2 * NAND flash simulator.
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
6 * Copyright (C) 2004 Nokia Corporation
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
25 * $Id: nandsim.c,v 1.8 2005/03/19 15:33:56 dedekind Exp $
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/partitions.h>
39 #include <linux/delay.h>
41 /* Default simulator parameters values */
42 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
43 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
44 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
45 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
46 #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
47 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
48 #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
49 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
52 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
53 #define CONFIG_NANDSIM_ACCESS_DELAY 25
55 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
56 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58 #ifndef CONFIG_NANDSIM_ERASE_DELAY
59 #define CONFIG_NANDSIM_ERASE_DELAY 2
61 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
62 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
65 #define CONFIG_NANDSIM_INPUT_CYCLE 50
67 #ifndef CONFIG_NANDSIM_BUS_WIDTH
68 #define CONFIG_NANDSIM_BUS_WIDTH 8
70 #ifndef CONFIG_NANDSIM_DO_DELAYS
71 #define CONFIG_NANDSIM_DO_DELAYS 0
73 #ifndef CONFIG_NANDSIM_LOG
74 #define CONFIG_NANDSIM_LOG 0
76 #ifndef CONFIG_NANDSIM_DBG
77 #define CONFIG_NANDSIM_DBG 0
80 static uint first_id_byte
= CONFIG_NANDSIM_FIRST_ID_BYTE
;
81 static uint second_id_byte
= CONFIG_NANDSIM_SECOND_ID_BYTE
;
82 static uint third_id_byte
= CONFIG_NANDSIM_THIRD_ID_BYTE
;
83 static uint fourth_id_byte
= CONFIG_NANDSIM_FOURTH_ID_BYTE
;
84 static uint access_delay
= CONFIG_NANDSIM_ACCESS_DELAY
;
85 static uint programm_delay
= CONFIG_NANDSIM_PROGRAMM_DELAY
;
86 static uint erase_delay
= CONFIG_NANDSIM_ERASE_DELAY
;
87 static uint output_cycle
= CONFIG_NANDSIM_OUTPUT_CYCLE
;
88 static uint input_cycle
= CONFIG_NANDSIM_INPUT_CYCLE
;
89 static uint bus_width
= CONFIG_NANDSIM_BUS_WIDTH
;
90 static uint do_delays
= CONFIG_NANDSIM_DO_DELAYS
;
91 static uint log
= CONFIG_NANDSIM_LOG
;
92 static uint dbg
= CONFIG_NANDSIM_DBG
;
94 module_param(first_id_byte
, uint
, 0400);
95 module_param(second_id_byte
, uint
, 0400);
96 module_param(third_id_byte
, uint
, 0400);
97 module_param(fourth_id_byte
, uint
, 0400);
98 module_param(access_delay
, uint
, 0400);
99 module_param(programm_delay
, uint
, 0400);
100 module_param(erase_delay
, uint
, 0400);
101 module_param(output_cycle
, uint
, 0400);
102 module_param(input_cycle
, uint
, 0400);
103 module_param(bus_width
, uint
, 0400);
104 module_param(do_delays
, uint
, 0400);
105 module_param(log
, uint
, 0400);
106 module_param(dbg
, uint
, 0400);
108 MODULE_PARM_DESC(first_id_byte
, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
109 MODULE_PARM_DESC(second_id_byte
, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
110 MODULE_PARM_DESC(third_id_byte
, "The third byte returned by NAND Flash 'read ID' command");
111 MODULE_PARM_DESC(fourth_id_byte
, "The fourth byte returned by NAND Flash 'read ID' command");
112 MODULE_PARM_DESC(access_delay
, "Initial page access delay (microiseconds)");
113 MODULE_PARM_DESC(programm_delay
, "Page programm delay (microseconds");
114 MODULE_PARM_DESC(erase_delay
, "Sector erase delay (milliseconds)");
115 MODULE_PARM_DESC(output_cycle
, "Word output (from flash) time (nanodeconds)");
116 MODULE_PARM_DESC(input_cycle
, "Word input (to flash) time (nanodeconds)");
117 MODULE_PARM_DESC(bus_width
, "Chip's bus width (8- or 16-bit)");
118 MODULE_PARM_DESC(do_delays
, "Simulate NAND delays using busy-waits if not zero");
119 MODULE_PARM_DESC(log
, "Perform logging if not zero");
120 MODULE_PARM_DESC(dbg
, "Output debug information if not zero");
122 /* The largest possible page size */
123 #define NS_LARGEST_PAGE_SIZE 2048
125 /* The prefix for simulator output */
126 #define NS_OUTPUT_PREFIX "[nandsim]"
128 /* Simulator's output macros (logging, debugging, warning, error) */
129 #define NS_LOG(args...) \
130 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
131 #define NS_DBG(args...) \
132 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
133 #define NS_WARN(args...) \
134 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
135 #define NS_ERR(args...) \
136 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
138 /* Busy-wait delay macros (microseconds, milliseconds) */
139 #define NS_UDELAY(us) \
140 do { if (do_delays) udelay(us); } while(0)
141 #define NS_MDELAY(us) \
142 do { if (do_delays) mdelay(us); } while(0)
144 /* Is the nandsim structure initialized ? */
145 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
147 /* Good operation completion status */
148 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
150 /* Operation failed completion status */
151 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
153 /* Calculate the page offset in flash RAM image by (row, column) address */
154 #define NS_RAW_OFFSET(ns) \
155 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
157 /* Calculate the OOB offset in flash RAM image by (row, column) address */
158 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
160 /* After a command is input, the simulator goes to one of the following states */
161 #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
162 #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
163 #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
164 #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
165 #define STATE_CMD_READOOB 0x00000005 /* read OOB area */
166 #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
167 #define STATE_CMD_STATUS 0x00000007 /* read status */
168 #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
169 #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
170 #define STATE_CMD_READID 0x0000000A /* read ID */
171 #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
172 #define STATE_CMD_RESET 0x0000000C /* reset */
173 #define STATE_CMD_MASK 0x0000000F /* command states mask */
175 /* After an addres is input, the simulator goes to one of these states */
176 #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
177 #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
178 #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
179 #define STATE_ADDR_MASK 0x00000030 /* address states mask */
181 /* Durind data input/output the simulator is in these states */
182 #define STATE_DATAIN 0x00000100 /* waiting for data input */
183 #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
185 #define STATE_DATAOUT 0x00001000 /* waiting for page data output */
186 #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
187 #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
188 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
189 #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
191 /* Previous operation is done, ready to accept new requests */
192 #define STATE_READY 0x00000000
194 /* This state is used to mark that the next state isn't known yet */
195 #define STATE_UNKNOWN 0x10000000
197 /* Simulator's actions bit masks */
198 #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
199 #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
200 #define ACTION_SECERASE 0x00300000 /* erase sector */
201 #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
202 #define ACTION_HALFOFF 0x00500000 /* add to address half of page */
203 #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
204 #define ACTION_MASK 0x00700000 /* action mask */
206 #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
207 #define NS_OPER_STATES 6 /* Maximum number of states in operation */
209 #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
210 #define OPT_PAGE256 0x00000001 /* 256-byte page chips */
211 #define OPT_PAGE512 0x00000002 /* 512-byte page chips */
212 #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
213 #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
214 #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
215 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
216 #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
217 #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
219 /* Remove action bits ftom state */
220 #define NS_STATE(x) ((x) & ~ACTION_MASK)
223 * Maximum previous states which need to be saved. Currently saving is
224 * only needed for page programm operation with preceeded read command
225 * (which is only valid for 512-byte pages).
