4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy
)
126 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
131 static inline int task_has_rt_policy(struct task_struct
*p
)
133 return rt_policy(p
->policy
);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array
{
140 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
141 struct list_head queue
[MAX_RT_PRIO
];
144 struct rt_bandwidth
{
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock
;
149 struct hrtimer rt_period_timer
;
152 static struct rt_bandwidth def_rt_bandwidth
;
154 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
156 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
158 struct rt_bandwidth
*rt_b
=
159 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
165 now
= hrtimer_cb_get_time(timer
);
166 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
171 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
174 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
178 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
180 rt_b
->rt_period
= ns_to_ktime(period
);
181 rt_b
->rt_runtime
= runtime
;
183 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
185 hrtimer_init(&rt_b
->rt_period_timer
,
186 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
187 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime
>= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
199 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
202 if (hrtimer_active(&rt_b
->rt_period_timer
))
205 raw_spin_lock(&rt_b
->rt_runtime_lock
);
210 if (hrtimer_active(&rt_b
->rt_period_timer
))
213 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
214 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
216 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
217 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
218 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
219 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
220 HRTIMER_MODE_ABS_PINNED
, 0);
222 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
228 hrtimer_cancel(&rt_b
->rt_period_timer
);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex
);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups
);
246 /* task group related information */
248 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity
**se
;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq
**cfs_rq
;
255 unsigned long shares
;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity
**rt_se
;
260 struct rt_rq
**rt_rq
;
262 struct rt_bandwidth rt_bandwidth
;
266 struct list_head list
;
268 struct task_group
*parent
;
269 struct list_head siblings
;
270 struct list_head children
;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock
);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group
.children
);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group
;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load
;
315 unsigned long nr_running
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
;
332 unsigned int nr_spread_over
;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list
;
346 struct task_group
*tg
; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight
;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load
;
363 * this cpu's part of tg->shares
365 unsigned long shares
;
368 * load.weight at the time we set shares
370 unsigned long rq_weight
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
429 struct cpupri cpupri
;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain
;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running
;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
458 unsigned long last_load_update_tick
;
461 unsigned char nohz_balance_kick
;
463 unsigned int skip_clock_update
;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load
;
467 unsigned long nr_load_updates
;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list
;
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list
;
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible
;
489 struct task_struct
*curr
, *idle
, *stop
;
490 unsigned long next_balance
;
491 struct mm_struct
*prev_mm
;
499 struct root_domain
*rd
;
500 struct sched_domain
*sd
;
502 unsigned long cpu_power
;
504 unsigned char idle_at_tick
;
505 /* For active balancing */
509 struct cpu_stop_work active_balance_work
;
510 /* cpu of this runqueue: */
514 unsigned long avg_load_per_task
;
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
526 /* calc_load related fields */
527 unsigned long calc_load_update
;
528 long calc_load_active
;
530 #ifdef CONFIG_SCHED_HRTICK
532 int hrtick_csd_pending
;
533 struct call_single_data hrtick_csd
;
535 struct hrtimer hrtick_timer
;
538 #ifdef CONFIG_SCHEDSTATS
540 struct sched_info rq_sched_info
;
541 unsigned long long rq_cpu_time
;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count
;
547 /* schedule() stats */
548 unsigned int sched_switch
;
549 unsigned int sched_count
;
550 unsigned int sched_goidle
;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count
;
554 unsigned int ttwu_local
;
557 unsigned int bkl_count
;
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
564 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
566 static inline int cpu_of(struct rq
*rq
)
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group
*task_group(struct task_struct
*p
)
608 struct cgroup_subsys_state
*css
;
610 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
611 lockdep_is_held(&task_rq(p
)->lock
));
612 return container_of(css
, struct task_group
, css
);
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
620 p
->se
.parent
= task_group(p
)->se
[cpu
];
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
625 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
629 #else /* CONFIG_CGROUP_SCHED */
631 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
632 static inline struct task_group
*task_group(struct task_struct
*p
)
637 #endif /* CONFIG_CGROUP_SCHED */
639 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
641 static void update_rq_clock(struct rq
*rq
)
645 if (rq
->skip_clock_update
)
648 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
650 update_rq_clock_task(rq
, delta
);
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
659 # define const_debug static const
664 * @cpu: the processor in question.
666 * Returns true if the current cpu runqueue is locked.
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
670 int runqueue_is_locked(int cpu
)
672 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
676 * Debugging: various feature bits
679 #define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
683 #include "sched_features.h"
688 #define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
691 const_debug
unsigned int sysctl_sched_features
=
692 #include "sched_features.h"
697 #ifdef CONFIG_SCHED_DEBUG
698 #define SCHED_FEAT(name, enabled) \
701 static __read_mostly
char *sched_feat_names
[] = {
702 #include "sched_features.h"
708 static int sched_feat_show(struct seq_file
*m
, void *v
)
712 for (i
= 0; sched_feat_names
[i
]; i
++) {
713 if (!(sysctl_sched_features
& (1UL << i
)))
715 seq_printf(m
, "%s ", sched_feat_names
[i
]);
723 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
724 size_t cnt
, loff_t
*ppos
)
734 if (copy_from_user(&buf
, ubuf
, cnt
))
740 if (strncmp(buf
, "NO_", 3) == 0) {
745 for (i
= 0; sched_feat_names
[i
]; i
++) {
746 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
748 sysctl_sched_features
&= ~(1UL << i
);
750 sysctl_sched_features
|= (1UL << i
);
755 if (!sched_feat_names
[i
])
763 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
765 return single_open(filp
, sched_feat_show
, NULL
);
768 static const struct file_operations sched_feat_fops
= {
769 .open
= sched_feat_open
,
770 .write
= sched_feat_write
,
773 .release
= single_release
,
776 static __init
int sched_init_debug(void)
778 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
783 late_initcall(sched_init_debug
);
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
793 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
796 * ratelimit for updating the group shares.
799 unsigned int sysctl_sched_shares_ratelimit
= 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
807 unsigned int sysctl_sched_shares_thresh
= 4;
810 * period over which we average the RT time consumption, measured
815 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
818 * period over which we measure -rt task cpu usage in us.
821 unsigned int sysctl_sched_rt_period
= 1000000;
823 static __read_mostly
int scheduler_running
;
826 * part of the period that we allow rt tasks to run in us.
829 int sysctl_sched_rt_runtime
= 950000;
831 static inline u64
global_rt_period(void)
833 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
836 static inline u64
global_rt_runtime(void)
838 if (sysctl_sched_rt_runtime
< 0)
841 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
851 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
853 return rq
->curr
== p
;
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
859 return task_current(rq
, p
);
862 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
866 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq
->lock
.owner
= current
;
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
877 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
879 raw_spin_unlock_irq(&rq
->lock
);
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
888 return task_current(rq
, p
);
892 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq
->lock
);
905 raw_spin_unlock(&rq
->lock
);
909 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
930 static inline int task_is_waking(struct task_struct
*p
)
932 return unlikely(p
->state
== TASK_WAKING
);
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
946 raw_spin_lock(&rq
->lock
);
947 if (likely(rq
== task_rq(p
)))
949 raw_spin_unlock(&rq
->lock
);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
964 local_irq_save(*flags
);
966 raw_spin_lock(&rq
->lock
);
967 if (likely(rq
== task_rq(p
)))
969 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
973 static void __task_rq_unlock(struct rq
*rq
)
976 raw_spin_unlock(&rq
->lock
);
979 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
982 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq
*this_rq_lock(void)
995 raw_spin_lock(&rq
->lock
);
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq
*rq
)
1019 if (!sched_feat(HRTICK
))
1021 if (!cpu_active(cpu_of(rq
)))
1023 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1026 static void hrtick_clear(struct rq
*rq
)
1028 if (hrtimer_active(&rq
->hrtick_timer
))
1029 hrtimer_cancel(&rq
->hrtick_timer
);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1038 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1040 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1042 raw_spin_lock(&rq
->lock
);
1043 update_rq_clock(rq
);
1044 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1045 raw_spin_unlock(&rq
->lock
);
1047 return HRTIMER_NORESTART
;
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg
)
1056 struct rq
*rq
= arg
;
1058 raw_spin_lock(&rq
->lock
);
1059 hrtimer_restart(&rq
->hrtick_timer
);
1060 rq
->hrtick_csd_pending
= 0;
1061 raw_spin_unlock(&rq
->lock
);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq
*rq
, u64 delay
)
1071 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1072 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1074 hrtimer_set_expires(timer
, time
);
1076 if (rq
== this_rq()) {
1077 hrtimer_restart(timer
);
1078 } else if (!rq
->hrtick_csd_pending
) {
1079 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1080 rq
->hrtick_csd_pending
= 1;
1085 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1087 int cpu
= (int)(long)hcpu
;
1090 case CPU_UP_CANCELED
:
1091 case CPU_UP_CANCELED_FROZEN
:
1092 case CPU_DOWN_PREPARE
:
1093 case CPU_DOWN_PREPARE_FROZEN
:
1095 case CPU_DEAD_FROZEN
:
1096 hrtick_clear(cpu_rq(cpu
));
1103 static __init
void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick
, 0);
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq
*rq
, u64 delay
)
1115 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1116 HRTIMER_MODE_REL_PINNED
, 0);
1119 static inline void init_hrtick(void)
1122 #endif /* CONFIG_SMP */
1124 static void init_rq_hrtick(struct rq
*rq
)
1127 rq
->hrtick_csd_pending
= 0;
1129 rq
->hrtick_csd
.flags
= 0;
1130 rq
->hrtick_csd
.func
= __hrtick_start
;
1131 rq
->hrtick_csd
.info
= rq
;
1134 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1135 rq
->hrtick_timer
.function
= hrtick
;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq
*rq
)
1142 static inline void init_rq_hrtick(struct rq
*rq
)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 static void resched_task(struct task_struct
*p
)
1168 assert_raw_spin_locked(&task_rq(p
)->lock
);
1170 if (test_tsk_need_resched(p
))
1173 set_tsk_need_resched(p
);
1176 if (cpu
== smp_processor_id())
1179 /* NEED_RESCHED must be visible before we test polling */
1181 if (!tsk_is_polling(p
))
1182 smp_send_reschedule(cpu
);
1185 static void resched_cpu(int cpu
)
1187 struct rq
*rq
= cpu_rq(cpu
);
1188 unsigned long flags
;
1190 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1192 resched_task(cpu_curr(cpu
));
1193 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1205 int get_nohz_timer_target(void)
1207 int cpu
= smp_processor_id();
1209 struct sched_domain
*sd
;
1211 for_each_domain(cpu
, sd
) {
1212 for_each_cpu(i
, sched_domain_span(sd
))
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu
)
1230 struct rq
*rq
= cpu_rq(cpu
);
1232 if (cpu
== smp_processor_id())
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq
->curr
!= rq
->idle
)
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_need_resched(rq
->idle
);
1252 /* NEED_RESCHED must be visible before we test polling */
1254 if (!tsk_is_polling(rq
->idle
))
1255 smp_send_reschedule(cpu
);
1258 #endif /* CONFIG_NO_HZ */
1260 static u64
sched_avg_period(void)
1262 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1265 static void sched_avg_update(struct rq
*rq
)
1267 s64 period
= sched_avg_period();
1269 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1275 asm("" : "+rm" (rq
->age_stamp
));
1276 rq
->age_stamp
+= period
;
1281 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 rq
->rt_avg
+= rt_delta
;
1284 sched_avg_update(rq
);
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct
*p
)
1290 assert_raw_spin_locked(&task_rq(p
)->lock
);
1291 set_tsk_need_resched(p
);
1294 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1298 static void sched_avg_update(struct rq
*rq
)
1301 #endif /* CONFIG_SMP */
1303 #if BITS_PER_LONG == 32
1304 # define WMULT_CONST (~0UL)
1306 # define WMULT_CONST (1UL << 32)
1309 #define WMULT_SHIFT 32
1312 * Shift right and round:
1314 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1317 * delta *= weight / lw
1319 static unsigned long
1320 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1321 struct load_weight
*lw
)
1325 if (!lw
->inv_weight
) {
1326 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1329 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1333 tmp
= (u64
)delta_exec
* weight
;
1335 * Check whether we'd overflow the 64-bit multiplication:
1337 if (unlikely(tmp
> WMULT_CONST
))
1338 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1341 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1343 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1346 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1352 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1359 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1360 * of tasks with abnormal "nice" values across CPUs the contribution that
1361 * each task makes to its run queue's load is weighted according to its
1362 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1363 * scaled version of the new time slice allocation that they receive on time
1367 #define WEIGHT_IDLEPRIO 3
1368 #define WMULT_IDLEPRIO 1431655765
1371 * Nice levels are multiplicative, with a gentle 10% change for every
1372 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1373 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1374 * that remained on nice 0.
1376 * The "10% effect" is relative and cumulative: from _any_ nice level,
1377 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1378 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1379 * If a task goes up by ~10% and another task goes down by ~10% then
1380 * the relative distance between them is ~25%.)
1382 static const int prio_to_weight
[40] = {
1383 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1384 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1385 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1386 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1387 /* 0 */ 1024, 820, 655, 526, 423,
1388 /* 5 */ 335, 272, 215, 172, 137,
1389 /* 10 */ 110, 87, 70, 56, 45,
1390 /* 15 */ 36, 29, 23, 18, 15,
1394 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 * In cases where the weight does not change often, we can use the
1397 * precalculated inverse to speed up arithmetics by turning divisions
1398 * into multiplications:
1400 static const u32 prio_to_wmult
[40] = {
1401 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1402 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1403 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1404 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1405 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1406 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1407 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1408 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1411 /* Time spent by the tasks of the cpu accounting group executing in ... */
1412 enum cpuacct_stat_index
{
1413 CPUACCT_STAT_USER
, /* ... user mode */
1414 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1416 CPUACCT_STAT_NSTATS
,
1419 #ifdef CONFIG_CGROUP_CPUACCT
1420 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1421 static void cpuacct_update_stats(struct task_struct
*tsk
,
1422 enum cpuacct_stat_index idx
, cputime_t val
);
1424 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1425 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1426 enum cpuacct_stat_index idx
, cputime_t val
) {}
1429 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1431 update_load_add(&rq
->load
, load
);
1434 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1436 update_load_sub(&rq
->load
, load
);
1439 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1440 typedef int (*tg_visitor
)(struct task_group
*, void *);
1443 * Iterate the full tree, calling @down when first entering a node and @up when
1444 * leaving it for the final time.
1446 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1448 struct task_group
*parent
, *child
;
1452 parent
= &root_task_group
;
1454 ret
= (*down
)(parent
, data
);
1457 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1464 ret
= (*up
)(parent
, data
);
1469 parent
= parent
->parent
;
1478 static int tg_nop(struct task_group
*tg
, void *data
)
1485 /* Used instead of source_load when we know the type == 0 */
1486 static unsigned long weighted_cpuload(const int cpu
)
1488 return cpu_rq(cpu
)->load
.weight
;
1492 * Return a low guess at the load of a migration-source cpu weighted
1493 * according to the scheduling class and "nice" value.
1495 * We want to under-estimate the load of migration sources, to
1496 * balance conservatively.
1498 static unsigned long source_load(int cpu
, int type
)
1500 struct rq
*rq
= cpu_rq(cpu
);
1501 unsigned long total
= weighted_cpuload(cpu
);
1503 if (type
== 0 || !sched_feat(LB_BIAS
))
1506 return min(rq
->cpu_load
[type
-1], total
);
1510 * Return a high guess at the load of a migration-target cpu weighted
1511 * according to the scheduling class and "nice" value.
1513 static unsigned long target_load(int cpu
, int type
)
1515 struct rq
*rq
= cpu_rq(cpu
);
1516 unsigned long total
= weighted_cpuload(cpu
);
1518 if (type
== 0 || !sched_feat(LB_BIAS
))
1521 return max(rq
->cpu_load
[type
-1], total
);
1524 static unsigned long power_of(int cpu
)
1526 return cpu_rq(cpu
)->cpu_power
;
1529 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1531 static unsigned long cpu_avg_load_per_task(int cpu
)
1533 struct rq
*rq
= cpu_rq(cpu
);
1534 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1537 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1539 rq
->avg_load_per_task
= 0;
1541 return rq
->avg_load_per_task
;
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1546 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1548 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1551 * Calculate and set the cpu's group shares.
1553 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1554 unsigned long sd_shares
,
1555 unsigned long sd_rq_weight
,
1556 unsigned long *usd_rq_weight
)
1558 unsigned long shares
, rq_weight
;
1561 rq_weight
= usd_rq_weight
[cpu
];
1564 rq_weight
= NICE_0_LOAD
;
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1572 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1573 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1575 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1576 sysctl_sched_shares_thresh
) {
1577 struct rq
*rq
= cpu_rq(cpu
);
1578 unsigned long flags
;
1580 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1581 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1582 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1583 __set_se_shares(tg
->se
[cpu
], shares
);
1584 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1593 static int tg_shares_up(struct task_group
*tg
, void *data
)
1595 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1596 unsigned long *usd_rq_weight
;
1597 struct sched_domain
*sd
= data
;
1598 unsigned long flags
;
1604 local_irq_save(flags
);
1605 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1607 for_each_cpu(i
, sched_domain_span(sd
)) {
1608 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1609 usd_rq_weight
[i
] = weight
;
1611 rq_weight
+= weight
;
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1618 weight
= NICE_0_LOAD
;
1620 sum_weight
+= weight
;
1621 shares
+= tg
->cfs_rq
[i
]->shares
;
1625 rq_weight
= sum_weight
;
1627 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1628 shares
= tg
->shares
;
1630 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1631 shares
= tg
->shares
;
1633 for_each_cpu(i
, sched_domain_span(sd
))
1634 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1636 local_irq_restore(flags
);
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1646 static int tg_load_down(struct task_group
*tg
, void *data
)
1649 long cpu
= (long)data
;
1652 load
= cpu_rq(cpu
)->load
.weight
;
1654 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1655 load
*= tg
->cfs_rq
[cpu
]->shares
;
1656 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1659 tg
->cfs_rq
[cpu
]->h_load
= load
;
1664 static void update_shares(struct sched_domain
*sd
)
1669 if (root_task_group_empty())
1672 now
= local_clock();
1673 elapsed
= now
- sd
->last_update
;
1675 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1676 sd
->last_update
= now
;
1677 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1681 static void update_h_load(long cpu
)
1683 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1688 static inline void update_shares(struct sched_domain
*sd
)
1694 #ifdef CONFIG_PREEMPT
1696 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
1706 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1707 __releases(this_rq
->lock
)
1708 __acquires(busiest
->lock
)
1709 __acquires(this_rq
->lock
)
1711 raw_spin_unlock(&this_rq
->lock
);
1712 double_rq_lock(this_rq
, busiest
);
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1725 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1726 __releases(this_rq
->lock
)
1727 __acquires(busiest
->lock
)
1728 __acquires(this_rq
->lock
)
1732 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1733 if (busiest
< this_rq
) {
1734 raw_spin_unlock(&this_rq
->lock
);
1735 raw_spin_lock(&busiest
->lock
);
1736 raw_spin_lock_nested(&this_rq
->lock
,
1737 SINGLE_DEPTH_NESTING
);
1740 raw_spin_lock_nested(&busiest
->lock
,
1741 SINGLE_DEPTH_NESTING
);
1746 #endif /* CONFIG_PREEMPT */
1749 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1751 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1753 if (unlikely(!irqs_disabled())) {
1754 /* printk() doesn't work good under rq->lock */
1755 raw_spin_unlock(&this_rq
->lock
);
1759 return _double_lock_balance(this_rq
, busiest
);
1762 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1763 __releases(busiest
->lock
)
1765 raw_spin_unlock(&busiest
->lock
);
1766 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1770 * double_rq_lock - safely lock two runqueues
1772 * Note this does not disable interrupts like task_rq_lock,
1773 * you need to do so manually before calling.
1775 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1776 __acquires(rq1
->lock
)
1777 __acquires(rq2
->lock
)
1779 BUG_ON(!irqs_disabled());
1781 raw_spin_lock(&rq1
->lock
);
1782 __acquire(rq2
->lock
); /* Fake it out ;) */
1785 raw_spin_lock(&rq1
->lock
);
1786 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1788 raw_spin_lock(&rq2
->lock
);
1789 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1795 * double_rq_unlock - safely unlock two runqueues
1797 * Note this does not restore interrupts like task_rq_unlock,
1798 * you need to do so manually after calling.
1800 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1801 __releases(rq1
->lock
)
1802 __releases(rq2
->lock
)
1804 raw_spin_unlock(&rq1
->lock
);
1806 raw_spin_unlock(&rq2
->lock
);
1808 __release(rq2
->lock
);
1813 #ifdef CONFIG_FAIR_GROUP_SCHED
1814 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1817 cfs_rq
->shares
= shares
;
1822 static void calc_load_account_idle(struct rq
*this_rq
);
1823 static void update_sysctl(void);
1824 static int get_update_sysctl_factor(void);
1825 static void update_cpu_load(struct rq
*this_rq
);
1827 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1829 set_task_rq(p
, cpu
);
1832 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1833 * successfuly executed on another CPU. We must ensure that updates of
1834 * per-task data have been completed by this moment.
1837 task_thread_info(p
)->cpu
= cpu
;
1841 static const struct sched_class rt_sched_class
;
1843 #define sched_class_highest (&stop_sched_class)
1844 #define for_each_class(class) \
1845 for (class = sched_class_highest; class; class = class->next)
1847 #include "sched_stats.h"
1849 static void inc_nr_running(struct rq
*rq
)
1854 static void dec_nr_running(struct rq
*rq
)
1859 static void set_load_weight(struct task_struct
*p
)
1862 * SCHED_IDLE tasks get minimal weight:
1864 if (p
->policy
== SCHED_IDLE
) {
1865 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1866 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1870 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1871 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1874 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1876 update_rq_clock(rq
);
1877 sched_info_queued(p
);
1878 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1882 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1884 update_rq_clock(rq
);
1885 sched_info_dequeued(p
);
1886 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1891 * activate_task - move a task to the runqueue.
1893 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1895 if (task_contributes_to_load(p
))
1896 rq
->nr_uninterruptible
--;
1898 enqueue_task(rq
, p
, flags
);
1903 * deactivate_task - remove a task from the runqueue.
1905 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1907 if (task_contributes_to_load(p
))
1908 rq
->nr_uninterruptible
++;
1910 dequeue_task(rq
, p
, flags
);
1914 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1917 * There are no locks covering percpu hardirq/softirq time.
1918 * They are only modified in account_system_vtime, on corresponding CPU
1919 * with interrupts disabled. So, writes are safe.
1920 * They are read and saved off onto struct rq in update_rq_clock().
