2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
33 #include <asm/div64.h>
35 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
42 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
46 #define ipg_r32(reg) ioread32(ioaddr + (reg))
47 #define ipg_r16(reg) ioread16(ioaddr + (reg))
48 #define ipg_r8(reg) ioread8(ioaddr + (reg))
55 #define DRV_NAME "ipg"
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
64 #define IPG_MAX_RXFRAME_SIZE 0x0600
65 #define IPG_RXFRAG_SIZE 0x0600
66 #define IPG_RXSUPPORT_SIZE 0x0600
67 #define IPG_IS_JUMBO false
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
73 static const unsigned short DefaultPhyParam
[] = {
74 /* 11/12/03 IP1000A v1-3 rev=0x40 */
75 /*--------------------------------------------------------------------------
76 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
79 --------------------------------------------------------------------------*/
80 /* 12/17/03 IP1000A v1-4 rev=0x40 */
81 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
83 30, 0x005e, 9, 0x0700,
84 /* 01/09/04 IP1000A v1-5 rev=0x41 */
85 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
87 30, 0x005e, 9, 0x0700,
91 static const char * const ipg_brand_name
[] = {
92 "IC PLUS IP1000 1000/100/10 based NIC",
93 "Sundance Technology ST2021 based NIC",
94 "Tamarack Microelectronics TC9020/9021 based NIC",
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl
) = {
99 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
100 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
101 { PCI_VDEVICE(DLINK
, 0x9021), 2 },
102 { PCI_VDEVICE(DLINK
, 0x4020), 3 },
106 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
108 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
110 struct ipg_nic_private
*sp
= netdev_priv(dev
);
115 static void ipg_dump_rfdlist(struct net_device
*dev
)
117 struct ipg_nic_private
*sp
= netdev_priv(dev
);
118 void __iomem
*ioaddr
= sp
->ioaddr
;
122 IPG_DEBUG_MSG("_dump_rfdlist\n");
124 netdev_info(dev
, "rx_current = %02x\n", sp
->rx_current
);
125 netdev_info(dev
, "rx_dirty = %02x\n", sp
->rx_dirty
);
126 netdev_info(dev
, "RFDList start address = %016lx\n",
127 (unsigned long)sp
->rxd_map
);
128 netdev_info(dev
, "RFDListPtr register = %08x%08x\n",
129 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
131 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
132 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
133 netdev_info(dev
, "%02x %04x RFDNextPtr = %016lx\n",
134 i
, offset
, (unsigned long)sp
->rxd
[i
].next_desc
);
135 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
136 netdev_info(dev
, "%02x %04x RFS = %016lx\n",
137 i
, offset
, (unsigned long)sp
->rxd
[i
].rfs
);
138 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
139 netdev_info(dev
, "%02x %04x frag_info = %016lx\n",
140 i
, offset
, (unsigned long)sp
->rxd
[i
].frag_info
);
144 static void ipg_dump_tfdlist(struct net_device
*dev
)
146 struct ipg_nic_private
*sp
= netdev_priv(dev
);
147 void __iomem
*ioaddr
= sp
->ioaddr
;
151 IPG_DEBUG_MSG("_dump_tfdlist\n");
153 netdev_info(dev
, "tx_current = %02x\n", sp
->tx_current
);
154 netdev_info(dev
, "tx_dirty = %02x\n", sp
->tx_dirty
);
155 netdev_info(dev
, "TFDList start address = %016lx\n",
156 (unsigned long) sp
->txd_map
);
157 netdev_info(dev
, "TFDListPtr register = %08x%08x\n",
158 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
160 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
161 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
162 netdev_info(dev
, "%02x %04x TFDNextPtr = %016lx\n",
163 i
, offset
, (unsigned long)sp
->txd
[i
].next_desc
);
165 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
166 netdev_info(dev
, "%02x %04x TFC = %016lx\n",
167 i
, offset
, (unsigned long) sp
->txd
[i
].tfc
);
168 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
169 netdev_info(dev
, "%02x %04x frag_info = %016lx\n",
170 i
, offset
, (unsigned long) sp
->txd
[i
].frag_info
);
175 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
177 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
178 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
181 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
183 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
184 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
187 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
189 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
191 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
194 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
196 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
197 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
200 static u16
read_phy_bit(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
204 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
206 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
208 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
217 static int mdio_read(struct net_device
*dev
, int phy_id
, int phy_reg
)
219 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
221 * The GMII mangement frame structure for a read is as follows:
223 * |Preamble|st|op|phyad|regad|ta| data |idle|
224 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
226 * <32 1s> = 32 consecutive logic 1 values
227 * A = bit of Physical Layer device address (MSB first)
228 * R = bit of register address (MSB first)
229 * z = High impedance state
230 * D = bit of read data (MSB first)
232 * Transmission order is 'Preamble' field first, bits transmitted
233 * left to right (first to last).
239 { GMII_PREAMBLE
, 32 }, /* Preamble */
240 { GMII_ST
, 2 }, /* ST */
241 { GMII_READ
, 2 }, /* OP */
242 { phy_id
, 5 }, /* PHYAD */
243 { phy_reg
, 5 }, /* REGAD */
244 { 0x0000, 2 }, /* TA */
245 { 0x0000, 16 }, /* DATA */
246 { 0x0000, 1 } /* IDLE */
251 polarity
= ipg_r8(PHY_CTRL
);
252 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
254 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 for (j
= 0; j
< 5; j
++) {
256 for (i
= 0; i
< p
[j
].len
; i
++) {
257 /* For each variable length field, the MSB must be
258 * transmitted first. Rotate through the field bits,
259 * starting with the MSB, and move each bit into the
260 * the 1st (2^1) bit position (this is the bit position
261 * corresponding to the MgmtData bit of the PhyCtrl
262 * register for the IPG).
266 * First write a '0' to bit 1 of the PhyCtrl
267 * register, then write a '1' to bit 1 of the
270 * To do this, right shift the MSB of ST by the value:
271 * [field length - 1 - #ST bits already written]
272 * then left shift this result by 1.
274 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
275 data
&= IPG_PC_MGMTDATA
;
276 data
|= polarity
| IPG_PC_MGMTDIR
;
278 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
282 send_three_state(ioaddr
, polarity
);
284 read_phy_bit(ioaddr
, polarity
);
287 * For a read cycle, the bits for the next two fields (TA and
288 * DATA) are driven by the PHY (the IPG reads these bits).