227 #define NS_MAX_PREVSTATES 1
230 * A union to represent flash memory contents and flash buffer.
233 u_char
*byte
; /* for byte access */
234 uint16_t *word
; /* for 16-bit word access */
238 * The structure which describes all the internal simulator data.
241 struct mtd_partition part
;
243 uint busw
; /* flash chip bus width (8 or 16) */
244 u_char ids
[4]; /* chip's ID bytes */
245 uint32_t options
; /* chip's characteristic bits */
246 uint32_t state
; /* current chip state */
247 uint32_t nxstate
; /* next expected state */
249 uint32_t *op
; /* current operation, NULL operations isn't known yet */
250 uint32_t pstates
[NS_MAX_PREVSTATES
]; /* previous states */
251 uint16_t npstates
; /* number of previous states saved */
252 uint16_t stateidx
; /* current state index */
254 /* The simulated NAND flash pages array */
257 /* Internal buffer of page + OOB size bytes */
260 /* NAND flash "geometry" */
261 struct nandsin_geometry
{
262 uint32_t totsz
; /* total flash size, bytes */
263 uint32_t secsz
; /* flash sector (erase block) size, bytes */
264 uint pgsz
; /* NAND flash page size, bytes */
265 uint oobsz
; /* page OOB area size, bytes */
266 uint32_t totszoob
; /* total flash size including OOB, bytes */
267 uint pgszoob
; /* page size including OOB , bytes*/
268 uint secszoob
; /* sector size including OOB, bytes */
269 uint pgnum
; /* total number of pages */
270 uint pgsec
; /* number of pages per sector */
271 uint secshift
; /* bits number in sector size */
272 uint pgshift
; /* bits number in page size */
273 uint oobshift
; /* bits number in OOB size */
274 uint pgaddrbytes
; /* bytes per page address */
275 uint secaddrbytes
; /* bytes per sector address */
276 uint idbytes
; /* the number ID bytes that this chip outputs */
279 /* NAND flash internal registers */
280 struct nandsim_regs
{
281 unsigned command
; /* the command register */
282 u_char status
; /* the status register */
283 uint row
; /* the page number */
284 uint column
; /* the offset within page */
285 uint count
; /* internal counter */
286 uint num
; /* number of bytes which must be processed */
287 uint off
; /* fixed page offset */
290 /* NAND flash lines state */
291 struct ns_lines_status
{
292 int ce
; /* chip Enable */
293 int cle
; /* command Latch Enable */
294 int ale
; /* address Latch Enable */
295 int wp
; /* write Protect */
300 * Operations array. To perform any operation the simulator must pass
301 * through the correspondent states chain.
303 static struct nandsim_operations
{
304 uint32_t reqopts
; /* options which are required to perform the operation */
305 uint32_t states
[NS_OPER_STATES
]; /* operation's states */
306 } ops
[NS_OPER_NUM
] = {
307 /* Read page + OOB from the beginning */
308 {OPT_SMALLPAGE
, {STATE_CMD_READ0
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
309 STATE_DATAOUT
, STATE_READY
}},
310 /* Read page + OOB from the second half */
311 {OPT_PAGE512_8BIT
, {STATE_CMD_READ1
| ACTION_HALFOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
312 STATE_DATAOUT
, STATE_READY
}},
314 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
| ACTION_OOBOFF
, STATE_ADDR_PAGE
| ACTION_CPY
,
315 STATE_DATAOUT
, STATE_READY
}},
316 /* Programm page starting from the beginning */
317 {OPT_ANY
, {STATE_CMD_SEQIN
, STATE_ADDR_PAGE
, STATE_DATAIN
,
318 STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
319 /* Programm page starting from the beginning */
320 {OPT_SMALLPAGE
, {STATE_CMD_READ0
, STATE_CMD_SEQIN
| ACTION_ZEROOFF
, STATE_ADDR_PAGE
,
321 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
322 /* Programm page starting from the second half */
323 {OPT_PAGE512
, {STATE_CMD_READ1
, STATE_CMD_SEQIN
| ACTION_HALFOFF
, STATE_ADDR_PAGE
,
324 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
326 {OPT_SMALLPAGE
, {STATE_CMD_READOOB
, STATE_CMD_SEQIN
| ACTION_OOBOFF
, STATE_ADDR_PAGE
,
327 STATE_DATAIN
, STATE_CMD_PAGEPROG
| ACTION_PRGPAGE
, STATE_READY
}},
329 {OPT_ANY
, {STATE_CMD_ERASE1
, STATE_ADDR_SEC
, STATE_CMD_ERASE2
| ACTION_SECERASE
, STATE_READY
}},
331 {OPT_ANY
, {STATE_CMD_STATUS
, STATE_DATAOUT_STATUS
, STATE_READY
}},
332 /* Read multi-plane status */
333 {OPT_SMARTMEDIA
, {STATE_CMD_STATUS_M
, STATE_DATAOUT_STATUS_M
, STATE_READY
}},
335 {OPT_ANY
, {STATE_CMD_READID
, STATE_ADDR_ZERO
, STATE_DATAOUT_ID
, STATE_READY
}},
336 /* Large page devices read page */
337 {OPT_LARGEPAGE
, {STATE_CMD_READ0
, STATE_ADDR_PAGE
, STATE_CMD_READSTART
| ACTION_CPY
,
338 STATE_DATAOUT
, STATE_READY
}}
341 /* MTD structure for NAND controller */
342 static struct mtd_info
*nsmtd
;
344 static u_char ns_verify_buf
[NS_LARGEST_PAGE_SIZE
];
347 * Allocate array of page pointers and initialize the array to NULL
350 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
352 static int alloc_device(struct nandsim
*ns
)
356 ns
->pages
= vmalloc(ns
->geom
.pgnum
* sizeof(union ns_mem
));
358 NS_ERR("alloc_map: unable to allocate page array\n");
361 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
362 ns
->pages
[i
].byte
= NULL
;
369 * Free any allocated pages, and free the array of page pointers.
