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3905 e_info("Gigabit has been disabled, downgrading speed\n");
3908 return link_active;
3911 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3913 /* make sure the receive unit is started */
3914 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3915 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3916 struct e1000_hw *hw = &adapter->hw;
3917 u32 rctl = er32(RCTL);
3918 ew32(RCTL, rctl | E1000_RCTL_EN);
3919 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3924 * e1000_watchdog - Timer Call-back
3925 * @data: pointer to adapter cast into an unsigned long
3927 static void e1000_watchdog(unsigned long data)
3929 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3931 /* Do the rest outside of interrupt context */
3932 schedule_work(&adapter->watchdog_task);
3934 /* TODO: make this use queue_delayed_work() */
3937 static void e1000_watchdog_task(struct work_struct *work)
3939 struct e1000_adapter *adapter = container_of(work,
3940 struct e1000_adapter, watchdog_task);
3941 struct net_device *netdev = adapter->netdev;
3942 struct e1000_mac_info *mac = &adapter->hw.mac;
3943 struct e1000_phy_info *phy = &adapter->hw.phy;
3944 struct e1000_ring *tx_ring = adapter->tx_ring;
3945 struct e1000_hw *hw = &adapter->hw;
3946 u32 link, tctl;
3947 int tx_pending = 0;
3949 link = e1000e_has_link(adapter);
3950 if ((netif_carrier_ok(netdev)) && link) {
3951 /* Cancel scheduled suspend requests. */
3952 pm_runtime_resume(netdev->dev.parent);
3954 e1000e_enable_receives(adapter);
3955 goto link_up;
3958 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3959 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3960 e1000_update_mng_vlan(adapter);
3962 if (link) {
3963 if (!netif_carrier_ok(netdev)) {
3964 bool txb2b = 1;
3966 /* Cancel scheduled suspend requests. */
3967 pm_runtime_resume(netdev->dev.parent);
3969 /* update snapshot of PHY registers on LSC */
3970 e1000_phy_read_status(adapter);
3971 mac->ops.get_link_up_info(&adapter->hw,
3972 &adapter->link_speed,
3973 &adapter->link_duplex);
3974 e1000_print_link_info(adapter);
3976 * On supported PHYs, check for duplex mismatch only
3977 * if link has autonegotiated at 10/100 half
3979 if ((hw->phy.type == e1000_phy_igp_3 ||
3980 hw->phy.type == e1000_phy_bm) &&
3981 (hw->mac.autoneg == true) &&
3982 (adapter->link_speed == SPEED_10 ||
3983 adapter->link_speed == SPEED_100) &&
3984 (adapter->link_duplex == HALF_DUPLEX)) {
3985 u16 autoneg_exp;
3987 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3989 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3990 e_info("Autonegotiated half duplex but"
3991 " link partner cannot autoneg. "
3992 " Try forcing full duplex if "
3993 "link gets many collisions.\n");
3996 /* adjust timeout factor according to speed/duplex */
3997 adapter->tx_timeout_factor = 1;
3998 switch (adapter->link_speed) {
3999 case SPEED_10:
4000 txb2b = 0;
4001 adapter->tx_timeout_factor = 16;
4002 break;
4003 case SPEED_100:
4004 txb2b = 0;
4005 adapter->tx_timeout_factor = 10;
4006 break;
4010 * workaround: re-program speed mode bit after
4011 * link-up event
4013 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4014 !txb2b) {
4015 u32 tarc0;
4016 tarc0 = er32(TARC(0));
4017 tarc0 &= ~SPEED_MODE_BIT;
4018 ew32(TARC(0), tarc0);
4022 * disable TSO for pcie and 10/100 speeds, to avoid
4023 * some hardware issues
4025 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4026 switch (adapter->link_speed) {
4027 case SPEED_10:
4028 case SPEED_100:
4029 e_info("10/100 speed: disabling TSO\n");
4030 netdev->features &= ~NETIF_F_TSO;
4031 netdev->features &= ~NETIF_F_TSO6;
4032 break;
4033 case SPEED_1000:
4034 netdev->features |= NETIF_F_TSO;
4035 netdev->features |= NETIF_F_TSO6;
4036 break;
4037 default:
4038 /* oops */
4039 break;
4044 * enable transmits in the hardware, need to do this
4045 * after setting TARC(0)
4047 tctl = er32(TCTL);
4048 tctl |= E1000_TCTL_EN;
4049 ew32(TCTL, tctl);
4052 * Perform any post-link-up configuration before
4053 * reporting link up.
4055 if (phy->ops.cfg_on_link_up)
4056 phy->ops.cfg_on_link_up(hw);
4058 netif_carrier_on(netdev);
4060 if (!test_bit(__E1000_DOWN, &adapter->state))
4061 mod_timer(&adapter->phy_info_timer,
4062 round_jiffies(jiffies + 2 * HZ));
4064 } else {
4065 if (netif_carrier_ok(netdev)) {
4066 adapter->link_speed = 0;
4067 adapter->link_duplex = 0;
4068 /* Link status message must follow this format */
4069 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4070 adapter->netdev->name);
4071 netif_carrier_off(netdev);
4072 if (!test_bit(__E1000_DOWN, &adapter->state))
4073 mod_timer(&adapter->phy_info_timer,
4074 round_jiffies(jiffies + 2 * HZ));
4076 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4077 schedule_work(&adapter->reset_task);
4078 else
4079 pm_schedule_suspend(netdev->dev.parent,
4080 LINK_TIMEOUT);
4084 link_up:
4085 e1000e_update_stats(adapter);
4087 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4088 adapter->tpt_old = adapter->stats.tpt;
4089 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4090 adapter->colc_old = adapter->stats.colc;
4092 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4093 adapter->gorc_old = adapter->stats.gorc;
4094 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4095 adapter->gotc_old = adapter->stats.gotc;
4097 e1000e_update_adaptive(&adapter->hw);
4099 if (!netif_carrier_ok(netdev)) {
4100 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4101 tx_ring->count);
4102 if (tx_pending) {
4104 * We've lost link, so the controller stops DMA,
4105 * but we've got queued Tx work that's never going
4106 * to get done, so reset controller to flush Tx.
4107 * (Do the reset outside of interrupt context).
4109 adapter->tx_timeout_count++;
4110 schedule_work(&adapter->reset_task);
4111 /* return immediately since reset is imminent */
4112 return;
4116 /* Simple mode for Interrupt Throttle Rate (ITR) */
4117 if (adapter->itr_setting == 4) {
4119 * Symmetric Tx/Rx gets a reduced ITR=2000;
4120 * Total asymmetrical Tx or Rx gets ITR=8000;
4121 * everyone else is between 2000-8000.
4123 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4124 u32 dif = (adapter->gotc > adapter->gorc ?
