ring-buffer: add reader lock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / ring_buffer.c
blob17c2ccebb567ead0f2b90a1856af9d105346fcef
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h> /* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
19 #include "trace.h"
21 /* Up this if you want to test the TIME_EXTENTS and normalization */
22 #define DEBUG_SHIFT 0
24 /* FIXME!!! */
25 u64 ring_buffer_time_stamp(int cpu)
27 /* shift to debug/test normalization and TIME_EXTENTS */
28 return sched_clock() << DEBUG_SHIFT;
31 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
33 /* Just stupid testing the normalize function and deltas */
34 *ts >>= DEBUG_SHIFT;
37 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
38 #define RB_ALIGNMENT_SHIFT 2
39 #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
40 #define RB_MAX_SMALL_DATA 28
42 enum {
43 RB_LEN_TIME_EXTEND = 8,
44 RB_LEN_TIME_STAMP = 16,
47 /* inline for ring buffer fast paths */
48 static inline unsigned
49 rb_event_length(struct ring_buffer_event *event)
51 unsigned length;
53 switch (event->type) {
54 case RINGBUF_TYPE_PADDING:
55 /* undefined */
56 return -1;
58 case RINGBUF_TYPE_TIME_EXTEND:
59 return RB_LEN_TIME_EXTEND;
61 case RINGBUF_TYPE_TIME_STAMP:
62 return RB_LEN_TIME_STAMP;
64 case RINGBUF_TYPE_DATA:
65 if (event->len)
66 length = event->len << RB_ALIGNMENT_SHIFT;
67 else
68 length = event->array[0];
69 return length + RB_EVNT_HDR_SIZE;
70 default:
71 BUG();
73 /* not hit */
74 return 0;
77 /**
78 * ring_buffer_event_length - return the length of the event
79 * @event: the event to get the length of
81 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
83 return rb_event_length(event);
86 /* inline for ring buffer fast paths */
87 static inline void *
88 rb_event_data(struct ring_buffer_event *event)
90 BUG_ON(event->type != RINGBUF_TYPE_DATA);
91 /* If length is in len field, then array[0] has the data */
92 if (event->len)
93 return (void *)&event->array[0];
94 /* Otherwise length is in array[0] and array[1] has the data */
95 return (void *)&event->array[1];
98 /**
99 * ring_buffer_event_data - return the data of the event
100 * @event: the event to get the data from
102 void *ring_buffer_event_data(struct ring_buffer_event *event)
104 return rb_event_data(event);
107 #define for_each_buffer_cpu(buffer, cpu) \
108 for_each_cpu_mask(cpu, buffer->cpumask)
110 #define TS_SHIFT 27
111 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
112 #define TS_DELTA_TEST (~TS_MASK)
115 * This hack stolen from mm/slob.c.
116 * We can store per page timing information in the page frame of the page.
117 * Thanks to Peter Zijlstra for suggesting this idea.
119 struct buffer_page {
120 u64 time_stamp; /* page time stamp */
121 local_t write; /* index for next write */
122 local_t commit; /* write commited index */
123 unsigned read; /* index for next read */
124 struct list_head list; /* list of free pages */
125 void *page; /* Actual data page */
129 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
130 * this issue out.
132 static inline void free_buffer_page(struct buffer_page *bpage)
134 if (bpage->page)
135 free_page((unsigned long)bpage->page);
136 kfree(bpage);
140 * We need to fit the time_stamp delta into 27 bits.
142 static inline int test_time_stamp(u64 delta)
144 if (delta & TS_DELTA_TEST)
145 return 1;
146 return 0;
149 #define BUF_PAGE_SIZE PAGE_SIZE
152 * head_page == tail_page && head == tail then buffer is empty.