290 for (i
= 0; i
< p
[6].len
; i
++) {
292 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
295 send_three_state(ioaddr
, polarity
);
296 send_three_state(ioaddr
, polarity
);
297 send_three_state(ioaddr
, polarity
);
298 send_end(ioaddr
, polarity
);
300 /* Return the value of the DATA field. */
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
308 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
310 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
312 * The GMII mangement frame structure for a read is as follows:
314 * |Preamble|st|op|phyad|regad|ta| data |idle|
315 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
317 * <32 1s> = 32 consecutive logic 1 values
318 * A = bit of Physical Layer device address (MSB first)
319 * R = bit of register address (MSB first)
320 * z = High impedance state
321 * D = bit of write data (MSB first)
323 * Transmission order is 'Preamble' field first, bits transmitted
324 * left to right (first to last).
330 { GMII_PREAMBLE
, 32 }, /* Preamble */
331 { GMII_ST
, 2 }, /* ST */
332 { GMII_WRITE
, 2 }, /* OP */
333 { phy_id
, 5 }, /* PHYAD */
334 { phy_reg
, 5 }, /* REGAD */
335 { 0x0002, 2 }, /* TA */
336 { val
& 0xffff, 16 }, /* DATA */
337 { 0x0000, 1 } /* IDLE */
342 polarity
= ipg_r8(PHY_CTRL
);
343 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
345 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 for (j
= 0; j
< 7; j
++) {
347 for (i
= 0; i
< p
[j
].len
; i
++) {
348 /* For each variable length field, the MSB must be
349 * transmitted first. Rotate through the field bits,
350 * starting with the MSB, and move each bit into the
351 * the 1st (2^1) bit position (this is the bit position
352 * corresponding to the MgmtData bit of the PhyCtrl
353 * register for the IPG).
357 * First write a '0' to bit 1 of the PhyCtrl
358 * register, then write a '1' to bit 1 of the
361 * To do this, right shift the MSB of ST by the value:
362 * [field length - 1 - #ST bits already written]
363 * then left shift this result by 1.
365 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
366 data
&= IPG_PC_MGMTDATA
;
367 data
|= polarity
| IPG_PC_MGMTDIR
;
369 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
373 /* The last cycle is a tri-state, so read from the PHY. */
374 for (j
= 7; j
< 8; j
++) {
375 for (i
= 0; i
< p
[j
].len
; i
++) {
376 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
378 p
[j
].field
|= ((ipg_r8(PHY_CTRL
) &
379 IPG_PC_MGMTDATA
) >> 1) << (p
[j
].len
- 1 - i
);
381 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
386 static void ipg_set_led_mode(struct net_device
*dev
)
388 struct ipg_nic_private
*sp
= netdev_priv(dev
);
389 void __iomem
*ioaddr
= sp
->ioaddr
;
392 mode
= ipg_r32(ASIC_CTRL
);
393 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
395 if ((sp
->led_mode
& 0x03) > 1)
396 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
398 if ((sp
->led_mode
& 0x01) == 1)
399 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
401 if ((sp
->led_mode
& 0x08) == 8)
402 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
404 ipg_w32(mode
, ASIC_CTRL
);
407 static void ipg_set_phy_set(struct net_device
*dev
)
409 struct ipg_nic_private
*sp
= netdev_priv(dev
);
410 void __iomem
*ioaddr
= sp
->ioaddr
;
413 physet
= ipg_r8(PHY_SET
);
414 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
415 physet
|= ((sp
->led_mode
& 0x70) >> 4);
416 ipg_w8(physet
, PHY_SET
);
419 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
421 /* Assert functional resets via the IPG AsicCtrl
422 * register as specified by the 'resetflags' input
425 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
426 unsigned int timeout_count
= 0;
428 IPG_DEBUG_MSG("_reset\n");
430 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
432 /* Delay added to account for problem with 10Mbps reset. */
433 mdelay(IPG_AC_RESETWAIT
);
435 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
436 mdelay(IPG_AC_RESETWAIT
);
437 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
440 /* Set LED Mode in Asic Control */
441 ipg_set_led_mode(dev
);
443 /* Set PHYSet Register Value */
444 ipg_set_phy_set(dev
);
448 /* Find the GMII PHY address. */
449 static int ipg_find_phyaddr(struct net_device
*dev
)
451 unsigned int phyaddr
, i
;
453 for (i
= 0; i
< 32; i
++) {
456 /* Search for the correct PHY address among 32 possible. */
457 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
459 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
463 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
465 if ((status
!= 0xFFFF) && (status
!= 0))
473 * Configure IPG based on result of IEEE 802.3 PHY
476 static int ipg_config_autoneg(struct net_device
*dev
)
478 struct ipg_nic_private
*sp
= netdev_priv(dev
);
479 void __iomem
*ioaddr
= sp
->ioaddr
;
480 unsigned int txflowcontrol
;
481 unsigned int rxflowcontrol
;
482 unsigned int fullduplex
;
491 IPG_DEBUG_MSG("_config_autoneg\n");
493 asicctrl
= ipg_r32(ASIC_CTRL
);
494 phyctrl
= ipg_r8(PHY_CTRL
);
495 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
497 /* Set flags for use in resolving auto-negotiation, assuming
498 * non-1000Mbps, half duplex, no flow control.
504 /* To accommodate a problem in 10Mbps operation,
505 * set a global flag if PHY running in 10Mbps mode.
509 /* Determine actual speed of operation. */
510 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
511 case IPG_PC_LINK_SPEED_10MBPS
:
515 case IPG_PC_LINK_SPEED_100MBPS
:
518 case IPG_PC_LINK_SPEED_1000MBPS
:
522 speed
= "undefined!";
526 netdev_info(dev
, "Link speed = %s\n", speed
);
527 if (sp
->tenmbpsmode
== 1)
528 netdev_info(dev
, "10Mbps operational mode enabled\n");
530 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
536 /* Configure full duplex, and flow control. */
537 if (fullduplex
== 1) {
539 /* Configure IPG for full duplex operation. */
543 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
545 if (txflowcontrol
== 1) {
547 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
550 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
553 if (rxflowcontrol
== 1) {
555 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
558 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
564 mac_ctrl_val
&= (~IPG_MC_DUPLEX_SELECT_FD
&
565 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
566 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
);
569 netdev_info(dev
, "setting %s duplex, %sTX, %sRX flow control\n",
570 duplex
, tx_desc
, rx_desc
);
571 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
576 /* Determine and configure multicast operation and set
577 * receive mode for IPG.
579 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
581 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
582 struct netdev_hw_addr
*ha
;
583 unsigned int hashindex
;
587 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
589 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
591 if (dev
->flags
& IFF_PROMISC
) {
592 /* NIC to be configured in promiscuous mode. */
593 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
594 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
595 ((dev
->flags
& IFF_MULTICAST
) &&
596 (netdev_mc_count(dev
) > IPG_MULTICAST_HASHTABLE_SIZE
))) {
597 /* NIC to be configured to receive all multicast
599 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
600 } else if ((dev
->flags
& IFF_MULTICAST
) && !netdev_mc_empty(dev
)) {
601 /* NIC to be configured to receive selected
602 * multicast addresses. */
603 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
606 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
607 * The IPG applies a cyclic-redundancy-check (the same CRC
608 * used to calculate the frame data FCS) to the destination
609 * address all incoming multicast frames whose destination
610 * address has the multicast bit set. The least significant
611 * 6 bits of the CRC result are used as an addressing index
612 * into the hash table. If the value of the bit addressed by
613 * this index is a 1, the frame is passed to the host system.