4125 adapter->gotc - adapter->gorc :
4126 adapter->gorc - adapter->gotc) / 10000;
4127 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4129 ew32(ITR, 1000000000 / (itr * 256));
4132 /* Cause software interrupt to ensure Rx ring is cleaned */
4133 if (adapter->msix_entries)
4134 ew32(ICS, adapter->rx_ring->ims_val);
4135 else
4136 ew32(ICS, E1000_ICS_RXDMT0);
4138 /* Force detection of hung controller every watchdog period */
4139 adapter->detect_tx_hung = 1;
4142 * With 82571 controllers, LAA may be overwritten due to controller
4143 * reset from the other port. Set the appropriate LAA in RAR[0]
4145 if (e1000e_get_laa_state_82571(hw))
4146 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4148 /* Reset the timer */
4149 if (!test_bit(__E1000_DOWN, &adapter->state))
4150 mod_timer(&adapter->watchdog_timer,
4151 round_jiffies(jiffies + 2 * HZ));
4154 #define E1000_TX_FLAGS_CSUM 0x00000001
4155 #define E1000_TX_FLAGS_VLAN 0x00000002
4156 #define E1000_TX_FLAGS_TSO 0x00000004
4157 #define E1000_TX_FLAGS_IPV4 0x00000008
4158 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4159 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4161 static int e1000_tso(struct e1000_adapter *adapter,
4162 struct sk_buff *skb)
4164 struct e1000_ring *tx_ring = adapter->tx_ring;
4165 struct e1000_context_desc *context_desc;
4166 struct e1000_buffer *buffer_info;
4167 unsigned int i;
4168 u32 cmd_length = 0;
4169 u16 ipcse = 0, tucse, mss;
4170 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4171 int err;
4173 if (!skb_is_gso(skb))
4174 return 0;
4176 if (skb_header_cloned(skb)) {
4177 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4178 if (err)
4179 return err;
4182 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4183 mss = skb_shinfo(skb)->gso_size;
4184 if (skb->protocol == htons(ETH_P_IP)) {
4185 struct iphdr *iph = ip_hdr(skb);
4186 iph->tot_len = 0;
4187 iph->check = 0;
4188 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4189 0, IPPROTO_TCP, 0);
4190 cmd_length = E1000_TXD_CMD_IP;
4191 ipcse = skb_transport_offset(skb) - 1;
4192 } else if (skb_is_gso_v6(skb)) {
4193 ipv6_hdr(skb)->payload_len = 0;
4194 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4195 &ipv6_hdr(skb)->daddr,
4196 0, IPPROTO_TCP, 0);
4197 ipcse = 0;
4199 ipcss = skb_network_offset(skb);
4200 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4201 tucss = skb_transport_offset(skb);
4202 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4203 tucse = 0;
4205 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4206 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4208 i = tx_ring->next_to_use;
4209 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4210 buffer_info = &tx_ring->buffer_info[i];
4212 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4213 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4214 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4215 context_desc->upper_setup.tcp_fields.tucss = tucss;
4216 context_desc->upper_setup.tcp_fields.tucso = tucso;
4217 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4218 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4219 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4220 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4222 buffer_info->time_stamp = jiffies;
4223 buffer_info->next_to_watch = i;
4225 i++;
4226 if (i == tx_ring->count)
4227 i = 0;
4228 tx_ring->next_to_use = i;
4230 return 1;
4233 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4235 struct e1000_ring *tx_ring = adapter->tx_ring;
4236 struct e1000_context_desc *context_desc;
4237 struct e1000_buffer *buffer_info;
4238 unsigned int i;
4239 u8 css;
4240 u32 cmd_len = E1000_TXD_CMD_DEXT;
4241 __be16 protocol;
4243 if (skb->ip_summed != CHECKSUM_PARTIAL)
4244 return 0;
4246 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4247 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4248 else
4249 protocol = skb->protocol;
4251 switch (protocol) {
4252 case cpu_to_be16(ETH_P_IP):
4253 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4254 cmd_len |= E1000_TXD_CMD_TCP;
4255 break;
4256 case cpu_to_be16(ETH_P_IPV6):
4257 /* XXX not handling all IPV6 headers */
4258 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4259 cmd_len |= E1000_TXD_CMD_TCP;
4260 break;
4261 default:
4262 if (unlikely(net_ratelimit()))
4263 e_warn("checksum_partial proto=%x!\n",
4264 be16_to_cpu(protocol));
4265 break;
4268 css = skb_transport_offset(skb);
4270 i = tx_ring->next_to_use;
4271 buffer_info = &tx_ring->buffer_info[i];
4272 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4274 context_desc->lower_setup.ip_config = 0;
4275 context_desc->upper_setup.tcp_fields.tucss = css;
4276 context_desc->upper_setup.tcp_fields.tucso =
4277 css + skb->csum_offset;
4278 context_desc->upper_setup.tcp_fields.tucse = 0;
4279 context_desc->tcp_seg_setup.data = 0;
4280 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4282 buffer_info->time_stamp = jiffies;
4283 buffer_info->next_to_watch = i;
4285 i++;
4286 if (i == tx_ring->count)
4287 i = 0;
4288 tx_ring->next_to_use = i;
4290 return 1;
4293 #define E1000_MAX_PER_TXD 8192
4294 #define E1000_MAX_TXD_PWR 12
4296 static int e1000_tx_map(struct e1000_adapter *adapter,
4297 struct sk_buff *skb, unsigned int first,
4298 unsigned int max_per_txd, unsigned int nr_frags,
4299 unsigned int mss)
4301 struct e1000_ring *tx_ring = adapter->tx_ring;
4302 struct pci_dev *pdev = adapter->pdev;
4303 struct e1000_buffer *buffer_info;
4304 unsigned int len = skb_headlen(skb);
4305 unsigned int offset = 0, size, count = 0, i;
4306 unsigned int f, bytecount, segs;
4308 i = tx_ring->next_to_use;
4310 while (len) {
4311 buffer_info = &tx_ring->buffer_info[i];
4312 size = min(len, max_per_txd);
4314 buffer_info->length = size;
4315 buffer_info->time_stamp = jiffies;
4316 buffer_info->next_to_watch = i;
4317 buffer_info->dma = dma_map_single(&pdev->dev,
4318 skb->data + offset,
4319 size, DMA_TO_DEVICE);
4320 buffer_info->mapped_as_page = false;
4321 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4322 goto dma_error;
4324 len -= size;
4325 offset += size;
4326 count++;
4328 if (len) {
4329 i++;
4330 if (i == tx_ring->count)
4331 i = 0;
4335 for (f = 0; f < nr_frags; f++) {
4336 struct skb_frag_struct *frag;
4338 frag = &skb_shinfo(skb)->frags[f];
4339 len = frag->size;
4340 offset = frag->page_offset;
4342 while (len) {
4343 i++;
4344 if (i == tx_ring->count)
4345 i = 0;
4347 buffer_info = &tx_ring->buffer_info[i];
4348 size = min(len, max_per_txd);
4350 buffer_info->length = size;
4351 buffer_info->time_stamp = jiffies;
4352 buffer_info->next_to_watch = i;
4353 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4354 offset, size,
4355 DMA_TO_DEVICE);
4356 buffer_info->mapped_as_page = true;
4357 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4358 goto dma_error;
4360 len -= size;
4361 offset += size;
4362 count++;
4366 segs = skb_shinfo(skb)->gso_segs ?: 1;
4367 /* multiply data chunks by size of headers */
4368 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4370 tx_ring->buffer_info[i].skb = skb;
4371 tx_ring->buffer_info[i].segs = segs;
4372 tx_ring->buffer_info[i].bytecount = bytecount;
4373 tx_ring->buffer_info[first].next_to_watch = i;
4375 return count;
4377 dma_error:
4378 dev_err(&pdev->dev, "TX DMA map failed\n");
4379 buffer_info->dma = 0;
4380 if (count)
4381 count--;
4383 while (count--) {
4384 if (i==0)
4385 i += tx_ring->count;
4386 i--;
4387 buffer_info = &tx_ring->buffer_info[i];
4388 e1000_put_txbuf(adapter, buffer_info);;
4391 return 0;
4394 static void e1000_tx_queue(struct e1000_adapter *adapter,
4395 int tx_flags, int count)
4397 struct e1000_ring *tx_ring = adapter->tx_ring;
4398 struct e1000_tx_desc *tx_desc = NULL;
4399 struct e1000_buffer *buffer_info;
4400 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4401 unsigned int i;
4403 if (tx_flags & E1000_TX_FLAGS_TSO) {
4404 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4405 E1000_TXD_CMD_TSE;
4406 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4408 if (tx_flags & E1000_TX_FLAGS_IPV4)
4409 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4412 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4413 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4414 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4417 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4418 txd_lower |= E1000_TXD_CMD_VLE;
4419 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4422 i = tx_ring->next_to_use;
4424 while (count--) {
4425 buffer_info = &tx_ring->buffer_info[i];
4426 tx_desc = E1000_TX_DESC(*tx_ring, i);
4427 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4428 tx_desc->lower.data =
4429 cpu_to_le32(txd_lower | buffer_info->length);
4430 tx_desc->upper.data = cpu_to_le32(txd_upper);
4432 i++;
4433 if (i == tx_ring->count)
4434 i = 0;
4437 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4440 * Force memory writes to complete before letting h/w
4441 * know there are new descriptors to fetch. (Only
4442 * applicable for weak-ordered memory model archs,
4443 * such as IA-64).