154 struct ring_buffer_per_cpu {
155 int cpu;
156 struct ring_buffer *buffer;
157 spinlock_t reader_lock; /* serialize readers */
158 raw_spinlock_t lock;
159 struct lock_class_key lock_key;
160 struct list_head pages;
161 struct buffer_page *head_page; /* read from head */
162 struct buffer_page *tail_page; /* write to tail */
163 struct buffer_page *commit_page; /* commited pages */
164 struct buffer_page *reader_page;
165 unsigned long overrun;
166 unsigned long entries;
167 u64 write_stamp;
168 u64 read_stamp;
169 atomic_t record_disabled;
172 struct ring_buffer {
173 unsigned long size;
174 unsigned pages;
175 unsigned flags;
176 int cpus;
177 cpumask_t cpumask;
178 atomic_t record_disabled;
180 struct mutex mutex;
182 struct ring_buffer_per_cpu **buffers;
185 struct ring_buffer_iter {
186 struct ring_buffer_per_cpu *cpu_buffer;
187 unsigned long head;
188 struct buffer_page *head_page;
189 u64 read_stamp;
192 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
193 #define RB_WARN_ON(buffer, cond) \
194 do { \
195 if (unlikely(cond)) { \
196 atomic_inc(&buffer->record_disabled); \
197 WARN_ON(1); \
199 } while (0)
201 #define RB_WARN_ON_RET(buffer, cond) \
202 do { \
203 if (unlikely(cond)) { \
204 atomic_inc(&buffer->record_disabled); \
205 WARN_ON(1); \
206 return; \
208 } while (0)
210 #define RB_WARN_ON_RET_INT(buffer, cond) \
211 do { \
212 if (unlikely(cond)) { \
213 atomic_inc(&buffer->record_disabled); \
214 WARN_ON(1); \
215 return -1; \
217 } while (0)
219 #define RB_WARN_ON_RET_NULL(buffer, cond) \
220 do { \
221 if (unlikely(cond)) { \
222 atomic_inc(&buffer->record_disabled); \
223 WARN_ON(1); \
224 return NULL; \
226 } while (0)
228 #define RB_WARN_ON_ONCE(buffer, cond) \
229 do { \
230 static int once; \
231 if (unlikely(cond) && !once) { \
232 once++; \
233 atomic_inc(&buffer->record_disabled); \
234 WARN_ON(1); \
236 } while (0)
238 /* buffer must be ring_buffer not per_cpu */
239 #define RB_WARN_ON_UNLOCK(buffer, cond) \
240 do { \
241 if (unlikely(cond)) { \
242 mutex_unlock(&buffer->mutex); \
243 atomic_inc(&buffer->record_disabled); \
244 WARN_ON(1); \
245 return -1; \
247 } while (0)
250 * check_pages - integrity check of buffer pages
251 * @cpu_buffer: CPU buffer with pages to test
253 * As a safty measure we check to make sure the data pages have not
254 * been corrupted.
256 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
258 struct list_head *head = &cpu_buffer->pages;
259 struct buffer_page *page, *tmp;
261 RB_WARN_ON_RET_INT(cpu_buffer, head->next->prev != head);
262 RB_WARN_ON_RET_INT(cpu_buffer, head->prev->next != head);
264 list_for_each_entry_safe(page, tmp, head, list) {
265 RB_WARN_ON_RET_INT(cpu_buffer,
266 page->list.next->prev != &page->list);
267 RB_WARN_ON_RET_INT(cpu_buffer,
268 page->list.prev->next != &page->list);
271 return 0;
274 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
275 unsigned nr_pages)
277 struct list_head *head = &cpu_buffer->pages;
278 struct buffer_page *page, *tmp;
279 unsigned long addr;
280 LIST_HEAD(pages);
281 unsigned i;
283 for (i = 0; i < nr_pages; i++) {
284 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
285 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
286 if (!page)
287 goto free_pages;
288 list_add(&page->list, &pages);
290 addr = __get_free_page(GFP_KERNEL);
291 if (!addr)
292 goto free_pages;
293 page->page = (void *)addr;
296 list_splice(&pages, head);
298 rb_check_pages(cpu_buffer);
300 return 0;
302 free_pages:
303 list_for_each_entry_safe(page, tmp, &pages, list) {
304 list_del_init(&page->list);
305 free_buffer_page(page);
307 return -ENOMEM;
310 static struct ring_buffer_per_cpu *
311 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
313 struct ring_buffer_per_cpu *cpu_buffer;
314 struct buffer_page *page;
315 unsigned long addr;
316 int ret;
318 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
319 GFP_KERNEL, cpu_to_node(cpu));
320 if (!cpu_buffer)
321 return NULL;
323 cpu_buffer->cpu = cpu;
324 cpu_buffer->buffer = buffer;
325 spin_lock_init(&cpu_buffer->reader_lock);
326 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
327 INIT_LIST_HEAD(&cpu_buffer->pages);
329 page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
330 GFP_KERNEL, cpu_to_node(cpu));
331 if (!page)
332 goto fail_free_buffer;
334 cpu_buffer->reader_page = page;
335 addr = __get_free_page(GFP_KERNEL);
336 if (!addr)
337 goto fail_free_reader;
338 page->page = (void *)addr;
340 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
342 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
343 if (ret < 0)
344 goto fail_free_reader;
346 cpu_buffer->head_page
347 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
348 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
350 return cpu_buffer;
352 fail_free_reader:
353 free_buffer_page(cpu_buffer->reader_page);
355 fail_free_buffer:
356 kfree(cpu_buffer);
357 return NULL;
360 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
362 struct list_head *head = &cpu_buffer->pages;
363 struct buffer_page *page, *tmp;
365 list_del_init(&cpu_buffer->reader_page->list);
366 free_buffer_page(cpu_buffer->reader_page);
368 list_for_each_entry_safe(page, tmp, head, list) {
369 list_del_init(&page->list);
370 free_buffer_page(page);
372 kfree(cpu_buffer);
376 * Causes compile errors if the struct buffer_page gets bigger
377 * than the struct page.