371 static void free_device(struct nandsim
*ns
)
376 for (i
= 0; i
< ns
->geom
.pgnum
; i
++) {
377 if (ns
->pages
[i
].byte
)
378 kfree(ns
->pages
[i
].byte
);
385 * Initialize the nandsim structure.
387 * RETURNS: 0 if success, -ERRNO if failure.
389 static int init_nandsim(struct mtd_info
*mtd
)
391 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
392 struct nandsim
*ns
= (struct nandsim
*)(chip
->priv
);
395 if (NS_IS_INITIALIZED(ns
)) {
396 NS_ERR("init_nandsim: nandsim is already initialized\n");
400 /* Force mtd to not do delays */
401 chip
->chip_delay
= 0;
403 /* Initialize the NAND flash parameters */
404 ns
->busw
= chip
->options
& NAND_BUSWIDTH_16
? 16 : 8;
405 ns
->geom
.totsz
= mtd
->size
;
406 ns
->geom
.pgsz
= mtd
->writesize
;
407 ns
->geom
.oobsz
= mtd
->oobsize
;
408 ns
->geom
.secsz
= mtd
->erasesize
;
409 ns
->geom
.pgszoob
= ns
->geom
.pgsz
+ ns
->geom
.oobsz
;
410 ns
->geom
.pgnum
= ns
->geom
.totsz
/ ns
->geom
.pgsz
;
411 ns
->geom
.totszoob
= ns
->geom
.totsz
+ ns
->geom
.pgnum
* ns
->geom
.oobsz
;
412 ns
->geom
.secshift
= ffs(ns
->geom
.secsz
) - 1;
413 ns
->geom
.pgshift
= chip
->page_shift
;
414 ns
->geom
.oobshift
= ffs(ns
->geom
.oobsz
) - 1;
415 ns
->geom
.pgsec
= ns
->geom
.secsz
/ ns
->geom
.pgsz
;
416 ns
->geom
.secszoob
= ns
->geom
.secsz
+ ns
->geom
.oobsz
* ns
->geom
.pgsec
;
419 if (ns
->geom
.pgsz
== 256) {
420 ns
->options
|= OPT_PAGE256
;
422 else if (ns
->geom
.pgsz
== 512) {
423 ns
->options
|= (OPT_PAGE512
| OPT_AUTOINCR
);
425 ns
->options
|= OPT_PAGE512_8BIT
;
426 } else if (ns
->geom
.pgsz
== 2048) {
427 ns
->options
|= OPT_PAGE2048
;
429 NS_ERR("init_nandsim: unknown page size %u\n", ns
->geom
.pgsz
);
433 if (ns
->options
& OPT_SMALLPAGE
) {
434 if (ns
->geom
.totsz
< (64 << 20)) {
435 ns
->geom
.pgaddrbytes
= 3;
436 ns
->geom
.secaddrbytes
= 2;
438 ns
->geom
.pgaddrbytes
= 4;
439 ns
->geom
.secaddrbytes
= 3;
442 if (ns
->geom
.totsz
<= (128 << 20)) {
443 ns
->geom
.pgaddrbytes
= 4;
444 ns
->geom
.secaddrbytes
= 2;
446 ns
->geom
.pgaddrbytes
= 5;
447 ns
->geom
.secaddrbytes
= 3;
451 /* Detect how many ID bytes the NAND chip outputs */
452 for (i
= 0; nand_flash_ids
[i
].name
!= NULL
; i
++) {
453 if (second_id_byte
!= nand_flash_ids
[i
].id
)
455 if (!(nand_flash_ids
[i
].options
& NAND_NO_AUTOINCR
))
456 ns
->options
|= OPT_AUTOINCR
;
460 NS_WARN("16-bit flashes support wasn't tested\n");
462 printk("flash size: %u MiB\n", ns
->geom
.totsz
>> 20);
463 printk("page size: %u bytes\n", ns
->geom
.pgsz
);
464 printk("OOB area size: %u bytes\n", ns
->geom
.oobsz
);
465 printk("sector size: %u KiB\n", ns
->geom
.secsz
>> 10);
466 printk("pages number: %u\n", ns
->geom
.pgnum
);
467 printk("pages per sector: %u\n", ns
->geom
.pgsec
);
468 printk("bus width: %u\n", ns
->busw
);
469 printk("bits in sector size: %u\n", ns
->geom
.secshift
);
470 printk("bits in page size: %u\n", ns
->geom
.pgshift
);
471 printk("bits in OOB size: %u\n", ns
->geom
.oobshift
);
472 printk("flash size with OOB: %u KiB\n", ns
->geom
.totszoob
>> 10);
473 printk("page address bytes: %u\n", ns
->geom
.pgaddrbytes
);
474 printk("sector address bytes: %u\n", ns
->geom
.secaddrbytes
);
475 printk("options: %#x\n", ns
->options
);
477 if (alloc_device(ns
) != 0)
480 /* Allocate / initialize the internal buffer */
481 ns
->buf
.byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
483 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
487 memset(ns
->buf
.byte
, 0xFF, ns
->geom
.pgszoob
);
489 /* Fill the partition_info structure */
490 ns
->part
.name
= "NAND simulator partition";
492 ns
->part
.size
= ns
->geom
.totsz
;
503 * Free the nandsim structure.