4445 wmb();
4447 tx_ring->next_to_use = i;
4448 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4450 * we need this if more than one processor can write to our tail
4451 * at a time, it synchronizes IO on IA64/Altix systems
4453 mmiowb();
4456 #define MINIMUM_DHCP_PACKET_SIZE 282
4457 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4458 struct sk_buff *skb)
4460 struct e1000_hw *hw = &adapter->hw;
4461 u16 length, offset;
4463 if (vlan_tx_tag_present(skb)) {
4464 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4465 (adapter->hw.mng_cookie.status &
4466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4467 return 0;
4470 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4471 return 0;
4473 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4474 return 0;
4477 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4478 struct udphdr *udp;
4480 if (ip->protocol != IPPROTO_UDP)
4481 return 0;
4483 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4484 if (ntohs(udp->dest) != 67)
4485 return 0;
4487 offset = (u8 *)udp + 8 - skb->data;
4488 length = skb->len - offset;
4489 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4492 return 0;
4495 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4497 struct e1000_adapter *adapter = netdev_priv(netdev);
4499 netif_stop_queue(netdev);
4501 * Herbert's original patch had:
4502 * smp_mb__after_netif_stop_queue();
4503 * but since that doesn't exist yet, just open code it.
4505 smp_mb();
4508 * We need to check again in a case another CPU has just
4509 * made room available.
4511 if (e1000_desc_unused(adapter->tx_ring) < size)
4512 return -EBUSY;
4514 /* A reprieve! */
4515 netif_start_queue(netdev);
4516 ++adapter->restart_queue;
4517 return 0;
4520 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4522 struct e1000_adapter *adapter = netdev_priv(netdev);
4524 if (e1000_desc_unused(adapter->tx_ring) >= size)
4525 return 0;
4526 return __e1000_maybe_stop_tx(netdev, size);
4529 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4530 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4531 struct net_device *netdev)
4533 struct e1000_adapter *adapter = netdev_priv(netdev);
4534 struct e1000_ring *tx_ring = adapter->tx_ring;
4535 unsigned int first;
4536 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4537 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4538 unsigned int tx_flags = 0;
4539 unsigned int len = skb_headlen(skb);
4540 unsigned int nr_frags;
4541 unsigned int mss;
4542 int count = 0;
4543 int tso;
4544 unsigned int f;
4546 if (test_bit(__E1000_DOWN, &adapter->state)) {
4547 dev_kfree_skb_any(skb);
4548 return NETDEV_TX_OK;
4551 if (skb->len <= 0) {
4552 dev_kfree_skb_any(skb);
4553 return NETDEV_TX_OK;
4556 mss = skb_shinfo(skb)->gso_size;
4558 * The controller does a simple calculation to
4559 * make sure there is enough room in the FIFO before
4560 * initiating the DMA for each buffer. The calc is:
4561 * 4 = ceil(buffer len/mss). To make sure we don't
4562 * overrun the FIFO, adjust the max buffer len if mss
4563 * drops.
4565 if (mss) {
4566 u8 hdr_len;
4567 max_per_txd = min(mss << 2, max_per_txd);
4568 max_txd_pwr = fls(max_per_txd) - 1;
4571 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4572 * points to just header, pull a few bytes of payload from
4573 * frags into skb->data
4575 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4577 * we do this workaround for ES2LAN, but it is un-necessary,
4578 * avoiding it could save a lot of cycles
4580 if (skb->data_len && (hdr_len == len)) {
4581 unsigned int pull_size;
4583 pull_size = min((unsigned int)4, skb->data_len);
4584 if (!__pskb_pull_tail(skb, pull_size)) {
4585 e_err("__pskb_pull_tail failed.\n");
4586 dev_kfree_skb_any(skb);
4587 return NETDEV_TX_OK;
4589 len = skb_headlen(skb);
4593 /* reserve a descriptor for the offload context */
4594 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4595 count++;
4596 count++;
4598 count += TXD_USE_COUNT(len, max_txd_pwr);
4600 nr_frags = skb_shinfo(skb)->nr_frags;
4601 for (f = 0; f < nr_frags; f++)
4602 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4603 max_txd_pwr);
4605 if (adapter->hw.mac.tx_pkt_filtering)
4606 e1000_transfer_dhcp_info(adapter, skb);
4609 * need: count + 2 desc gap to keep tail from touching
4610 * head, otherwise try next time
4612 if (e1000_maybe_stop_tx(netdev, count + 2))
4613 return NETDEV_TX_BUSY;
4615 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4616 tx_flags |= E1000_TX_FLAGS_VLAN;
4617 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4620 first = tx_ring->next_to_use;
4622 tso = e1000_tso(adapter, skb);
4623 if (tso < 0) {
4624 dev_kfree_skb_any(skb);
4625 return NETDEV_TX_OK;
4628 if (tso)
4629 tx_flags |= E1000_TX_FLAGS_TSO;
4630 else if (e1000_tx_csum(adapter, skb))
4631 tx_flags |= E1000_TX_FLAGS_CSUM;
4634 * Old method was to assume IPv4 packet by default if TSO was enabled.
4635 * 82571 hardware supports TSO capabilities for IPv6 as well...
4636 * no longer assume, we must.