616 /* Clear hashtable. */
617 hashtable
[0] = 0x00000000;
618 hashtable
[1] = 0x00000000;
620 /* Cycle through all multicast addresses to filter. */
621 netdev_for_each_mc_addr(ha
, dev
) {
622 /* Calculate CRC result for each multicast address. */
623 hashindex
= crc32_le(0xffffffff, ha
->addr
,
626 /* Use only the least significant 6 bits. */
627 hashindex
= hashindex
& 0x3F;
629 /* Within "hashtable", set bit number "hashindex"
632 set_bit(hashindex
, (void *)hashtable
);
635 /* Write the value of the hashtable, to the 4, 16 bit
636 * HASHTABLE IPG registers.
638 ipg_w32(hashtable
[0], HASHTABLE_0
);
639 ipg_w32(hashtable
[1], HASHTABLE_1
);
641 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
643 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
646 static int ipg_io_config(struct net_device
*dev
)
648 struct ipg_nic_private
*sp
= netdev_priv(dev
);
649 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
653 IPG_DEBUG_MSG("_io_config\n");
655 origmacctrl
= ipg_r32(MAC_CTRL
);
657 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
659 /* Based on compilation option, determine if FCS is to be
660 * stripped on receive frames by IPG.
662 if (!IPG_STRIP_FCS_ON_RX
)
663 restoremacctrl
|= IPG_MC_RCV_FCS
;
665 /* Determine if transmitter and/or receiver are
666 * enabled so we may restore MACCTRL correctly.
668 if (origmacctrl
& IPG_MC_TX_ENABLED
)
669 restoremacctrl
|= IPG_MC_TX_ENABLE
;
671 if (origmacctrl
& IPG_MC_RX_ENABLED
)
672 restoremacctrl
|= IPG_MC_RX_ENABLE
;
674 /* Transmitter and receiver must be disabled before setting
677 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
678 IPG_MC_RSVD_MASK
, MAC_CTRL
);
680 /* Now that transmitter and receiver are disabled, write
683 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
685 /* Set RECEIVEMODE register. */
686 ipg_nic_set_multicast_list(dev
);
688 ipg_w16(sp
->max_rxframe_size
, MAX_FRAME_SIZE
);
690 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
691 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
692 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
693 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
694 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
695 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
696 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
697 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
698 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
699 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
700 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
701 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
703 /* IPG multi-frag frame bug workaround.
704 * Per silicon revision B3 eratta.
706 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
708 /* IPG TX poll now bug workaround.
709 * Per silicon revision B3 eratta.
711 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
713 /* IPG RX poll now bug workaround.
714 * Per silicon revision B3 eratta.
716 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
718 /* Now restore MACCTRL to original setting. */
719 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
721 /* Disable unused RMON statistics. */
722 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
724 /* Disable unused MIB statistics. */
725 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
726 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
727 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
728 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
729 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
730 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
736 * Create a receive buffer within system memory and update
737 * NIC private structure appropriately.
739 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
741 struct ipg_nic_private
*sp
= netdev_priv(dev
);
742 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
746 IPG_DEBUG_MSG("_get_rxbuff\n");
748 skb
= netdev_alloc_skb_ip_align(dev
, sp
->rxsupport_size
);
750 sp
->rx_buff
[entry
] = NULL
;
754 /* Associate the receive buffer with the IPG NIC. */
757 /* Save the address of the sk_buff structure. */
758 sp
->rx_buff
[entry
] = skb
;
760 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
761 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
763 /* Set the RFD fragment length. */
764 rxfragsize
= sp
->rxfrag_size
;
765 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
770 static int init_rfdlist(struct net_device
*dev
)
772 struct ipg_nic_private
*sp
= netdev_priv(dev
);
773 void __iomem
*ioaddr
= sp
->ioaddr
;
776 IPG_DEBUG_MSG("_init_rfdlist\n");
778 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
779 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
781 if (sp
->rx_buff
[i
]) {
782 pci_unmap_single(sp
->pdev
,
783 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
784 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
785 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
786 sp
->rx_buff
[i
] = NULL
;
789 /* Clear out the RFS field. */
790 rxfd
->rfs
= 0x0000000000000000;
792 if (ipg_get_rxbuff(dev
, i
) < 0) {
794 * A receive buffer was not ready, break the
797 IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
799 /* Just in case we cannot allocate a single RFD.
803 netdev_err(dev
, "No memory available for RFD list\n");
808 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
809 sizeof(struct ipg_rx
)*(i
+ 1));
811 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
816 /* Write the location of the RFDList to the IPG. */
817 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
818 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
823 static void init_tfdlist(struct net_device
*dev
)
825 struct ipg_nic_private
*sp
= netdev_priv(dev
);
826 void __iomem
*ioaddr
= sp
->ioaddr
;
829 IPG_DEBUG_MSG("_init_tfdlist\n");
831 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
832 struct ipg_tx
*txfd
= sp
->txd
+ i
;
834 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
836 if (sp
->tx_buff
[i
]) {
837 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
838 sp
->tx_buff
[i
] = NULL
;
841 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
842 sizeof(struct ipg_tx
)*(i
+ 1));
844 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
849 /* Write the location of the TFDList to the IPG. */
850 IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
852 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
853 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
855 sp
->reset_current_tfd
= 1;
859 * Free all transmit buffers which have already been transferred
860 * via DMA to the IPG.
862 static void ipg_nic_txfree(struct net_device
*dev
)
864 struct ipg_nic_private
*sp
= netdev_priv(dev
);
865 unsigned int released
, pending
, dirty
;
867 IPG_DEBUG_MSG("_nic_txfree\n");
869 pending
= sp
->tx_current
- sp
->tx_dirty
;
870 dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
872 for (released
= 0; released
< pending
; released
++) {
873 struct sk_buff
*skb
= sp
->tx_buff
[dirty
];
874 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
876 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd
->tfc
);
878 /* Look at each TFD's TFC field beginning
879 * at the last freed TFD up to the current TFD.