505 static void free_nandsim(struct nandsim
*ns
)
514 * Returns the string representation of 'state' state.
516 static char *get_state_name(uint32_t state
)
518 switch (NS_STATE(state
)) {
519 case STATE_CMD_READ0
:
520 return "STATE_CMD_READ0";
521 case STATE_CMD_READ1
:
522 return "STATE_CMD_READ1";
523 case STATE_CMD_PAGEPROG
:
524 return "STATE_CMD_PAGEPROG";
525 case STATE_CMD_READOOB
:
526 return "STATE_CMD_READOOB";
527 case STATE_CMD_READSTART
:
528 return "STATE_CMD_READSTART";
529 case STATE_CMD_ERASE1
:
530 return "STATE_CMD_ERASE1";
531 case STATE_CMD_STATUS
:
532 return "STATE_CMD_STATUS";
533 case STATE_CMD_STATUS_M
:
534 return "STATE_CMD_STATUS_M";
535 case STATE_CMD_SEQIN
:
536 return "STATE_CMD_SEQIN";
537 case STATE_CMD_READID
:
538 return "STATE_CMD_READID";
539 case STATE_CMD_ERASE2
:
540 return "STATE_CMD_ERASE2";
541 case STATE_CMD_RESET
:
542 return "STATE_CMD_RESET";
543 case STATE_ADDR_PAGE
:
544 return "STATE_ADDR_PAGE";
546 return "STATE_ADDR_SEC";
547 case STATE_ADDR_ZERO
:
548 return "STATE_ADDR_ZERO";
550 return "STATE_DATAIN";
552 return "STATE_DATAOUT";
553 case STATE_DATAOUT_ID
:
554 return "STATE_DATAOUT_ID";
555 case STATE_DATAOUT_STATUS
:
556 return "STATE_DATAOUT_STATUS";
557 case STATE_DATAOUT_STATUS_M
:
558 return "STATE_DATAOUT_STATUS_M";
560 return "STATE_READY";
562 return "STATE_UNKNOWN";
565 NS_ERR("get_state_name: unknown state, BUG\n");
570 * Check if command is valid.
572 * RETURNS: 1 if wrong command, 0 if right.
574 static int check_command(int cmd
)
579 case NAND_CMD_READSTART
:
580 case NAND_CMD_PAGEPROG
:
581 case NAND_CMD_READOOB
:
582 case NAND_CMD_ERASE1
:
583 case NAND_CMD_STATUS
:
585 case NAND_CMD_READID
:
586 case NAND_CMD_ERASE2
:
591 case NAND_CMD_STATUS_MULTI
:
598 * Returns state after command is accepted by command number.
600 static uint32_t get_state_by_command(unsigned command
)
604 return STATE_CMD_READ0
;
606 return STATE_CMD_READ1
;
607 case NAND_CMD_PAGEPROG
:
608 return STATE_CMD_PAGEPROG
;
609 case NAND_CMD_READSTART
:
610 return STATE_CMD_READSTART
;
611 case NAND_CMD_READOOB
:
612 return STATE_CMD_READOOB
;
613 case NAND_CMD_ERASE1
:
614 return STATE_CMD_ERASE1
;
615 case NAND_CMD_STATUS
:
616 return STATE_CMD_STATUS
;
617 case NAND_CMD_STATUS_MULTI
:
618 return STATE_CMD_STATUS_M
;
620 return STATE_CMD_SEQIN
;
621 case NAND_CMD_READID
:
622 return STATE_CMD_READID
;
623 case NAND_CMD_ERASE2
:
624 return STATE_CMD_ERASE2
;
626 return STATE_CMD_RESET
;
629 NS_ERR("get_state_by_command: unknown command, BUG\n");
634 * Move an address byte to the correspondent internal register.
636 static inline void accept_addr_byte(struct nandsim
*ns
, u_char bt
)
638 uint byte
= (uint
)bt
;
640 if (ns
->regs
.count
< (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
))
641 ns
->regs
.column
|= (byte
<< 8 * ns
->regs
.count
);
643 ns
->regs
.row
|= (byte
<< 8 * (ns
->regs
.count
-
644 ns
->geom
.pgaddrbytes
+
645 ns
->geom
.secaddrbytes
));
652 * Switch to STATE_READY state.
654 static inline void switch_to_ready_state(struct nandsim
*ns
, u_char status
)
656 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY
));
658 ns
->state
= STATE_READY
;
659 ns
->nxstate
= STATE_UNKNOWN
;
668 ns
->regs
.status
= status
;
672 * If the operation isn't known yet, try to find it in the global array
673 * of supported operations.
675 * Operation can be unknown because of the following.
676 * 1. New command was accepted and this is the firs call to find the
677 * correspondent states chain. In this case ns->npstates = 0;
678 * 2. There is several operations which begin with the same command(s)
679 * (for example program from the second half and read from the
680 * second half operations both begin with the READ1 command). In this
681 * case the ns->pstates[] array contains previous states.
683 * Thus, the function tries to find operation containing the following
684 * states (if the 'flag' parameter is 0):
685 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
687 * If (one and only one) matching operation is found, it is accepted (
688 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
691 * If there are several maches, the current state is pushed to the
694 * The operation can be unknown only while commands are input to the chip.
695 * As soon as address command is accepted, the operation must be known.
696 * In such situation the function is called with 'flag' != 0, and the
697 * operation is searched using the following pattern:
698 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
700 * It is supposed that this pattern must either match one operation on
701 * none. There can't be ambiguity in that case.
703 * If no matches found, the functions does the following:
704 * 1. if there are saved states present, try to ignore them and search
705 * again only using the last command. If nothing was found, switch
706 * to the STATE_READY state.