4638 if (skb->protocol == htons(ETH_P_IP))
4639 tx_flags |= E1000_TX_FLAGS_IPV4;
4641 /* if count is 0 then mapping error has occured */
4642 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4643 if (count) {
4644 e1000_tx_queue(adapter, tx_flags, count);
4645 /* Make sure there is space in the ring for the next send. */
4646 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4648 } else {
4649 dev_kfree_skb_any(skb);
4650 tx_ring->buffer_info[first].time_stamp = 0;
4651 tx_ring->next_to_use = first;
4654 return NETDEV_TX_OK;
4658 * e1000_tx_timeout - Respond to a Tx Hang
4659 * @netdev: network interface device structure
4661 static void e1000_tx_timeout(struct net_device *netdev)
4663 struct e1000_adapter *adapter = netdev_priv(netdev);
4665 /* Do the reset outside of interrupt context */
4666 adapter->tx_timeout_count++;
4667 schedule_work(&adapter->reset_task);
4670 static void e1000_reset_task(struct work_struct *work)
4672 struct e1000_adapter *adapter;
4673 adapter = container_of(work, struct e1000_adapter, reset_task);
4675 e1000e_dump(adapter);
4676 e_err("Reset adapter\n");
4677 e1000e_reinit_locked(adapter);
4681 * e1000_get_stats - Get System Network Statistics
4682 * @netdev: network interface device structure
4684 * Returns the address of the device statistics structure.
4685 * The statistics are actually updated from the timer callback.
4687 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4689 /* only return the current stats */
4690 return &netdev->stats;
4694 * e1000_change_mtu - Change the Maximum Transfer Unit
4695 * @netdev: network interface device structure
4696 * @new_mtu: new value for maximum frame size
4698 * Returns 0 on success, negative on failure
4700 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4702 struct e1000_adapter *adapter = netdev_priv(netdev);
4703 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4705 /* Jumbo frame support */
4706 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4707 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4708 e_err("Jumbo Frames not supported.\n");
4709 return -EINVAL;
4712 /* Supported frame sizes */
4713 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4714 (max_frame > adapter->max_hw_frame_size)) {
4715 e_err("Unsupported MTU setting\n");
4716 return -EINVAL;
4719 /* 82573 Errata 17 */
4720 if (((adapter->hw.mac.type == e1000_82573) ||
4721 (adapter->hw.mac.type == e1000_82574)) &&
4722 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4723 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4724 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4727 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4728 msleep(1);
4729 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4730 adapter->max_frame_size = max_frame;
4731 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4732 netdev->mtu = new_mtu;
4733 if (netif_running(netdev))
4734 e1000e_down(adapter);
4737 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4738 * means we reserve 2 more, this pushes us to allocate from the next
4739 * larger slab size.
4740 * i.e. RXBUFFER_2048 --> size-4096 slab
4741 * However with the new *_jumbo_rx* routines, jumbo receives will use
4742 * fragmented skbs
4745 if (max_frame <= 2048)
4746 adapter->rx_buffer_len = 2048;
4747 else
4748 adapter->rx_buffer_len = 4096;
4750 /* adjust allocation if LPE protects us, and we aren't using SBP */
4751 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4752 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4753 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4754 + ETH_FCS_LEN;
4756 if (netif_running(netdev))
4757 e1000e_up(adapter);
4758 else
4759 e1000e_reset(adapter);
4761 clear_bit(__E1000_RESETTING, &adapter->state);
4763 return 0;
4766 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4767 int cmd)
4769 struct e1000_adapter *adapter = netdev_priv(netdev);
4770 struct mii_ioctl_data *data = if_mii(ifr);
4772 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4773 return -EOPNOTSUPP;
4775 switch (cmd) {
4776 case SIOCGMIIPHY:
4777 data->phy_id = adapter->hw.phy.addr;
4778 break;
4779 case SIOCGMIIREG:
4780 e1000_phy_read_status(adapter);
4782 switch (data->reg_num & 0x1F) {
4783 case MII_BMCR:
4784 data->val_out = adapter->phy_regs.bmcr;
4785 break;
4786 case MII_BMSR:
4787 data->val_out = adapter->phy_regs.bmsr;
4788 break;
4789 case MII_PHYSID1:
4790 data->val_out = (adapter->hw.phy.id >> 16);
4791 break;
4792 case MII_PHYSID2:
4793 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4794 break;
4795 case MII_ADVERTISE:
4796 data->val_out = adapter->phy_regs.advertise;
4797 break;
4798 case MII_LPA:
4799 data->val_out = adapter->phy_regs.lpa;
4800 break;
4801 case MII_EXPANSION:
4802 data->val_out = adapter->phy_regs.expansion;
4803 break;
4804 case MII_CTRL1000:
4805 data->val_out = adapter->phy_regs.ctrl1000;
4806 break;
4807 case MII_STAT1000:
4808 data->val_out = adapter->phy_regs.stat1000;
4809 break;
4810 case MII_ESTATUS:
4811 data->val_out = adapter->phy_regs.estatus;
4812 break;
4813 default:
4814 return -EIO;
4816 break;
4817 case SIOCSMIIREG:
4818 default:
4819 return -EOPNOTSUPP;
4821 return 0;
4824 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4826 switch (cmd) {
4827 case SIOCGMIIPHY:
4828 case SIOCGMIIREG:
4829 case SIOCSMIIREG:
4830 return e1000_mii_ioctl(netdev, ifr, cmd);
4831 default:
4832 return -EOPNOTSUPP;
4836 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4838 struct e1000_hw *hw = &adapter->hw;
4839 u32 i, mac_reg;
4840 u16 phy_reg;
4841 int retval = 0;
4843 /* copy MAC RARs to PHY RARs */
4844 for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4845 mac_reg = er32(RAL(i));
4846 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4847 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4848 mac_reg = er32(RAH(i));
4849 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4850 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4853 /* copy MAC MTA to PHY MTA */
4854 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4855 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4856 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4857 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4860 /* configure PHY Rx Control register */
4861 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4862 mac_reg = er32(RCTL);
4863 if (mac_reg & E1000_RCTL_UPE)
4864 phy_reg |= BM_RCTL_UPE;
4865 if (mac_reg & E1000_RCTL_MPE)
4866 phy_reg |= BM_RCTL_MPE;
4867 phy_reg &= ~(BM_RCTL_MO_MASK);
4868 if (mac_reg & E1000_RCTL_MO_3)
4869 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4870 << BM_RCTL_MO_SHIFT);
4871 if (mac_reg & E1000_RCTL_BAM)
4872 phy_reg |= BM_RCTL_BAM;
4873 if (mac_reg & E1000_RCTL_PMCF)
4874 phy_reg |= BM_RCTL_PMCF;
4875 mac_reg = er32(CTRL);
4876 if (mac_reg & E1000_CTRL_RFCE)
4877 phy_reg |= BM_RCTL_RFCE;
4878 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4880 /* enable PHY wakeup in MAC register */
4881 ew32(WUFC, wufc);
4882 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4884 /* configure and enable PHY wakeup in PHY registers */
4885 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4886 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4888 /* activate PHY wakeup */
4889 retval = hw->phy.ops.acquire(hw);
4890 if (retval) {
4891 e_err("Could not acquire PHY\n");
4892 return retval;
4894 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4895 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4896 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4897 if (retval) {