1921 * This may result in other CPU reading this CPU's irq time and can
1922 * race with irq/account_system_vtime on this CPU. We would either get old
1923 * or new value with a side effect of accounting a slice of irq time to wrong
1924 * task when irq is in progress while we read rq->clock. That is a worthy
1925 * compromise in place of having locks on each irq in account_system_time.
1927 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1928 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1930 static DEFINE_PER_CPU(u64
, irq_start_time
);
1931 static int sched_clock_irqtime
;
1933 void enable_sched_clock_irqtime(void)
1935 sched_clock_irqtime
= 1;
1938 void disable_sched_clock_irqtime(void)
1940 sched_clock_irqtime
= 0;
1943 #ifndef CONFIG_64BIT
1944 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1946 static inline void irq_time_write_begin(void)
1948 __this_cpu_inc(irq_time_seq
.sequence
);
1952 static inline void irq_time_write_end(void)
1955 __this_cpu_inc(irq_time_seq
.sequence
);
1958 static inline u64
irq_time_read(int cpu
)
1964 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1965 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1966 per_cpu(cpu_hardirq_time
, cpu
);
1967 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1971 #else /* CONFIG_64BIT */
1972 static inline void irq_time_write_begin(void)
1976 static inline void irq_time_write_end(void)
1980 static inline u64
irq_time_read(int cpu
)
1982 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1984 #endif /* CONFIG_64BIT */
1987 * Called before incrementing preempt_count on {soft,}irq_enter
1988 * and before decrementing preempt_count on {soft,}irq_exit.
1990 void account_system_vtime(struct task_struct
*curr
)
1992 unsigned long flags
;
1996 if (!sched_clock_irqtime
)
1999 local_irq_save(flags
);
2001 cpu
= smp_processor_id();
2002 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
2003 __this_cpu_add(irq_start_time
, delta
);
2005 irq_time_write_begin();
2007 * We do not account for softirq time from ksoftirqd here.
2008 * We want to continue accounting softirq time to ksoftirqd thread
2009 * in that case, so as not to confuse scheduler with a special task
2010 * that do not consume any time, but still wants to run.
2012 if (hardirq_count())
2013 __this_cpu_add(cpu_hardirq_time
, delta
);
2014 else if (in_serving_softirq() && !(curr
->flags
& PF_KSOFTIRQD
))
2015 __this_cpu_add(cpu_softirq_time
, delta
);
2017 irq_time_write_end();
2018 local_irq_restore(flags
);
2020 EXPORT_SYMBOL_GPL(account_system_vtime
);
2022 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2026 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
2029 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2030 * this case when a previous update_rq_clock() happened inside a
2031 * {soft,}irq region.
2033 * When this happens, we stop ->clock_task and only update the
2034 * prev_irq_time stamp to account for the part that fit, so that a next
2035 * update will consume the rest. This ensures ->clock_task is
2038 * It does however cause some slight miss-attribution of {soft,}irq
2039 * time, a more accurate solution would be to update the irq_time using
2040 * the current rq->clock timestamp, except that would require using
2043 if (irq_delta
> delta
)
2046 rq
->prev_irq_time
+= irq_delta
;
2048 rq
->clock_task
+= delta
;
2050 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
2051 sched_rt_avg_update(rq
, irq_delta
);
2054 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2056 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2058 rq
->clock_task
+= delta
;
2061 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2063 #include "sched_idletask.c"
2064 #include "sched_fair.c"
2065 #include "sched_rt.c"
2066 #include "sched_stoptask.c"
2067 #ifdef CONFIG_SCHED_DEBUG
2068 # include "sched_debug.c"
2071 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2073 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2074 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2078 * Make it appear like a SCHED_FIFO task, its something
2079 * userspace knows about and won't get confused about.
2081 * Also, it will make PI more or less work without too
2082 * much confusion -- but then, stop work should not
2083 * rely on PI working anyway.
2085 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2087 stop
->sched_class
= &stop_sched_class
;
2090 cpu_rq(cpu
)->stop
= stop
;
2094 * Reset it back to a normal scheduling class so that
2095 * it can die in pieces.
2097 old_stop
->sched_class
= &rt_sched_class
;
2102 * __normal_prio - return the priority that is based on the static prio
2104 static inline int __normal_prio(struct task_struct
*p
)
2106 return p
->static_prio
;
2110 * Calculate the expected normal priority: i.e. priority
2111 * without taking RT-inheritance into account. Might be
2112 * boosted by interactivity modifiers. Changes upon fork,
2113 * setprio syscalls, and whenever the interactivity
2114 * estimator recalculates.
2116 static inline int normal_prio(struct task_struct
*p
)
2120 if (task_has_rt_policy(p
))
2121 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2123 prio
= __normal_prio(p
);
2128 * Calculate the current priority, i.e. the priority
2129 * taken into account by the scheduler. This value might
2130 * be boosted by RT tasks, or might be boosted by
2131 * interactivity modifiers. Will be RT if the task got
2132 * RT-boosted. If not then it returns p->normal_prio.
2134 static int effective_prio(struct task_struct
*p
)
2136 p
->normal_prio
= normal_prio(p
);
2138 * If we are RT tasks or we were boosted to RT priority,
2139 * keep the priority unchanged. Otherwise, update priority
2140 * to the normal priority:
2142 if (!rt_prio(p
->prio
))
2143 return p
->normal_prio
;
2148 * task_curr - is this task currently executing on a CPU?
2149 * @p: the task in question.
2151 inline int task_curr(const struct task_struct
*p
)
2153 return cpu_curr(task_cpu(p
)) == p
;
2156 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2157 const struct sched_class
*prev_class
,
2158 int oldprio
, int running
)
2160 if (prev_class
!= p
->sched_class
) {
2161 if (prev_class
->switched_from
)
2162 prev_class
->switched_from(rq
, p
, running
);
2163 p
->sched_class
->switched_to(rq
, p
, running
);
2165 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2168 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2170 const struct sched_class
*class;
2172 if (p
->sched_class
== rq
->curr
->sched_class
) {
2173 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2175 for_each_class(class) {
2176 if (class == rq
->curr
->sched_class
)
2178 if (class == p
->sched_class
) {
2179 resched_task(rq
->curr
);
2186 * A queue event has occurred, and we're going to schedule. In
2187 * this case, we can save a useless back to back clock update.
2189 if (rq
->curr
->se
.on_rq
&& test_tsk_need_resched(rq
->curr
))
2190 rq
->skip_clock_update
= 1;
2195 * Is this task likely cache-hot:
2198 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2202 if (p
->sched_class
!= &fair_sched_class
)
2205 if (unlikely(p
->policy
== SCHED_IDLE
))
2209 * Buddy candidates are cache hot:
2211 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2212 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2213 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2216 if (sysctl_sched_migration_cost
== -1)
2218 if (sysctl_sched_migration_cost
== 0)
2221 delta
= now
- p
->se
.exec_start
;
2223 return delta
< (s64
)sysctl_sched_migration_cost
;
2226 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2228 #ifdef CONFIG_SCHED_DEBUG
2230 * We should never call set_task_cpu() on a blocked task,
2231 * ttwu() will sort out the placement.
2233 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2234 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2237 trace_sched_migrate_task(p
, new_cpu
);
2239 if (task_cpu(p
) != new_cpu
) {
2240 p
->se
.nr_migrations
++;
2241 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2244 __set_task_cpu(p
, new_cpu
);
2247 struct migration_arg
{
2248 struct task_struct
*task
;
2252 static int migration_cpu_stop(void *data
);
2255 * The task's runqueue lock must be held.
2256 * Returns true if you have to wait for migration thread.
2258 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2260 struct rq
*rq
= task_rq(p
);
2263 * If the task is not on a runqueue (and not running), then
2264 * the next wake-up will properly place the task.
2266 return p
->se
.on_rq
|| task_running(rq
, p
);
2270 * wait_task_inactive - wait for a thread to unschedule.
2272 * If @match_state is nonzero, it's the @p->state value just checked and
2273 * not expected to change. If it changes, i.e. @p might have woken up,
2274 * then return zero. When we succeed in waiting for @p to be off its CPU,
2275 * we return a positive number (its total switch count). If a second call
2276 * a short while later returns the same number, the caller can be sure that
2277 * @p has remained unscheduled the whole time.
2279 * The caller must ensure that the task *will* unschedule sometime soon,
2280 * else this function might spin for a *long* time. This function can't
2281 * be called with interrupts off, or it may introduce deadlock with
2282 * smp_call_function() if an IPI is sent by the same process we are
2283 * waiting to become inactive.
2285 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2287 unsigned long flags
;
2294 * We do the initial early heuristics without holding
2295 * any task-queue locks at all. We'll only try to get
2296 * the runqueue lock when things look like they will
2302 * If the task is actively running on another CPU
2303 * still, just relax and busy-wait without holding
2306 * NOTE! Since we don't hold any locks, it's not
2307 * even sure that "rq" stays as the right runqueue!
2308 * But we don't care, since "task_running()" will
2309 * return false if the runqueue has changed and p
2310 * is actually now running somewhere else!
2312 while (task_running(rq
, p
)) {
2313 if (match_state
&& unlikely(p
->state
!= match_state
))
2319 * Ok, time to look more closely! We need the rq
2320 * lock now, to be *sure*. If we're wrong, we'll
2321 * just go back and repeat.
2323 rq
= task_rq_lock(p
, &flags
);
2324 trace_sched_wait_task(p
);
2325 running
= task_running(rq
, p
);
2326 on_rq
= p
->se
.on_rq
;
2328 if (!match_state
|| p
->state
== match_state
)
2329 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2330 task_rq_unlock(rq
, &flags
);
2333 * If it changed from the expected state, bail out now.
2335 if (unlikely(!ncsw
))
2339 * Was it really running after all now that we
2340 * checked with the proper locks actually held?
2342 * Oops. Go back and try again..
2344 if (unlikely(running
)) {
2350 * It's not enough that it's not actively running,
2351 * it must be off the runqueue _entirely_, and not
2354 * So if it was still runnable (but just not actively
2355 * running right now), it's preempted, and we should
2356 * yield - it could be a while.
2358 if (unlikely(on_rq
)) {
2359 schedule_timeout_uninterruptible(1);
2364 * Ahh, all good. It wasn't running, and it wasn't
2365 * runnable, which means that it will never become
2366 * running in the future either. We're all done!
2375 * kick_process - kick a running thread to enter/exit the kernel
2376 * @p: the to-be-kicked thread
2378 * Cause a process which is running on another CPU to enter
2379 * kernel-mode, without any delay. (to get signals handled.)
2381 * NOTE: this function doesnt have to take the runqueue lock,
2382 * because all it wants to ensure is that the remote task enters
2383 * the kernel. If the IPI races and the task has been migrated
2384 * to another CPU then no harm is done and the purpose has been
2387 void kick_process(struct task_struct
*p
)
2393 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2394 smp_send_reschedule(cpu
);
2397 EXPORT_SYMBOL_GPL(kick_process
);
2398 #endif /* CONFIG_SMP */
2401 * task_oncpu_function_call - call a function on the cpu on which a task runs
2402 * @p: the task to evaluate
2403 * @func: the function to be called
2404 * @info: the function call argument
2406 * Calls the function @func when the task is currently running. This might
2407 * be on the current CPU, which just calls the function directly
2409 void task_oncpu_function_call(struct task_struct
*p
,
2410 void (*func
) (void *info
), void *info
)
2417 smp_call_function_single(cpu
, func
, info
, 1);
2423 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2425 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2428 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2430 /* Look for allowed, online CPU in same node. */
2431 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2432 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2435 /* Any allowed, online CPU? */
2436 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2437 if (dest_cpu
< nr_cpu_ids
)
2440 /* No more Mr. Nice Guy. */
2441 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2442 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2444 * Don't tell them about moving exiting tasks or
2445 * kernel threads (both mm NULL), since they never
2448 if (p
->mm
&& printk_ratelimit()) {
2449 printk(KERN_INFO
"process %d (%s) no "
2450 "longer affine to cpu%d\n",
2451 task_pid_nr(p
), p
->comm
, cpu
);
2459 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2462 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2464 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2467 * In order not to call set_task_cpu() on a blocking task we need
2468 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2471 * Since this is common to all placement strategies, this lives here.
2473 * [ this allows ->select_task() to simply return task_cpu(p) and
2474 * not worry about this generic constraint ]
2476 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2478 cpu
= select_fallback_rq(task_cpu(p
), p
);
2483 static void update_avg(u64
*avg
, u64 sample
)
2485 s64 diff
= sample
- *avg
;
2490 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2491 bool is_sync
, bool is_migrate
, bool is_local
,
2492 unsigned long en_flags
)
2494 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2496 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2498 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2500 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2502 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2504 activate_task(rq
, p
, en_flags
);
2507 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2508 int wake_flags
, bool success
)
2510 trace_sched_wakeup(p
, success
);
2511 check_preempt_curr(rq
, p
, wake_flags
);
2513 p
->state
= TASK_RUNNING
;
2515 if (p
->sched_class
->task_woken
)
2516 p
->sched_class
->task_woken(rq
, p
);
2518 if (unlikely(rq
->idle_stamp
)) {
2519 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2520 u64 max
= 2*sysctl_sched_migration_cost
;
2525 update_avg(&rq
->avg_idle
, delta
);
2529 /* if a worker is waking up, notify workqueue */
2530 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2531 wq_worker_waking_up(p
, cpu_of(rq
));
2535 * try_to_wake_up - wake up a thread
2536 * @p: the thread to be awakened
2537 * @state: the mask of task states that can be woken
2538 * @wake_flags: wake modifier flags (WF_*)
2540 * Put it on the run-queue if it's not already there. The "current"
2541 * thread is always on the run-queue (except when the actual
2542 * re-schedule is in progress), and as such you're allowed to do
2543 * the simpler "current->state = TASK_RUNNING" to mark yourself
2544 * runnable without the overhead of this.
2546 * Returns %true if @p was woken up, %false if it was already running
2547 * or @state didn't match @p's state.
2549 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2552 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2553 unsigned long flags
;
2554 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2557 this_cpu
= get_cpu();
2560 rq
= task_rq_lock(p
, &flags
);
2561 if (!(p
->state
& state
))
2571 if (unlikely(task_running(rq
, p
)))
2575 * In order to handle concurrent wakeups and release the rq->lock
2576 * we put the task in TASK_WAKING state.
2578 * First fix up the nr_uninterruptible count:
2580 if (task_contributes_to_load(p
)) {
2581 if (likely(cpu_online(orig_cpu
)))
2582 rq
->nr_uninterruptible
--;
2584 this_rq()->nr_uninterruptible
--;
2586 p
->state
= TASK_WAKING
;
2588 if (p
->sched_class
->task_waking
) {
2589 p
->sched_class
->task_waking(rq
, p
);
2590 en_flags
|= ENQUEUE_WAKING
;
2593 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2594 if (cpu
!= orig_cpu
)
2595 set_task_cpu(p
, cpu
);
2596 __task_rq_unlock(rq
);
2599 raw_spin_lock(&rq
->lock
);
2602 * We migrated the task without holding either rq->lock, however
2603 * since the task is not on the task list itself, nobody else
2604 * will try and migrate the task, hence the rq should match the
2605 * cpu we just moved it to.
2607 WARN_ON(task_cpu(p
) != cpu
);
2608 WARN_ON(p
->state
!= TASK_WAKING
);
2610 #ifdef CONFIG_SCHEDSTATS
2611 schedstat_inc(rq
, ttwu_count
);
2612 if (cpu
== this_cpu
)
2613 schedstat_inc(rq
, ttwu_local
);
2615 struct sched_domain
*sd
;
2616 for_each_domain(this_cpu
, sd
) {
2617 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2618 schedstat_inc(sd
, ttwu_wake_remote
);
2623 #endif /* CONFIG_SCHEDSTATS */
2626 #endif /* CONFIG_SMP */
2627 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2628 cpu
== this_cpu
, en_flags
);
2631 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2633 task_rq_unlock(rq
, &flags
);
2640 * try_to_wake_up_local - try to wake up a local task with rq lock held
2641 * @p: the thread to be awakened
2643 * Put @p on the run-queue if it's not alredy there. The caller must
2644 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2645 * the current task. this_rq() stays locked over invocation.
2647 static void try_to_wake_up_local(struct task_struct
*p
)
2649 struct rq
*rq
= task_rq(p
);
2650 bool success
= false;
2652 BUG_ON(rq
!= this_rq());
2653 BUG_ON(p
== current
);
2654 lockdep_assert_held(&rq
->lock
);
2656 if (!(p
->state
& TASK_NORMAL
))
2660 if (likely(!task_running(rq
, p
))) {
2661 schedstat_inc(rq
, ttwu_count
);
2662 schedstat_inc(rq
, ttwu_local
);
2664 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2667 ttwu_post_activation(p
, rq
, 0, success
);
2671 * wake_up_process - Wake up a specific process
2672 * @p: The process to be woken up.
2674 * Attempt to wake up the nominated process and move it to the set of runnable
2675 * processes. Returns 1 if the process was woken up, 0 if it was already
2678 * It may be assumed that this function implies a write memory barrier before
2679 * changing the task state if and only if any tasks are woken up.
2681 int wake_up_process(struct task_struct
*p
)
2683 return try_to_wake_up(p
, TASK_ALL
, 0);
2685 EXPORT_SYMBOL(wake_up_process
);
2687 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2689 return try_to_wake_up(p
, state
, 0);
2693 * Perform scheduler related setup for a newly forked process p.
2694 * p is forked by current.
2696 * __sched_fork() is basic setup used by init_idle() too:
2698 static void __sched_fork(struct task_struct
*p
)
2700 p
->se
.exec_start
= 0;
2701 p
->se
.sum_exec_runtime
= 0;
2702 p
->se
.prev_sum_exec_runtime
= 0;
2703 p
->se
.nr_migrations
= 0;
2705 #ifdef CONFIG_SCHEDSTATS
2706 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2709 INIT_LIST_HEAD(&p
->rt
.run_list
);
2711 INIT_LIST_HEAD(&p
->se
.group_node
);
2713 #ifdef CONFIG_PREEMPT_NOTIFIERS
2714 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2719 * fork()/clone()-time setup:
2721 void sched_fork(struct task_struct
*p
, int clone_flags
)
2723 int cpu
= get_cpu();
2727 * We mark the process as running here. This guarantees that
2728 * nobody will actually run it, and a signal or other external
2729 * event cannot wake it up and insert it on the runqueue either.
2731 p
->state
= TASK_RUNNING
;
2734 * Revert to default priority/policy on fork if requested.
2736 if (unlikely(p
->sched_reset_on_fork
)) {
2737 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2738 p
->policy
= SCHED_NORMAL
;
2739 p
->normal_prio
= p
->static_prio
;
2742 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2743 p
->static_prio
= NICE_TO_PRIO(0);
2744 p
->normal_prio
= p
->static_prio
;
2749 * We don't need the reset flag anymore after the fork. It has
2750 * fulfilled its duty:
2752 p
->sched_reset_on_fork
= 0;
2756 * Make sure we do not leak PI boosting priority to the child.
2758 p
->prio
= current
->normal_prio
;
2760 if (!rt_prio(p
->prio
))
2761 p
->sched_class
= &fair_sched_class
;
2763 if (p
->sched_class
->task_fork
)
2764 p
->sched_class
->task_fork(p
);
2767 * The child is not yet in the pid-hash so no cgroup attach races,
2768 * and the cgroup is pinned to this child due to cgroup_fork()
2769 * is ran before sched_fork().
2771 * Silence PROVE_RCU.
2774 set_task_cpu(p
, cpu
);
2777 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2778 if (likely(sched_info_on()))
2779 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2781 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2784 #ifdef CONFIG_PREEMPT
2785 /* Want to start with kernel preemption disabled. */
2786 task_thread_info(p
)->preempt_count
= 1;
2788 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2794 * wake_up_new_task - wake up a newly created task for the first time.
2796 * This function will do some initial scheduler statistics housekeeping
2797 * that must be done for every newly created context, then puts the task
2798 * on the runqueue and wakes it.
2800 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2802 unsigned long flags
;
2804 int cpu __maybe_unused
= get_cpu();
2807 rq
= task_rq_lock(p
, &flags
);
2808 p
->state
= TASK_WAKING
;
2811 * Fork balancing, do it here and not earlier because:
2812 * - cpus_allowed can change in the fork path
2813 * - any previously selected cpu might disappear through hotplug
2815 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2816 * without people poking at ->cpus_allowed.
2818 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2819 set_task_cpu(p
, cpu
);
2821 p
->state
= TASK_RUNNING
;
2822 task_rq_unlock(rq
, &flags
);
2825 rq
= task_rq_lock(p
, &flags
);
2826 activate_task(rq
, p
, 0);
2827 trace_sched_wakeup_new(p
, 1);
2828 check_preempt_curr(rq
, p
, WF_FORK
);
2830 if (p
->sched_class
->task_woken
)
2831 p
->sched_class
->task_woken(rq
, p
);
2833 task_rq_unlock(rq
, &flags
);
2837 #ifdef CONFIG_PREEMPT_NOTIFIERS
2840 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2841 * @notifier: notifier struct to register
2843 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2845 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2847 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2850 * preempt_notifier_unregister - no longer interested in preemption notifications
2851 * @notifier: notifier struct to unregister
2853 * This is safe to call from within a preemption notifier.
2855 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2857 hlist_del(¬ifier
->link
);
2859 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2861 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2863 struct preempt_notifier
*notifier
;
2864 struct hlist_node
*node
;
2866 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2867 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2871 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2872 struct task_struct
*next
)
2874 struct preempt_notifier
*notifier
;
2875 struct hlist_node
*node
;
2877 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2878 notifier
->ops
->sched_out(notifier
, next
);
2881 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2883 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2888 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2889 struct task_struct
*next
)
2893 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2896 * prepare_task_switch - prepare to switch tasks
2897 * @rq: the runqueue preparing to switch
2898 * @prev: the current task that is being switched out
2899 * @next: the task we are going to switch to.
2901 * This is called with the rq lock held and interrupts off. It must
2902 * be paired with a subsequent finish_task_switch after the context
2905 * prepare_task_switch sets up locking and calls architecture specific
2909 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2910 struct task_struct
*next
)
2912 fire_sched_out_preempt_notifiers(prev
, next
);
2913 prepare_lock_switch(rq
, next
);
2914 prepare_arch_switch(next
);
2918 * finish_task_switch - clean up after a task-switch
2919 * @rq: runqueue associated with task-switch
2920 * @prev: the thread we just switched away from.
2922 * finish_task_switch must be called after the context switch, paired
2923 * with a prepare_task_switch call before the context switch.
2924 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2925 * and do any other architecture-specific cleanup actions.