379 extern int ring_buffer_page_too_big(void);
382 * ring_buffer_alloc - allocate a new ring_buffer
383 * @size: the size in bytes that is needed.
384 * @flags: attributes to set for the ring buffer.
386 * Currently the only flag that is available is the RB_FL_OVERWRITE
387 * flag. This flag means that the buffer will overwrite old data
388 * when the buffer wraps. If this flag is not set, the buffer will
389 * drop data when the tail hits the head.
391 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
393 struct ring_buffer *buffer;
394 int bsize;
395 int cpu;
397 /* Paranoid! Optimizes out when all is well */
398 if (sizeof(struct buffer_page) > sizeof(struct page))
399 ring_buffer_page_too_big();
402 /* keep it in its own cache line */
403 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
404 GFP_KERNEL);
405 if (!buffer)
406 return NULL;
408 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
409 buffer->flags = flags;
411 /* need at least two pages */
412 if (buffer->pages == 1)
413 buffer->pages++;
415 buffer->cpumask = cpu_possible_map;
416 buffer->cpus = nr_cpu_ids;
418 bsize = sizeof(void *) * nr_cpu_ids;
419 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
420 GFP_KERNEL);
421 if (!buffer->buffers)
422 goto fail_free_buffer;
424 for_each_buffer_cpu(buffer, cpu) {
425 buffer->buffers[cpu] =
426 rb_allocate_cpu_buffer(buffer, cpu);
427 if (!buffer->buffers[cpu])
428 goto fail_free_buffers;
431 mutex_init(&buffer->mutex);
433 return buffer;
435 fail_free_buffers:
436 for_each_buffer_cpu(buffer, cpu) {
437 if (buffer->buffers[cpu])
438 rb_free_cpu_buffer(buffer->buffers[cpu]);
440 kfree(buffer->buffers);
442 fail_free_buffer:
443 kfree(buffer);
444 return NULL;
448 * ring_buffer_free - free a ring buffer.
449 * @buffer: the buffer to free.
451 void
452 ring_buffer_free(struct ring_buffer *buffer)
454 int cpu;
456 for_each_buffer_cpu(buffer, cpu)
457 rb_free_cpu_buffer(buffer->buffers[cpu]);
459 kfree(buffer);
462 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
464 static void
465 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
467 struct buffer_page *page;
468 struct list_head *p;
469 unsigned i;
471 atomic_inc(&cpu_buffer->record_disabled);
472 synchronize_sched();
474 for (i = 0; i < nr_pages; i++) {
475 RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
476 p = cpu_buffer->pages.next;
477 page = list_entry(p, struct buffer_page, list);
478 list_del_init(&page->list);
479 free_buffer_page(page);
481 RB_WARN_ON_RET(cpu_buffer, list_empty(&cpu_buffer->pages));
483 rb_reset_cpu(cpu_buffer);
485 rb_check_pages(cpu_buffer);
487 atomic_dec(&cpu_buffer->record_disabled);
491 static void
492 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
493 struct list_head *pages, unsigned nr_pages)
495 struct buffer_page *page;
496 struct list_head *p;
497 unsigned i;
499 atomic_inc(&cpu_buffer->record_disabled);
500 synchronize_sched();
502 for (i = 0; i < nr_pages; i++) {
503 RB_WARN_ON_RET(cpu_buffer, list_empty(pages));
504 p = pages->next;
505 page = list_entry(p, struct buffer_page, list);
506 list_del_init(&page->list);
507 list_add_tail(&page->list, &cpu_buffer->pages);
509 rb_reset_cpu(cpu_buffer);
511 rb_check_pages(cpu_buffer);
513 atomic_dec(&cpu_buffer->record_disabled);
517 * ring_buffer_resize - resize the ring buffer
518 * @buffer: the buffer to resize.