707 * 2. if there are no saved states, switch to the STATE_READY state.
709 * RETURNS: -2 - no matched operations found.
710 * -1 - several matches.
711 * 0 - operation is found.
713 static int find_operation(struct nandsim
*ns
, uint32_t flag
)
718 for (i
= 0; i
< NS_OPER_NUM
; i
++) {
722 if (!(ns
->options
& ops
[i
].reqopts
))
723 /* Ignore operations we can't perform */
727 if (!(ops
[i
].states
[ns
->npstates
] & STATE_ADDR_MASK
))
730 if (NS_STATE(ns
->state
) != NS_STATE(ops
[i
].states
[ns
->npstates
]))
734 for (j
= 0; j
< ns
->npstates
; j
++)
735 if (NS_STATE(ops
[i
].states
[j
]) != NS_STATE(ns
->pstates
[j
])
736 && (ns
->options
& ops
[idx
].reqopts
)) {
749 ns
->op
= &ops
[idx
].states
[0];
752 * In this case the find_operation function was
753 * called when address has just began input. But it isn't
754 * yet fully input and the current state must
755 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
756 * state must be the next state (ns->nxstate).
758 ns
->stateidx
= ns
->npstates
- 1;
760 ns
->stateidx
= ns
->npstates
;
763 ns
->state
= ns
->op
[ns
->stateidx
];
764 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
765 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
766 idx
, get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
771 /* Nothing was found. Try to ignore previous commands (if any) and search again */
772 if (ns
->npstates
!= 0) {
773 NS_DBG("find_operation: no operation found, try again with state %s\n",
774 get_state_name(ns
->state
));
776 return find_operation(ns
, 0);
779 NS_DBG("find_operation: no operations found\n");
780 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
785 /* This shouldn't happen */
786 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
790 NS_DBG("find_operation: there is still ambiguity\n");
792 ns
->pstates
[ns
->npstates
++] = ns
->state
;
798 * Returns a pointer to the current page.
800 static inline union ns_mem
*NS_GET_PAGE(struct nandsim
*ns
)
802 return &(ns
->pages
[ns
->regs
.row
]);
806 * Retuns a pointer to the current byte, within the current page.
808 static inline u_char
*NS_PAGE_BYTE_OFF(struct nandsim
*ns
)
810 return NS_GET_PAGE(ns
)->byte
+ ns
->regs
.column
+ ns
->regs
.off
;
814 * Fill the NAND buffer with data read from the specified page.
816 static void read_page(struct nandsim
*ns
, int num
)
818 union ns_mem
*mypage
;
820 mypage
= NS_GET_PAGE(ns
);
821 if (mypage
->byte
== NULL
) {
822 NS_DBG("read_page: page %d not allocated\n", ns
->regs
.row
);
823 memset(ns
->buf
.byte
, 0xFF, num
);
825 NS_DBG("read_page: page %d allocated, reading from %d\n",
826 ns
->regs
.row
, ns
->regs
.column
+ ns
->regs
.off
);
827 memcpy(ns
->buf
.byte
, NS_PAGE_BYTE_OFF(ns
), num
);
832 * Erase all pages in the specified sector.
834 static void erase_sector(struct nandsim
*ns
)
836 union ns_mem
*mypage
;
839 mypage
= NS_GET_PAGE(ns
);
840 for (i
= 0; i
< ns
->geom
.pgsec
; i
++) {
841 if (mypage
->byte
!= NULL
) {
842 NS_DBG("erase_sector: freeing page %d\n", ns
->regs
.row
+i
);
851 * Program the specified page with the contents from the NAND buffer.
853 static int prog_page(struct nandsim
*ns
, int num
)
856 union ns_mem
*mypage
;
859 mypage
= NS_GET_PAGE(ns
);
860 if (mypage
->byte
== NULL
) {
861 NS_DBG("prog_page: allocating page %d\n", ns
->regs
.row
);
862 mypage
->byte
= kmalloc(ns
->geom
.pgszoob
, GFP_KERNEL
);
863 if (mypage
->byte
== NULL
) {
864 NS_ERR("prog_page: error allocating memory for page %d\n", ns
->regs
.row
);
867 memset(mypage
->byte
, 0xFF, ns
->geom
.pgszoob
);
870 pg_off
= NS_PAGE_BYTE_OFF(ns
);
871 for (i
= 0; i
< num
; i
++)
872 pg_off
[i
] &= ns
->buf
.byte
[i
];
878 * If state has any action bit, perform this action.
880 * RETURNS: 0 if success, -1 if error.
882 static int do_state_action(struct nandsim
*ns
, uint32_t action
)
885 int busdiv
= ns
->busw
== 8 ? 1 : 2;
887 action
&= ACTION_MASK
;
889 /* Check that page address input is correct */
890 if (action
!= ACTION_SECERASE
&& ns
->regs
.row
>= ns
->geom
.pgnum
) {
891 NS_WARN("do_state_action: wrong page number (%#x)\n", ns
->regs
.row
);
899 * Copy page data to the internal buffer.
902 /* Column shouldn't be very large */
903 if (ns
->regs
.column
>= (ns
->geom
.pgszoob
- ns
->regs
.off
)) {
904 NS_ERR("do_state_action: column number is too large\n");
907 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
910 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
911 num
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
913 if (ns
->regs
.off
== 0)
914 NS_LOG("read page %d\n", ns
->regs
.row
);
915 else if (ns
->regs
.off
< ns
->geom
.pgsz
)
916 NS_LOG("read page %d (second half)\n", ns
->regs
.row
);
918 NS_LOG("read OOB of page %d\n", ns
->regs
.row
);
920 NS_UDELAY(access_delay
);
921 NS_UDELAY(input_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
925 case ACTION_SECERASE
:
931 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
935 if (ns
->regs
.row
>= ns
->geom
.pgnum
- ns
->geom
.pgsec
936 || (ns
->regs
.row
& ~(ns
->geom
.secsz
- 1))) {
937 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns
->regs
.row
);
941 ns
->regs
.row
= (ns
->regs
.row
<<
942 8 * (ns
->geom
.pgaddrbytes
- ns
->geom
.secaddrbytes
)) | ns
->regs
.column
;
945 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
946 ns
->regs
.row
, NS_RAW_OFFSET(ns
));
947 NS_LOG("erase sector %d\n", ns
->regs
.row
>> (ns
->geom
.secshift
- ns
->geom
.pgshift
));
951 NS_MDELAY(erase_delay
);
957 * Programm page - move internal buffer data to the page.