2927 * Note that we may have delayed dropping an mm in context_switch(). If
2928 * so, we finish that here outside of the runqueue lock. (Doing it
2929 * with the lock held can cause deadlocks; see schedule() for
2932 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2933 __releases(rq
->lock
)
2935 struct mm_struct
*mm
= rq
->prev_mm
;
2941 * A task struct has one reference for the use as "current".
2942 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2943 * schedule one last time. The schedule call will never return, and
2944 * the scheduled task must drop that reference.
2945 * The test for TASK_DEAD must occur while the runqueue locks are
2946 * still held, otherwise prev could be scheduled on another cpu, die
2947 * there before we look at prev->state, and then the reference would
2949 * Manfred Spraul <manfred@colorfullife.com>
2951 prev_state
= prev
->state
;
2952 finish_arch_switch(prev
);
2953 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2954 local_irq_disable();
2955 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2956 perf_event_task_sched_in(current
);
2957 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2959 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2960 finish_lock_switch(rq
, prev
);
2962 fire_sched_in_preempt_notifiers(current
);
2965 if (unlikely(prev_state
== TASK_DEAD
)) {
2967 * Remove function-return probe instances associated with this
2968 * task and put them back on the free list.
2970 kprobe_flush_task(prev
);
2971 put_task_struct(prev
);
2977 /* assumes rq->lock is held */
2978 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2980 if (prev
->sched_class
->pre_schedule
)
2981 prev
->sched_class
->pre_schedule(rq
, prev
);
2984 /* rq->lock is NOT held, but preemption is disabled */
2985 static inline void post_schedule(struct rq
*rq
)
2987 if (rq
->post_schedule
) {
2988 unsigned long flags
;
2990 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2991 if (rq
->curr
->sched_class
->post_schedule
)
2992 rq
->curr
->sched_class
->post_schedule(rq
);
2993 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2995 rq
->post_schedule
= 0;
3001 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3005 static inline void post_schedule(struct rq
*rq
)
3012 * schedule_tail - first thing a freshly forked thread must call.
3013 * @prev: the thread we just switched away from.
3015 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3016 __releases(rq
->lock
)
3018 struct rq
*rq
= this_rq();
3020 finish_task_switch(rq
, prev
);
3023 * FIXME: do we need to worry about rq being invalidated by the
3028 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3029 /* In this case, finish_task_switch does not reenable preemption */
3032 if (current
->set_child_tid
)
3033 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3037 * context_switch - switch to the new MM and the new
3038 * thread's register state.
3041 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3042 struct task_struct
*next
)
3044 struct mm_struct
*mm
, *oldmm
;
3046 prepare_task_switch(rq
, prev
, next
);
3047 trace_sched_switch(prev
, next
);
3049 oldmm
= prev
->active_mm
;
3051 * For paravirt, this is coupled with an exit in switch_to to
3052 * combine the page table reload and the switch backend into
3055 arch_start_context_switch(prev
);
3058 next
->active_mm
= oldmm
;
3059 atomic_inc(&oldmm
->mm_count
);
3060 enter_lazy_tlb(oldmm
, next
);
3062 switch_mm(oldmm
, mm
, next
);
3065 prev
->active_mm
= NULL
;
3066 rq
->prev_mm
= oldmm
;
3069 * Since the runqueue lock will be released by the next
3070 * task (which is an invalid locking op but in the case
3071 * of the scheduler it's an obvious special-case), so we
3072 * do an early lockdep release here:
3074 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3075 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3078 /* Here we just switch the register state and the stack. */
3079 switch_to(prev
, next
, prev
);
3083 * this_rq must be evaluated again because prev may have moved
3084 * CPUs since it called schedule(), thus the 'rq' on its stack
3085 * frame will be invalid.
3087 finish_task_switch(this_rq(), prev
);
3091 * nr_running, nr_uninterruptible and nr_context_switches:
3093 * externally visible scheduler statistics: current number of runnable
3094 * threads, current number of uninterruptible-sleeping threads, total
3095 * number of context switches performed since bootup.
3097 unsigned long nr_running(void)
3099 unsigned long i
, sum
= 0;
3101 for_each_online_cpu(i
)
3102 sum
+= cpu_rq(i
)->nr_running
;
3107 unsigned long nr_uninterruptible(void)
3109 unsigned long i
, sum
= 0;
3111 for_each_possible_cpu(i
)
3112 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3115 * Since we read the counters lockless, it might be slightly
3116 * inaccurate. Do not allow it to go below zero though:
3118 if (unlikely((long)sum
< 0))
3124 unsigned long long nr_context_switches(void)
3127 unsigned long long sum
= 0;
3129 for_each_possible_cpu(i
)
3130 sum
+= cpu_rq(i
)->nr_switches
;
3135 unsigned long nr_iowait(void)
3137 unsigned long i
, sum
= 0;
3139 for_each_possible_cpu(i
)
3140 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3145 unsigned long nr_iowait_cpu(int cpu
)
3147 struct rq
*this = cpu_rq(cpu
);
3148 return atomic_read(&this->nr_iowait
);
3151 unsigned long this_cpu_load(void)
3153 struct rq
*this = this_rq();
3154 return this->cpu_load
[0];
3158 /* Variables and functions for calc_load */
3159 static atomic_long_t calc_load_tasks
;
3160 static unsigned long calc_load_update
;
3161 unsigned long avenrun
[3];
3162 EXPORT_SYMBOL(avenrun
);
3164 static long calc_load_fold_active(struct rq
*this_rq
)
3166 long nr_active
, delta
= 0;
3168 nr_active
= this_rq
->nr_running
;
3169 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3171 if (nr_active
!= this_rq
->calc_load_active
) {
3172 delta
= nr_active
- this_rq
->calc_load_active
;
3173 this_rq
->calc_load_active
= nr_active
;
3179 static unsigned long
3180 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3183 load
+= active
* (FIXED_1
- exp
);
3184 load
+= 1UL << (FSHIFT
- 1);
3185 return load
>> FSHIFT
;
3190 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3192 * When making the ILB scale, we should try to pull this in as well.
3194 static atomic_long_t calc_load_tasks_idle
;
3196 static void calc_load_account_idle(struct rq
*this_rq
)
3200 delta
= calc_load_fold_active(this_rq
);
3202 atomic_long_add(delta
, &calc_load_tasks_idle
);
3205 static long calc_load_fold_idle(void)
3210 * Its got a race, we don't care...
3212 if (atomic_long_read(&calc_load_tasks_idle
))
3213 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3219 * fixed_power_int - compute: x^n, in O(log n) time
3221 * @x: base of the power
3222 * @frac_bits: fractional bits of @x
3223 * @n: power to raise @x to.
3225 * By exploiting the relation between the definition of the natural power
3226 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3227 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3228 * (where: n_i \elem {0, 1}, the binary vector representing n),
3229 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3230 * of course trivially computable in O(log_2 n), the length of our binary
3233 static unsigned long
3234 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3236 unsigned long result
= 1UL << frac_bits
;
3241 result
+= 1UL << (frac_bits
- 1);
3242 result
>>= frac_bits
;
3248 x
+= 1UL << (frac_bits
- 1);
3256 * a1 = a0 * e + a * (1 - e)
3258 * a2 = a1 * e + a * (1 - e)
3259 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3260 * = a0 * e^2 + a * (1 - e) * (1 + e)
3262 * a3 = a2 * e + a * (1 - e)
3263 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3264 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3268 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3269 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3270 * = a0 * e^n + a * (1 - e^n)
3272 * [1] application of the geometric series:
3275 * S_n := \Sum x^i = -------------
3278 static unsigned long
3279 calc_load_n(unsigned long load
, unsigned long exp
,
3280 unsigned long active
, unsigned int n
)
3283 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3287 * NO_HZ can leave us missing all per-cpu ticks calling
3288 * calc_load_account_active(), but since an idle CPU folds its delta into
3289 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3290 * in the pending idle delta if our idle period crossed a load cycle boundary.
3292 * Once we've updated the global active value, we need to apply the exponential
3293 * weights adjusted to the number of cycles missed.
3295 static void calc_global_nohz(unsigned long ticks
)
3297 long delta
, active
, n
;
3299 if (time_before(jiffies
, calc_load_update
))
3303 * If we crossed a calc_load_update boundary, make sure to fold
3304 * any pending idle changes, the respective CPUs might have
3305 * missed the tick driven calc_load_account_active() update
3308 delta
= calc_load_fold_idle();
3310 atomic_long_add(delta
, &calc_load_tasks
);
3313 * If we were idle for multiple load cycles, apply them.
3315 if (ticks
>= LOAD_FREQ
) {
3316 n
= ticks
/ LOAD_FREQ
;
3318 active
= atomic_long_read(&calc_load_tasks
);
3319 active
= active
> 0 ? active
* FIXED_1
: 0;
3321 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3322 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3323 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3325 calc_load_update
+= n
* LOAD_FREQ
;
3329 * Its possible the remainder of the above division also crosses
3330 * a LOAD_FREQ period, the regular check in calc_global_load()
3331 * which comes after this will take care of that.
3333 * Consider us being 11 ticks before a cycle completion, and us
3334 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3335 * age us 4 cycles, and the test in calc_global_load() will
3336 * pick up the final one.
3340 static void calc_load_account_idle(struct rq
*this_rq
)
3344 static inline long calc_load_fold_idle(void)
3349 static void calc_global_nohz(unsigned long ticks
)
3355 * get_avenrun - get the load average array
3356 * @loads: pointer to dest load array
3357 * @offset: offset to add
3358 * @shift: shift count to shift the result left
3360 * These values are estimates at best, so no need for locking.
3362 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3364 loads
[0] = (avenrun
[0] + offset
) << shift
;
3365 loads
[1] = (avenrun
[1] + offset
) << shift
;
3366 loads
[2] = (avenrun
[2] + offset
) << shift
;
3370 * calc_load - update the avenrun load estimates 10 ticks after the
3371 * CPUs have updated calc_load_tasks.
3373 void calc_global_load(unsigned long ticks
)
3377 calc_global_nohz(ticks
);
3379 if (time_before(jiffies
, calc_load_update
+ 10))
3382 active
= atomic_long_read(&calc_load_tasks
);
3383 active
= active
> 0 ? active
* FIXED_1
: 0;
3385 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3386 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3387 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3389 calc_load_update
+= LOAD_FREQ
;
3393 * Called from update_cpu_load() to periodically update this CPU's
3396 static void calc_load_account_active(struct rq
*this_rq
)
3400 if (time_before(jiffies
, this_rq
->calc_load_update
))
3403 delta
= calc_load_fold_active(this_rq
);
3404 delta
+= calc_load_fold_idle();
3406 atomic_long_add(delta
, &calc_load_tasks
);
3408 this_rq
->calc_load_update
+= LOAD_FREQ
;
3412 * The exact cpuload at various idx values, calculated at every tick would be
3413 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3415 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3416 * on nth tick when cpu may be busy, then we have:
3417 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3418 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3420 * decay_load_missed() below does efficient calculation of
3421 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3422 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3424 * The calculation is approximated on a 128 point scale.
3425 * degrade_zero_ticks is the number of ticks after which load at any
3426 * particular idx is approximated to be zero.
3427 * degrade_factor is a precomputed table, a row for each load idx.
3428 * Each column corresponds to degradation factor for a power of two ticks,
3429 * based on 128 point scale.
3431 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3432 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3434 * With this power of 2 load factors, we can degrade the load n times
3435 * by looking at 1 bits in n and doing as many mult/shift instead of
3436 * n mult/shifts needed by the exact degradation.
3438 #define DEGRADE_SHIFT 7
3439 static const unsigned char
3440 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3441 static const unsigned char
3442 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3443 {0, 0, 0, 0, 0, 0, 0, 0},
3444 {64, 32, 8, 0, 0, 0, 0, 0},
3445 {96, 72, 40, 12, 1, 0, 0},
3446 {112, 98, 75, 43, 15, 1, 0},
3447 {120, 112, 98, 76, 45, 16, 2} };
3450 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3451 * would be when CPU is idle and so we just decay the old load without
3452 * adding any new load.
3454 static unsigned long
3455 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3459 if (!missed_updates
)
3462 if (missed_updates
>= degrade_zero_ticks
[idx
])
3466 return load
>> missed_updates
;
3468 while (missed_updates
) {
3469 if (missed_updates
% 2)
3470 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3472 missed_updates
>>= 1;
3479 * Update rq->cpu_load[] statistics. This function is usually called every
3480 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3481 * every tick. We fix it up based on jiffies.
3483 static void update_cpu_load(struct rq
*this_rq
)
3485 unsigned long this_load
= this_rq
->load
.weight
;
3486 unsigned long curr_jiffies
= jiffies
;
3487 unsigned long pending_updates
;
3490 this_rq
->nr_load_updates
++;
3492 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3493 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3496 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3497 this_rq
->last_load_update_tick
= curr_jiffies
;
3499 /* Update our load: */
3500 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3501 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3502 unsigned long old_load
, new_load
;
3504 /* scale is effectively 1 << i now, and >> i divides by scale */
3506 old_load
= this_rq
->cpu_load
[i
];
3507 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3508 new_load
= this_load
;
3510 * Round up the averaging division if load is increasing. This
3511 * prevents us from getting stuck on 9 if the load is 10, for
3514 if (new_load
> old_load
)
3515 new_load
+= scale
- 1;
3517 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3520 sched_avg_update(this_rq
);
3523 static void update_cpu_load_active(struct rq
*this_rq
)
3525 update_cpu_load(this_rq
);
3527 calc_load_account_active(this_rq
);
3533 * sched_exec - execve() is a valuable balancing opportunity, because at
3534 * this point the task has the smallest effective memory and cache footprint.
3536 void sched_exec(void)
3538 struct task_struct
*p
= current
;
3539 unsigned long flags
;
3543 rq
= task_rq_lock(p
, &flags
);
3544 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3545 if (dest_cpu
== smp_processor_id())
3549 * select_task_rq() can race against ->cpus_allowed
3551 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3552 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3553 struct migration_arg arg
= { p
, dest_cpu
};
3555 task_rq_unlock(rq
, &flags
);
3556 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3560 task_rq_unlock(rq
, &flags
);
3565 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3567 EXPORT_PER_CPU_SYMBOL(kstat
);
3570 * Return any ns on the sched_clock that have not yet been accounted in
3571 * @p in case that task is currently running.
3573 * Called with task_rq_lock() held on @rq.
3575 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3579 if (task_current(rq
, p
)) {
3580 update_rq_clock(rq
);
3581 ns
= rq
->clock_task
- p
->se
.exec_start
;
3589 unsigned long long task_delta_exec(struct task_struct
*p
)
3591 unsigned long flags
;
3595 rq
= task_rq_lock(p
, &flags
);
3596 ns
= do_task_delta_exec(p
, rq
);
3597 task_rq_unlock(rq
, &flags
);
3603 * Return accounted runtime for the task.
3604 * In case the task is currently running, return the runtime plus current's
3605 * pending runtime that have not been accounted yet.
3607 unsigned long long task_sched_runtime(struct task_struct
*p
)
3609 unsigned long flags
;
3613 rq
= task_rq_lock(p
, &flags
);
3614 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3615 task_rq_unlock(rq
, &flags
);
3621 * Return sum_exec_runtime for the thread group.
3622 * In case the task is currently running, return the sum plus current's
3623 * pending runtime that have not been accounted yet.
3625 * Note that the thread group might have other running tasks as well,
3626 * so the return value not includes other pending runtime that other
3627 * running tasks might have.
3629 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3631 struct task_cputime totals
;
3632 unsigned long flags
;
3636 rq
= task_rq_lock(p
, &flags
);
3637 thread_group_cputime(p
, &totals
);
3638 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3639 task_rq_unlock(rq
, &flags
);
3645 * Account user cpu time to a process.
3646 * @p: the process that the cpu time gets accounted to
3647 * @cputime: the cpu time spent in user space since the last update
3648 * @cputime_scaled: cputime scaled by cpu frequency
3650 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3651 cputime_t cputime_scaled
)
3653 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3656 /* Add user time to process. */
3657 p
->utime
= cputime_add(p
->utime
, cputime
);
3658 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3659 account_group_user_time(p
, cputime
);
3661 /* Add user time to cpustat. */
3662 tmp
= cputime_to_cputime64(cputime
);
3663 if (TASK_NICE(p
) > 0)
3664 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3666 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3668 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3669 /* Account for user time used */
3670 acct_update_integrals(p
);
3674 * Account guest cpu time to a process.
3675 * @p: the process that the cpu time gets accounted to
3676 * @cputime: the cpu time spent in virtual machine since the last update
3677 * @cputime_scaled: cputime scaled by cpu frequency
3679 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3680 cputime_t cputime_scaled
)
3683 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3685 tmp
= cputime_to_cputime64(cputime
);
3687 /* Add guest time to process. */
3688 p
->utime
= cputime_add(p
->utime
, cputime
);
3689 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3690 account_group_user_time(p
, cputime
);
3691 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3693 /* Add guest time to cpustat. */
3694 if (TASK_NICE(p
) > 0) {
3695 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3696 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3698 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3699 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3704 * Account system cpu time to a process.
3705 * @p: the process that the cpu time gets accounted to
3706 * @hardirq_offset: the offset to subtract from hardirq_count()
3707 * @cputime: the cpu time spent in kernel space since the last update
3708 * @cputime_scaled: cputime scaled by cpu frequency
3710 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3711 cputime_t cputime
, cputime_t cputime_scaled
)
3713 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3716 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3717 account_guest_time(p
, cputime
, cputime_scaled
);
3721 /* Add system time to process. */
3722 p
->stime
= cputime_add(p
->stime
, cputime
);
3723 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3724 account_group_system_time(p
, cputime
);
3726 /* Add system time to cpustat. */
3727 tmp
= cputime_to_cputime64(cputime
);
3728 if (hardirq_count() - hardirq_offset
)
3729 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3730 else if (in_serving_softirq())
3731 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3733 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3735 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3737 /* Account for system time used */
3738 acct_update_integrals(p
);
3742 * Account for involuntary wait time.
3743 * @steal: the cpu time spent in involuntary wait
3745 void account_steal_time(cputime_t cputime
)
3747 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3748 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3750 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3754 * Account for idle time.
3755 * @cputime: the cpu time spent in idle wait
3757 void account_idle_time(cputime_t cputime
)
3759 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3760 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3761 struct rq
*rq
= this_rq();
3763 if (atomic_read(&rq
->nr_iowait
) > 0)
3764 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3766 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3769 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3772 * Account a single tick of cpu time.
3773 * @p: the process that the cpu time gets accounted to
3774 * @user_tick: indicates if the tick is a user or a system tick
3776 void account_process_tick(struct task_struct
*p
, int user_tick
)
3778 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3779 struct rq
*rq
= this_rq();
3782 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3783 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3784 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3787 account_idle_time(cputime_one_jiffy
);
3791 * Account multiple ticks of steal time.
3792 * @p: the process from which the cpu time has been stolen
3793 * @ticks: number of stolen ticks
3795 void account_steal_ticks(unsigned long ticks
)
3797 account_steal_time(jiffies_to_cputime(ticks
));
3801 * Account multiple ticks of idle time.
3802 * @ticks: number of stolen ticks
3804 void account_idle_ticks(unsigned long ticks
)
3806 account_idle_time(jiffies_to_cputime(ticks
));
3812 * Use precise platform statistics if available:
3814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3815 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3821 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3823 struct task_cputime cputime
;
3825 thread_group_cputime(p
, &cputime
);
3827 *ut
= cputime
.utime
;
3828 *st
= cputime
.stime
;
3832 #ifndef nsecs_to_cputime
3833 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3836 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3838 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3841 * Use CFS's precise accounting:
3843 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3849 do_div(temp
, total
);
3850 utime
= (cputime_t
)temp
;
3855 * Compare with previous values, to keep monotonicity:
3857 p
->prev_utime
= max(p
->prev_utime
, utime
);
3858 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3860 *ut
= p
->prev_utime
;
3861 *st
= p
->prev_stime
;
3865 * Must be called with siglock held.
3867 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3869 struct signal_struct
*sig
= p
->signal
;
3870 struct task_cputime cputime
;
3871 cputime_t rtime
, utime
, total
;
3873 thread_group_cputime(p
, &cputime
);
3875 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3876 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3881 temp
*= cputime
.utime
;
3882 do_div(temp
, total
);
3883 utime
= (cputime_t
)temp
;
3887 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3888 sig
->prev_stime
= max(sig
->prev_stime
,
3889 cputime_sub(rtime
, sig
->prev_utime
));
3891 *ut
= sig
->prev_utime
;
3892 *st
= sig
->prev_stime
;
3897 * This function gets called by the timer code, with HZ frequency.
3898 * We call it with interrupts disabled.
3900 * It also gets called by the fork code, when changing the parent's
3903 void scheduler_tick(void)
3905 int cpu
= smp_processor_id();
3906 struct rq
*rq
= cpu_rq(cpu
);
3907 struct task_struct
*curr
= rq
->curr
;
3911 raw_spin_lock(&rq
->lock
);
3912 update_rq_clock(rq
);
3913 update_cpu_load_active(rq
);
3914 curr
->sched_class
->task_tick(rq
, curr
, 0);
3915 raw_spin_unlock(&rq
->lock
);
3917 perf_event_task_tick();
3920 rq
->idle_at_tick
= idle_cpu(cpu
);
3921 trigger_load_balance(rq
, cpu
);
3925 notrace
unsigned long get_parent_ip(unsigned long addr
)
3927 if (in_lock_functions(addr
)) {
3928 addr
= CALLER_ADDR2
;
3929 if (in_lock_functions(addr
))
3930 addr
= CALLER_ADDR3
;
3935 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3936 defined(CONFIG_PREEMPT_TRACER))
3938 void __kprobes
add_preempt_count(int val
)
3940 #ifdef CONFIG_DEBUG_PREEMPT
3944 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3947 preempt_count() += val
;
3948 #ifdef CONFIG_DEBUG_PREEMPT
3950 * Spinlock count overflowing soon?
3952 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3955 if (preempt_count() == val
)
3956 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3958 EXPORT_SYMBOL(add_preempt_count
);
3960 void __kprobes
sub_preempt_count(int val
)
3962 #ifdef CONFIG_DEBUG_PREEMPT
3966 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3969 * Is the spinlock portion underflowing?
3971 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3972 !(preempt_count() & PREEMPT_MASK
)))
3976 if (preempt_count() == val
)
3977 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3978 preempt_count() -= val
;
3980 EXPORT_SYMBOL(sub_preempt_count
);
3985 * Print scheduling while atomic bug:
3987 static noinline
void __schedule_bug(struct task_struct
*prev
)
3989 struct pt_regs
*regs
= get_irq_regs();
3991 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3992 prev
->comm
, prev
->pid
, preempt_count());
3994 debug_show_held_locks(prev
);
3996 if (irqs_disabled())
3997 print_irqtrace_events(prev
);
4006 * Various schedule()-time debugging checks and statistics:
4008 static inline void schedule_debug(struct task_struct
*prev
)
4011 * Test if we are atomic. Since do_exit() needs to call into
4012 * schedule() atomically, we ignore that path for now.