4898 e_err("Could not read PHY page 769\n");
4899 goto out;
4901 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4902 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4903 if (retval)
4904 e_err("Could not set PHY Host Wakeup bit\n");
4905 out:
4906 hw->phy.ops.release(hw);
4908 return retval;
4911 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
4912 bool runtime)
4914 struct net_device *netdev = pci_get_drvdata(pdev);
4915 struct e1000_adapter *adapter = netdev_priv(netdev);
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl, ctrl_ext, rctl, status;
4918 /* Runtime suspend should only enable wakeup for link changes */
4919 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
4920 int retval = 0;
4922 netif_device_detach(netdev);
4924 if (netif_running(netdev)) {
4925 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4926 e1000e_down(adapter);
4927 e1000_free_irq(adapter);
4929 e1000e_reset_interrupt_capability(adapter);
4931 retval = pci_save_state(pdev);
4932 if (retval)
4933 return retval;
4935 status = er32(STATUS);
4936 if (status & E1000_STATUS_LU)
4937 wufc &= ~E1000_WUFC_LNKC;
4939 if (wufc) {
4940 e1000_setup_rctl(adapter);
4941 e1000_set_multi(netdev);
4943 /* turn on all-multi mode if wake on multicast is enabled */
4944 if (wufc & E1000_WUFC_MC) {
4945 rctl = er32(RCTL);
4946 rctl |= E1000_RCTL_MPE;
4947 ew32(RCTL, rctl);
4950 ctrl = er32(CTRL);
4951 /* advertise wake from D3Cold */
4952 #define E1000_CTRL_ADVD3WUC 0x00100000
4953 /* phy power management enable */
4954 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4955 ctrl |= E1000_CTRL_ADVD3WUC;
4956 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4957 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4958 ew32(CTRL, ctrl);
4960 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4961 adapter->hw.phy.media_type ==
4962 e1000_media_type_internal_serdes) {
4963 /* keep the laser running in D3 */
4964 ctrl_ext = er32(CTRL_EXT);
4965 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4966 ew32(CTRL_EXT, ctrl_ext);
4969 if (adapter->flags & FLAG_IS_ICH)
4970 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4972 /* Allow time for pending master requests to run */
4973 e1000e_disable_pcie_master(&adapter->hw);
4975 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4976 /* enable wakeup by the PHY */
4977 retval = e1000_init_phy_wakeup(adapter, wufc);
4978 if (retval)
4979 return retval;
4980 } else {
4981 /* enable wakeup by the MAC */
4982 ew32(WUFC, wufc);
4983 ew32(WUC, E1000_WUC_PME_EN);
4985 } else {
4986 ew32(WUC, 0);
4987 ew32(WUFC, 0);
4990 *enable_wake = !!wufc;
4992 /* make sure adapter isn't asleep if manageability is enabled */
4993 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4994 (hw->mac.ops.check_mng_mode(hw)))
4995 *enable_wake = true;
4997 if (adapter->hw.phy.type == e1000_phy_igp_3)
4998 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5001 * Release control of h/w to f/w. If f/w is AMT enabled, this
5002 * would have already happened in close and is redundant.
5004 e1000_release_hw_control(adapter);
5006 pci_disable_device(pdev);
5008 return 0;
5011 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5013 if (sleep && wake) {
5014 pci_prepare_to_sleep(pdev);
5015 return;
5018 pci_wake_from_d3(pdev, wake);
5019 pci_set_power_state(pdev, PCI_D3hot);
5022 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5023 bool wake)
5025 struct net_device *netdev = pci_get_drvdata(pdev);
5026 struct e1000_adapter *adapter = netdev_priv(netdev);
5029 * The pci-e switch on some quad port adapters will report a
5030 * correctable error when the MAC transitions from D0 to D3. To
5031 * prevent this we need to mask off the correctable errors on the
5032 * downstream port of the pci-e switch.
5034 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5035 struct pci_dev *us_dev = pdev->bus->self;
5036 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5037 u16 devctl;
5039 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5040 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5041 (devctl & ~PCI_EXP_DEVCTL_CERE));
5043 e1000_power_off(pdev, sleep, wake);
5045 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5046 } else {
5047 e1000_power_off(pdev, sleep, wake);
5051 #ifdef CONFIG_PCIEASPM
5052 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5054 pci_disable_link_state(pdev, state);
5056 #else
5057 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5059 int pos;
5060 u16 reg16;
5063 * Both device and parent should have the same ASPM setting.
5064 * Disable ASPM in downstream component first and then upstream.
5066 pos = pci_pcie_cap(pdev);
5067 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5068 reg16 &= ~state;
5069 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5071 if (!pdev->bus->self)
5072 return;
5074 pos = pci_pcie_cap(pdev->bus->self);
5075 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5076 reg16 &= ~state;
5077 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5079 #endif
5080 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5082 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5083 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5084 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5086 __e1000e_disable_aspm(pdev, state);
5089 #ifdef CONFIG_PM_OPS
5090 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5092 return !!adapter->tx_ring->buffer_info;
5095 static int __e1000_resume(struct pci_dev *pdev)
5097 struct net_device *netdev = pci_get_drvdata(pdev);
5098 struct e1000_adapter *adapter = netdev_priv(netdev);
5099 struct e1000_hw *hw = &adapter->hw;
5100 u32 err;
5102 pci_set_power_state(pdev, PCI_D0);
5103 pci_restore_state(pdev);
5104 pci_save_state(pdev);
5105 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5106 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5108 e1000e_set_interrupt_capability(adapter);
5109 if (netif_running(netdev)) {
5110 err = e1000_request_irq(adapter);
5111 if (err)
5112 return err;
5115 e1000e_power_up_phy(adapter);
5117 /* report the system wakeup cause from S3/S4 */
5118 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5119 u16 phy_data;
5121 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5122 if (phy_data) {
5123 e_info("PHY Wakeup cause - %s\n",
5124 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5125 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5126 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5127 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5128 phy_data & E1000_WUS_LNKC ? "Link Status "
5129 " Change" : "other");
5131 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5132 } else {
5133 u32 wus = er32(WUS);
5134 if (wus) {
5135 e_info("MAC Wakeup cause - %s\n",
5136 wus & E1000_WUS_EX ? "Unicast Packet" :
5137 wus & E1000_WUS_MC ? "Multicast Packet" :
5138 wus & E1000_WUS_BC ? "Broadcast Packet" :
5139 wus & E1000_WUS_MAG ? "Magic Packet" :
5140 wus & E1000_WUS_LNKC ? "Link Status Change" :
5141 "other");
5143 ew32(WUS, ~0);
5146 e1000e_reset(adapter);
5148 e1000_init_manageability_pt(adapter);
5150 if (netif_running(netdev))
5151 e1000e_up(adapter);
5153 netif_device_attach(netdev);
5156 * If the controller has AMT, do not set DRV_LOAD until the interface
5157 * is up. For all other cases, let the f/w know that the h/w is now
5158 * under the control of the driver.