519 * @size: the new size.
521 * The tracer is responsible for making sure that the buffer is
522 * not being used while changing the size.
523 * Note: We may be able to change the above requirement by using
524 * RCU synchronizations.
526 * Minimum size is 2 * BUF_PAGE_SIZE.
528 * Returns -1 on failure.
530 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
532 struct ring_buffer_per_cpu *cpu_buffer;
533 unsigned nr_pages, rm_pages, new_pages;
534 struct buffer_page *page, *tmp;
535 unsigned long buffer_size;
536 unsigned long addr;
537 LIST_HEAD(pages);
538 int i, cpu;
540 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
541 size *= BUF_PAGE_SIZE;
542 buffer_size = buffer->pages * BUF_PAGE_SIZE;
544 /* we need a minimum of two pages */
545 if (size < BUF_PAGE_SIZE * 2)
546 size = BUF_PAGE_SIZE * 2;
548 if (size == buffer_size)
549 return size;
551 mutex_lock(&buffer->mutex);
553 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
555 if (size < buffer_size) {
557 /* easy case, just free pages */
558 RB_WARN_ON_UNLOCK(buffer, nr_pages >= buffer->pages);
560 rm_pages = buffer->pages - nr_pages;
562 for_each_buffer_cpu(buffer, cpu) {
563 cpu_buffer = buffer->buffers[cpu];
564 rb_remove_pages(cpu_buffer, rm_pages);
566 goto out;
570 * This is a bit more difficult. We only want to add pages
571 * when we can allocate enough for all CPUs. We do this
572 * by allocating all the pages and storing them on a local
573 * link list. If we succeed in our allocation, then we
574 * add these pages to the cpu_buffers. Otherwise we just free
575 * them all and return -ENOMEM;
577 RB_WARN_ON_UNLOCK(buffer, nr_pages <= buffer->pages);
579 new_pages = nr_pages - buffer->pages;
581 for_each_buffer_cpu(buffer, cpu) {
582 for (i = 0; i < new_pages; i++) {
583 page = kzalloc_node(ALIGN(sizeof(*page),
584 cache_line_size()),
585 GFP_KERNEL, cpu_to_node(cpu));
586 if (!page)
587 goto free_pages;
588 list_add(&page->list, &pages);
589 addr = __get_free_page(GFP_KERNEL);
590 if (!addr)
591 goto free_pages;
592 page->page = (void *)addr;
596 for_each_buffer_cpu(buffer, cpu) {
597 cpu_buffer = buffer->buffers[cpu];
598 rb_insert_pages(cpu_buffer, &pages, new_pages);
601 RB_WARN_ON_UNLOCK(buffer, !list_empty(&pages));
603 out:
604 buffer->pages = nr_pages;
605 mutex_unlock(&buffer->mutex);
607 return size;
609 free_pages:
610 list_for_each_entry_safe(page, tmp, &pages, list) {
611 list_del_init(&page->list);
612 free_buffer_page(page);
614 return -ENOMEM;
617 static inline int rb_null_event(struct ring_buffer_event *event)
619 return event->type == RINGBUF_TYPE_PADDING;
622 static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
624 return page->page + index;
627 static inline struct ring_buffer_event *
628 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
630 return __rb_page_index(cpu_buffer->reader_page,
631 cpu_buffer->reader_page->read);
634 static inline struct ring_buffer_event *
635 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
637 return __rb_page_index(cpu_buffer->head_page,
638 cpu_buffer->head_page->read);
641 static inline struct ring_buffer_event *
642 rb_iter_head_event(struct ring_buffer_iter *iter)
644 return __rb_page_index(iter->head_page, iter->head);
647 static inline unsigned rb_page_write(struct buffer_page *bpage)
649 return local_read(&bpage->write);
652 static inline unsigned rb_page_commit(struct buffer_page *bpage)
654 return local_read(&bpage->commit);
657 /* Size is determined by what has been commited */
658 static inline unsigned rb_page_size(struct buffer_page *bpage)
660 return rb_page_commit(bpage);
663 static inline unsigned
664 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
666 return rb_page_commit(cpu_buffer->commit_page);
669 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
671 return rb_page_commit(cpu_buffer->head_page);
675 * When the tail hits the head and the buffer is in overwrite mode,
676 * the head jumps to the next page and all content on the previous
677 * page is discarded. But before doing so, we update the overrun
678 * variable of the buffer.