4013 * Otherwise, whine if we are scheduling when we should not be.
4015 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4016 __schedule_bug(prev
);
4018 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4020 schedstat_inc(this_rq(), sched_count
);
4021 #ifdef CONFIG_SCHEDSTATS
4022 if (unlikely(prev
->lock_depth
>= 0)) {
4023 schedstat_inc(this_rq(), bkl_count
);
4024 schedstat_inc(prev
, sched_info
.bkl_count
);
4029 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4032 update_rq_clock(rq
);
4033 prev
->sched_class
->put_prev_task(rq
, prev
);
4037 * Pick up the highest-prio task:
4039 static inline struct task_struct
*
4040 pick_next_task(struct rq
*rq
)
4042 const struct sched_class
*class;
4043 struct task_struct
*p
;
4046 * Optimization: we know that if all tasks are in
4047 * the fair class we can call that function directly:
4049 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4050 p
= fair_sched_class
.pick_next_task(rq
);
4055 for_each_class(class) {
4056 p
= class->pick_next_task(rq
);
4061 BUG(); /* the idle class will always have a runnable task */
4065 * schedule() is the main scheduler function.
4067 asmlinkage
void __sched
schedule(void)
4069 struct task_struct
*prev
, *next
;
4070 unsigned long *switch_count
;
4076 cpu
= smp_processor_id();
4078 rcu_note_context_switch(cpu
);
4081 release_kernel_lock(prev
);
4082 need_resched_nonpreemptible
:
4084 schedule_debug(prev
);
4086 if (sched_feat(HRTICK
))
4089 raw_spin_lock_irq(&rq
->lock
);
4091 switch_count
= &prev
->nivcsw
;
4092 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4093 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4094 prev
->state
= TASK_RUNNING
;
4097 * If a worker is going to sleep, notify and
4098 * ask workqueue whether it wants to wake up a
4099 * task to maintain concurrency. If so, wake
4102 if (prev
->flags
& PF_WQ_WORKER
) {
4103 struct task_struct
*to_wakeup
;
4105 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4107 try_to_wake_up_local(to_wakeup
);
4109 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4111 switch_count
= &prev
->nvcsw
;
4114 pre_schedule(rq
, prev
);
4116 if (unlikely(!rq
->nr_running
))
4117 idle_balance(cpu
, rq
);
4119 put_prev_task(rq
, prev
);
4120 next
= pick_next_task(rq
);
4121 clear_tsk_need_resched(prev
);
4122 rq
->skip_clock_update
= 0;
4124 if (likely(prev
!= next
)) {
4125 sched_info_switch(prev
, next
);
4126 perf_event_task_sched_out(prev
, next
);
4132 context_switch(rq
, prev
, next
); /* unlocks the rq */
4134 * The context switch have flipped the stack from under us
4135 * and restored the local variables which were saved when
4136 * this task called schedule() in the past. prev == current
4137 * is still correct, but it can be moved to another cpu/rq.
4139 cpu
= smp_processor_id();
4142 raw_spin_unlock_irq(&rq
->lock
);
4146 if (unlikely(reacquire_kernel_lock(prev
)))
4147 goto need_resched_nonpreemptible
;
4149 preempt_enable_no_resched();
4153 EXPORT_SYMBOL(schedule
);
4155 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4157 * Look out! "owner" is an entirely speculative pointer
4158 * access and not reliable.
4160 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
4165 if (!sched_feat(OWNER_SPIN
))
4168 #ifdef CONFIG_DEBUG_PAGEALLOC
4170 * Need to access the cpu field knowing that
4171 * DEBUG_PAGEALLOC could have unmapped it if
4172 * the mutex owner just released it and exited.
4174 if (probe_kernel_address(&owner
->cpu
, cpu
))
4181 * Even if the access succeeded (likely case),
4182 * the cpu field may no longer be valid.
4184 if (cpu
>= nr_cpumask_bits
)
4188 * We need to validate that we can do a
4189 * get_cpu() and that we have the percpu area.
4191 if (!cpu_online(cpu
))
4198 * Owner changed, break to re-assess state.
4200 if (lock
->owner
!= owner
) {
4202 * If the lock has switched to a different owner,
4203 * we likely have heavy contention. Return 0 to quit
4204 * optimistic spinning and not contend further:
4212 * Is that owner really running on that cpu?
4214 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
4224 #ifdef CONFIG_PREEMPT
4226 * this is the entry point to schedule() from in-kernel preemption
4227 * off of preempt_enable. Kernel preemptions off return from interrupt
4228 * occur there and call schedule directly.
4230 asmlinkage
void __sched notrace
preempt_schedule(void)
4232 struct thread_info
*ti
= current_thread_info();
4235 * If there is a non-zero preempt_count or interrupts are disabled,
4236 * we do not want to preempt the current task. Just return..
4238 if (likely(ti
->preempt_count
|| irqs_disabled()))
4242 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4244 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4247 * Check again in case we missed a preemption opportunity
4248 * between schedule and now.
4251 } while (need_resched());
4253 EXPORT_SYMBOL(preempt_schedule
);
4256 * this is the entry point to schedule() from kernel preemption
4257 * off of irq context.
4258 * Note, that this is called and return with irqs disabled. This will
4259 * protect us against recursive calling from irq.
4261 asmlinkage
void __sched
preempt_schedule_irq(void)
4263 struct thread_info
*ti
= current_thread_info();
4265 /* Catch callers which need to be fixed */
4266 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4269 add_preempt_count(PREEMPT_ACTIVE
);
4272 local_irq_disable();
4273 sub_preempt_count(PREEMPT_ACTIVE
);
4276 * Check again in case we missed a preemption opportunity
4277 * between schedule and now.
4280 } while (need_resched());
4283 #endif /* CONFIG_PREEMPT */
4285 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4288 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4290 EXPORT_SYMBOL(default_wake_function
);
4293 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4294 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4295 * number) then we wake all the non-exclusive tasks and one exclusive task.
4297 * There are circumstances in which we can try to wake a task which has already
4298 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4299 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4301 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4302 int nr_exclusive
, int wake_flags
, void *key
)
4304 wait_queue_t
*curr
, *next
;
4306 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4307 unsigned flags
= curr
->flags
;
4309 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4310 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4316 * __wake_up - wake up threads blocked on a waitqueue.
4318 * @mode: which threads
4319 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4320 * @key: is directly passed to the wakeup function
4322 * It may be assumed that this function implies a write memory barrier before
4323 * changing the task state if and only if any tasks are woken up.
4325 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4326 int nr_exclusive
, void *key
)
4328 unsigned long flags
;
4330 spin_lock_irqsave(&q
->lock
, flags
);
4331 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4332 spin_unlock_irqrestore(&q
->lock
, flags
);
4334 EXPORT_SYMBOL(__wake_up
);
4337 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4339 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4341 __wake_up_common(q
, mode
, 1, 0, NULL
);
4343 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4345 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4347 __wake_up_common(q
, mode
, 1, 0, key
);
4351 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4353 * @mode: which threads
4354 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4355 * @key: opaque value to be passed to wakeup targets
4357 * The sync wakeup differs that the waker knows that it will schedule
4358 * away soon, so while the target thread will be woken up, it will not
4359 * be migrated to another CPU - ie. the two threads are 'synchronized'
4360 * with each other. This can prevent needless bouncing between CPUs.
4362 * On UP it can prevent extra preemption.
4364 * It may be assumed that this function implies a write memory barrier before
4365 * changing the task state if and only if any tasks are woken up.
4367 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4368 int nr_exclusive
, void *key
)
4370 unsigned long flags
;
4371 int wake_flags
= WF_SYNC
;
4376 if (unlikely(!nr_exclusive
))
4379 spin_lock_irqsave(&q
->lock
, flags
);
4380 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4381 spin_unlock_irqrestore(&q
->lock
, flags
);
4383 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4386 * __wake_up_sync - see __wake_up_sync_key()
4388 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4390 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4392 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4395 * complete: - signals a single thread waiting on this completion
4396 * @x: holds the state of this particular completion
4398 * This will wake up a single thread waiting on this completion. Threads will be
4399 * awakened in the same order in which they were queued.
4401 * See also complete_all(), wait_for_completion() and related routines.
4403 * It may be assumed that this function implies a write memory barrier before
4404 * changing the task state if and only if any tasks are woken up.
4406 void complete(struct completion
*x
)
4408 unsigned long flags
;
4410 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4412 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4413 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4415 EXPORT_SYMBOL(complete
);
4418 * complete_all: - signals all threads waiting on this completion
4419 * @x: holds the state of this particular completion
4421 * This will wake up all threads waiting on this particular completion event.
4423 * It may be assumed that this function implies a write memory barrier before
4424 * changing the task state if and only if any tasks are woken up.
4426 void complete_all(struct completion
*x
)
4428 unsigned long flags
;
4430 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4431 x
->done
+= UINT_MAX
/2;
4432 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4433 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4435 EXPORT_SYMBOL(complete_all
);
4437 static inline long __sched
4438 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4441 DECLARE_WAITQUEUE(wait
, current
);
4443 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4445 if (signal_pending_state(state
, current
)) {
4446 timeout
= -ERESTARTSYS
;
4449 __set_current_state(state
);
4450 spin_unlock_irq(&x
->wait
.lock
);
4451 timeout
= schedule_timeout(timeout
);
4452 spin_lock_irq(&x
->wait
.lock
);
4453 } while (!x
->done
&& timeout
);
4454 __remove_wait_queue(&x
->wait
, &wait
);
4459 return timeout
?: 1;
4463 wait_for_common(struct completion
*x
, long timeout
, int state
)
4467 spin_lock_irq(&x
->wait
.lock
);
4468 timeout
= do_wait_for_common(x
, timeout
, state
);
4469 spin_unlock_irq(&x
->wait
.lock
);
4474 * wait_for_completion: - waits for completion of a task
4475 * @x: holds the state of this particular completion
4477 * This waits to be signaled for completion of a specific task. It is NOT
4478 * interruptible and there is no timeout.
4480 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4481 * and interrupt capability. Also see complete().
4483 void __sched
wait_for_completion(struct completion
*x
)
4485 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4487 EXPORT_SYMBOL(wait_for_completion
);
4490 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4491 * @x: holds the state of this particular completion
4492 * @timeout: timeout value in jiffies
4494 * This waits for either a completion of a specific task to be signaled or for a
4495 * specified timeout to expire. The timeout is in jiffies. It is not
4498 unsigned long __sched
4499 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4501 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4503 EXPORT_SYMBOL(wait_for_completion_timeout
);
4506 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4507 * @x: holds the state of this particular completion
4509 * This waits for completion of a specific task to be signaled. It is
4512 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4514 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4515 if (t
== -ERESTARTSYS
)
4519 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4522 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4523 * @x: holds the state of this particular completion
4524 * @timeout: timeout value in jiffies
4526 * This waits for either a completion of a specific task to be signaled or for a
4527 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4529 unsigned long __sched
4530 wait_for_completion_interruptible_timeout(struct completion
*x
,
4531 unsigned long timeout
)
4533 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4535 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4538 * wait_for_completion_killable: - waits for completion of a task (killable)
4539 * @x: holds the state of this particular completion
4541 * This waits to be signaled for completion of a specific task. It can be
4542 * interrupted by a kill signal.
4544 int __sched
wait_for_completion_killable(struct completion
*x
)
4546 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4547 if (t
== -ERESTARTSYS
)
4551 EXPORT_SYMBOL(wait_for_completion_killable
);
4554 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4555 * @x: holds the state of this particular completion
4556 * @timeout: timeout value in jiffies
4558 * This waits for either a completion of a specific task to be
4559 * signaled or for a specified timeout to expire. It can be
4560 * interrupted by a kill signal. The timeout is in jiffies.
4562 unsigned long __sched
4563 wait_for_completion_killable_timeout(struct completion
*x
,
4564 unsigned long timeout
)
4566 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4568 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4571 * try_wait_for_completion - try to decrement a completion without blocking
4572 * @x: completion structure
4574 * Returns: 0 if a decrement cannot be done without blocking
4575 * 1 if a decrement succeeded.
4577 * If a completion is being used as a counting completion,
4578 * attempt to decrement the counter without blocking. This
4579 * enables us to avoid waiting if the resource the completion
4580 * is protecting is not available.
4582 bool try_wait_for_completion(struct completion
*x
)
4584 unsigned long flags
;
4587 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4592 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4595 EXPORT_SYMBOL(try_wait_for_completion
);
4598 * completion_done - Test to see if a completion has any waiters
4599 * @x: completion structure
4601 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4602 * 1 if there are no waiters.
4605 bool completion_done(struct completion
*x
)
4607 unsigned long flags
;
4610 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4613 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4616 EXPORT_SYMBOL(completion_done
);
4619 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4621 unsigned long flags
;
4624 init_waitqueue_entry(&wait
, current
);
4626 __set_current_state(state
);
4628 spin_lock_irqsave(&q
->lock
, flags
);
4629 __add_wait_queue(q
, &wait
);
4630 spin_unlock(&q
->lock
);
4631 timeout
= schedule_timeout(timeout
);
4632 spin_lock_irq(&q
->lock
);
4633 __remove_wait_queue(q
, &wait
);
4634 spin_unlock_irqrestore(&q
->lock
, flags
);
4639 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4641 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4643 EXPORT_SYMBOL(interruptible_sleep_on
);
4646 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4648 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4650 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4652 void __sched
sleep_on(wait_queue_head_t
*q
)
4654 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4656 EXPORT_SYMBOL(sleep_on
);
4658 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4660 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4662 EXPORT_SYMBOL(sleep_on_timeout
);
4664 #ifdef CONFIG_RT_MUTEXES
4667 * rt_mutex_setprio - set the current priority of a task
4669 * @prio: prio value (kernel-internal form)
4671 * This function changes the 'effective' priority of a task. It does
4672 * not touch ->normal_prio like __setscheduler().
4674 * Used by the rt_mutex code to implement priority inheritance logic.
4676 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4678 unsigned long flags
;
4679 int oldprio
, on_rq
, running
;
4681 const struct sched_class
*prev_class
;
4683 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4685 rq
= task_rq_lock(p
, &flags
);
4687 trace_sched_pi_setprio(p
, prio
);
4689 prev_class
= p
->sched_class
;
4690 on_rq
= p
->se
.on_rq
;
4691 running
= task_current(rq
, p
);
4693 dequeue_task(rq
, p
, 0);
4695 p
->sched_class
->put_prev_task(rq
, p
);
4698 p
->sched_class
= &rt_sched_class
;
4700 p
->sched_class
= &fair_sched_class
;
4705 p
->sched_class
->set_curr_task(rq
);
4707 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4709 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4711 task_rq_unlock(rq
, &flags
);
4716 void set_user_nice(struct task_struct
*p
, long nice
)
4718 int old_prio
, delta
, on_rq
;
4719 unsigned long flags
;
4722 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4725 * We have to be careful, if called from sys_setpriority(),
4726 * the task might be in the middle of scheduling on another CPU.
4728 rq
= task_rq_lock(p
, &flags
);
4730 * The RT priorities are set via sched_setscheduler(), but we still
4731 * allow the 'normal' nice value to be set - but as expected
4732 * it wont have any effect on scheduling until the task is
4733 * SCHED_FIFO/SCHED_RR:
4735 if (task_has_rt_policy(p
)) {
4736 p
->static_prio
= NICE_TO_PRIO(nice
);
4739 on_rq
= p
->se
.on_rq
;
4741 dequeue_task(rq
, p
, 0);
4743 p
->static_prio
= NICE_TO_PRIO(nice
);
4746 p
->prio
= effective_prio(p
);
4747 delta
= p
->prio
- old_prio
;
4750 enqueue_task(rq
, p
, 0);
4752 * If the task increased its priority or is running and
4753 * lowered its priority, then reschedule its CPU:
4755 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4756 resched_task(rq
->curr
);
4759 task_rq_unlock(rq
, &flags
);
4761 EXPORT_SYMBOL(set_user_nice
);
4764 * can_nice - check if a task can reduce its nice value
4768 int can_nice(const struct task_struct
*p
, const int nice
)
4770 /* convert nice value [19,-20] to rlimit style value [1,40] */
4771 int nice_rlim
= 20 - nice
;
4773 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4774 capable(CAP_SYS_NICE
));
4777 #ifdef __ARCH_WANT_SYS_NICE
4780 * sys_nice - change the priority of the current process.
4781 * @increment: priority increment
4783 * sys_setpriority is a more generic, but much slower function that
4784 * does similar things.
4786 SYSCALL_DEFINE1(nice
, int, increment
)
4791 * Setpriority might change our priority at the same moment.
4792 * We don't have to worry. Conceptually one call occurs first
4793 * and we have a single winner.
4795 if (increment
< -40)
4800 nice
= TASK_NICE(current
) + increment
;
4806 if (increment
< 0 && !can_nice(current
, nice
))
4809 retval
= security_task_setnice(current
, nice
);
4813 set_user_nice(current
, nice
);
4820 * task_prio - return the priority value of a given task.
4821 * @p: the task in question.
4823 * This is the priority value as seen by users in /proc.
4824 * RT tasks are offset by -200. Normal tasks are centered
4825 * around 0, value goes from -16 to +15.
4827 int task_prio(const struct task_struct
*p
)
4829 return p
->prio
- MAX_RT_PRIO
;
4833 * task_nice - return the nice value of a given task.
4834 * @p: the task in question.
4836 int task_nice(const struct task_struct
*p
)
4838 return TASK_NICE(p
);
4840 EXPORT_SYMBOL(task_nice
);
4843 * idle_cpu - is a given cpu idle currently?
4844 * @cpu: the processor in question.
4846 int idle_cpu(int cpu
)
4848 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4852 * idle_task - return the idle task for a given cpu.
4853 * @cpu: the processor in question.
4855 struct task_struct
*idle_task(int cpu
)
4857 return cpu_rq(cpu
)->idle
;
4861 * find_process_by_pid - find a process with a matching PID value.
4862 * @pid: the pid in question.
4864 static struct task_struct
*find_process_by_pid(pid_t pid
)
4866 return pid
? find_task_by_vpid(pid
) : current
;
4869 /* Actually do priority change: must hold rq lock. */
4871 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4873 BUG_ON(p
->se
.on_rq
);
4876 p
->rt_priority
= prio
;
4877 p
->normal_prio
= normal_prio(p
);
4878 /* we are holding p->pi_lock already */
4879 p
->prio
= rt_mutex_getprio(p
);
4880 if (rt_prio(p
->prio
))
4881 p
->sched_class
= &rt_sched_class
;
4883 p
->sched_class
= &fair_sched_class
;
4888 * check the target process has a UID that matches the current process's
4890 static bool check_same_owner(struct task_struct
*p
)
4892 const struct cred
*cred
= current_cred(), *pcred
;
4896 pcred
= __task_cred(p
);
4897 match
= (cred
->euid
== pcred
->euid
||
4898 cred
->euid
== pcred
->uid
);
4903 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4904 struct sched_param
*param
, bool user
)
4906 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4907 unsigned long flags
;
4908 const struct sched_class
*prev_class
;
4912 /* may grab non-irq protected spin_locks */
4913 BUG_ON(in_interrupt());
4915 /* double check policy once rq lock held */
4917 reset_on_fork
= p
->sched_reset_on_fork
;
4918 policy
= oldpolicy
= p
->policy
;
4920 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4921 policy
&= ~SCHED_RESET_ON_FORK
;
4923 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4924 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4925 policy
!= SCHED_IDLE
)
4930 * Valid priorities for SCHED_FIFO and SCHED_RR are
4931 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4932 * SCHED_BATCH and SCHED_IDLE is 0.
4934 if (param
->sched_priority
< 0 ||
4935 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4936 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4938 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4942 * Allow unprivileged RT tasks to decrease priority:
4944 if (user
&& !capable(CAP_SYS_NICE
)) {
4945 if (rt_policy(policy
)) {
4946 unsigned long rlim_rtprio
=
4947 task_rlimit(p
, RLIMIT_RTPRIO
);
4949 /* can't set/change the rt policy */
4950 if (policy
!= p
->policy
&& !rlim_rtprio
)
4953 /* can't increase priority */
4954 if (param
->sched_priority
> p
->rt_priority
&&
4955 param
->sched_priority
> rlim_rtprio
)
4959 * Like positive nice levels, dont allow tasks to
4960 * move out of SCHED_IDLE either:
4962 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4965 /* can't change other user's priorities */
4966 if (!check_same_owner(p
))
4969 /* Normal users shall not reset the sched_reset_on_fork flag */
4970 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4975 retval
= security_task_setscheduler(p
);
4981 * make sure no PI-waiters arrive (or leave) while we are
4982 * changing the priority of the task:
4984 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4986 * To be able to change p->policy safely, the apropriate
4987 * runqueue lock must be held.
4989 rq
= __task_rq_lock(p
);
4992 * Changing the policy of the stop threads its a very bad idea
4994 if (p
== rq
->stop
) {
4995 __task_rq_unlock(rq
);
4996 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5000 #ifdef CONFIG_RT_GROUP_SCHED
5003 * Do not allow realtime tasks into groups that have no runtime
5006 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5007 task_group(p
)->rt_bandwidth
.rt_runtime
== 0) {
5008 __task_rq_unlock(rq
);
5009 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5015 /* recheck policy now with rq lock held */
5016 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5017 policy
= oldpolicy
= -1;
5018 __task_rq_unlock(rq
);
5019 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5022 on_rq
= p
->se
.on_rq
;
5023 running
= task_current(rq
, p
);
5025 deactivate_task(rq
, p
, 0);
5027 p
->sched_class
->put_prev_task(rq
, p
);
5029 p
->sched_reset_on_fork
= reset_on_fork
;
5032 prev_class
= p
->sched_class
;
5033 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5036 p
->sched_class
->set_curr_task(rq
);
5038 activate_task(rq
, p
, 0);
5040 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5042 __task_rq_unlock(rq
);
5043 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5045 rt_mutex_adjust_pi(p
);
5051 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5052 * @p: the task in question.
5053 * @policy: new policy.
5054 * @param: structure containing the new RT priority.
5056 * NOTE that the task may be already dead.
5058 int sched_setscheduler(struct task_struct
*p
, int policy
,
5059 struct sched_param
*param
)
5061 return __sched_setscheduler(p
, policy
, param
, true);
5063 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5066 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5067 * @p: the task in question.
5068 * @policy: new policy.
5069 * @param: structure containing the new RT priority.
5071 * Just like sched_setscheduler, only don't bother checking if the
5072 * current context has permission. For example, this is needed in
5073 * stop_machine(): we create temporary high priority worker threads,
5074 * but our caller might not have that capability.