880 * If the TFDDone bit is set, free the associated
883 if (!(txfd
->tfc
& cpu_to_le64(IPG_TFC_TFDDONE
)))
886 /* Free the transmit buffer. */
888 pci_unmap_single(sp
->pdev
,
889 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
890 skb
->len
, PCI_DMA_TODEVICE
);
892 dev_kfree_skb_irq(skb
);
894 sp
->tx_buff
[dirty
] = NULL
;
896 dirty
= (dirty
+ 1) % IPG_TFDLIST_LENGTH
;
899 sp
->tx_dirty
+= released
;
901 if (netif_queue_stopped(dev
) &&
902 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
903 netif_wake_queue(dev
);
907 static void ipg_tx_timeout(struct net_device
*dev
)
909 struct ipg_nic_private
*sp
= netdev_priv(dev
);
910 void __iomem
*ioaddr
= sp
->ioaddr
;
912 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
915 spin_lock_irq(&sp
->lock
);
917 /* Re-configure after DMA reset. */
918 if (ipg_io_config(dev
) < 0)
919 netdev_info(dev
, "Error during re-configuration\n");
923 spin_unlock_irq(&sp
->lock
);
925 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
930 * For TxComplete interrupts, free all transmit
931 * buffers which have already been transferred via DMA
934 static void ipg_nic_txcleanup(struct net_device
*dev
)
936 struct ipg_nic_private
*sp
= netdev_priv(dev
);
937 void __iomem
*ioaddr
= sp
->ioaddr
;
940 IPG_DEBUG_MSG("_nic_txcleanup\n");
942 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
943 /* Reading the TXSTATUS register clears the
944 * TX_COMPLETE interrupt.
946 u32 txstatusdword
= ipg_r32(TX_STATUS
);
948 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword
);
950 /* Check for Transmit errors. Error bits only valid if
951 * TX_COMPLETE bit in the TXSTATUS register is a 1.
953 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
956 /* If in 10Mbps mode, indicate transmit is ready. */
957 if (sp
->tenmbpsmode
) {
958 netif_wake_queue(dev
);
961 /* Transmit error, increment stat counters. */
962 if (txstatusdword
& IPG_TS_TX_ERROR
) {
963 IPG_DEBUG_MSG("Transmit error\n");
964 sp
->stats
.tx_errors
++;
967 /* Late collision, re-enable transmitter. */
968 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
969 IPG_DEBUG_MSG("Late collision on transmit\n");
970 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
971 IPG_MC_RSVD_MASK
, MAC_CTRL
);
974 /* Maximum collisions, re-enable transmitter. */
975 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
976 IPG_DEBUG_MSG("Maximum collisions on transmit\n");
977 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
978 IPG_MC_RSVD_MASK
, MAC_CTRL
);
981 /* Transmit underrun, reset and re-enable
984 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
985 IPG_DEBUG_MSG("Transmitter underrun\n");
986 sp
->stats
.tx_fifo_errors
++;
987 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
988 IPG_AC_NETWORK
| IPG_AC_FIFO
);
990 /* Re-configure after DMA reset. */
991 if (ipg_io_config(dev
) < 0) {
992 netdev_info(dev
, "Error during re-configuration\n");
996 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
997 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1001 ipg_nic_txfree(dev
);
1004 /* Provides statistical information about the IPG NIC. */
1005 static struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
1007 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1008 void __iomem
*ioaddr
= sp
->ioaddr
;
1012 IPG_DEBUG_MSG("_nic_get_stats\n");
1014 /* Check to see if the NIC has been initialized via nic_open,
1015 * before trying to read statistic registers.
1017 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1020 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1021 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1022 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1023 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1024 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1025 sp
->stats
.rx_errors
+= temp1
;
1026 sp
->stats
.rx_missed_errors
+= temp1
;
1027 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1028 ipg_r32(IPG_LATECOLLISIONS
);
1029 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1030 sp
->stats
.collisions
+= temp1
;
1031 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1032 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1033 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1034 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1036 /* detailed tx_errors */
1037 sp
->stats
.tx_carrier_errors
+= temp2
;
1039 /* detailed rx_errors */
1040 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1041 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1042 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1044 /* Unutilized IPG statistic registers. */
1045 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1050 /* Restore used receive buffers. */
1051 static int ipg_nic_rxrestore(struct net_device
*dev
)
1053 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1054 const unsigned int curr
= sp
->rx_current
;
1055 unsigned int dirty
= sp
->rx_dirty
;
1057 IPG_DEBUG_MSG("_nic_rxrestore\n");
1059 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1060 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1062 /* rx_copybreak may poke hole here and there. */
1063 if (sp
->rx_buff
[entry
])
1066 /* Generate a new receive buffer to replace the
1067 * current buffer (which will be released by the
1070 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1071 IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1076 /* Reset the RFS field. */
1077 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1079 sp
->rx_dirty
= dirty
;
1084 /* use jumboindex and jumbosize to control jumbo frame status
1085 * initial status is jumboindex=-1 and jumbosize=0
1086 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1087 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1088 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1089 * previous receiving and need to continue dumping the current one
1097 FRAME_NO_START_NO_END
= 0,
1098 FRAME_WITH_START
= 1,
1099 FRAME_WITH_END
= 10,
1100 FRAME_WITH_START_WITH_END
= 11
1103 static void ipg_nic_rx_free_skb(struct net_device
*dev
)
1105 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1106 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1108 if (sp
->rx_buff
[entry
]) {
1109 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1111 pci_unmap_single(sp
->pdev
,
1112 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1113 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1114 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1115 sp
->rx_buff
[entry
] = NULL
;
1119 static int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1121 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1122 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1123 int type
= FRAME_NO_START_NO_END
;
1125 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1126 type
+= FRAME_WITH_START
;
1127 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1128 type
+= FRAME_WITH_END
;
1132 static int ipg_nic_rx_check_error(struct net_device
*dev
)
1134 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1135 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1136 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1138 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1139 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1140 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1141 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1142 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1143 (unsigned long) rxfd
->rfs
);
1145 /* Increment general receive error statistic. */
1146 sp
->stats
.rx_errors
++;
1148 /* Increment detailed receive error statistics. */
1149 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1150 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1152 sp
->stats
.rx_fifo_errors
++;
1155 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1156 IPG_DEBUG_MSG("RX runt occurred\n");
1157 sp
->stats
.rx_length_errors
++;
1160 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1161 * error count handled by a IPG statistic register.
1164 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1165 IPG_DEBUG_MSG("RX alignment error occurred\n");
1166 sp
->stats
.rx_frame_errors
++;
1169 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1170 * handled by a IPG statistic register.
1173 /* Free the memory associated with the RX
1174 * buffer since it is erroneous and we will
1175 * not pass it to higher layer processes.