961 NS_WARN("do_state_action: device is write-protected, programm\n");
965 num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
966 if (num
!= ns
->regs
.count
) {
967 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
968 ns
->regs
.count
, num
);
972 if (prog_page(ns
, num
) == -1)
975 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
976 num
, ns
->regs
.row
, ns
->regs
.column
, NS_RAW_OFFSET(ns
) + ns
->regs
.off
);
977 NS_LOG("programm page %d\n", ns
->regs
.row
);
979 NS_UDELAY(programm_delay
);
980 NS_UDELAY(output_cycle
* ns
->geom
.pgsz
/ 1000 / busdiv
);
985 NS_DBG("do_state_action: set internal offset to 0\n");
990 if (!(ns
->options
& OPT_PAGE512_8BIT
)) {
991 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
992 "byte page size 8x chips\n");
995 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
/2);
996 ns
->regs
.off
= ns
->geom
.pgsz
/2;
1000 NS_DBG("do_state_action: set internal offset to %d\n", ns
->geom
.pgsz
);
1001 ns
->regs
.off
= ns
->geom
.pgsz
;
1005 NS_DBG("do_state_action: BUG! unknown action\n");
1012 * Switch simulator's state.
1014 static void switch_state(struct nandsim
*ns
)
1018 * The current operation have already been identified.
1019 * Just follow the states chain.
1023 ns
->state
= ns
->nxstate
;
1024 ns
->nxstate
= ns
->op
[ns
->stateidx
+ 1];
1026 NS_DBG("switch_state: operation is known, switch to the next state, "
1027 "state: %s, nxstate: %s\n",
1028 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1030 /* See, whether we need to do some action */
1031 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1032 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1038 * We don't yet know which operation we perform.
1039 * Try to identify it.
1043 * The only event causing the switch_state function to
1044 * be called with yet unknown operation is new command.
1046 ns
->state
= get_state_by_command(ns
->regs
.command
);
1048 NS_DBG("switch_state: operation is unknown, try to find it\n");
1050 if (find_operation(ns
, 0) != 0)
1053 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1054 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1059 /* For 16x devices column means the page offset in words */
1060 if ((ns
->nxstate
& STATE_ADDR_MASK
) && ns
->busw
== 16) {
1061 NS_DBG("switch_state: double the column number for 16x device\n");
1062 ns
->regs
.column
<<= 1;
1065 if (NS_STATE(ns
->nxstate
) == STATE_READY
) {
1067 * The current state is the last. Return to STATE_READY
1070 u_char status
= NS_STATUS_OK(ns
);
1072 /* In case of data states, see if all bytes were input/output */
1073 if ((ns
->state
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
))
1074 && ns
->regs
.count
!= ns
->regs
.num
) {
1075 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1076 ns
->regs
.num
- ns
->regs
.count
);
1077 status
= NS_STATUS_FAILED(ns
);
1080 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1082 switch_to_ready_state(ns
, status
);
1085 } else if (ns
->nxstate
& (STATE_DATAIN_MASK
| STATE_DATAOUT_MASK
)) {
1087 * If the next state is data input/output, switch to it now
1090 ns
->state
= ns
->nxstate
;
1091 ns
->nxstate
= ns
->op
[++ns
->stateidx
+ 1];
1092 ns
->regs
.num
= ns
->regs
.count
= 0;
1094 NS_DBG("switch_state: the next state is data I/O, switch, "
1095 "state: %s, nxstate: %s\n",
1096 get_state_name(ns
->state
), get_state_name(ns
->nxstate
));
1099 * Set the internal register to the count of bytes which
1100 * are expected to be input or output
1102 switch (NS_STATE(ns
->state
)) {
1105 ns
->regs
.num
= ns
->geom
.pgszoob
- ns
->regs
.off
- ns
->regs
.column
;
1108 case STATE_DATAOUT_ID
:
1109 ns
->regs
.num
= ns
->geom
.idbytes
;
1112 case STATE_DATAOUT_STATUS
:
1113 case STATE_DATAOUT_STATUS_M
:
1114 ns
->regs
.count
= ns
->regs
.num
= 0;
1118 NS_ERR("switch_state: BUG! unknown data state\n");
1121 } else if (ns
->nxstate
& STATE_ADDR_MASK
) {
1123 * If the next state is address input, set the internal
1124 * register to the number of expected address bytes
1129 switch (NS_STATE(ns
->nxstate
)) {
1130 case STATE_ADDR_PAGE
:
1131 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1134 case STATE_ADDR_SEC
:
1135 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1138 case STATE_ADDR_ZERO
:
1143 NS_ERR("switch_state: BUG! unknown address state\n");
1147 * Just reset internal counters.
1155 static u_char
ns_nand_read_byte(struct mtd_info
*mtd
)
1157 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1160 /* Sanity and correctness checks */
1161 if (!ns
->lines
.ce
) {
1162 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint
)outb
);
1165 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1166 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint
)outb
);
1169 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1170 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1171 "return %#x\n", get_state_name(ns
->state
), (uint
)outb
);
1175 /* Status register may be read as many times as it is wanted */
1176 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
) {
1177 NS_DBG("read_byte: return %#x status\n", ns
->regs
.status
);
1178 return ns
->regs
.status
;
1181 /* Check if there is any data in the internal buffer which may be read */
1182 if (ns
->regs
.count
== ns
->regs
.num
) {
1183 NS_WARN("read_byte: no more data to output, return %#x\n", (uint
)outb
);
1187 switch (NS_STATE(ns
->state
)) {
1189 if (ns
->busw
== 8) {
1190 outb
= ns
->buf
.byte
[ns
->regs
.count
];
1191 ns
->regs
.count
+= 1;
1193 outb
= (u_char
)cpu_to_le16(ns
->buf
.word
[ns
->regs
.count
>> 1]);
1194 ns
->regs
.count
+= 2;
1197 case STATE_DATAOUT_ID
:
1198 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns
->regs
.count
, ns
->regs
.num
);
1199 outb
= ns
->ids
[ns
->regs
.count
];
1200 ns
->regs
.count
+= 1;
1206 if (ns
->regs
.count
== ns
->regs
.num
) {
1207 NS_DBG("read_byte: all bytes were read\n");
1210 * The OPT_AUTOINCR allows to read next conseqitive pages without
1211 * new read operation cycle.