5076 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5077 struct sched_param
*param
)
5079 return __sched_setscheduler(p
, policy
, param
, false);
5083 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5085 struct sched_param lparam
;
5086 struct task_struct
*p
;
5089 if (!param
|| pid
< 0)
5091 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5096 p
= find_process_by_pid(pid
);
5098 retval
= sched_setscheduler(p
, policy
, &lparam
);
5105 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5106 * @pid: the pid in question.
5107 * @policy: new policy.
5108 * @param: structure containing the new RT priority.
5110 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5111 struct sched_param __user
*, param
)
5113 /* negative values for policy are not valid */
5117 return do_sched_setscheduler(pid
, policy
, param
);
5121 * sys_sched_setparam - set/change the RT priority of a thread
5122 * @pid: the pid in question.
5123 * @param: structure containing the new RT priority.
5125 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5127 return do_sched_setscheduler(pid
, -1, param
);
5131 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5132 * @pid: the pid in question.
5134 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5136 struct task_struct
*p
;
5144 p
= find_process_by_pid(pid
);
5146 retval
= security_task_getscheduler(p
);
5149 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5156 * sys_sched_getparam - get the RT priority of a thread
5157 * @pid: the pid in question.
5158 * @param: structure containing the RT priority.
5160 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5162 struct sched_param lp
;
5163 struct task_struct
*p
;
5166 if (!param
|| pid
< 0)
5170 p
= find_process_by_pid(pid
);
5175 retval
= security_task_getscheduler(p
);
5179 lp
.sched_priority
= p
->rt_priority
;
5183 * This one might sleep, we cannot do it with a spinlock held ...
5185 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5194 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5196 cpumask_var_t cpus_allowed
, new_mask
;
5197 struct task_struct
*p
;
5203 p
= find_process_by_pid(pid
);
5210 /* Prevent p going away */
5214 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5218 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5220 goto out_free_cpus_allowed
;
5223 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5226 retval
= security_task_setscheduler(p
);
5230 cpuset_cpus_allowed(p
, cpus_allowed
);
5231 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5233 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5236 cpuset_cpus_allowed(p
, cpus_allowed
);
5237 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5239 * We must have raced with a concurrent cpuset
5240 * update. Just reset the cpus_allowed to the
5241 * cpuset's cpus_allowed
5243 cpumask_copy(new_mask
, cpus_allowed
);
5248 free_cpumask_var(new_mask
);
5249 out_free_cpus_allowed
:
5250 free_cpumask_var(cpus_allowed
);
5257 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5258 struct cpumask
*new_mask
)
5260 if (len
< cpumask_size())
5261 cpumask_clear(new_mask
);
5262 else if (len
> cpumask_size())
5263 len
= cpumask_size();
5265 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5269 * sys_sched_setaffinity - set the cpu affinity of a process
5270 * @pid: pid of the process
5271 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5272 * @user_mask_ptr: user-space pointer to the new cpu mask
5274 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5275 unsigned long __user
*, user_mask_ptr
)
5277 cpumask_var_t new_mask
;
5280 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5283 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5285 retval
= sched_setaffinity(pid
, new_mask
);
5286 free_cpumask_var(new_mask
);
5290 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5292 struct task_struct
*p
;
5293 unsigned long flags
;
5301 p
= find_process_by_pid(pid
);
5305 retval
= security_task_getscheduler(p
);
5309 rq
= task_rq_lock(p
, &flags
);
5310 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5311 task_rq_unlock(rq
, &flags
);
5321 * sys_sched_getaffinity - get the cpu affinity of a process
5322 * @pid: pid of the process
5323 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5324 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5326 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5327 unsigned long __user
*, user_mask_ptr
)
5332 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5334 if (len
& (sizeof(unsigned long)-1))
5337 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5340 ret
= sched_getaffinity(pid
, mask
);
5342 size_t retlen
= min_t(size_t, len
, cpumask_size());
5344 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5349 free_cpumask_var(mask
);
5355 * sys_sched_yield - yield the current processor to other threads.
5357 * This function yields the current CPU to other tasks. If there are no
5358 * other threads running on this CPU then this function will return.
5360 SYSCALL_DEFINE0(sched_yield
)
5362 struct rq
*rq
= this_rq_lock();
5364 schedstat_inc(rq
, yld_count
);
5365 current
->sched_class
->yield_task(rq
);
5368 * Since we are going to call schedule() anyway, there's
5369 * no need to preempt or enable interrupts:
5371 __release(rq
->lock
);
5372 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5373 do_raw_spin_unlock(&rq
->lock
);
5374 preempt_enable_no_resched();
5381 static inline int should_resched(void)
5383 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5386 static void __cond_resched(void)
5388 add_preempt_count(PREEMPT_ACTIVE
);
5390 sub_preempt_count(PREEMPT_ACTIVE
);
5393 int __sched
_cond_resched(void)
5395 if (should_resched()) {
5401 EXPORT_SYMBOL(_cond_resched
);
5404 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5405 * call schedule, and on return reacquire the lock.
5407 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5408 * operations here to prevent schedule() from being called twice (once via
5409 * spin_unlock(), once by hand).
5411 int __cond_resched_lock(spinlock_t
*lock
)
5413 int resched
= should_resched();
5416 lockdep_assert_held(lock
);
5418 if (spin_needbreak(lock
) || resched
) {
5429 EXPORT_SYMBOL(__cond_resched_lock
);
5431 int __sched
__cond_resched_softirq(void)
5433 BUG_ON(!in_softirq());
5435 if (should_resched()) {
5443 EXPORT_SYMBOL(__cond_resched_softirq
);
5446 * yield - yield the current processor to other threads.
5448 * This is a shortcut for kernel-space yielding - it marks the
5449 * thread runnable and calls sys_sched_yield().
5451 void __sched
yield(void)
5453 set_current_state(TASK_RUNNING
);
5456 EXPORT_SYMBOL(yield
);
5459 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5460 * that process accounting knows that this is a task in IO wait state.
5462 void __sched
io_schedule(void)
5464 struct rq
*rq
= raw_rq();
5466 delayacct_blkio_start();
5467 atomic_inc(&rq
->nr_iowait
);
5468 current
->in_iowait
= 1;
5470 current
->in_iowait
= 0;
5471 atomic_dec(&rq
->nr_iowait
);
5472 delayacct_blkio_end();
5474 EXPORT_SYMBOL(io_schedule
);
5476 long __sched
io_schedule_timeout(long timeout
)
5478 struct rq
*rq
= raw_rq();
5481 delayacct_blkio_start();
5482 atomic_inc(&rq
->nr_iowait
);
5483 current
->in_iowait
= 1;
5484 ret
= schedule_timeout(timeout
);
5485 current
->in_iowait
= 0;
5486 atomic_dec(&rq
->nr_iowait
);
5487 delayacct_blkio_end();
5492 * sys_sched_get_priority_max - return maximum RT priority.
5493 * @policy: scheduling class.
5495 * this syscall returns the maximum rt_priority that can be used
5496 * by a given scheduling class.
5498 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5505 ret
= MAX_USER_RT_PRIO
-1;
5517 * sys_sched_get_priority_min - return minimum RT priority.
5518 * @policy: scheduling class.
5520 * this syscall returns the minimum rt_priority that can be used
5521 * by a given scheduling class.
5523 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5541 * sys_sched_rr_get_interval - return the default timeslice of a process.
5542 * @pid: pid of the process.
5543 * @interval: userspace pointer to the timeslice value.
5545 * this syscall writes the default timeslice value of a given process
5546 * into the user-space timespec buffer. A value of '0' means infinity.
5548 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5549 struct timespec __user
*, interval
)
5551 struct task_struct
*p
;
5552 unsigned int time_slice
;
5553 unsigned long flags
;
5563 p
= find_process_by_pid(pid
);
5567 retval
= security_task_getscheduler(p
);
5571 rq
= task_rq_lock(p
, &flags
);
5572 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5573 task_rq_unlock(rq
, &flags
);
5576 jiffies_to_timespec(time_slice
, &t
);
5577 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5585 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5587 void sched_show_task(struct task_struct
*p
)
5589 unsigned long free
= 0;
5592 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5593 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5594 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5595 #if BITS_PER_LONG == 32
5596 if (state
== TASK_RUNNING
)
5597 printk(KERN_CONT
" running ");
5599 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5601 if (state
== TASK_RUNNING
)
5602 printk(KERN_CONT
" running task ");
5604 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5606 #ifdef CONFIG_DEBUG_STACK_USAGE
5607 free
= stack_not_used(p
);
5609 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5610 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5611 (unsigned long)task_thread_info(p
)->flags
);
5613 show_stack(p
, NULL
);
5616 void show_state_filter(unsigned long state_filter
)
5618 struct task_struct
*g
, *p
;
5620 #if BITS_PER_LONG == 32
5622 " task PC stack pid father\n");
5625 " task PC stack pid father\n");
5627 read_lock(&tasklist_lock
);
5628 do_each_thread(g
, p
) {
5630 * reset the NMI-timeout, listing all files on a slow
5631 * console might take alot of time:
5633 touch_nmi_watchdog();
5634 if (!state_filter
|| (p
->state
& state_filter
))
5636 } while_each_thread(g
, p
);
5638 touch_all_softlockup_watchdogs();
5640 #ifdef CONFIG_SCHED_DEBUG
5641 sysrq_sched_debug_show();
5643 read_unlock(&tasklist_lock
);
5645 * Only show locks if all tasks are dumped:
5648 debug_show_all_locks();
5651 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5653 idle
->sched_class
= &idle_sched_class
;
5657 * init_idle - set up an idle thread for a given CPU
5658 * @idle: task in question
5659 * @cpu: cpu the idle task belongs to
5661 * NOTE: this function does not set the idle thread's NEED_RESCHED
5662 * flag, to make booting more robust.
5664 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5666 struct rq
*rq
= cpu_rq(cpu
);
5667 unsigned long flags
;
5669 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5672 idle
->state
= TASK_RUNNING
;
5673 idle
->se
.exec_start
= sched_clock();
5675 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5677 * We're having a chicken and egg problem, even though we are
5678 * holding rq->lock, the cpu isn't yet set to this cpu so the
5679 * lockdep check in task_group() will fail.
5681 * Similar case to sched_fork(). / Alternatively we could
5682 * use task_rq_lock() here and obtain the other rq->lock.
5687 __set_task_cpu(idle
, cpu
);
5690 rq
->curr
= rq
->idle
= idle
;
5691 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5694 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5696 /* Set the preempt count _outside_ the spinlocks! */
5697 #if defined(CONFIG_PREEMPT)
5698 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5700 task_thread_info(idle
)->preempt_count
= 0;
5703 * The idle tasks have their own, simple scheduling class:
5705 idle
->sched_class
= &idle_sched_class
;
5706 ftrace_graph_init_task(idle
);
5710 * In a system that switches off the HZ timer nohz_cpu_mask
5711 * indicates which cpus entered this state. This is used
5712 * in the rcu update to wait only for active cpus. For system
5713 * which do not switch off the HZ timer nohz_cpu_mask should
5714 * always be CPU_BITS_NONE.
5716 cpumask_var_t nohz_cpu_mask
;
5719 * Increase the granularity value when there are more CPUs,
5720 * because with more CPUs the 'effective latency' as visible
5721 * to users decreases. But the relationship is not linear,
5722 * so pick a second-best guess by going with the log2 of the
5725 * This idea comes from the SD scheduler of Con Kolivas:
5727 static int get_update_sysctl_factor(void)
5729 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5730 unsigned int factor
;
5732 switch (sysctl_sched_tunable_scaling
) {
5733 case SCHED_TUNABLESCALING_NONE
:
5736 case SCHED_TUNABLESCALING_LINEAR
:
5739 case SCHED_TUNABLESCALING_LOG
:
5741 factor
= 1 + ilog2(cpus
);
5748 static void update_sysctl(void)
5750 unsigned int factor
= get_update_sysctl_factor();
5752 #define SET_SYSCTL(name) \
5753 (sysctl_##name = (factor) * normalized_sysctl_##name)
5754 SET_SYSCTL(sched_min_granularity
);
5755 SET_SYSCTL(sched_latency
);
5756 SET_SYSCTL(sched_wakeup_granularity
);
5757 SET_SYSCTL(sched_shares_ratelimit
);
5761 static inline void sched_init_granularity(void)
5768 * This is how migration works:
5770 * 1) we invoke migration_cpu_stop() on the target CPU using
5772 * 2) stopper starts to run (implicitly forcing the migrated thread
5774 * 3) it checks whether the migrated task is still in the wrong runqueue.
5775 * 4) if it's in the wrong runqueue then the migration thread removes
5776 * it and puts it into the right queue.
5777 * 5) stopper completes and stop_one_cpu() returns and the migration
5782 * Change a given task's CPU affinity. Migrate the thread to a
5783 * proper CPU and schedule it away if the CPU it's executing on
5784 * is removed from the allowed bitmask.
5786 * NOTE: the caller must have a valid reference to the task, the
5787 * task must not exit() & deallocate itself prematurely. The
5788 * call is not atomic; no spinlocks may be held.
5790 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5792 unsigned long flags
;
5794 unsigned int dest_cpu
;
5798 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5799 * drop the rq->lock and still rely on ->cpus_allowed.
5802 while (task_is_waking(p
))
5804 rq
= task_rq_lock(p
, &flags
);
5805 if (task_is_waking(p
)) {
5806 task_rq_unlock(rq
, &flags
);
5810 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5815 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5816 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5821 if (p
->sched_class
->set_cpus_allowed
)
5822 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5824 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5825 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5828 /* Can the task run on the task's current CPU? If so, we're done */
5829 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5832 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5833 if (migrate_task(p
, dest_cpu
)) {
5834 struct migration_arg arg
= { p
, dest_cpu
};
5835 /* Need help from migration thread: drop lock and wait. */
5836 task_rq_unlock(rq
, &flags
);
5837 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5838 tlb_migrate_finish(p
->mm
);
5842 task_rq_unlock(rq
, &flags
);
5846 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5849 * Move (not current) task off this cpu, onto dest cpu. We're doing
5850 * this because either it can't run here any more (set_cpus_allowed()
5851 * away from this CPU, or CPU going down), or because we're
5852 * attempting to rebalance this task on exec (sched_exec).
5854 * So we race with normal scheduler movements, but that's OK, as long
5855 * as the task is no longer on this CPU.
5857 * Returns non-zero if task was successfully migrated.
5859 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5861 struct rq
*rq_dest
, *rq_src
;
5864 if (unlikely(!cpu_active(dest_cpu
)))
5867 rq_src
= cpu_rq(src_cpu
);
5868 rq_dest
= cpu_rq(dest_cpu
);
5870 double_rq_lock(rq_src
, rq_dest
);
5871 /* Already moved. */
5872 if (task_cpu(p
) != src_cpu
)
5874 /* Affinity changed (again). */
5875 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5879 * If we're not on a rq, the next wake-up will ensure we're
5883 deactivate_task(rq_src
, p
, 0);
5884 set_task_cpu(p
, dest_cpu
);
5885 activate_task(rq_dest
, p
, 0);
5886 check_preempt_curr(rq_dest
, p
, 0);
5891 double_rq_unlock(rq_src
, rq_dest
);
5896 * migration_cpu_stop - this will be executed by a highprio stopper thread
5897 * and performs thread migration by bumping thread off CPU then
5898 * 'pushing' onto another runqueue.
5900 static int migration_cpu_stop(void *data
)
5902 struct migration_arg
*arg
= data
;
5905 * The original target cpu might have gone down and we might
5906 * be on another cpu but it doesn't matter.
5908 local_irq_disable();
5909 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5914 #ifdef CONFIG_HOTPLUG_CPU
5916 * Figure out where task on dead CPU should go, use force if necessary.
5918 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5920 struct rq
*rq
= cpu_rq(dead_cpu
);
5921 int needs_cpu
, uninitialized_var(dest_cpu
);
5922 unsigned long flags
;
5924 local_irq_save(flags
);
5926 raw_spin_lock(&rq
->lock
);
5927 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5929 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5930 raw_spin_unlock(&rq
->lock
);
5932 * It can only fail if we race with set_cpus_allowed(),
5933 * in the racer should migrate the task anyway.
5936 __migrate_task(p
, dead_cpu
, dest_cpu
);
5937 local_irq_restore(flags
);
5941 * While a dead CPU has no uninterruptible tasks queued at this point,
5942 * it might still have a nonzero ->nr_uninterruptible counter, because
5943 * for performance reasons the counter is not stricly tracking tasks to
5944 * their home CPUs. So we just add the counter to another CPU's counter,
5945 * to keep the global sum constant after CPU-down:
5947 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5949 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5950 unsigned long flags
;
5952 local_irq_save(flags
);
5953 double_rq_lock(rq_src
, rq_dest
);
5954 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5955 rq_src
->nr_uninterruptible
= 0;
5956 double_rq_unlock(rq_src
, rq_dest
);
5957 local_irq_restore(flags
);
5960 /* Run through task list and migrate tasks from the dead cpu. */
5961 static void migrate_live_tasks(int src_cpu
)
5963 struct task_struct
*p
, *t
;
5965 read_lock(&tasklist_lock
);
5967 do_each_thread(t
, p
) {
5971 if (task_cpu(p
) == src_cpu
)
5972 move_task_off_dead_cpu(src_cpu
, p
);
5973 } while_each_thread(t
, p
);
5975 read_unlock(&tasklist_lock
);
5979 * Schedules idle task to be the next runnable task on current CPU.
5980 * It does so by boosting its priority to highest possible.
5981 * Used by CPU offline code.
5983 void sched_idle_next(void)
5985 int this_cpu
= smp_processor_id();
5986 struct rq
*rq
= cpu_rq(this_cpu
);
5987 struct task_struct
*p
= rq
->idle
;
5988 unsigned long flags
;
5990 /* cpu has to be offline */
5991 BUG_ON(cpu_online(this_cpu
));
5994 * Strictly not necessary since rest of the CPUs are stopped by now
5995 * and interrupts disabled on the current cpu.
5997 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5999 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6001 activate_task(rq
, p
, 0);
6003 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6007 * Ensures that the idle task is using init_mm right before its cpu goes
6010 void idle_task_exit(void)
6012 struct mm_struct
*mm
= current
->active_mm
;
6014 BUG_ON(cpu_online(smp_processor_id()));
6017 switch_mm(mm
, &init_mm
, current
);
6021 /* called under rq->lock with disabled interrupts */
6022 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6024 struct rq
*rq
= cpu_rq(dead_cpu
);
6026 /* Must be exiting, otherwise would be on tasklist. */
6027 BUG_ON(!p
->exit_state
);
6029 /* Cannot have done final schedule yet: would have vanished. */
6030 BUG_ON(p
->state
== TASK_DEAD
);
6035 * Drop lock around migration; if someone else moves it,
6036 * that's OK. No task can be added to this CPU, so iteration is
6039 raw_spin_unlock_irq(&rq
->lock
);
6040 move_task_off_dead_cpu(dead_cpu
, p
);
6041 raw_spin_lock_irq(&rq
->lock
);
6046 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6047 static void migrate_dead_tasks(unsigned int dead_cpu
)
6049 struct rq
*rq
= cpu_rq(dead_cpu
);
6050 struct task_struct
*next
;
6053 if (!rq
->nr_running
)
6055 next
= pick_next_task(rq
);
6058 next
->sched_class
->put_prev_task(rq
, next
);
6059 migrate_dead(dead_cpu
, next
);
6065 * remove the tasks which were accounted by rq from calc_load_tasks.
6067 static void calc_global_load_remove(struct rq
*rq
)
6069 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6070 rq
->calc_load_active
= 0;
6072 #endif /* CONFIG_HOTPLUG_CPU */
6074 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6076 static struct ctl_table sd_ctl_dir
[] = {
6078 .procname
= "sched_domain",
6084 static struct ctl_table sd_ctl_root
[] = {
6086 .procname
= "kernel",
6088 .child
= sd_ctl_dir
,
6093 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6095 struct ctl_table
*entry
=
6096 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6101 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6103 struct ctl_table
*entry
;
6106 * In the intermediate directories, both the child directory and
6107 * procname are dynamically allocated and could fail but the mode
6108 * will always be set. In the lowest directory the names are
6109 * static strings and all have proc handlers.
6111 for (entry
= *tablep
; entry
->mode
; entry
++) {
6113 sd_free_ctl_entry(&entry
->child
);
6114 if (entry
->proc_handler
== NULL
)
6115 kfree(entry
->procname
);
6123 set_table_entry(struct ctl_table
*entry
,
6124 const char *procname
, void *data
, int maxlen
,
6125 mode_t mode
, proc_handler
*proc_handler
)
6127 entry
->procname
= procname
;
6129 entry
->maxlen
= maxlen
;
6131 entry
->proc_handler
= proc_handler
;
6134 static struct ctl_table
*
6135 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6137 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6142 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6143 sizeof(long), 0644, proc_doulongvec_minmax
);
6144 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6145 sizeof(long), 0644, proc_doulongvec_minmax
);
6146 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6147 sizeof(int), 0644, proc_dointvec_minmax
);
6148 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6149 sizeof(int), 0644, proc_dointvec_minmax
);
6150 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6151 sizeof(int), 0644, proc_dointvec_minmax
);
6152 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6153 sizeof(int), 0644, proc_dointvec_minmax
);
6154 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6155 sizeof(int), 0644, proc_dointvec_minmax
);
6156 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6157 sizeof(int), 0644, proc_dointvec_minmax
);
6158 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6159 sizeof(int), 0644, proc_dointvec_minmax
);
6160 set_table_entry(&table
[9], "cache_nice_tries",
6161 &sd
->cache_nice_tries
,
6162 sizeof(int), 0644, proc_dointvec_minmax
);
6163 set_table_entry(&table
[10], "flags", &sd
->flags
,
6164 sizeof(int), 0644, proc_dointvec_minmax
);
6165 set_table_entry(&table
[11], "name", sd
->name
,
6166 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6167 /* &table[12] is terminator */
6172 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6174 struct ctl_table
*entry
, *table
;
6175 struct sched_domain
*sd
;
6176 int domain_num
= 0, i
;
6179 for_each_domain(cpu
, sd
)
6181 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6186 for_each_domain(cpu
, sd
) {
6187 snprintf(buf
, 32, "domain%d", i
);
6188 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6190 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6197 static struct ctl_table_header
*sd_sysctl_header
;
6198 static void register_sched_domain_sysctl(void)
6200 int i
, cpu_num
= num_possible_cpus();
6201 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6204 WARN_ON(sd_ctl_dir
[0].child
);
6205 sd_ctl_dir
[0].child
= entry
;
6210 for_each_possible_cpu(i
) {
6211 snprintf(buf
, 32, "cpu%d", i
);
6212 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6214 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6218 WARN_ON(sd_sysctl_header
);
6219 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6222 /* may be called multiple times per register */
6223 static void unregister_sched_domain_sysctl(void)
6225 if (sd_sysctl_header
)
6226 unregister_sysctl_table(sd_sysctl_header
);
6227 sd_sysctl_header
= NULL
;
6228 if (sd_ctl_dir
[0].child
)
6229 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6232 static void register_sched_domain_sysctl(void)
6235 static void unregister_sched_domain_sysctl(void)
6240 static void set_rq_online(struct rq
*rq
)
6243 const struct sched_class
*class;
6245 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6248 for_each_class(class) {
6249 if (class->rq_online
)
6250 class->rq_online(rq
);
6255 static void set_rq_offline(struct rq
*rq
)
6258 const struct sched_class
*class;
6260 for_each_class(class) {
6261 if (class->rq_offline
)
6262 class->rq_offline(rq
);
6265 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6271 * migration_call - callback that gets triggered when a CPU is added.