1177 if (sp
->rx_buff
[entry
]) {
1178 pci_unmap_single(sp
->pdev
,
1179 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1180 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1182 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1183 sp
->rx_buff
[entry
] = NULL
;
1185 return ERROR_PACKET
;
1187 return NORMAL_PACKET
;
1190 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1191 struct ipg_nic_private
*sp
,
1192 struct ipg_rx
*rxfd
, unsigned entry
)
1194 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1195 struct sk_buff
*skb
;
1198 if (jumbo
->found_start
) {
1199 dev_kfree_skb_irq(jumbo
->skb
);
1200 jumbo
->found_start
= 0;
1201 jumbo
->current_size
= 0;
1205 /* 1: found error, 0 no error */
1206 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1209 skb
= sp
->rx_buff
[entry
];
1213 /* accept this frame and send to upper layer */
1214 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1215 if (framelen
> sp
->rxfrag_size
)
1216 framelen
= sp
->rxfrag_size
;
1218 skb_put(skb
, framelen
);
1219 skb
->protocol
= eth_type_trans(skb
, dev
);
1220 skb_checksum_none_assert(skb
);
1222 sp
->rx_buff
[entry
] = NULL
;
1225 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1226 struct ipg_nic_private
*sp
,
1227 struct ipg_rx
*rxfd
, unsigned entry
)
1229 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1230 struct pci_dev
*pdev
= sp
->pdev
;
1231 struct sk_buff
*skb
;
1233 /* 1: found error, 0 no error */
1234 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1237 /* accept this frame and send to upper layer */
1238 skb
= sp
->rx_buff
[entry
];
1242 if (jumbo
->found_start
)
1243 dev_kfree_skb_irq(jumbo
->skb
);
1245 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1246 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1248 skb_put(skb
, sp
->rxfrag_size
);
1250 jumbo
->found_start
= 1;
1251 jumbo
->current_size
= sp
->rxfrag_size
;
1254 sp
->rx_buff
[entry
] = NULL
;
1257 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1258 struct ipg_nic_private
*sp
,
1259 struct ipg_rx
*rxfd
, unsigned entry
)
1261 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1263 /* 1: found error, 0 no error */
1264 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1265 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1270 if (jumbo
->found_start
) {
1271 int framelen
, endframelen
;
1273 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1275 endframelen
= framelen
- jumbo
->current_size
;
1276 if (framelen
> sp
->rxsupport_size
)
1277 dev_kfree_skb_irq(jumbo
->skb
);
1279 memcpy(skb_put(jumbo
->skb
, endframelen
),
1280 skb
->data
, endframelen
);
1282 jumbo
->skb
->protocol
=
1283 eth_type_trans(jumbo
->skb
, dev
);
1285 skb_checksum_none_assert(jumbo
->skb
);
1286 netif_rx(jumbo
->skb
);
1290 jumbo
->found_start
= 0;
1291 jumbo
->current_size
= 0;
1294 ipg_nic_rx_free_skb(dev
);
1296 dev_kfree_skb_irq(jumbo
->skb
);
1297 jumbo
->found_start
= 0;
1298 jumbo
->current_size
= 0;
1303 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1304 struct ipg_nic_private
*sp
,
1305 struct ipg_rx
*rxfd
, unsigned entry
)
1307 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1309 /* 1: found error, 0 no error */
1310 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1311 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1314 if (jumbo
->found_start
) {
1315 jumbo
->current_size
+= sp
->rxfrag_size
;
1316 if (jumbo
->current_size
<= sp
->rxsupport_size
) {
1317 memcpy(skb_put(jumbo
->skb
,
1319 skb
->data
, sp
->rxfrag_size
);
1322 ipg_nic_rx_free_skb(dev
);
1325 dev_kfree_skb_irq(jumbo
->skb
);
1326 jumbo
->found_start
= 0;
1327 jumbo
->current_size
= 0;
1332 static int ipg_nic_rx_jumbo(struct net_device
*dev
)
1334 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1335 unsigned int curr
= sp
->rx_current
;
1336 void __iomem
*ioaddr
= sp
->ioaddr
;
1339 IPG_DEBUG_MSG("_nic_rx\n");
1341 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1342 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1343 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1345 if (!(rxfd
->rfs
& cpu_to_le64(IPG_RFS_RFDDONE
)))
1348 switch (ipg_nic_rx_check_frame_type(dev
)) {
1349 case FRAME_WITH_START_WITH_END
:
1350 ipg_nic_rx_with_start_and_end(dev
, sp
, rxfd
, entry
);
1352 case FRAME_WITH_START
:
1353 ipg_nic_rx_with_start(dev
, sp
, rxfd
, entry
);
1355 case FRAME_WITH_END
:
1356 ipg_nic_rx_with_end(dev
, sp
, rxfd
, entry
);
1358 case FRAME_NO_START_NO_END
:
1359 ipg_nic_rx_no_start_no_end(dev
, sp
, rxfd
, entry
);
1364 sp
->rx_current
= curr
;
1366 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1367 /* There are more RFDs to process, however the
1368 * allocated amount of RFD processing time has
1369 * expired. Assert Interrupt Requested to make
1370 * sure we come back to process the remaining RFDs.
1372 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1375 ipg_nic_rxrestore(dev
);
1380 static int ipg_nic_rx(struct net_device
*dev
)
1382 /* Transfer received Ethernet frames to higher network layers. */
1383 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1384 unsigned int curr
= sp
->rx_current
;
1385 void __iomem
*ioaddr
= sp
->ioaddr
;
1386 struct ipg_rx
*rxfd
;
1389 IPG_DEBUG_MSG("_nic_rx\n");
1391 #define __RFS_MASK \
1392 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1394 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1395 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1396 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1397 unsigned int framelen
;
1399 rxfd
= sp
->rxd
+ entry
;
1401 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1404 /* Get received frame length. */
1405 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1407 /* Check for jumbo frame arrival with too small
1410 if (framelen
> sp
->rxfrag_size
) {
1412 ("RFS FrameLen > allocated fragment size\n");
1414 framelen
= sp
->rxfrag_size
;
1417 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1418 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1419 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1420 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1422 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1423 (unsigned long int) rxfd
->rfs
);
1425 /* Increment general receive error statistic. */
1426 sp
->stats
.rx_errors
++;
1428 /* Increment detailed receive error statistics. */
1429 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1430 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1431 sp
->stats
.rx_fifo_errors
++;
1434 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1435 IPG_DEBUG_MSG("RX runt occurred\n");
1436 sp
->stats
.rx_length_errors
++;
1439 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1440 /* Do nothing, error count handled by a IPG
1441 * statistic register.
1444 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1445 IPG_DEBUG_MSG("RX alignment error occurred\n");
1446 sp
->stats
.rx_frame_errors
++;
1449 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1450 /* Do nothing, error count handled by a IPG
1451 * statistic register.
1454 /* Free the memory associated with the RX
1455 * buffer since it is erroneous and we will
1456 * not pass it to higher layer processes.
1459 __le64 info
= rxfd
->frag_info
;
1461 pci_unmap_single(sp
->pdev
,
1462 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1463 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1465 dev_kfree_skb_irq(skb
);
1469 /* Adjust the new buffer length to accommodate the size
1470 * of the received frame.