5160 if (!(adapter->flags & FLAG_HAS_AMT))
5161 e1000_get_hw_control(adapter);
5163 return 0;
5166 #ifdef CONFIG_PM_SLEEP
5167 static int e1000_suspend(struct device *dev)
5169 struct pci_dev *pdev = to_pci_dev(dev);
5170 int retval;
5171 bool wake;
5173 retval = __e1000_shutdown(pdev, &wake, false);
5174 if (!retval)
5175 e1000_complete_shutdown(pdev, true, wake);
5177 return retval;
5180 static int e1000_resume(struct device *dev)
5182 struct pci_dev *pdev = to_pci_dev(dev);
5183 struct net_device *netdev = pci_get_drvdata(pdev);
5184 struct e1000_adapter *adapter = netdev_priv(netdev);
5186 if (e1000e_pm_ready(adapter))
5187 adapter->idle_check = true;
5189 return __e1000_resume(pdev);
5191 #endif /* CONFIG_PM_SLEEP */
5193 #ifdef CONFIG_PM_RUNTIME
5194 static int e1000_runtime_suspend(struct device *dev)
5196 struct pci_dev *pdev = to_pci_dev(dev);
5197 struct net_device *netdev = pci_get_drvdata(pdev);
5198 struct e1000_adapter *adapter = netdev_priv(netdev);
5200 if (e1000e_pm_ready(adapter)) {
5201 bool wake;
5203 __e1000_shutdown(pdev, &wake, true);
5206 return 0;
5209 static int e1000_idle(struct device *dev)
5211 struct pci_dev *pdev = to_pci_dev(dev);
5212 struct net_device *netdev = pci_get_drvdata(pdev);
5213 struct e1000_adapter *adapter = netdev_priv(netdev);
5215 if (!e1000e_pm_ready(adapter))
5216 return 0;
5218 if (adapter->idle_check) {
5219 adapter->idle_check = false;
5220 if (!e1000e_has_link(adapter))
5221 pm_schedule_suspend(dev, MSEC_PER_SEC);
5224 return -EBUSY;
5227 static int e1000_runtime_resume(struct device *dev)
5229 struct pci_dev *pdev = to_pci_dev(dev);
5230 struct net_device *netdev = pci_get_drvdata(pdev);
5231 struct e1000_adapter *adapter = netdev_priv(netdev);
5233 if (!e1000e_pm_ready(adapter))
5234 return 0;
5236 adapter->idle_check = !dev->power.runtime_auto;
5237 return __e1000_resume(pdev);
5239 #endif /* CONFIG_PM_RUNTIME */
5240 #endif /* CONFIG_PM_OPS */
5242 static void e1000_shutdown(struct pci_dev *pdev)
5244 bool wake = false;
5246 __e1000_shutdown(pdev, &wake, false);
5248 if (system_state == SYSTEM_POWER_OFF)
5249 e1000_complete_shutdown(pdev, false, wake);
5252 #ifdef CONFIG_NET_POLL_CONTROLLER
5254 * Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5258 static void e1000_netpoll(struct net_device *netdev)
5260 struct e1000_adapter *adapter = netdev_priv(netdev);
5262 disable_irq(adapter->pdev->irq);
5263 e1000_intr(adapter->pdev->irq, netdev);
5265 enable_irq(adapter->pdev->irq);
5267 #endif
5270 * e1000_io_error_detected - called when PCI error is detected
5271 * @pdev: Pointer to PCI device
5272 * @state: The current pci connection state
5274 * This function is called after a PCI bus error affecting
5275 * this device has been detected.
5277 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5278 pci_channel_state_t state)
5280 struct net_device *netdev = pci_get_drvdata(pdev);
5281 struct e1000_adapter *adapter = netdev_priv(netdev);
5283 netif_device_detach(netdev);
5285 if (state == pci_channel_io_perm_failure)
5286 return PCI_ERS_RESULT_DISCONNECT;
5288 if (netif_running(netdev))
5289 e1000e_down(adapter);
5290 pci_disable_device(pdev);
5292 /* Request a slot slot reset. */
5293 return PCI_ERS_RESULT_NEED_RESET;
5297 * e1000_io_slot_reset - called after the pci bus has been reset.
5298 * @pdev: Pointer to PCI device
5300 * Restart the card from scratch, as if from a cold-boot. Implementation
5301 * resembles the first-half of the e1000_resume routine.
5303 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305 struct net_device *netdev = pci_get_drvdata(pdev);
5306 struct e1000_adapter *adapter = netdev_priv(netdev);
5307 struct e1000_hw *hw = &adapter->hw;
5308 int err;
5309 pci_ers_result_t result;
5311 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5312 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5313 err = pci_enable_device_mem(pdev);
5314 if (err) {
5315 dev_err(&pdev->dev,
5316 "Cannot re-enable PCI device after reset.\n");
5317 result = PCI_ERS_RESULT_DISCONNECT;
5318 } else {
5319 pci_set_master(pdev);
5320 pdev->state_saved = true;
5321 pci_restore_state(pdev);
5323 pci_enable_wake(pdev, PCI_D3hot, 0);
5324 pci_enable_wake(pdev, PCI_D3cold, 0);
5326 e1000e_reset(adapter);
5327 ew32(WUS, ~0);
5328 result = PCI_ERS_RESULT_RECOVERED;
5331 pci_cleanup_aer_uncorrect_error_status(pdev);
5333 return result;
5337 * e1000_io_resume - called when traffic can start flowing again.
5338 * @pdev: Pointer to PCI device
5340 * This callback is called when the error recovery driver tells us that
5341 * its OK to resume normal operation. Implementation resembles the
5342 * second-half of the e1000_resume routine.
5344 static void e1000_io_resume(struct pci_dev *pdev)
5346 struct net_device *netdev = pci_get_drvdata(pdev);
5347 struct e1000_adapter *adapter = netdev_priv(netdev);
5349 e1000_init_manageability_pt(adapter);
5351 if (netif_running(netdev)) {
5352 if (e1000e_up(adapter)) {
5353 dev_err(&pdev->dev,
5354 "can't bring device back up after reset\n");
5355 return;
5359 netif_device_attach(netdev);
5362 * If the controller has AMT, do not set DRV_LOAD until the interface
5363 * is up. For all other cases, let the f/w know that the h/w is now
5364 * under the control of the driver.
5366 if (!(adapter->flags & FLAG_HAS_AMT))
5367 e1000_get_hw_control(adapter);
5371 static void e1000_print_device_info(struct e1000_adapter *adapter)
5373 struct e1000_hw *hw = &adapter->hw;
5374 struct net_device *netdev = adapter->netdev;
5375 u32 pba_num;
5377 /* print bus type/speed/width info */
5378 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5379 /* bus width */
5380 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5381 "Width x1"),
5382 /* MAC address */
5383 netdev->dev_addr);
5384 e_info("Intel(R) PRO/%s Network Connection\n",
5385 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5386 e1000e_read_pba_num(hw, &pba_num);
5387 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5388 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5391 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5393 struct e1000_hw *hw = &adapter->hw;
5394 int ret_val;
5395 u16 buf = 0;
5397 if (hw->mac.type != e1000_82573)
5398 return;
5400 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5401 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5402 /* Deep Smart Power Down (DSPD) */
5403 dev_warn(&adapter->pdev->dev,
5404 "Warning: detected DSPD enabled in EEPROM\n");
5408 static const struct net_device_ops e1000e_netdev_ops = {
5409 .ndo_open = e1000_open,
5410 .ndo_stop = e1000_close,
5411 .ndo_start_xmit = e1000_xmit_frame,
5412 .ndo_get_stats = e1000_get_stats,
5413 .ndo_set_multicast_list = e1000_set_multi,
5414 .ndo_set_mac_address = e1000_set_mac,
5415 .ndo_change_mtu = e1000_change_mtu,
5416 .ndo_do_ioctl = e1000_ioctl,
5417 .ndo_tx_timeout = e1000_tx_timeout,
5418 .ndo_validate_addr = eth_validate_addr,
5420 .ndo_vlan_rx_register = e1000_vlan_rx_register,
5421 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5422 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5423 #ifdef CONFIG_NET_POLL_CONTROLLER
5424 .ndo_poll_controller = e1000_netpoll,
5425 #endif
5429 * e1000_probe - Device Initialization Routine
5430 * @pdev: PCI device information struct
5431 * @ent: entry in e1000_pci_tbl
5433 * Returns 0 on success, negative on failure
5435 * e1000_probe initializes an adapter identified by a pci_dev structure.