6272 * Here we can start up the necessary migration thread for the new CPU.
6274 static int __cpuinit
6275 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6277 int cpu
= (long)hcpu
;
6278 unsigned long flags
;
6279 struct rq
*rq
= cpu_rq(cpu
);
6283 case CPU_UP_PREPARE
:
6284 case CPU_UP_PREPARE_FROZEN
:
6285 rq
->calc_load_update
= calc_load_update
;
6289 case CPU_ONLINE_FROZEN
:
6290 /* Update our root-domain */
6291 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6293 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6297 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6300 #ifdef CONFIG_HOTPLUG_CPU
6302 case CPU_DEAD_FROZEN
:
6303 migrate_live_tasks(cpu
);
6304 /* Idle task back to normal (off runqueue, low prio) */
6305 raw_spin_lock_irq(&rq
->lock
);
6306 deactivate_task(rq
, rq
->idle
, 0);
6307 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6308 rq
->idle
->sched_class
= &idle_sched_class
;
6309 migrate_dead_tasks(cpu
);
6310 raw_spin_unlock_irq(&rq
->lock
);
6311 migrate_nr_uninterruptible(rq
);
6312 BUG_ON(rq
->nr_running
!= 0);
6313 calc_global_load_remove(rq
);
6317 case CPU_DYING_FROZEN
:
6318 /* Update our root-domain */
6319 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6321 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6324 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6332 * Register at high priority so that task migration (migrate_all_tasks)
6333 * happens before everything else. This has to be lower priority than
6334 * the notifier in the perf_event subsystem, though.
6336 static struct notifier_block __cpuinitdata migration_notifier
= {
6337 .notifier_call
= migration_call
,
6338 .priority
= CPU_PRI_MIGRATION
,
6341 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6342 unsigned long action
, void *hcpu
)
6344 switch (action
& ~CPU_TASKS_FROZEN
) {
6346 case CPU_DOWN_FAILED
:
6347 set_cpu_active((long)hcpu
, true);
6354 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6355 unsigned long action
, void *hcpu
)
6357 switch (action
& ~CPU_TASKS_FROZEN
) {
6358 case CPU_DOWN_PREPARE
:
6359 set_cpu_active((long)hcpu
, false);
6366 static int __init
migration_init(void)
6368 void *cpu
= (void *)(long)smp_processor_id();
6371 /* Initialize migration for the boot CPU */
6372 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6373 BUG_ON(err
== NOTIFY_BAD
);
6374 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6375 register_cpu_notifier(&migration_notifier
);
6377 /* Register cpu active notifiers */
6378 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6379 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6383 early_initcall(migration_init
);
6388 #ifdef CONFIG_SCHED_DEBUG
6390 static __read_mostly
int sched_domain_debug_enabled
;
6392 static int __init
sched_domain_debug_setup(char *str
)
6394 sched_domain_debug_enabled
= 1;
6398 early_param("sched_debug", sched_domain_debug_setup
);
6400 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6401 struct cpumask
*groupmask
)
6403 struct sched_group
*group
= sd
->groups
;
6406 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6407 cpumask_clear(groupmask
);
6409 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6411 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6412 printk("does not load-balance\n");
6414 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6419 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6421 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6422 printk(KERN_ERR
"ERROR: domain->span does not contain "
6425 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6426 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6430 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6434 printk(KERN_ERR
"ERROR: group is NULL\n");
6438 if (!group
->cpu_power
) {
6439 printk(KERN_CONT
"\n");
6440 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6445 if (!cpumask_weight(sched_group_cpus(group
))) {
6446 printk(KERN_CONT
"\n");
6447 printk(KERN_ERR
"ERROR: empty group\n");
6451 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6452 printk(KERN_CONT
"\n");
6453 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6457 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6459 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6461 printk(KERN_CONT
" %s", str
);
6462 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6463 printk(KERN_CONT
" (cpu_power = %d)",
6467 group
= group
->next
;
6468 } while (group
!= sd
->groups
);
6469 printk(KERN_CONT
"\n");
6471 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6472 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6475 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6476 printk(KERN_ERR
"ERROR: parent span is not a superset "
6477 "of domain->span\n");
6481 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6483 cpumask_var_t groupmask
;
6486 if (!sched_domain_debug_enabled
)
6490 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6494 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6496 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6497 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6502 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6509 free_cpumask_var(groupmask
);
6511 #else /* !CONFIG_SCHED_DEBUG */
6512 # define sched_domain_debug(sd, cpu) do { } while (0)
6513 #endif /* CONFIG_SCHED_DEBUG */
6515 static int sd_degenerate(struct sched_domain
*sd
)
6517 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6520 /* Following flags need at least 2 groups */
6521 if (sd
->flags
& (SD_LOAD_BALANCE
|
6522 SD_BALANCE_NEWIDLE
|
6526 SD_SHARE_PKG_RESOURCES
)) {
6527 if (sd
->groups
!= sd
->groups
->next
)
6531 /* Following flags don't use groups */
6532 if (sd
->flags
& (SD_WAKE_AFFINE
))
6539 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6541 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6543 if (sd_degenerate(parent
))
6546 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6549 /* Flags needing groups don't count if only 1 group in parent */
6550 if (parent
->groups
== parent
->groups
->next
) {
6551 pflags
&= ~(SD_LOAD_BALANCE
|
6552 SD_BALANCE_NEWIDLE
|
6556 SD_SHARE_PKG_RESOURCES
);
6557 if (nr_node_ids
== 1)
6558 pflags
&= ~SD_SERIALIZE
;
6560 if (~cflags
& pflags
)
6566 static void free_rootdomain(struct root_domain
*rd
)
6568 synchronize_sched();
6570 cpupri_cleanup(&rd
->cpupri
);
6572 free_cpumask_var(rd
->rto_mask
);
6573 free_cpumask_var(rd
->online
);
6574 free_cpumask_var(rd
->span
);
6578 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6580 struct root_domain
*old_rd
= NULL
;
6581 unsigned long flags
;
6583 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6588 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6591 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6594 * If we dont want to free the old_rt yet then
6595 * set old_rd to NULL to skip the freeing later
6598 if (!atomic_dec_and_test(&old_rd
->refcount
))
6602 atomic_inc(&rd
->refcount
);
6605 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6606 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6609 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6612 free_rootdomain(old_rd
);
6615 static int init_rootdomain(struct root_domain
*rd
)
6617 memset(rd
, 0, sizeof(*rd
));
6619 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6621 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6623 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6626 if (cpupri_init(&rd
->cpupri
) != 0)
6631 free_cpumask_var(rd
->rto_mask
);
6633 free_cpumask_var(rd
->online
);
6635 free_cpumask_var(rd
->span
);
6640 static void init_defrootdomain(void)
6642 init_rootdomain(&def_root_domain
);
6644 atomic_set(&def_root_domain
.refcount
, 1);
6647 static struct root_domain
*alloc_rootdomain(void)
6649 struct root_domain
*rd
;
6651 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6655 if (init_rootdomain(rd
) != 0) {
6664 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6665 * hold the hotplug lock.
6668 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6670 struct rq
*rq
= cpu_rq(cpu
);
6671 struct sched_domain
*tmp
;
6673 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6674 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6676 /* Remove the sched domains which do not contribute to scheduling. */
6677 for (tmp
= sd
; tmp
; ) {
6678 struct sched_domain
*parent
= tmp
->parent
;
6682 if (sd_parent_degenerate(tmp
, parent
)) {
6683 tmp
->parent
= parent
->parent
;
6685 parent
->parent
->child
= tmp
;
6690 if (sd
&& sd_degenerate(sd
)) {
6696 sched_domain_debug(sd
, cpu
);
6698 rq_attach_root(rq
, rd
);
6699 rcu_assign_pointer(rq
->sd
, sd
);
6702 /* cpus with isolated domains */
6703 static cpumask_var_t cpu_isolated_map
;
6705 /* Setup the mask of cpus configured for isolated domains */
6706 static int __init
isolated_cpu_setup(char *str
)
6708 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6709 cpulist_parse(str
, cpu_isolated_map
);
6713 __setup("isolcpus=", isolated_cpu_setup
);
6716 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6717 * to a function which identifies what group(along with sched group) a CPU
6718 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6719 * (due to the fact that we keep track of groups covered with a struct cpumask).
6721 * init_sched_build_groups will build a circular linked list of the groups
6722 * covered by the given span, and will set each group's ->cpumask correctly,
6723 * and ->cpu_power to 0.
6726 init_sched_build_groups(const struct cpumask
*span
,
6727 const struct cpumask
*cpu_map
,
6728 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6729 struct sched_group
**sg
,
6730 struct cpumask
*tmpmask
),
6731 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6733 struct sched_group
*first
= NULL
, *last
= NULL
;
6736 cpumask_clear(covered
);
6738 for_each_cpu(i
, span
) {
6739 struct sched_group
*sg
;
6740 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6743 if (cpumask_test_cpu(i
, covered
))
6746 cpumask_clear(sched_group_cpus(sg
));
6749 for_each_cpu(j
, span
) {
6750 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6753 cpumask_set_cpu(j
, covered
);
6754 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6765 #define SD_NODES_PER_DOMAIN 16
6770 * find_next_best_node - find the next node to include in a sched_domain
6771 * @node: node whose sched_domain we're building
6772 * @used_nodes: nodes already in the sched_domain
6774 * Find the next node to include in a given scheduling domain. Simply
6775 * finds the closest node not already in the @used_nodes map.
6777 * Should use nodemask_t.
6779 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6781 int i
, n
, val
, min_val
, best_node
= 0;
6785 for (i
= 0; i
< nr_node_ids
; i
++) {
6786 /* Start at @node */
6787 n
= (node
+ i
) % nr_node_ids
;
6789 if (!nr_cpus_node(n
))
6792 /* Skip already used nodes */
6793 if (node_isset(n
, *used_nodes
))
6796 /* Simple min distance search */
6797 val
= node_distance(node
, n
);
6799 if (val
< min_val
) {
6805 node_set(best_node
, *used_nodes
);
6810 * sched_domain_node_span - get a cpumask for a node's sched_domain
6811 * @node: node whose cpumask we're constructing
6812 * @span: resulting cpumask
6814 * Given a node, construct a good cpumask for its sched_domain to span. It
6815 * should be one that prevents unnecessary balancing, but also spreads tasks
6818 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6820 nodemask_t used_nodes
;
6823 cpumask_clear(span
);
6824 nodes_clear(used_nodes
);
6826 cpumask_or(span
, span
, cpumask_of_node(node
));
6827 node_set(node
, used_nodes
);
6829 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6830 int next_node
= find_next_best_node(node
, &used_nodes
);
6832 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6835 #endif /* CONFIG_NUMA */
6837 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6840 * The cpus mask in sched_group and sched_domain hangs off the end.
6842 * ( See the the comments in include/linux/sched.h:struct sched_group
6843 * and struct sched_domain. )
6845 struct static_sched_group
{
6846 struct sched_group sg
;
6847 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6850 struct static_sched_domain
{
6851 struct sched_domain sd
;
6852 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6858 cpumask_var_t domainspan
;
6859 cpumask_var_t covered
;
6860 cpumask_var_t notcovered
;
6862 cpumask_var_t nodemask
;
6863 cpumask_var_t this_sibling_map
;
6864 cpumask_var_t this_core_map
;
6865 cpumask_var_t this_book_map
;
6866 cpumask_var_t send_covered
;
6867 cpumask_var_t tmpmask
;
6868 struct sched_group
**sched_group_nodes
;
6869 struct root_domain
*rd
;
6873 sa_sched_groups
= 0,
6879 sa_this_sibling_map
,
6881 sa_sched_group_nodes
,
6891 * SMT sched-domains:
6893 #ifdef CONFIG_SCHED_SMT
6894 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6895 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6898 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6899 struct sched_group
**sg
, struct cpumask
*unused
)
6902 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6905 #endif /* CONFIG_SCHED_SMT */
6908 * multi-core sched-domains:
6910 #ifdef CONFIG_SCHED_MC
6911 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6912 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6915 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6916 struct sched_group
**sg
, struct cpumask
*mask
)
6919 #ifdef CONFIG_SCHED_SMT
6920 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6921 group
= cpumask_first(mask
);
6926 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6929 #endif /* CONFIG_SCHED_MC */
6932 * book sched-domains:
6934 #ifdef CONFIG_SCHED_BOOK
6935 static DEFINE_PER_CPU(struct static_sched_domain
, book_domains
);
6936 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_book
);
6939 cpu_to_book_group(int cpu
, const struct cpumask
*cpu_map
,
6940 struct sched_group
**sg
, struct cpumask
*mask
)
6943 #ifdef CONFIG_SCHED_MC
6944 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6945 group
= cpumask_first(mask
);
6946 #elif defined(CONFIG_SCHED_SMT)
6947 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6948 group
= cpumask_first(mask
);
6951 *sg
= &per_cpu(sched_group_book
, group
).sg
;
6954 #endif /* CONFIG_SCHED_BOOK */
6956 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6957 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6960 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6961 struct sched_group
**sg
, struct cpumask
*mask
)
6964 #ifdef CONFIG_SCHED_BOOK
6965 cpumask_and(mask
, cpu_book_mask(cpu
), cpu_map
);
6966 group
= cpumask_first(mask
);
6967 #elif defined(CONFIG_SCHED_MC)
6968 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6969 group
= cpumask_first(mask
);
6970 #elif defined(CONFIG_SCHED_SMT)
6971 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6972 group
= cpumask_first(mask
);
6977 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6983 * The init_sched_build_groups can't handle what we want to do with node
6984 * groups, so roll our own. Now each node has its own list of groups which
6985 * gets dynamically allocated.
6987 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6988 static struct sched_group
***sched_group_nodes_bycpu
;
6990 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6991 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6993 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6994 struct sched_group
**sg
,
6995 struct cpumask
*nodemask
)
6999 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7000 group
= cpumask_first(nodemask
);
7003 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7007 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7009 struct sched_group
*sg
= group_head
;
7015 for_each_cpu(j
, sched_group_cpus(sg
)) {
7016 struct sched_domain
*sd
;
7018 sd
= &per_cpu(phys_domains
, j
).sd
;
7019 if (j
!= group_first_cpu(sd
->groups
)) {
7021 * Only add "power" once for each
7027 sg
->cpu_power
+= sd
->groups
->cpu_power
;
7030 } while (sg
!= group_head
);
7033 static int build_numa_sched_groups(struct s_data
*d
,
7034 const struct cpumask
*cpu_map
, int num
)
7036 struct sched_domain
*sd
;
7037 struct sched_group
*sg
, *prev
;
7040 cpumask_clear(d
->covered
);
7041 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
7042 if (cpumask_empty(d
->nodemask
)) {
7043 d
->sched_group_nodes
[num
] = NULL
;
7047 sched_domain_node_span(num
, d
->domainspan
);
7048 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
7050 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7053 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
7057 d
->sched_group_nodes
[num
] = sg
;
7059 for_each_cpu(j
, d
->nodemask
) {
7060 sd
= &per_cpu(node_domains
, j
).sd
;
7065 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
7067 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
7070 for (j
= 0; j
< nr_node_ids
; j
++) {
7071 n
= (num
+ j
) % nr_node_ids
;
7072 cpumask_complement(d
->notcovered
, d
->covered
);
7073 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
7074 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
7075 if (cpumask_empty(d
->tmpmask
))
7077 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
7078 if (cpumask_empty(d
->tmpmask
))
7080 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7084 "Can not alloc domain group for node %d\n", j
);
7088 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
7089 sg
->next
= prev
->next
;
7090 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
7097 #endif /* CONFIG_NUMA */
7100 /* Free memory allocated for various sched_group structures */
7101 static void free_sched_groups(const struct cpumask
*cpu_map
,
7102 struct cpumask
*nodemask
)
7106 for_each_cpu(cpu
, cpu_map
) {
7107 struct sched_group
**sched_group_nodes
7108 = sched_group_nodes_bycpu
[cpu
];
7110 if (!sched_group_nodes
)
7113 for (i
= 0; i
< nr_node_ids
; i
++) {
7114 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7116 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7117 if (cpumask_empty(nodemask
))
7127 if (oldsg
!= sched_group_nodes
[i
])
7130 kfree(sched_group_nodes
);
7131 sched_group_nodes_bycpu
[cpu
] = NULL
;
7134 #else /* !CONFIG_NUMA */
7135 static void free_sched_groups(const struct cpumask
*cpu_map
,
7136 struct cpumask
*nodemask
)
7139 #endif /* CONFIG_NUMA */
7142 * Initialize sched groups cpu_power.
7144 * cpu_power indicates the capacity of sched group, which is used while
7145 * distributing the load between different sched groups in a sched domain.
7146 * Typically cpu_power for all the groups in a sched domain will be same unless
7147 * there are asymmetries in the topology. If there are asymmetries, group
7148 * having more cpu_power will pickup more load compared to the group having
7151 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7153 struct sched_domain
*child
;
7154 struct sched_group
*group
;
7158 WARN_ON(!sd
|| !sd
->groups
);
7160 if (cpu
!= group_first_cpu(sd
->groups
))
7163 sd
->groups
->group_weight
= cpumask_weight(sched_group_cpus(sd
->groups
));
7167 sd
->groups
->cpu_power
= 0;
7170 power
= SCHED_LOAD_SCALE
;
7171 weight
= cpumask_weight(sched_domain_span(sd
));
7173 * SMT siblings share the power of a single core.
7174 * Usually multiple threads get a better yield out of
7175 * that one core than a single thread would have,
7176 * reflect that in sd->smt_gain.
7178 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
7179 power
*= sd
->smt_gain
;
7181 power
>>= SCHED_LOAD_SHIFT
;
7183 sd
->groups
->cpu_power
+= power
;
7188 * Add cpu_power of each child group to this groups cpu_power.
7190 group
= child
->groups
;
7192 sd
->groups
->cpu_power
+= group
->cpu_power
;
7193 group
= group
->next
;
7194 } while (group
!= child
->groups
);
7198 * Initializers for schedule domains
7199 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7202 #ifdef CONFIG_SCHED_DEBUG
7203 # define SD_INIT_NAME(sd, type) sd->name = #type
7205 # define SD_INIT_NAME(sd, type) do { } while (0)
7208 #define SD_INIT(sd, type) sd_init_##type(sd)
7210 #define SD_INIT_FUNC(type) \
7211 static noinline void sd_init_##type(struct sched_domain *sd) \
7213 memset(sd, 0, sizeof(*sd)); \
7214 *sd = SD_##type##_INIT; \
7215 sd->level = SD_LV_##type; \
7216 SD_INIT_NAME(sd, type); \
7221 SD_INIT_FUNC(ALLNODES
)
7224 #ifdef CONFIG_SCHED_SMT
7225 SD_INIT_FUNC(SIBLING
)
7227 #ifdef CONFIG_SCHED_MC
7230 #ifdef CONFIG_SCHED_BOOK
7234 static int default_relax_domain_level
= -1;
7236 static int __init
setup_relax_domain_level(char *str
)
7240 val
= simple_strtoul(str
, NULL
, 0);
7241 if (val
< SD_LV_MAX
)
7242 default_relax_domain_level
= val
;
7246 __setup("relax_domain_level=", setup_relax_domain_level
);
7248 static void set_domain_attribute(struct sched_domain
*sd
,
7249 struct sched_domain_attr
*attr
)
7253 if (!attr
|| attr
->relax_domain_level
< 0) {
7254 if (default_relax_domain_level
< 0)
7257 request
= default_relax_domain_level
;
7259 request
= attr
->relax_domain_level
;
7260 if (request
< sd
->level
) {
7261 /* turn off idle balance on this domain */
7262 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7264 /* turn on idle balance on this domain */
7265 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7269 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7270 const struct cpumask
*cpu_map
)
7273 case sa_sched_groups
:
7274 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
7275 d
->sched_group_nodes
= NULL
;
7277 free_rootdomain(d
->rd
); /* fall through */
7279 free_cpumask_var(d
->tmpmask
); /* fall through */
7280 case sa_send_covered
:
7281 free_cpumask_var(d
->send_covered
); /* fall through */
7282 case sa_this_book_map
:
7283 free_cpumask_var(d
->this_book_map
); /* fall through */
7284 case sa_this_core_map
:
7285 free_cpumask_var(d
->this_core_map
); /* fall through */
7286 case sa_this_sibling_map
:
7287 free_cpumask_var(d
->this_sibling_map
); /* fall through */
7289 free_cpumask_var(d
->nodemask
); /* fall through */
7290 case sa_sched_group_nodes
:
7292 kfree(d
->sched_group_nodes
); /* fall through */
7294 free_cpumask_var(d
->notcovered
); /* fall through */
7296 free_cpumask_var(d
->covered
); /* fall through */
7298 free_cpumask_var(d
->domainspan
); /* fall through */
7305 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7306 const struct cpumask
*cpu_map
)
7309 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
7311 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
7312 return sa_domainspan
;
7313 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
7315 /* Allocate the per-node list of sched groups */
7316 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
7317 sizeof(struct sched_group
*), GFP_KERNEL
);
7318 if (!d
->sched_group_nodes
) {
7319 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7320 return sa_notcovered
;
7322 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
7324 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
7325 return sa_sched_group_nodes
;
7326 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
7328 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
7329 return sa_this_sibling_map
;
7330 if (!alloc_cpumask_var(&d
->this_book_map
, GFP_KERNEL
))
7331 return sa_this_core_map
;
7332 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
7333 return sa_this_book_map
;
7334 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
7335 return sa_send_covered
;
7336 d
->rd
= alloc_rootdomain();
7338 printk(KERN_WARNING
"Cannot alloc root domain\n");
7341 return sa_rootdomain
;
7344 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
7345 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
7347 struct sched_domain
*sd
= NULL
;
7349 struct sched_domain
*parent
;
7352 if (cpumask_weight(cpu_map
) >
7353 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
7354 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7355 SD_INIT(sd
, ALLNODES
);
7356 set_domain_attribute(sd
, attr
);
7357 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7358 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7363 sd
= &per_cpu(node_domains
, i
).sd
;
7365 set_domain_attribute(sd
, attr
);
7366 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7367 sd
->parent
= parent
;
7370 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
7375 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
7376 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7377 struct sched_domain
*parent
, int i
)
7379 struct sched_domain
*sd
;
7380 sd
= &per_cpu(phys_domains
, i
).sd
;
7382 set_domain_attribute(sd
, attr
);
7383 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
7384 sd
->parent
= parent
;
7387 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7391 static struct sched_domain
*__build_book_sched_domain(struct s_data
*d
,
7392 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7393 struct sched_domain
*parent
, int i
)
7395 struct sched_domain
*sd
= parent
;
7396 #ifdef CONFIG_SCHED_BOOK
7397 sd
= &per_cpu(book_domains
, i
).sd
;
7399 set_domain_attribute(sd
, attr
);
7400 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_book_mask(i
));
7401 sd
->parent
= parent
;
7403 cpu_to_book_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7408 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
7409 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7410 struct sched_domain
*parent
, int i
)
7412 struct sched_domain
*sd
= parent
;
7413 #ifdef CONFIG_SCHED_MC
7414 sd
= &per_cpu(core_domains
, i
).sd
;
7416 set_domain_attribute(sd
, attr
);
7417 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7418 sd
->parent
= parent
;
7420 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7425 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7426 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7427 struct sched_domain
*parent
, int i
)
7429 struct sched_domain
*sd
= parent
;
7430 #ifdef CONFIG_SCHED_SMT
7431 sd
= &per_cpu(cpu_domains
, i
).sd
;
7432 SD_INIT(sd
, SIBLING
);
7433 set_domain_attribute(sd
, attr
);
7434 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7435 sd
->parent
= parent
;
7437 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7442 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7443 const struct cpumask
*cpu_map
, int cpu
)
7446 #ifdef CONFIG_SCHED_SMT
7447 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7448 cpumask_and(d
->this_sibling_map
, cpu_map
,
7449 topology_thread_cpumask(cpu
));
7450 if (cpu
== cpumask_first(d
->this_sibling_map
))
7451 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7453 d
->send_covered
, d
->tmpmask
);
7456 #ifdef CONFIG_SCHED_MC
7457 case SD_LV_MC
: /* set up multi-core groups */
7458 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7459 if (cpu
== cpumask_first(d
->this_core_map
))
7460 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7462 d
->send_covered
, d
->tmpmask
);
7465 #ifdef CONFIG_SCHED_BOOK
7466 case SD_LV_BOOK
: /* set up book groups */
7467 cpumask_and(d
->this_book_map
, cpu_map
, cpu_book_mask(cpu
));
7468 if (cpu
== cpumask_first(d
->this_book_map
))
7469 init_sched_build_groups(d
->this_book_map
, cpu_map
,
7471 d
->send_covered
, d
->tmpmask
);
7474 case SD_LV_CPU
: /* set up physical groups */
7475 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7476 if (!cpumask_empty(d
->nodemask
))
7477 init_sched_build_groups(d
->nodemask
, cpu_map
,
7479 d
->send_covered
, d
->tmpmask
);
7482 case SD_LV_ALLNODES
:
7483 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7484 d
->send_covered
, d
->tmpmask
);
7493 * Build sched domains for a given set of cpus and attach the sched domains
7494 * to the individual cpus
7496 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7497 struct sched_domain_attr
*attr
)
7499 enum s_alloc alloc_state
= sa_none
;
7501 struct sched_domain
*sd
;
7507 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7508 if (alloc_state
!= sa_rootdomain
)
7510 alloc_state
= sa_sched_groups
;
7513 * Set up domains for cpus specified by the cpu_map.