1472 skb_put(skb
, framelen
);
1474 /* Set the buffer's protocol field to Ethernet. */
1475 skb
->protocol
= eth_type_trans(skb
, dev
);
1477 /* The IPG encountered an error with (or
1478 * there were no) IP/TCP/UDP checksums.
1479 * This may or may not indicate an invalid
1480 * IP/TCP/UDP frame was received. Let the
1481 * upper layer decide.
1483 skb_checksum_none_assert(skb
);
1485 /* Hand off frame for higher layer processing.
1486 * The function netif_rx() releases the sk_buff
1487 * when processing completes.
1492 /* Assure RX buffer is not reused by IPG. */
1493 sp
->rx_buff
[entry
] = NULL
;
1497 * If there are more RFDs to process and the allocated amount of RFD
1498 * processing time has expired, assert Interrupt Requested to make
1499 * sure we come back to process the remaining RFDs.
1501 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1502 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1505 /* Check if the RFD list contained no receive frame data. */
1507 sp
->EmptyRFDListCount
++;
1509 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1510 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1511 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1512 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1514 rxfd
= sp
->rxd
+ entry
;
1516 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1518 /* An unexpected event, additional code needed to handle
1519 * properly. So for the time being, just disregard the
1523 /* Free the memory associated with the RX
1524 * buffer since it is erroneous and we will
1525 * not pass it to higher layer processes.
1527 if (sp
->rx_buff
[entry
]) {
1528 pci_unmap_single(sp
->pdev
,
1529 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1530 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1531 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1534 /* Assure RX buffer is not reused by IPG. */
1535 sp
->rx_buff
[entry
] = NULL
;
1538 sp
->rx_current
= curr
;
1540 /* Check to see if there are a minimum number of used
1541 * RFDs before restoring any (should improve performance.)
1543 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1544 ipg_nic_rxrestore(dev
);
1549 static void ipg_reset_after_host_error(struct work_struct
*work
)
1551 struct ipg_nic_private
*sp
=
1552 container_of(work
, struct ipg_nic_private
, task
.work
);
1553 struct net_device
*dev
= sp
->dev
;
1556 * Acknowledge HostError interrupt by resetting
1559 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1564 if (ipg_io_config(dev
) < 0) {
1565 netdev_info(dev
, "Cannot recover from PCI error\n");
1566 schedule_delayed_work(&sp
->task
, HZ
);
1570 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1572 struct net_device
*dev
= dev_inst
;
1573 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1574 void __iomem
*ioaddr
= sp
->ioaddr
;
1575 unsigned int handled
= 0;
1578 IPG_DEBUG_MSG("_interrupt_handler\n");
1581 ipg_nic_rxrestore(dev
);
1583 spin_lock(&sp
->lock
);
1585 /* Get interrupt source information, and acknowledge
1586 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1587 * IntRequested, MacControlFrame, LinkEvent) interrupts
1588 * if issued. Also, all IPG interrupts are disabled by
1589 * reading IntStatusAck.
1591 status
= ipg_r16(INT_STATUS_ACK
);
1593 IPG_DEBUG_MSG("IntStatusAck = %04x\n", status
);
1595 /* Shared IRQ of remove event. */
1596 if (!(status
& IPG_IS_RSVD_MASK
))
1601 if (unlikely(!netif_running(dev
)))
1604 /* If RFDListEnd interrupt, restore all used RFDs. */
1605 if (status
& IPG_IS_RFD_LIST_END
) {
1606 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1608 /* The RFD list end indicates an RFD was encountered
1609 * with a 0 NextPtr, or with an RFDDone bit set to 1
1610 * (indicating the RFD is not read for use by the
1611 * IPG.) Try to restore all RFDs.
1613 ipg_nic_rxrestore(dev
);
1616 /* Increment the RFDlistendCount counter. */
1617 sp
->RFDlistendCount
++;
1621 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1622 * IntRequested interrupt, process received frames. */
1623 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1624 (status
& IPG_IS_RFD_LIST_END
) ||
1625 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1626 (status
& IPG_IS_INT_REQUESTED
)) {
1628 /* Increment the RFD list checked counter if interrupted
1629 * only to check the RFD list. */
1630 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1631 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1632 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1633 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1634 IPG_IS_UPDATE_STATS
)))
1635 sp
->RFDListCheckedCount
++;
1639 ipg_nic_rx_jumbo(dev
);
1644 /* If TxDMAComplete interrupt, free used TFDs. */
1645 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1646 ipg_nic_txfree(dev
);
1648 /* TxComplete interrupts indicate one of numerous actions.
1649 * Determine what action to take based on TXSTATUS register.
1651 if (status
& IPG_IS_TX_COMPLETE
)
1652 ipg_nic_txcleanup(dev
);
1654 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1655 if (status
& IPG_IS_UPDATE_STATS
)
1656 ipg_nic_get_stats(dev
);
1658 /* If HostError interrupt, reset IPG. */
1659 if (status
& IPG_IS_HOST_ERROR
) {
1660 IPG_DDEBUG_MSG("HostError Interrupt\n");
1662 schedule_delayed_work(&sp
->task
, 0);
1665 /* If LinkEvent interrupt, resolve autonegotiation. */
1666 if (status
& IPG_IS_LINK_EVENT
) {
1667 if (ipg_config_autoneg(dev
) < 0)
1668 netdev_info(dev
, "Auto-negotiation error\n");
1671 /* If MACCtrlFrame interrupt, do nothing. */
1672 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1673 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1675 /* If RxComplete interrupt, do nothing. */
1676 if (status
& IPG_IS_RX_COMPLETE
)
1677 IPG_DEBUG_MSG("RxComplete interrupt\n");
1679 /* If RxEarly interrupt, do nothing. */
1680 if (status
& IPG_IS_RX_EARLY
)
1681 IPG_DEBUG_MSG("RxEarly interrupt\n");
1684 /* Re-enable IPG interrupts. */
1685 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1686 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1687 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1689 spin_unlock(&sp
->lock
);
1691 return IRQ_RETVAL(handled
);
1694 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1698 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1699 if (sp
->rx_buff
[i
]) {
1700 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1702 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
1703 sp
->rx_buff
[i
] = NULL
;
1704 pci_unmap_single(sp
->pdev
,
1705 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1706 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1711 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1715 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1716 if (sp
->tx_buff
[i
]) {
1717 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1719 pci_unmap_single(sp
->pdev
,
1720 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1721 sp
->tx_buff
[i
]->len
, PCI_DMA_TODEVICE
);
1723 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
1725 sp
->tx_buff
[i
] = NULL
;
1730 static int ipg_nic_open(struct net_device
*dev
)
1732 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1733 void __iomem
*ioaddr
= sp
->ioaddr
;
1734 struct pci_dev
*pdev
= sp
->pdev
;
1737 IPG_DEBUG_MSG("_nic_open\n");
1739 sp
->rx_buf_sz
= sp
->rxsupport_size
;
1741 /* Check for interrupt line conflicts, and request interrupt
1744 * IMPORTANT: Disable IPG interrupts prior to registering
1747 ipg_w16(0x0000, INT_ENABLE
);
1749 /* Register the interrupt line to be used by the IPG within
1752 rc
= request_irq(pdev
->irq
, ipg_interrupt_handler
, IRQF_SHARED
,
1755 netdev_info(dev
, "Error when requesting interrupt\n");