1213 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1215 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1217 NS_DBG("read_byte: switch to the next page (%#x)\n", ns
->regs
.row
);
1218 do_state_action(ns
, ACTION_CPY
);
1220 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1228 static void ns_nand_write_byte(struct mtd_info
*mtd
, u_char byte
)
1230 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1232 /* Sanity and correctness checks */
1233 if (!ns
->lines
.ce
) {
1234 NS_ERR("write_byte: chip is disabled, ignore write\n");
1237 if (ns
->lines
.ale
&& ns
->lines
.cle
) {
1238 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1242 if (ns
->lines
.cle
== 1) {
1244 * The byte written is a command.
1247 if (byte
== NAND_CMD_RESET
) {
1248 NS_LOG("reset chip\n");
1249 switch_to_ready_state(ns
, NS_STATUS_OK(ns
));
1254 * Chip might still be in STATE_DATAOUT
1255 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1256 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1258 if (NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS
1259 || NS_STATE(ns
->state
) == STATE_DATAOUT_STATUS_M
1260 || ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
))
1263 /* Check if chip is expecting command */
1264 if (NS_STATE(ns
->nxstate
) != STATE_UNKNOWN
&& !(ns
->nxstate
& STATE_CMD_MASK
)) {
1266 * We are in situation when something else (not command)
1267 * was expected but command was input. In this case ignore
1268 * previous command(s)/state(s) and accept the last one.
1270 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1271 "ignore previous states\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1272 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1275 /* Check that the command byte is correct */
1276 if (check_command(byte
)) {
1277 NS_ERR("write_byte: unknown command %#x\n", (uint
)byte
);
1281 NS_DBG("command byte corresponding to %s state accepted\n",
1282 get_state_name(get_state_by_command(byte
)));
1283 ns
->regs
.command
= byte
;
1286 } else if (ns
->lines
.ale
== 1) {
1288 * The byte written is an address.
1291 if (NS_STATE(ns
->nxstate
) == STATE_UNKNOWN
) {
1293 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1295 if (find_operation(ns
, 1) < 0)
1298 if ((ns
->state
& ACTION_MASK
) && do_state_action(ns
, ns
->state
) < 0) {
1299 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1304 switch (NS_STATE(ns
->nxstate
)) {
1305 case STATE_ADDR_PAGE
:
1306 ns
->regs
.num
= ns
->geom
.pgaddrbytes
;
1308 case STATE_ADDR_SEC
:
1309 ns
->regs
.num
= ns
->geom
.secaddrbytes
;
1311 case STATE_ADDR_ZERO
:
1319 /* Check that chip is expecting address */
1320 if (!(ns
->nxstate
& STATE_ADDR_MASK
)) {
1321 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1322 "switch to STATE_READY\n", (uint
)byte
, get_state_name(ns
->nxstate
));
1323 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1327 /* Check if this is expected byte */
1328 if (ns
->regs
.count
== ns
->regs
.num
) {
1329 NS_ERR("write_byte: no more address bytes expected\n");
1330 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1334 accept_addr_byte(ns
, byte
);
1336 ns
->regs
.count
+= 1;
1338 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1339 (uint
)byte
, ns
->regs
.count
, ns
->regs
.num
);
1341 if (ns
->regs
.count
== ns
->regs
.num
) {
1342 NS_DBG("address (%#x, %#x) is accepted\n", ns
->regs
.row
, ns
->regs
.column
);
1348 * The byte written is an input data.
1351 /* Check that chip is expecting data input */
1352 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1353 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1354 "switch to %s\n", (uint
)byte
,
1355 get_state_name(ns
->state
), get_state_name(STATE_READY
));
1356 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1360 /* Check if this is expected byte */
1361 if (ns
->regs
.count
== ns
->regs
.num
) {
1362 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1367 if (ns
->busw
== 8) {
1368 ns
->buf
.byte
[ns
->regs
.count
] = byte
;
1369 ns
->regs
.count
+= 1;
1371 ns
->buf
.word
[ns
->regs
.count
>> 1] = cpu_to_le16((uint16_t)byte
);
1372 ns
->regs
.count
+= 2;
1379 static void ns_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int bitmask
)
1381 struct nandsim
*ns
= ((struct nand_chip
*)mtd
->priv
)->priv
;
1383 ns
->lines
.cle
= bitmask
& NAND_CLE
? 1 : 0;
1384 ns
->lines
.ale
= bitmask
& NAND_ALE
? 1 : 0;
1385 ns
->lines
.ce
= bitmask
& NAND_NCE
? 1 : 0;
1387 if (cmd
!= NAND_CMD_NONE
)
1388 ns_nand_write_byte(mtd
, cmd
);
1391 static int ns_device_ready(struct mtd_info
*mtd
)
1393 NS_DBG("device_ready\n");
1397 static uint16_t ns_nand_read_word(struct mtd_info
*mtd
)
1399 struct nand_chip
*chip
= (struct nand_chip
*)mtd
->priv
;
1401 NS_DBG("read_word\n");
1403 return chip
->read_byte(mtd
) | (chip
->read_byte(mtd
) << 8);
1406 static void ns_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1408 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1410 /* Check that chip is expecting data input */