7515 for_each_cpu(i
, cpu_map
) {
7516 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7519 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7520 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7521 sd
= __build_book_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7522 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7523 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7526 for_each_cpu(i
, cpu_map
) {
7527 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7528 build_sched_groups(&d
, SD_LV_BOOK
, cpu_map
, i
);
7529 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7532 /* Set up physical groups */
7533 for (i
= 0; i
< nr_node_ids
; i
++)
7534 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7537 /* Set up node groups */
7539 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7541 for (i
= 0; i
< nr_node_ids
; i
++)
7542 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7546 /* Calculate CPU power for physical packages and nodes */
7547 #ifdef CONFIG_SCHED_SMT
7548 for_each_cpu(i
, cpu_map
) {
7549 sd
= &per_cpu(cpu_domains
, i
).sd
;
7550 init_sched_groups_power(i
, sd
);
7553 #ifdef CONFIG_SCHED_MC
7554 for_each_cpu(i
, cpu_map
) {
7555 sd
= &per_cpu(core_domains
, i
).sd
;
7556 init_sched_groups_power(i
, sd
);
7559 #ifdef CONFIG_SCHED_BOOK
7560 for_each_cpu(i
, cpu_map
) {
7561 sd
= &per_cpu(book_domains
, i
).sd
;
7562 init_sched_groups_power(i
, sd
);
7566 for_each_cpu(i
, cpu_map
) {
7567 sd
= &per_cpu(phys_domains
, i
).sd
;
7568 init_sched_groups_power(i
, sd
);
7572 for (i
= 0; i
< nr_node_ids
; i
++)
7573 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7575 if (d
.sd_allnodes
) {
7576 struct sched_group
*sg
;
7578 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7580 init_numa_sched_groups_power(sg
);
7584 /* Attach the domains */
7585 for_each_cpu(i
, cpu_map
) {
7586 #ifdef CONFIG_SCHED_SMT
7587 sd
= &per_cpu(cpu_domains
, i
).sd
;
7588 #elif defined(CONFIG_SCHED_MC)
7589 sd
= &per_cpu(core_domains
, i
).sd
;
7590 #elif defined(CONFIG_SCHED_BOOK)
7591 sd
= &per_cpu(book_domains
, i
).sd
;
7593 sd
= &per_cpu(phys_domains
, i
).sd
;
7595 cpu_attach_domain(sd
, d
.rd
, i
);
7598 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7599 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7603 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7607 static int build_sched_domains(const struct cpumask
*cpu_map
)
7609 return __build_sched_domains(cpu_map
, NULL
);
7612 static cpumask_var_t
*doms_cur
; /* current sched domains */
7613 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7614 static struct sched_domain_attr
*dattr_cur
;
7615 /* attribues of custom domains in 'doms_cur' */
7618 * Special case: If a kmalloc of a doms_cur partition (array of
7619 * cpumask) fails, then fallback to a single sched domain,
7620 * as determined by the single cpumask fallback_doms.
7622 static cpumask_var_t fallback_doms
;
7625 * arch_update_cpu_topology lets virtualized architectures update the
7626 * cpu core maps. It is supposed to return 1 if the topology changed
7627 * or 0 if it stayed the same.
7629 int __attribute__((weak
)) arch_update_cpu_topology(void)
7634 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7637 cpumask_var_t
*doms
;
7639 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7642 for (i
= 0; i
< ndoms
; i
++) {
7643 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7644 free_sched_domains(doms
, i
);
7651 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7654 for (i
= 0; i
< ndoms
; i
++)
7655 free_cpumask_var(doms
[i
]);
7660 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7661 * For now this just excludes isolated cpus, but could be used to
7662 * exclude other special cases in the future.
7664 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7668 arch_update_cpu_topology();
7670 doms_cur
= alloc_sched_domains(ndoms_cur
);
7672 doms_cur
= &fallback_doms
;
7673 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7675 err
= build_sched_domains(doms_cur
[0]);
7676 register_sched_domain_sysctl();
7681 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7682 struct cpumask
*tmpmask
)
7684 free_sched_groups(cpu_map
, tmpmask
);
7688 * Detach sched domains from a group of cpus specified in cpu_map
7689 * These cpus will now be attached to the NULL domain
7691 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7693 /* Save because hotplug lock held. */
7694 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7697 for_each_cpu(i
, cpu_map
)
7698 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7699 synchronize_sched();
7700 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7703 /* handle null as "default" */
7704 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7705 struct sched_domain_attr
*new, int idx_new
)
7707 struct sched_domain_attr tmp
;
7714 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7715 new ? (new + idx_new
) : &tmp
,
7716 sizeof(struct sched_domain_attr
));
7720 * Partition sched domains as specified by the 'ndoms_new'
7721 * cpumasks in the array doms_new[] of cpumasks. This compares
7722 * doms_new[] to the current sched domain partitioning, doms_cur[].
7723 * It destroys each deleted domain and builds each new domain.
7725 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7726 * The masks don't intersect (don't overlap.) We should setup one
7727 * sched domain for each mask. CPUs not in any of the cpumasks will
7728 * not be load balanced. If the same cpumask appears both in the
7729 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7732 * The passed in 'doms_new' should be allocated using
7733 * alloc_sched_domains. This routine takes ownership of it and will
7734 * free_sched_domains it when done with it. If the caller failed the
7735 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7736 * and partition_sched_domains() will fallback to the single partition
7737 * 'fallback_doms', it also forces the domains to be rebuilt.
7739 * If doms_new == NULL it will be replaced with cpu_online_mask.
7740 * ndoms_new == 0 is a special case for destroying existing domains,
7741 * and it will not create the default domain.
7743 * Call with hotplug lock held
7745 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7746 struct sched_domain_attr
*dattr_new
)
7751 mutex_lock(&sched_domains_mutex
);
7753 /* always unregister in case we don't destroy any domains */
7754 unregister_sched_domain_sysctl();
7756 /* Let architecture update cpu core mappings. */
7757 new_topology
= arch_update_cpu_topology();
7759 n
= doms_new
? ndoms_new
: 0;
7761 /* Destroy deleted domains */
7762 for (i
= 0; i
< ndoms_cur
; i
++) {
7763 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7764 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7765 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7768 /* no match - a current sched domain not in new doms_new[] */
7769 detach_destroy_domains(doms_cur
[i
]);
7774 if (doms_new
== NULL
) {
7776 doms_new
= &fallback_doms
;
7777 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7778 WARN_ON_ONCE(dattr_new
);
7781 /* Build new domains */
7782 for (i
= 0; i
< ndoms_new
; i
++) {
7783 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7784 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7785 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7788 /* no match - add a new doms_new */
7789 __build_sched_domains(doms_new
[i
],
7790 dattr_new
? dattr_new
+ i
: NULL
);
7795 /* Remember the new sched domains */
7796 if (doms_cur
!= &fallback_doms
)
7797 free_sched_domains(doms_cur
, ndoms_cur
);
7798 kfree(dattr_cur
); /* kfree(NULL) is safe */
7799 doms_cur
= doms_new
;
7800 dattr_cur
= dattr_new
;
7801 ndoms_cur
= ndoms_new
;
7803 register_sched_domain_sysctl();
7805 mutex_unlock(&sched_domains_mutex
);
7808 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7809 static void arch_reinit_sched_domains(void)
7813 /* Destroy domains first to force the rebuild */
7814 partition_sched_domains(0, NULL
, NULL
);
7816 rebuild_sched_domains();
7820 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7822 unsigned int level
= 0;
7824 if (sscanf(buf
, "%u", &level
) != 1)
7828 * level is always be positive so don't check for
7829 * level < POWERSAVINGS_BALANCE_NONE which is 0
7830 * What happens on 0 or 1 byte write,
7831 * need to check for count as well?
7834 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7838 sched_smt_power_savings
= level
;
7840 sched_mc_power_savings
= level
;
7842 arch_reinit_sched_domains();
7847 #ifdef CONFIG_SCHED_MC
7848 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7849 struct sysdev_class_attribute
*attr
,
7852 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7854 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7855 struct sysdev_class_attribute
*attr
,
7856 const char *buf
, size_t count
)
7858 return sched_power_savings_store(buf
, count
, 0);
7860 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7861 sched_mc_power_savings_show
,
7862 sched_mc_power_savings_store
);
7865 #ifdef CONFIG_SCHED_SMT
7866 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7867 struct sysdev_class_attribute
*attr
,
7870 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7872 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7873 struct sysdev_class_attribute
*attr
,
7874 const char *buf
, size_t count
)
7876 return sched_power_savings_store(buf
, count
, 1);
7878 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7879 sched_smt_power_savings_show
,
7880 sched_smt_power_savings_store
);
7883 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7887 #ifdef CONFIG_SCHED_SMT
7889 err
= sysfs_create_file(&cls
->kset
.kobj
,
7890 &attr_sched_smt_power_savings
.attr
);
7892 #ifdef CONFIG_SCHED_MC
7893 if (!err
&& mc_capable())
7894 err
= sysfs_create_file(&cls
->kset
.kobj
,
7895 &attr_sched_mc_power_savings
.attr
);
7899 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7902 * Update cpusets according to cpu_active mask. If cpusets are
7903 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7904 * around partition_sched_domains().
7906 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7909 switch (action
& ~CPU_TASKS_FROZEN
) {
7911 case CPU_DOWN_FAILED
:
7912 cpuset_update_active_cpus();
7919 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7922 switch (action
& ~CPU_TASKS_FROZEN
) {
7923 case CPU_DOWN_PREPARE
:
7924 cpuset_update_active_cpus();
7931 static int update_runtime(struct notifier_block
*nfb
,
7932 unsigned long action
, void *hcpu
)
7934 int cpu
= (int)(long)hcpu
;
7937 case CPU_DOWN_PREPARE
:
7938 case CPU_DOWN_PREPARE_FROZEN
:
7939 disable_runtime(cpu_rq(cpu
));
7942 case CPU_DOWN_FAILED
:
7943 case CPU_DOWN_FAILED_FROZEN
:
7945 case CPU_ONLINE_FROZEN
:
7946 enable_runtime(cpu_rq(cpu
));
7954 void __init
sched_init_smp(void)
7956 cpumask_var_t non_isolated_cpus
;
7958 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7959 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7961 #if defined(CONFIG_NUMA)
7962 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7964 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7967 mutex_lock(&sched_domains_mutex
);
7968 arch_init_sched_domains(cpu_active_mask
);
7969 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7970 if (cpumask_empty(non_isolated_cpus
))
7971 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7972 mutex_unlock(&sched_domains_mutex
);
7975 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7976 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7978 /* RT runtime code needs to handle some hotplug events */
7979 hotcpu_notifier(update_runtime
, 0);
7983 /* Move init over to a non-isolated CPU */
7984 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7986 sched_init_granularity();
7987 free_cpumask_var(non_isolated_cpus
);
7989 init_sched_rt_class();
7992 void __init
sched_init_smp(void)
7994 sched_init_granularity();
7996 #endif /* CONFIG_SMP */
7998 const_debug
unsigned int sysctl_timer_migration
= 1;
8000 int in_sched_functions(unsigned long addr
)
8002 return in_lock_functions(addr
) ||
8003 (addr
>= (unsigned long)__sched_text_start
8004 && addr
< (unsigned long)__sched_text_end
);
8007 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8009 cfs_rq
->tasks_timeline
= RB_ROOT
;
8010 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8011 #ifdef CONFIG_FAIR_GROUP_SCHED
8014 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8017 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8019 struct rt_prio_array
*array
;
8022 array
= &rt_rq
->active
;
8023 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8024 INIT_LIST_HEAD(array
->queue
+ i
);
8025 __clear_bit(i
, array
->bitmap
);
8027 /* delimiter for bitsearch: */
8028 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8030 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8031 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
8033 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
8037 rt_rq
->rt_nr_migratory
= 0;
8038 rt_rq
->overloaded
= 0;
8039 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
8043 rt_rq
->rt_throttled
= 0;
8044 rt_rq
->rt_runtime
= 0;
8045 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
8047 #ifdef CONFIG_RT_GROUP_SCHED
8048 rt_rq
->rt_nr_boosted
= 0;
8053 #ifdef CONFIG_FAIR_GROUP_SCHED
8054 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8055 struct sched_entity
*se
, int cpu
, int add
,
8056 struct sched_entity
*parent
)
8058 struct rq
*rq
= cpu_rq(cpu
);
8059 tg
->cfs_rq
[cpu
] = cfs_rq
;
8060 init_cfs_rq(cfs_rq
, rq
);
8063 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8066 /* se could be NULL for init_task_group */
8071 se
->cfs_rq
= &rq
->cfs
;
8073 se
->cfs_rq
= parent
->my_q
;
8076 se
->load
.weight
= tg
->shares
;
8077 se
->load
.inv_weight
= 0;
8078 se
->parent
= parent
;
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8084 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8085 struct sched_rt_entity
*parent
)
8087 struct rq
*rq
= cpu_rq(cpu
);
8089 tg
->rt_rq
[cpu
] = rt_rq
;
8090 init_rt_rq(rt_rq
, rq
);
8092 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8094 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8096 tg
->rt_se
[cpu
] = rt_se
;
8101 rt_se
->rt_rq
= &rq
->rt
;
8103 rt_se
->rt_rq
= parent
->my_q
;
8105 rt_se
->my_q
= rt_rq
;
8106 rt_se
->parent
= parent
;
8107 INIT_LIST_HEAD(&rt_se
->run_list
);
8111 void __init
sched_init(void)
8114 unsigned long alloc_size
= 0, ptr
;
8116 #ifdef CONFIG_FAIR_GROUP_SCHED
8117 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8119 #ifdef CONFIG_RT_GROUP_SCHED
8120 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8122 #ifdef CONFIG_CPUMASK_OFFSTACK
8123 alloc_size
+= num_possible_cpus() * cpumask_size();
8126 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8128 #ifdef CONFIG_FAIR_GROUP_SCHED
8129 init_task_group
.se
= (struct sched_entity
**)ptr
;
8130 ptr
+= nr_cpu_ids
* sizeof(void **);
8132 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8133 ptr
+= nr_cpu_ids
* sizeof(void **);
8135 #endif /* CONFIG_FAIR_GROUP_SCHED */
8136 #ifdef CONFIG_RT_GROUP_SCHED
8137 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8138 ptr
+= nr_cpu_ids
* sizeof(void **);
8140 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8141 ptr
+= nr_cpu_ids
* sizeof(void **);
8143 #endif /* CONFIG_RT_GROUP_SCHED */
8144 #ifdef CONFIG_CPUMASK_OFFSTACK
8145 for_each_possible_cpu(i
) {
8146 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8147 ptr
+= cpumask_size();
8149 #endif /* CONFIG_CPUMASK_OFFSTACK */
8153 init_defrootdomain();
8156 init_rt_bandwidth(&def_rt_bandwidth
,
8157 global_rt_period(), global_rt_runtime());
8159 #ifdef CONFIG_RT_GROUP_SCHED
8160 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8161 global_rt_period(), global_rt_runtime());
8162 #endif /* CONFIG_RT_GROUP_SCHED */
8164 #ifdef CONFIG_CGROUP_SCHED
8165 list_add(&init_task_group
.list
, &task_groups
);
8166 INIT_LIST_HEAD(&init_task_group
.children
);
8168 #endif /* CONFIG_CGROUP_SCHED */
8170 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8171 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
8172 __alignof__(unsigned long));
8174 for_each_possible_cpu(i
) {
8178 raw_spin_lock_init(&rq
->lock
);
8180 rq
->calc_load_active
= 0;
8181 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8182 init_cfs_rq(&rq
->cfs
, rq
);
8183 init_rt_rq(&rq
->rt
, rq
);
8184 #ifdef CONFIG_FAIR_GROUP_SCHED
8185 init_task_group
.shares
= init_task_group_load
;
8186 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8187 #ifdef CONFIG_CGROUP_SCHED
8189 * How much cpu bandwidth does init_task_group get?
8191 * In case of task-groups formed thr' the cgroup filesystem, it
8192 * gets 100% of the cpu resources in the system. This overall
8193 * system cpu resource is divided among the tasks of
8194 * init_task_group and its child task-groups in a fair manner,
8195 * based on each entity's (task or task-group's) weight
8196 * (se->load.weight).
8198 * In other words, if init_task_group has 10 tasks of weight
8199 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8200 * then A0's share of the cpu resource is:
8202 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8204 * We achieve this by letting init_task_group's tasks sit
8205 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8207 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8209 #endif /* CONFIG_FAIR_GROUP_SCHED */
8211 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8212 #ifdef CONFIG_RT_GROUP_SCHED
8213 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8214 #ifdef CONFIG_CGROUP_SCHED
8215 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8219 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8220 rq
->cpu_load
[j
] = 0;
8222 rq
->last_load_update_tick
= jiffies
;
8227 rq
->cpu_power
= SCHED_LOAD_SCALE
;
8228 rq
->post_schedule
= 0;
8229 rq
->active_balance
= 0;
8230 rq
->next_balance
= jiffies
;
8235 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8236 rq_attach_root(rq
, &def_root_domain
);
8238 rq
->nohz_balance_kick
= 0;
8239 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8243 atomic_set(&rq
->nr_iowait
, 0);
8246 set_load_weight(&init_task
);
8248 #ifdef CONFIG_PREEMPT_NOTIFIERS
8249 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8253 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8256 #ifdef CONFIG_RT_MUTEXES
8257 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8261 * The boot idle thread does lazy MMU switching as well:
8263 atomic_inc(&init_mm
.mm_count
);
8264 enter_lazy_tlb(&init_mm
, current
);
8267 * Make us the idle thread. Technically, schedule() should not be
8268 * called from this thread, however somewhere below it might be,
8269 * but because we are the idle thread, we just pick up running again
8270 * when this runqueue becomes "idle".