1759 dev
->irq
= pdev
->irq
;
1763 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1764 &sp
->rxd_map
, GFP_KERNEL
);
1766 goto err_free_irq_0
;
1768 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1769 &sp
->txd_map
, GFP_KERNEL
);
1773 rc
= init_rfdlist(dev
);
1775 netdev_info(dev
, "Error during configuration\n");
1781 rc
= ipg_io_config(dev
);
1783 netdev_info(dev
, "Error during configuration\n");
1784 goto err_release_tfdlist_3
;
1787 /* Resolve autonegotiation. */
1788 if (ipg_config_autoneg(dev
) < 0)
1789 netdev_info(dev
, "Auto-negotiation error\n");
1791 /* initialize JUMBO Frame control variable */
1792 sp
->jumbo
.found_start
= 0;
1793 sp
->jumbo
.current_size
= 0;
1794 sp
->jumbo
.skb
= NULL
;
1796 /* Enable transmit and receive operation of the IPG. */
1797 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1798 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1800 netif_start_queue(dev
);
1804 err_release_tfdlist_3
:
1808 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1810 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1812 free_irq(pdev
->irq
, dev
);
1816 static int ipg_nic_stop(struct net_device
*dev
)
1818 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1819 void __iomem
*ioaddr
= sp
->ioaddr
;
1820 struct pci_dev
*pdev
= sp
->pdev
;
1822 IPG_DEBUG_MSG("_nic_stop\n");
1824 netif_stop_queue(dev
);
1826 IPG_DUMPTFDLIST(dev
);
1829 (void) ipg_r16(INT_STATUS_ACK
);
1831 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1833 synchronize_irq(pdev
->irq
);
1834 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1840 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1841 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1843 free_irq(pdev
->irq
, dev
);
1848 static netdev_tx_t
ipg_nic_hard_start_xmit(struct sk_buff
*skb
,
1849 struct net_device
*dev
)
1851 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1852 void __iomem
*ioaddr
= sp
->ioaddr
;
1853 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1854 unsigned long flags
;
1855 struct ipg_tx
*txfd
;
1857 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1859 /* If in 10Mbps mode, stop the transmit queue so
1860 * no more transmit frames are accepted.
1862 if (sp
->tenmbpsmode
)
1863 netif_stop_queue(dev
);
1865 if (sp
->reset_current_tfd
) {
1866 sp
->reset_current_tfd
= 0;
1870 txfd
= sp
->txd
+ entry
;
1872 sp
->tx_buff
[entry
] = skb
;
1874 /* Clear all TFC fields, except TFDDONE. */
1875 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1877 /* Specify the TFC field within the TFD. */
1878 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1879 (IPG_TFC_FRAMEID
& sp
->tx_current
) |
1880 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1882 * 16--17 (WordAlign) <- 3 (disable),
1883 * 0--15 (FrameId) <- sp->tx_current,
1884 * 24--27 (FragCount) <- 1
1887 /* Request TxComplete interrupts at an interval defined
1888 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1889 * Request TxComplete interrupt for every frame
1890 * if in 10Mbps mode to accommodate problem with 10Mbps
1893 if (sp
->tenmbpsmode
)
1894 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1895 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1896 /* Based on compilation option, determine if FCS is to be
1897 * appended to transmit frame by IPG.
1899 if (!(IPG_APPEND_FCS_ON_TX
))
1900 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1902 /* Based on compilation option, determine if IP, TCP and/or
1903 * UDP checksums are to be added to transmit frame by IPG.
1905 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1906 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1908 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1909 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1911 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1912 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1914 /* Based on compilation option, determine if VLAN tag info is to be
1915 * inserted into transmit frame by IPG.
1917 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1918 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1919 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1920 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1921 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1924 /* The fragment start location within system memory is defined
1925 * by the sk_buff structure's data field. The physical address
1926 * of this location within the system's virtual memory space
1927 * is determined using the IPG_HOST2BUS_MAP function.
1929 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1930 skb
->len
, PCI_DMA_TODEVICE
));
1932 /* The length of the fragment within system memory is defined by
1933 * the sk_buff structure's len field.
1935 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1936 ((u64
) (skb
->len
& 0xffff) << 48));
1938 /* Clear the TFDDone bit last to indicate the TFD is ready
1939 * for transfer to the IPG.
1941 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1943 spin_lock_irqsave(&sp
->lock
, flags
);
1949 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1951 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1952 netif_stop_queue(dev
);
1954 spin_unlock_irqrestore(&sp
->lock
, flags
);
1956 return NETDEV_TX_OK
;
1959 static void ipg_set_phy_default_param(unsigned char rev
,
1960 struct net_device
*dev
, int phy_address
)
1962 unsigned short length
;
1963 unsigned char revision
;
1964 const unsigned short *phy_param
;
1965 unsigned short address
, value
;
1967 phy_param
= &DefaultPhyParam
[0];
1968 length
= *phy_param
& 0x00FF;
1969 revision
= (unsigned char)((*phy_param
) >> 8);
1971 while (length
!= 0) {
1972 if (rev
== revision
) {
1973 while (length
> 1) {
1974 address
= *phy_param
;
1975 value
= *(phy_param
+ 1);
1977 mdio_write(dev
, phy_address
, address
, value
);
1982 phy_param
+= length
/ 2;
1983 length
= *phy_param
& 0x00FF;
1984 revision
= (unsigned char)((*phy_param
) >> 8);
1990 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
1992 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
1997 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
1998 ipg_w16(value
, EEPROM_CTRL
);
2000 for (i
= 0; i
< 1000; i
++) {
2004 data
= ipg_r16(EEPROM_CTRL
);
2005 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
2006 ret
= ipg_r16(EEPROM_DATA
);
2013 static void ipg_init_mii(struct net_device
*dev
)
2015 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2016 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2020 mii_if
->mdio_read
= mdio_read
;
2021 mii_if
->mdio_write
= mdio_write
;
2022 mii_if
->phy_id_mask
= 0x1f;
2023 mii_if
->reg_num_mask
= 0x1f;
2025 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2027 if (phyaddr
!= 0x1f) {
2028 u16 mii_phyctrl
, mii_1000cr
;
2030 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2031 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2032 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2033 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2035 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2037 /* Set default phyparam */
2038 ipg_set_phy_default_param(sp
->pdev
->revision
, dev
, phyaddr
);
2041 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2042 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2047 static int ipg_hw_init(struct net_device
*dev
)
2049 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2050 void __iomem
*ioaddr
= sp
->ioaddr
;
2054 /* Read/Write and Reset EEPROM Value */
2055 /* Read LED Mode Configuration from EEPROM */
2056 sp
->led_mode
= read_eeprom(dev
, 6);
2058 /* Reset all functions within the IPG. Do not assert
2059 * RST_OUT as not compatible with some PHYs.