1411 if (!(ns
->state
& STATE_DATAIN_MASK
)) {
1412 NS_ERR("write_buf: data input isn't expected, state is %s, "
1413 "switch to STATE_READY\n", get_state_name(ns
->state
));
1414 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1418 /* Check if these are expected bytes */
1419 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1420 NS_ERR("write_buf: too many input bytes\n");
1421 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1425 memcpy(ns
->buf
.byte
+ ns
->regs
.count
, buf
, len
);
1426 ns
->regs
.count
+= len
;
1428 if (ns
->regs
.count
== ns
->regs
.num
) {
1429 NS_DBG("write_buf: %d bytes were written\n", ns
->regs
.count
);
1433 static void ns_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
1435 struct nandsim
*ns
= (struct nandsim
*)((struct nand_chip
*)mtd
->priv
)->priv
;
1437 /* Sanity and correctness checks */
1438 if (!ns
->lines
.ce
) {
1439 NS_ERR("read_buf: chip is disabled\n");
1442 if (ns
->lines
.ale
|| ns
->lines
.cle
) {
1443 NS_ERR("read_buf: ALE or CLE pin is high\n");
1446 if (!(ns
->state
& STATE_DATAOUT_MASK
)) {
1447 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1448 get_state_name(ns
->state
));
1452 if (NS_STATE(ns
->state
) != STATE_DATAOUT
) {
1455 for (i
= 0; i
< len
; i
++)
1456 buf
[i
] = ((struct nand_chip
*)mtd
->priv
)->read_byte(mtd
);
1461 /* Check if these are expected bytes */
1462 if (ns
->regs
.count
+ len
> ns
->regs
.num
) {
1463 NS_ERR("read_buf: too many bytes to read\n");
1464 switch_to_ready_state(ns
, NS_STATUS_FAILED(ns
));
1468 memcpy(buf
, ns
->buf
.byte
+ ns
->regs
.count
, len
);
1469 ns
->regs
.count
+= len
;
1471 if (ns
->regs
.count
== ns
->regs
.num
) {
1472 if ((ns
->options
& OPT_AUTOINCR
) && NS_STATE(ns
->state
) == STATE_DATAOUT
) {
1474 if (ns
->regs
.row
+ 1 < ns
->geom
.pgnum
)
1476 NS_DBG("read_buf: switch to the next page (%#x)\n", ns
->regs
.row
);
1477 do_state_action(ns
, ACTION_CPY
);
1479 else if (NS_STATE(ns
->nxstate
) == STATE_READY
)
1486 static int ns_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
1488 ns_nand_read_buf(mtd
, (u_char
*)&ns_verify_buf
[0], len
);
1490 if (!memcmp(buf
, &ns_verify_buf
[0], len
)) {
1491 NS_DBG("verify_buf: the buffer is OK\n");
1494 NS_DBG("verify_buf: the buffer is wrong\n");
1500 * Module initialization function
1502 static int __init
ns_init_module(void)
1504 struct nand_chip
*chip
;
1505 struct nandsim
*nand
;
1506 int retval
= -ENOMEM
;
1508 if (bus_width
!= 8 && bus_width
!= 16) {
1509 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width
);
1513 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1514 nsmtd
= kzalloc(sizeof(struct mtd_info
) + sizeof(struct nand_chip
)
1515 + sizeof(struct nandsim
), GFP_KERNEL
);
1517 NS_ERR("unable to allocate core structures.\n");
1520 chip
= (struct nand_chip
*)(nsmtd
+ 1);
1521 nsmtd
->priv
= (void *)chip
;
1522 nand
= (struct nandsim
*)(chip
+ 1);
1523 chip
->priv
= (void *)nand
;
1526 * Register simulator's callbacks.
1528 chip
->cmd_ctrl
= ns_hwcontrol
;
1529 chip
->read_byte
= ns_nand_read_byte
;
1530 chip
->dev_ready
= ns_device_ready
;
1531 chip
->write_buf
= ns_nand_write_buf
;
1532 chip
->read_buf
= ns_nand_read_buf
;
1533 chip
->verify_buf
= ns_nand_verify_buf
;
1534 chip
->read_word
= ns_nand_read_word
;
1535 chip
->ecc
.mode
= NAND_ECC_SOFT
;
1536 chip
->options
|= NAND_SKIP_BBTSCAN
;
1539 * Perform minimum nandsim structure initialization to handle
1540 * the initial ID read command correctly
1542 if (third_id_byte
!= 0xFF || fourth_id_byte
!= 0xFF)
1543 nand
->geom
.idbytes
= 4;
1545 nand
->geom
.idbytes
= 2;
1546 nand
->regs
.status
= NS_STATUS_OK(nand
);
1547 nand
->nxstate
= STATE_UNKNOWN
;
1548 nand
->options
|= OPT_PAGE256
; /* temporary value */
1549 nand
->ids
[0] = first_id_byte
;
1550 nand
->ids
[1] = second_id_byte
;
1551 nand
->ids
[2] = third_id_byte
;
1552 nand
->ids
[3] = fourth_id_byte
;
1553 if (bus_width
== 16) {
1555 chip
->options
|= NAND_BUSWIDTH_16
;
1558 nsmtd
->owner
= THIS_MODULE
;
1560 if ((retval
= nand_scan(nsmtd
, 1)) != 0) {
1561 NS_ERR("can't register NAND Simulator\n");
1567 if ((retval
= init_nandsim(nsmtd
)) != 0) {
1568 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1572 if ((retval
= nand_default_bbt(nsmtd
)) != 0) {
1577 /* Register NAND as one big partition */
1578 add_mtd_partitions(nsmtd
, &nand
->part
, 1);
1588 module_init(ns_init_module
);
1591 * Module clean-up function
1593 static void __exit
ns_cleanup_module(void)
1595 struct nandsim
*ns
= (struct nandsim
*)(((struct nand_chip
*)nsmtd
->priv
)->priv
);
1597 free_nandsim(ns
); /* Free nandsim private resources */
1598 nand_release(nsmtd
); /* Unregisterd drived */
1599 kfree(nsmtd
); /* Free other structures */
1602 module_exit(ns_cleanup_module
);
1604 MODULE_LICENSE ("GPL");
1605 MODULE_AUTHOR ("Artem B. Bityuckiy");
1606 MODULE_DESCRIPTION ("The NAND flash simulator");