8272 init_idle(current
, smp_processor_id());
8274 calc_load_update
= jiffies
+ LOAD_FREQ
;
8277 * During early bootup we pretend to be a normal task:
8279 current
->sched_class
= &fair_sched_class
;
8281 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8282 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8285 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8286 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8287 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8288 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8289 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8291 /* May be allocated at isolcpus cmdline parse time */
8292 if (cpu_isolated_map
== NULL
)
8293 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8298 scheduler_running
= 1;
8301 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8302 static inline int preempt_count_equals(int preempt_offset
)
8304 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8306 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
8309 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8312 static unsigned long prev_jiffy
; /* ratelimiting */
8314 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8315 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8317 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8319 prev_jiffy
= jiffies
;
8322 "BUG: sleeping function called from invalid context at %s:%d\n",
8325 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8326 in_atomic(), irqs_disabled(),
8327 current
->pid
, current
->comm
);
8329 debug_show_held_locks(current
);
8330 if (irqs_disabled())
8331 print_irqtrace_events(current
);
8335 EXPORT_SYMBOL(__might_sleep
);
8338 #ifdef CONFIG_MAGIC_SYSRQ
8339 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8343 on_rq
= p
->se
.on_rq
;
8345 deactivate_task(rq
, p
, 0);
8346 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8348 activate_task(rq
, p
, 0);
8349 resched_task(rq
->curr
);
8353 void normalize_rt_tasks(void)
8355 struct task_struct
*g
, *p
;
8356 unsigned long flags
;
8359 read_lock_irqsave(&tasklist_lock
, flags
);
8360 do_each_thread(g
, p
) {
8362 * Only normalize user tasks:
8367 p
->se
.exec_start
= 0;
8368 #ifdef CONFIG_SCHEDSTATS
8369 p
->se
.statistics
.wait_start
= 0;
8370 p
->se
.statistics
.sleep_start
= 0;
8371 p
->se
.statistics
.block_start
= 0;
8376 * Renice negative nice level userspace
8379 if (TASK_NICE(p
) < 0 && p
->mm
)
8380 set_user_nice(p
, 0);
8384 raw_spin_lock(&p
->pi_lock
);
8385 rq
= __task_rq_lock(p
);
8387 normalize_task(rq
, p
);
8389 __task_rq_unlock(rq
);
8390 raw_spin_unlock(&p
->pi_lock
);
8391 } while_each_thread(g
, p
);
8393 read_unlock_irqrestore(&tasklist_lock
, flags
);
8396 #endif /* CONFIG_MAGIC_SYSRQ */
8398 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8400 * These functions are only useful for the IA64 MCA handling, or kdb.
8402 * They can only be called when the whole system has been
8403 * stopped - every CPU needs to be quiescent, and no scheduling
8404 * activity can take place. Using them for anything else would
8405 * be a serious bug, and as a result, they aren't even visible
8406 * under any other configuration.
8410 * curr_task - return the current task for a given cpu.
8411 * @cpu: the processor in question.
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8415 struct task_struct
*curr_task(int cpu
)
8417 return cpu_curr(cpu
);
8420 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8424 * set_curr_task - set the current task for a given cpu.
8425 * @cpu: the processor in question.
8426 * @p: the task pointer to set.
8428 * Description: This function must only be used when non-maskable interrupts
8429 * are serviced on a separate stack. It allows the architecture to switch the
8430 * notion of the current task on a cpu in a non-blocking manner. This function
8431 * must be called with all CPU's synchronized, and interrupts disabled, the
8432 * and caller must save the original value of the current task (see
8433 * curr_task() above) and restore that value before reenabling interrupts and
8434 * re-starting the system.
8436 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8438 void set_curr_task(int cpu
, struct task_struct
*p
)
8445 #ifdef CONFIG_FAIR_GROUP_SCHED
8446 static void free_fair_sched_group(struct task_group
*tg
)
8450 for_each_possible_cpu(i
) {
8452 kfree(tg
->cfs_rq
[i
]);
8462 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8464 struct cfs_rq
*cfs_rq
;
8465 struct sched_entity
*se
;
8469 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8472 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8476 tg
->shares
= NICE_0_LOAD
;
8478 for_each_possible_cpu(i
) {
8481 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8482 GFP_KERNEL
, cpu_to_node(i
));
8486 se
= kzalloc_node(sizeof(struct sched_entity
),
8487 GFP_KERNEL
, cpu_to_node(i
));
8491 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8502 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8504 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8505 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8508 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8510 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8512 #else /* !CONFG_FAIR_GROUP_SCHED */
8513 static inline void free_fair_sched_group(struct task_group
*tg
)
8518 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8523 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8527 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8530 #endif /* CONFIG_FAIR_GROUP_SCHED */
8532 #ifdef CONFIG_RT_GROUP_SCHED
8533 static void free_rt_sched_group(struct task_group
*tg
)
8537 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8539 for_each_possible_cpu(i
) {
8541 kfree(tg
->rt_rq
[i
]);
8543 kfree(tg
->rt_se
[i
]);
8551 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8553 struct rt_rq
*rt_rq
;
8554 struct sched_rt_entity
*rt_se
;
8558 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8561 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8565 init_rt_bandwidth(&tg
->rt_bandwidth
,
8566 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8568 for_each_possible_cpu(i
) {
8571 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8572 GFP_KERNEL
, cpu_to_node(i
));
8576 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8577 GFP_KERNEL
, cpu_to_node(i
));
8581 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8592 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8594 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8595 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8598 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8600 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8602 #else /* !CONFIG_RT_GROUP_SCHED */
8603 static inline void free_rt_sched_group(struct task_group
*tg
)
8608 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8613 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8617 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8620 #endif /* CONFIG_RT_GROUP_SCHED */
8622 #ifdef CONFIG_CGROUP_SCHED
8623 static void free_sched_group(struct task_group
*tg
)
8625 free_fair_sched_group(tg
);
8626 free_rt_sched_group(tg
);
8630 /* allocate runqueue etc for a new task group */
8631 struct task_group
*sched_create_group(struct task_group
*parent
)
8633 struct task_group
*tg
;
8634 unsigned long flags
;
8637 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8639 return ERR_PTR(-ENOMEM
);
8641 if (!alloc_fair_sched_group(tg
, parent
))
8644 if (!alloc_rt_sched_group(tg
, parent
))
8647 spin_lock_irqsave(&task_group_lock
, flags
);
8648 for_each_possible_cpu(i
) {
8649 register_fair_sched_group(tg
, i
);
8650 register_rt_sched_group(tg
, i
);
8652 list_add_rcu(&tg
->list
, &task_groups
);
8654 WARN_ON(!parent
); /* root should already exist */
8656 tg
->parent
= parent
;
8657 INIT_LIST_HEAD(&tg
->children
);
8658 list_add_rcu(&tg
->siblings
, &parent
->children
);
8659 spin_unlock_irqrestore(&task_group_lock
, flags
);
8664 free_sched_group(tg
);
8665 return ERR_PTR(-ENOMEM
);
8668 /* rcu callback to free various structures associated with a task group */
8669 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8671 /* now it should be safe to free those cfs_rqs */
8672 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8675 /* Destroy runqueue etc associated with a task group */
8676 void sched_destroy_group(struct task_group
*tg
)
8678 unsigned long flags
;
8681 spin_lock_irqsave(&task_group_lock
, flags
);
8682 for_each_possible_cpu(i
) {
8683 unregister_fair_sched_group(tg
, i
);
8684 unregister_rt_sched_group(tg
, i
);
8686 list_del_rcu(&tg
->list
);
8687 list_del_rcu(&tg
->siblings
);
8688 spin_unlock_irqrestore(&task_group_lock
, flags
);
8690 /* wait for possible concurrent references to cfs_rqs complete */
8691 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8694 /* change task's runqueue when it moves between groups.
8695 * The caller of this function should have put the task in its new group
8696 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8697 * reflect its new group.
8699 void sched_move_task(struct task_struct
*tsk
)
8702 unsigned long flags
;
8705 rq
= task_rq_lock(tsk
, &flags
);
8707 running
= task_current(rq
, tsk
);
8708 on_rq
= tsk
->se
.on_rq
;
8711 dequeue_task(rq
, tsk
, 0);
8712 if (unlikely(running
))
8713 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8715 #ifdef CONFIG_FAIR_GROUP_SCHED
8716 if (tsk
->sched_class
->task_move_group
)
8717 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8720 set_task_rq(tsk
, task_cpu(tsk
));
8722 if (unlikely(running
))
8723 tsk
->sched_class
->set_curr_task(rq
);
8725 enqueue_task(rq
, tsk
, 0);
8727 task_rq_unlock(rq
, &flags
);
8729 #endif /* CONFIG_CGROUP_SCHED */
8731 #ifdef CONFIG_FAIR_GROUP_SCHED
8732 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8734 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8739 dequeue_entity(cfs_rq
, se
, 0);
8741 se
->load
.weight
= shares
;
8742 se
->load
.inv_weight
= 0;
8745 enqueue_entity(cfs_rq
, se
, 0);
8748 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8750 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8751 struct rq
*rq
= cfs_rq
->rq
;
8752 unsigned long flags
;
8754 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8755 __set_se_shares(se
, shares
);
8756 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8759 static DEFINE_MUTEX(shares_mutex
);
8761 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8764 unsigned long flags
;
8767 * We can't change the weight of the root cgroup.
8772 if (shares
< MIN_SHARES
)
8773 shares
= MIN_SHARES
;
8774 else if (shares
> MAX_SHARES
)
8775 shares
= MAX_SHARES
;
8777 mutex_lock(&shares_mutex
);
8778 if (tg
->shares
== shares
)
8781 spin_lock_irqsave(&task_group_lock
, flags
);
8782 for_each_possible_cpu(i
)
8783 unregister_fair_sched_group(tg
, i
);
8784 list_del_rcu(&tg
->siblings
);
8785 spin_unlock_irqrestore(&task_group_lock
, flags
);
8787 /* wait for any ongoing reference to this group to finish */
8788 synchronize_sched();
8791 * Now we are free to modify the group's share on each cpu
8792 * w/o tripping rebalance_share or load_balance_fair.
8794 tg
->shares
= shares
;
8795 for_each_possible_cpu(i
) {
8799 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8800 set_se_shares(tg
->se
[i
], shares
);
8804 * Enable load balance activity on this group, by inserting it back on
8805 * each cpu's rq->leaf_cfs_rq_list.
8807 spin_lock_irqsave(&task_group_lock
, flags
);
8808 for_each_possible_cpu(i
)
8809 register_fair_sched_group(tg
, i
);
8810 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8811 spin_unlock_irqrestore(&task_group_lock
, flags
);
8813 mutex_unlock(&shares_mutex
);
8817 unsigned long sched_group_shares(struct task_group
*tg
)
8823 #ifdef CONFIG_RT_GROUP_SCHED
8825 * Ensure that the real time constraints are schedulable.
8827 static DEFINE_MUTEX(rt_constraints_mutex
);
8829 static unsigned long to_ratio(u64 period
, u64 runtime
)
8831 if (runtime
== RUNTIME_INF
)
8834 return div64_u64(runtime
<< 20, period
);
8837 /* Must be called with tasklist_lock held */
8838 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8840 struct task_struct
*g
, *p
;
8842 do_each_thread(g
, p
) {
8843 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8845 } while_each_thread(g
, p
);
8850 struct rt_schedulable_data
{
8851 struct task_group
*tg
;
8856 static int tg_schedulable(struct task_group
*tg
, void *data
)
8858 struct rt_schedulable_data
*d
= data
;
8859 struct task_group
*child
;
8860 unsigned long total
, sum
= 0;
8861 u64 period
, runtime
;
8863 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8864 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8867 period
= d
->rt_period
;
8868 runtime
= d
->rt_runtime
;
8872 * Cannot have more runtime than the period.
8874 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8878 * Ensure we don't starve existing RT tasks.
8880 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8883 total
= to_ratio(period
, runtime
);
8886 * Nobody can have more than the global setting allows.
8888 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8892 * The sum of our children's runtime should not exceed our own.
8894 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8895 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8896 runtime
= child
->rt_bandwidth
.rt_runtime
;
8898 if (child
== d
->tg
) {
8899 period
= d
->rt_period
;
8900 runtime
= d
->rt_runtime
;
8903 sum
+= to_ratio(period
, runtime
);
8912 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8914 struct rt_schedulable_data data
= {
8916 .rt_period
= period
,
8917 .rt_runtime
= runtime
,
8920 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8923 static int tg_set_bandwidth(struct task_group
*tg
,
8924 u64 rt_period
, u64 rt_runtime
)
8928 mutex_lock(&rt_constraints_mutex
);
8929 read_lock(&tasklist_lock
);
8930 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8934 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8935 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8936 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8938 for_each_possible_cpu(i
) {
8939 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8941 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8942 rt_rq
->rt_runtime
= rt_runtime
;
8943 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8945 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8947 read_unlock(&tasklist_lock
);
8948 mutex_unlock(&rt_constraints_mutex
);
8953 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8955 u64 rt_runtime
, rt_period
;
8957 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8958 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8959 if (rt_runtime_us
< 0)
8960 rt_runtime
= RUNTIME_INF
;
8962 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8965 long sched_group_rt_runtime(struct task_group
*tg
)
8969 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8972 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8973 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8974 return rt_runtime_us
;
8977 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8979 u64 rt_runtime
, rt_period
;
8981 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8982 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8987 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8990 long sched_group_rt_period(struct task_group
*tg
)
8994 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8995 do_div(rt_period_us
, NSEC_PER_USEC
);
8996 return rt_period_us
;
8999 static int sched_rt_global_constraints(void)
9001 u64 runtime
, period
;
9004 if (sysctl_sched_rt_period
<= 0)
9007 runtime
= global_rt_runtime();
9008 period
= global_rt_period();
9011 * Sanity check on the sysctl variables.
9013 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9016 mutex_lock(&rt_constraints_mutex
);
9017 read_lock(&tasklist_lock
);
9018 ret
= __rt_schedulable(NULL
, 0, 0);
9019 read_unlock(&tasklist_lock
);
9020 mutex_unlock(&rt_constraints_mutex
);
9025 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9027 /* Don't accept realtime tasks when there is no way for them to run */
9028 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9034 #else /* !CONFIG_RT_GROUP_SCHED */
9035 static int sched_rt_global_constraints(void)
9037 unsigned long flags
;
9040 if (sysctl_sched_rt_period
<= 0)
9044 * There's always some RT tasks in the root group
9045 * -- migration, kstopmachine etc..
9047 if (sysctl_sched_rt_runtime
== 0)
9050 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9051 for_each_possible_cpu(i
) {
9052 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9054 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
9055 rt_rq
->rt_runtime
= global_rt_runtime();
9056 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
9058 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9062 #endif /* CONFIG_RT_GROUP_SCHED */
9064 int sched_rt_handler(struct ctl_table
*table
, int write
,
9065 void __user
*buffer
, size_t *lenp
,
9069 int old_period
, old_runtime
;
9070 static DEFINE_MUTEX(mutex
);
9073 old_period
= sysctl_sched_rt_period
;
9074 old_runtime
= sysctl_sched_rt_runtime
;
9076 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
9078 if (!ret
&& write
) {
9079 ret
= sched_rt_global_constraints();
9081 sysctl_sched_rt_period
= old_period
;
9082 sysctl_sched_rt_runtime
= old_runtime
;
9084 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9085 def_rt_bandwidth
.rt_period
=
9086 ns_to_ktime(global_rt_period());
9089 mutex_unlock(&mutex
);
9094 #ifdef CONFIG_CGROUP_SCHED
9096 /* return corresponding task_group object of a cgroup */
9097 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9099 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9100 struct task_group
, css
);
9103 static struct cgroup_subsys_state
*
9104 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9106 struct task_group
*tg
, *parent
;
9108 if (!cgrp
->parent
) {
9109 /* This is early initialization for the top cgroup */
9110 return &init_task_group
.css
;
9113 parent
= cgroup_tg(cgrp
->parent
);
9114 tg
= sched_create_group(parent
);
9116 return ERR_PTR(-ENOMEM
);
9122 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9124 struct task_group
*tg
= cgroup_tg(cgrp
);
9126 sched_destroy_group(tg
);
9130 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9132 #ifdef CONFIG_RT_GROUP_SCHED
9133 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9136 /* We don't support RT-tasks being in separate groups */
9137 if (tsk
->sched_class
!= &fair_sched_class
)
9144 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9145 struct task_struct
*tsk
, bool threadgroup
)
9147 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
9151 struct task_struct
*c
;
9153 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9154 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
9166 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9167 struct cgroup
*old_cont
, struct task_struct
*tsk
,
9170 sched_move_task(tsk
);
9172 struct task_struct
*c
;
9174 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
9181 #ifdef CONFIG_FAIR_GROUP_SCHED
9182 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9185 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9188 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9190 struct task_group
*tg
= cgroup_tg(cgrp
);
9192 return (u64
) tg
->shares
;
9194 #endif /* CONFIG_FAIR_GROUP_SCHED */
9196 #ifdef CONFIG_RT_GROUP_SCHED
9197 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9200 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9203 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9205 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9208 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9211 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9214 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9216 return sched_group_rt_period(cgroup_tg(cgrp
));
9218 #endif /* CONFIG_RT_GROUP_SCHED */
9220 static struct cftype cpu_files
[] = {
9221 #ifdef CONFIG_FAIR_GROUP_SCHED
9224 .read_u64
= cpu_shares_read_u64
,
9225 .write_u64
= cpu_shares_write_u64
,
9228 #ifdef CONFIG_RT_GROUP_SCHED
9230 .name
= "rt_runtime_us",
9231 .read_s64
= cpu_rt_runtime_read
,
9232 .write_s64
= cpu_rt_runtime_write
,
9235 .name
= "rt_period_us",
9236 .read_u64
= cpu_rt_period_read_uint
,
9237 .write_u64
= cpu_rt_period_write_uint
,
9242 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9244 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9247 struct cgroup_subsys cpu_cgroup_subsys
= {
9249 .create
= cpu_cgroup_create
,
9250 .destroy
= cpu_cgroup_destroy
,
9251 .can_attach
= cpu_cgroup_can_attach
,
9252 .attach
= cpu_cgroup_attach
,
9253 .populate
= cpu_cgroup_populate
,
9254 .subsys_id
= cpu_cgroup_subsys_id
,
9258 #endif /* CONFIG_CGROUP_SCHED */
9260 #ifdef CONFIG_CGROUP_CPUACCT
9263 * CPU accounting code for task groups.
9265 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9266 * (balbir@in.ibm.com).
9269 /* track cpu usage of a group of tasks and its child groups */
9271 struct cgroup_subsys_state css
;
9272 /* cpuusage holds pointer to a u64-type object on every cpu */
9273 u64 __percpu
*cpuusage
;
9274 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9275 struct cpuacct
*parent
;
9278 struct cgroup_subsys cpuacct_subsys
;
9280 /* return cpu accounting group corresponding to this container */
9281 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9283 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9284 struct cpuacct
, css
);
9287 /* return cpu accounting group to which this task belongs */
9288 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9290 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9291 struct cpuacct
, css
);
9294 /* create a new cpu accounting group */
9295 static struct cgroup_subsys_state
*cpuacct_create(
9296 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9298 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9304 ca
->cpuusage
= alloc_percpu(u64
);
9308 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9309 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9310 goto out_free_counters
;
9313 ca
->parent
= cgroup_ca(cgrp
->parent
);
9319 percpu_counter_destroy(&ca
->cpustat
[i
]);
9320 free_percpu(ca
->cpuusage
);
9324 return ERR_PTR(-ENOMEM
);
9327 /* destroy an existing cpu accounting group */
9329 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9331 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9334 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9335 percpu_counter_destroy(&ca
->cpustat
[i
]);
9336 free_percpu(ca
->cpuusage
);
9340 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9342 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9345 #ifndef CONFIG_64BIT
9347 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9349 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9351 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9359 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9361 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9363 #ifndef CONFIG_64BIT
9365 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9367 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9369 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9375 /* return total cpu usage (in nanoseconds) of a group */
9376 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9378 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9379 u64 totalcpuusage
= 0;
9382 for_each_present_cpu(i
)
9383 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9385 return totalcpuusage
;
9388 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9391 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9400 for_each_present_cpu(i
)
9401 cpuacct_cpuusage_write(ca
, i
, 0);
9407 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9410 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9414 for_each_present_cpu(i
) {
9415 percpu
= cpuacct_cpuusage_read(ca
, i
);
9416 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9418 seq_printf(m
, "\n");
9422 static const char *cpuacct_stat_desc
[] = {
9423 [CPUACCT_STAT_USER
] = "user",
9424 [CPUACCT_STAT_SYSTEM
] = "system",
9427 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9428 struct cgroup_map_cb
*cb
)
9430 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9433 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9434 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9435 val
= cputime64_to_clock_t(val
);
9436 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9441 static struct cftype files
[] = {
9444 .read_u64
= cpuusage_read
,
9445 .write_u64
= cpuusage_write
,
9448 .name
= "usage_percpu",
9449 .read_seq_string
= cpuacct_percpu_seq_read
,
9453 .read_map
= cpuacct_stats_show
,
9457 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9459 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9463 * charge this task's execution time to its accounting group.
9465 * called with rq->lock held.
9467 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9472 if (unlikely(!cpuacct_subsys
.active
))
9475 cpu
= task_cpu(tsk
);
9481 for (; ca
; ca
= ca
->parent
) {
9482 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9483 *cpuusage
+= cputime
;
9490 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9491 * in cputime_t units. As a result, cpuacct_update_stats calls
9492 * percpu_counter_add with values large enough to always overflow the
9493 * per cpu batch limit causing bad SMP scalability.
9495 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9496 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9497 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9500 #define CPUACCT_BATCH \
9501 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9503 #define CPUACCT_BATCH 0
9507 * Charge the system/user time to the task's accounting group.
9509 static void cpuacct_update_stats(struct task_struct
*tsk
,
9510 enum cpuacct_stat_index idx
, cputime_t val
)
9513 int batch
= CPUACCT_BATCH
;
9515 if (unlikely(!cpuacct_subsys
.active
))
9522 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9528 struct cgroup_subsys cpuacct_subsys
= {
9530 .create
= cpuacct_create
,
9531 .destroy
= cpuacct_destroy
,
9532 .populate
= cpuacct_populate
,
9533 .subsys_id
= cpuacct_subsys_id
,
9535 #endif /* CONFIG_CGROUP_CPUACCT */
9539 void synchronize_sched_expedited(void)
9543 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9545 #else /* #ifndef CONFIG_SMP */
9547 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
9549 static int synchronize_sched_expedited_cpu_stop(void *data
)
9552 * There must be a full memory barrier on each affected CPU
9553 * between the time that try_stop_cpus() is called and the
9554 * time that it returns.
9556 * In the current initial implementation of cpu_stop, the
9557 * above condition is already met when the control reaches
9558 * this point and the following smp_mb() is not strictly
9559 * necessary. Do smp_mb() anyway for documentation and
9560 * robustness against future implementation changes.
9562 smp_mb(); /* See above comment block. */
9567 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9568 * approach to force grace period to end quickly. This consumes
9569 * significant time on all CPUs, and is thus not recommended for
9570 * any sort of common-case code.
9572 * Note that it is illegal to call this function while holding any
9573 * lock that is acquired by a CPU-hotplug notifier. Failing to
9574 * observe this restriction will result in deadlock.
9576 void synchronize_sched_expedited(void)
9578 int snap
, trycount
= 0;
9580 smp_mb(); /* ensure prior mod happens before capturing snap. */
9581 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
9583 while (try_stop_cpus(cpu_online_mask
,
9584 synchronize_sched_expedited_cpu_stop
,
9587 if (trycount
++ < 10)
9588 udelay(trycount
* num_online_cpus());
9590 synchronize_sched();
9593 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
9594 smp_mb(); /* ensure test happens before caller kfree */
9599 atomic_inc(&synchronize_sched_expedited_count
);
9600 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9603 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9605 #endif /* #else #ifndef CONFIG_SMP */