5436 * The OS initialization, configuring of the adapter private structure,
5437 * and a hardware reset occur.
5439 static int __devinit e1000_probe(struct pci_dev *pdev,
5440 const struct pci_device_id *ent)
5442 struct net_device *netdev;
5443 struct e1000_adapter *adapter;
5444 struct e1000_hw *hw;
5445 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5446 resource_size_t mmio_start, mmio_len;
5447 resource_size_t flash_start, flash_len;
5449 static int cards_found;
5450 int i, err, pci_using_dac;
5451 u16 eeprom_data = 0;
5452 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5454 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5455 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5457 err = pci_enable_device_mem(pdev);
5458 if (err)
5459 return err;
5461 pci_using_dac = 0;
5462 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5463 if (!err) {
5464 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5465 if (!err)
5466 pci_using_dac = 1;
5467 } else {
5468 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5469 if (err) {
5470 err = dma_set_coherent_mask(&pdev->dev,
5471 DMA_BIT_MASK(32));
5472 if (err) {
5473 dev_err(&pdev->dev, "No usable DMA "
5474 "configuration, aborting\n");
5475 goto err_dma;
5480 err = pci_request_selected_regions_exclusive(pdev,
5481 pci_select_bars(pdev, IORESOURCE_MEM),
5482 e1000e_driver_name);
5483 if (err)
5484 goto err_pci_reg;
5486 /* AER (Advanced Error Reporting) hooks */
5487 pci_enable_pcie_error_reporting(pdev);
5489 pci_set_master(pdev);
5490 /* PCI config space info */
5491 err = pci_save_state(pdev);
5492 if (err)
5493 goto err_alloc_etherdev;
5495 err = -ENOMEM;
5496 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5497 if (!netdev)
5498 goto err_alloc_etherdev;
5500 SET_NETDEV_DEV(netdev, &pdev->dev);
5502 netdev->irq = pdev->irq;
5504 pci_set_drvdata(pdev, netdev);
5505 adapter = netdev_priv(netdev);
5506 hw = &adapter->hw;
5507 adapter->netdev = netdev;
5508 adapter->pdev = pdev;
5509 adapter->ei = ei;
5510 adapter->pba = ei->pba;
5511 adapter->flags = ei->flags;
5512 adapter->flags2 = ei->flags2;
5513 adapter->hw.adapter = adapter;
5514 adapter->hw.mac.type = ei->mac;
5515 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5516 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5518 mmio_start = pci_resource_start(pdev, 0);
5519 mmio_len = pci_resource_len(pdev, 0);
5521 err = -EIO;
5522 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5523 if (!adapter->hw.hw_addr)
5524 goto err_ioremap;
5526 if ((adapter->flags & FLAG_HAS_FLASH) &&
5527 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5528 flash_start = pci_resource_start(pdev, 1);
5529 flash_len = pci_resource_len(pdev, 1);
5530 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5531 if (!adapter->hw.flash_address)
5532 goto err_flashmap;
5535 /* construct the net_device struct */
5536 netdev->netdev_ops = &e1000e_netdev_ops;
5537 e1000e_set_ethtool_ops(netdev);
5538 netdev->watchdog_timeo = 5 * HZ;
5539 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5540 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5542 netdev->mem_start = mmio_start;
5543 netdev->mem_end = mmio_start + mmio_len;
5545 adapter->bd_number = cards_found++;
5547 e1000e_check_options(adapter);
5549 /* setup adapter struct */
5550 err = e1000_sw_init(adapter);
5551 if (err)
5552 goto err_sw_init;
5554 err = -EIO;
5556 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5557 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5558 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5560 err = ei->get_variants(adapter);
5561 if (err)
5562 goto err_hw_init;
5564 if ((adapter->flags & FLAG_IS_ICH) &&
5565 (adapter->flags & FLAG_READ_ONLY_NVM))
5566 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5568 hw->mac.ops.get_bus_info(&adapter->hw);
5570 adapter->hw.phy.autoneg_wait_to_complete = 0;
5572 /* Copper options */
5573 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5574 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5575 adapter->hw.phy.disable_polarity_correction = 0;
5576 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5579 if (e1000_check_reset_block(&adapter->hw))
5580 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5582 netdev->features = NETIF_F_SG |
5583 NETIF_F_HW_CSUM |
5584 NETIF_F_HW_VLAN_TX |
5585 NETIF_F_HW_VLAN_RX;
5587 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5588 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5590 netdev->features |= NETIF_F_TSO;
5591 netdev->features |= NETIF_F_TSO6;
5593 netdev->vlan_features |= NETIF_F_TSO;
5594 netdev->vlan_features |= NETIF_F_TSO6;
5595 netdev->vlan_features |= NETIF_F_HW_CSUM;
5596 netdev->vlan_features |= NETIF_F_SG;
5598 if (pci_using_dac)
5599 netdev->features |= NETIF_F_HIGHDMA;
5601 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5602 adapter->flags |= FLAG_MNG_PT_ENABLED;
5605 * before reading the NVM, reset the controller to
5606 * put the device in a known good starting state
5608 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5611 * systems with ASPM and others may see the checksum fail on the first
5612 * attempt. Let's give it a few tries
5614 for (i = 0;; i++) {
5615 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5616 break;
5617 if (i == 2) {
5618 e_err("The NVM Checksum Is Not Valid\n");
5619 err = -EIO;
5620 goto err_eeprom;
5624 e1000_eeprom_checks(adapter);
5626 /* copy the MAC address */
5627 if (e1000e_read_mac_addr(&adapter->hw))
5628 e_err("NVM Read Error while reading MAC address\n");
5630 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5631 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5633 if (!is_valid_ether_addr(netdev->perm_addr)) {
5634 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5635 err = -EIO;
5636 goto err_eeprom;
5639 init_timer(&adapter->watchdog_timer);
5640 adapter->watchdog_timer.function = &e1000_watchdog;
5641 adapter->watchdog_timer.data = (unsigned long) adapter;
5643 init_timer(&adapter->phy_info_timer);
5644 adapter->phy_info_timer.function = &e1000_update_phy_info;
5645 adapter->phy_info_timer.data = (unsigned long) adapter;
5647 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5648 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5649 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5650 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5651 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5653 /* Initialize link parameters. User can change them with ethtool */
5654 adapter->hw.mac.autoneg = 1;
5655 adapter->fc_autoneg = 1;
5656 adapter->hw.fc.requested_mode = e1000_fc_default;
5657 adapter->hw.fc.current_mode = e1000_fc_default;
5658 adapter->hw.phy.autoneg_advertised = 0x2f;
5660 /* ring size defaults */
5661 adapter->rx_ring->count = 256;
5662 adapter->tx_ring->count = 256;
5665 * Initial Wake on LAN setting - If APM wake is enabled in
5666 * the EEPROM, enable the ACPI Magic Packet filter
5668 if (adapter->flags & FLAG_APME_IN_WUC) {
5669 /* APME bit in EEPROM is mapped to WUC.APME */
5670 eeprom_data = er32(WUC);
5671 eeprom_apme_mask = E1000_WUC_APME;
5672 if (eeprom_data & E1000_WUC_PHY_WAKE)
5673 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5674 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5675 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5676 (adapter->hw.bus.func == 1))
5677 e1000_read_nvm(&adapter->hw,
5678 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5679 else
5680 e1000_read_nvm(&adapter->hw,
5681 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5684 /* fetch WoL from EEPROM */
5685 if (eeprom_data & eeprom_apme_mask)
5686 adapter->eeprom_wol |= E1000_WUFC_MAG;
5689 * now that we have the eeprom settings, apply the special cases
5690 * where the eeprom may be wrong or the board simply won't support
5691 * wake on lan on a particular port
5693 if (!(adapter->flags & FLAG_HAS_WOL))
5694 adapter->eeprom_wol = 0;
5696 /* initialize the wol settings based on the eeprom settings */
5697 adapter->wol = adapter->eeprom_wol;
5698 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5700 /* save off EEPROM version number */
5701 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5703 /* reset the hardware with the new settings */
5704 e1000e_reset(adapter);
5707 * If the controller has AMT, do not set DRV_LOAD until the interface
5708 * is up. For all other cases, let the f/w know that the h/w is now
5709 * under the control of the driver.