2061 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2067 /* Read MAC Address from EEPROM */
2068 for (i
= 0; i
< 3; i
++)
2069 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2071 for (i
= 0; i
< 3; i
++)
2072 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2074 /* Set station address in ethernet_device structure. */
2075 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2076 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2077 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2078 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2079 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2080 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2085 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2087 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2090 mutex_lock(&sp
->mii_mutex
);
2091 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2092 mutex_unlock(&sp
->mii_mutex
);
2097 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2099 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2102 /* Function to accommodate changes to Maximum Transfer Unit
2103 * (or MTU) of IPG NIC. Cannot use default function since
2104 * the default will not allow for MTU > 1500 bytes.
2107 IPG_DEBUG_MSG("_nic_change_mtu\n");
2110 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2111 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2113 if (new_mtu
< 68 || new_mtu
> 10240)
2116 err
= ipg_nic_stop(dev
);
2122 sp
->max_rxframe_size
= new_mtu
;
2124 sp
->rxfrag_size
= new_mtu
;
2125 if (sp
->rxfrag_size
> 4088)
2126 sp
->rxfrag_size
= 4088;
2128 sp
->rxsupport_size
= sp
->max_rxframe_size
;
2130 if (new_mtu
> 0x0600)
2131 sp
->is_jumbo
= true;
2133 sp
->is_jumbo
= false;
2135 return ipg_nic_open(dev
);
2138 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2140 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2143 mutex_lock(&sp
->mii_mutex
);
2144 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2145 mutex_unlock(&sp
->mii_mutex
);
2150 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2152 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2155 mutex_lock(&sp
->mii_mutex
);
2156 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2157 mutex_unlock(&sp
->mii_mutex
);
2162 static int ipg_nway_reset(struct net_device
*dev
)
2164 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2167 mutex_lock(&sp
->mii_mutex
);
2168 rc
= mii_nway_restart(&sp
->mii_if
);
2169 mutex_unlock(&sp
->mii_mutex
);
2174 static const struct ethtool_ops ipg_ethtool_ops
= {
2175 .get_settings
= ipg_get_settings
,
2176 .set_settings
= ipg_set_settings
,
2177 .nway_reset
= ipg_nway_reset
,
2180 static void __devexit
ipg_remove(struct pci_dev
*pdev
)
2182 struct net_device
*dev
= pci_get_drvdata(pdev
);
2183 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2185 IPG_DEBUG_MSG("_remove\n");
2187 /* Un-register Ethernet device. */
2188 unregister_netdev(dev
);
2190 pci_iounmap(pdev
, sp
->ioaddr
);
2192 pci_release_regions(pdev
);
2195 pci_disable_device(pdev
);
2196 pci_set_drvdata(pdev
, NULL
);
2199 static const struct net_device_ops ipg_netdev_ops
= {
2200 .ndo_open
= ipg_nic_open
,
2201 .ndo_stop
= ipg_nic_stop
,
2202 .ndo_start_xmit
= ipg_nic_hard_start_xmit
,
2203 .ndo_get_stats
= ipg_nic_get_stats
,
2204 .ndo_set_multicast_list
= ipg_nic_set_multicast_list
,
2205 .ndo_do_ioctl
= ipg_ioctl
,
2206 .ndo_tx_timeout
= ipg_tx_timeout
,
2207 .ndo_change_mtu
= ipg_nic_change_mtu
,
2208 .ndo_set_mac_address
= eth_mac_addr
,
2209 .ndo_validate_addr
= eth_validate_addr
,
2212 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2213 const struct pci_device_id
*id
)
2215 unsigned int i
= id
->driver_data
;
2216 struct ipg_nic_private
*sp
;
2217 struct net_device
*dev
;
2218 void __iomem
*ioaddr
;
2221 rc
= pci_enable_device(pdev
);
2225 pr_info("%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2227 pci_set_master(pdev
);
2229 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(40));
2231 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2233 pr_err("%s: DMA config failed\n", pci_name(pdev
));
2239 * Initialize net device.
2241 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2243 pr_err("%s: alloc_etherdev failed\n", pci_name(pdev
));
2248 sp
= netdev_priv(dev
);
2249 spin_lock_init(&sp
->lock
);
2250 mutex_init(&sp
->mii_mutex
);
2252 sp
->is_jumbo
= IPG_IS_JUMBO
;
2253 sp
->rxfrag_size
= IPG_RXFRAG_SIZE
;
2254 sp
->rxsupport_size
= IPG_RXSUPPORT_SIZE
;
2255 sp
->max_rxframe_size
= IPG_MAX_RXFRAME_SIZE
;
2257 /* Declare IPG NIC functions for Ethernet device methods.
2259 dev
->netdev_ops
= &ipg_netdev_ops
;
2260 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2261 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2263 rc
= pci_request_regions(pdev
, DRV_NAME
);
2265 goto err_free_dev_1
;
2267 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2269 pr_err("%s: cannot map MMIO\n", pci_name(pdev
));
2271 goto err_release_regions_2
;
2274 /* Save the pointer to the PCI device information. */
2275 sp
->ioaddr
= ioaddr
;
2279 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2281 pci_set_drvdata(pdev
, dev
);
2283 rc
= ipg_hw_init(dev
);
2287 rc
= register_netdev(dev
);
2291 netdev_info(dev
, "Ethernet device registered\n");
2296 pci_iounmap(pdev
, ioaddr
);
2297 err_release_regions_2
:
2298 pci_release_regions(pdev
);
2302 pci_disable_device(pdev
);
2306 static struct pci_driver ipg_pci_driver
= {
2307 .name
= IPG_DRIVER_NAME
,
2308 .id_table
= ipg_pci_tbl
,
2310 .remove
= __devexit_p(ipg_remove
),
2313 static int __init
ipg_init_module(void)
2315 return pci_register_driver(&ipg_pci_driver
);
2318 static void __exit
ipg_exit_module(void)
2320 pci_unregister_driver(&ipg_pci_driver
);
2323 module_init(ipg_init_module
);
2324 module_exit(ipg_exit_module
);