5711 if (!(adapter->flags & FLAG_HAS_AMT))
5712 e1000_get_hw_control(adapter);
5714 strcpy(netdev->name, "eth%d");
5715 err = register_netdev(netdev);
5716 if (err)
5717 goto err_register;
5719 /* carrier off reporting is important to ethtool even BEFORE open */
5720 netif_carrier_off(netdev);
5722 e1000_print_device_info(adapter);
5724 if (pci_dev_run_wake(pdev)) {
5725 pm_runtime_set_active(&pdev->dev);
5726 pm_runtime_enable(&pdev->dev);
5728 pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
5730 return 0;
5732 err_register:
5733 if (!(adapter->flags & FLAG_HAS_AMT))
5734 e1000_release_hw_control(adapter);
5735 err_eeprom:
5736 if (!e1000_check_reset_block(&adapter->hw))
5737 e1000_phy_hw_reset(&adapter->hw);
5738 err_hw_init:
5740 kfree(adapter->tx_ring);
5741 kfree(adapter->rx_ring);
5742 err_sw_init:
5743 if (adapter->hw.flash_address)
5744 iounmap(adapter->hw.flash_address);
5745 e1000e_reset_interrupt_capability(adapter);
5746 err_flashmap:
5747 iounmap(adapter->hw.hw_addr);
5748 err_ioremap:
5749 free_netdev(netdev);
5750 err_alloc_etherdev:
5751 pci_release_selected_regions(pdev,
5752 pci_select_bars(pdev, IORESOURCE_MEM));
5753 err_pci_reg:
5754 err_dma:
5755 pci_disable_device(pdev);
5756 return err;
5760 * e1000_remove - Device Removal Routine
5761 * @pdev: PCI device information struct
5763 * e1000_remove is called by the PCI subsystem to alert the driver
5764 * that it should release a PCI device. The could be caused by a
5765 * Hot-Plug event, or because the driver is going to be removed from
5766 * memory.
5768 static void __devexit e1000_remove(struct pci_dev *pdev)
5770 struct net_device *netdev = pci_get_drvdata(pdev);
5771 struct e1000_adapter *adapter = netdev_priv(netdev);
5772 bool down = test_bit(__E1000_DOWN, &adapter->state);
5774 pm_runtime_get_sync(&pdev->dev);
5777 * flush_scheduled work may reschedule our watchdog task, so
5778 * explicitly disable watchdog tasks from being rescheduled
5780 if (!down)
5781 set_bit(__E1000_DOWN, &adapter->state);
5782 del_timer_sync(&adapter->watchdog_timer);
5783 del_timer_sync(&adapter->phy_info_timer);
5785 cancel_work_sync(&adapter->reset_task);
5786 cancel_work_sync(&adapter->watchdog_task);
5787 cancel_work_sync(&adapter->downshift_task);
5788 cancel_work_sync(&adapter->update_phy_task);
5789 cancel_work_sync(&adapter->print_hang_task);
5790 flush_scheduled_work();
5792 if (!(netdev->flags & IFF_UP))
5793 e1000_power_down_phy(adapter);
5795 /* Don't lie to e1000_close() down the road. */
5796 if (!down)
5797 clear_bit(__E1000_DOWN, &adapter->state);
5798 unregister_netdev(netdev);
5800 if (pci_dev_run_wake(pdev)) {
5801 pm_runtime_disable(&pdev->dev);
5802 pm_runtime_set_suspended(&pdev->dev);
5804 pm_runtime_put_noidle(&pdev->dev);
5807 * Release control of h/w to f/w. If f/w is AMT enabled, this
5808 * would have already happened in close and is redundant.
5810 e1000_release_hw_control(adapter);
5812 e1000e_reset_interrupt_capability(adapter);
5813 kfree(adapter->tx_ring);
5814 kfree(adapter->rx_ring);
5816 iounmap(adapter->hw.hw_addr);
5817 if (adapter->hw.flash_address)
5818 iounmap(adapter->hw.flash_address);
5819 pci_release_selected_regions(pdev,
5820 pci_select_bars(pdev, IORESOURCE_MEM));
5822 free_netdev(netdev);
5824 /* AER disable */
5825 pci_disable_pcie_error_reporting(pdev);
5827 pci_disable_device(pdev);
5830 /* PCI Error Recovery (ERS) */
5831 static struct pci_error_handlers e1000_err_handler = {
5832 .error_detected = e1000_io_error_detected,
5833 .slot_reset = e1000_io_slot_reset,
5834 .resume = e1000_io_resume,
5837 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5862 board_80003es2lan },
5863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5864 board_80003es2lan },
5865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5866 board_80003es2lan },
5867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5868 board_80003es2lan },
5870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
5897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5902 { } /* terminate list */
5904 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5906 #ifdef CONFIG_PM_OPS
5907 static const struct dev_pm_ops e1000_pm_ops = {
5908 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
5909 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
5910 e1000_runtime_resume, e1000_idle)
5912 #endif
5914 /* PCI Device API Driver */
5915 static struct pci_driver e1000_driver = {
5916 .name = e1000e_driver_name,
5917 .id_table = e1000_pci_tbl,
5918 .probe = e1000_probe,
5919 .remove = __devexit_p(e1000_remove),
5920 #ifdef CONFIG_PM_OPS
5921 .driver.pm = &e1000_pm_ops,
5922 #endif
5923 .shutdown = e1000_shutdown,
5924 .err_handler = &e1000_err_handler
5928 * e1000_init_module - Driver Registration Routine
5930 * e1000_init_module is the first routine called when the driver is
5931 * loaded. All it does is register with the PCI subsystem.
5933 static int __init e1000_init_module(void)
5935 int ret;
5936 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
5937 e1000e_driver_version);
5938 pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n");
5939 ret = pci_register_driver(&e1000_driver);
5941 return ret;
5943 module_init(e1000_init_module);
5946 * e1000_exit_module - Driver Exit Cleanup Routine
5948 * e1000_exit_module is called just before the driver is removed
5949 * from memory.
5951 static void __exit e1000_exit_module(void)
5953 pci_unregister_driver(&e1000_driver);
5955 module_exit(e1000_exit_module);
5958 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5959 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5960 MODULE_LICENSE("GPL");
5961 MODULE_VERSION(DRV_VERSION);
5963 /* e1000_main.c */