680 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
682 struct ring_buffer_event *event;
683 unsigned long head;
685 for (head = 0; head < rb_head_size(cpu_buffer);
686 head += rb_event_length(event)) {
688 event = __rb_page_index(cpu_buffer->head_page, head);
689 RB_WARN_ON_RET(cpu_buffer, rb_null_event(event));
690 /* Only count data entries */
691 if (event->type != RINGBUF_TYPE_DATA)
692 continue;
693 cpu_buffer->overrun++;
694 cpu_buffer->entries--;
698 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
699 struct buffer_page **page)
701 struct list_head *p = (*page)->list.next;
703 if (p == &cpu_buffer->pages)
704 p = p->next;
706 *page = list_entry(p, struct buffer_page, list);
709 static inline unsigned
710 rb_event_index(struct ring_buffer_event *event)
712 unsigned long addr = (unsigned long)event;
714 return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
717 static inline int
718 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
719 struct ring_buffer_event *event)
721 unsigned long addr = (unsigned long)event;
722 unsigned long index;
724 index = rb_event_index(event);
725 addr &= PAGE_MASK;
727 return cpu_buffer->commit_page->page == (void *)addr &&
728 rb_commit_index(cpu_buffer) == index;
731 static inline void
732 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
733 struct ring_buffer_event *event)
735 unsigned long addr = (unsigned long)event;
736 unsigned long index;
738 index = rb_event_index(event);
739 addr &= PAGE_MASK;
741 while (cpu_buffer->commit_page->page != (void *)addr) {
742 RB_WARN_ON(cpu_buffer,
743 cpu_buffer->commit_page == cpu_buffer->tail_page);
744 cpu_buffer->commit_page->commit =
745 cpu_buffer->commit_page->write;
746 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
747 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
750 /* Now set the commit to the event's index */
751 local_set(&cpu_buffer->commit_page->commit, index);
754 static inline void
755 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
758 * We only race with interrupts and NMIs on this CPU.
759 * If we own the commit event, then we can commit
760 * all others that interrupted us, since the interruptions
761 * are in stack format (they finish before they come
762 * back to us). This allows us to do a simple loop to
763 * assign the commit to the tail.
765 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
766 cpu_buffer->commit_page->commit =
767 cpu_buffer->commit_page->write;
768 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
769 cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
770 /* add barrier to keep gcc from optimizing too much */
771 barrier();
773 while (rb_commit_index(cpu_buffer) !=
774 rb_page_write(cpu_buffer->commit_page)) {
775 cpu_buffer->commit_page->commit =
776 cpu_buffer->commit_page->write;
777 barrier();
781 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
783 cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
784 cpu_buffer->reader_page->read = 0;
787 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
789 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
792 * The iterator could be on the reader page (it starts there).
793 * But the head could have moved, since the reader was
794 * found. Check for this case and assign the iterator
795 * to the head page instead of next.
797 if (iter->head_page == cpu_buffer->reader_page)
798 iter->head_page = cpu_buffer->head_page;
799 else
800 rb_inc_page(cpu_buffer, &iter->head_page);
802 iter->read_stamp = iter->head_page->time_stamp;
803 iter->head = 0;
807 * ring_buffer_update_event - update event type and data
808 * @event: the even to update
809 * @type: the type of event
810 * @length: the size of the event field in the ring buffer
812 * Update the type and data fields of the event. The length
813 * is the actual size that is written to the ring buffer,
814 * and with this, we can determine what to place into the
815 * data field.
817 static inline void
818 rb_update_event(struct ring_buffer_event *event,
819 unsigned type, unsigned length)
821 event->type = type;
823 switch (type) {
825 case RINGBUF_TYPE_PADDING:
826 break;
828 case RINGBUF_TYPE_TIME_EXTEND:
829 event->len =
830 (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
831 >> RB_ALIGNMENT_SHIFT;
832 break;
834 case RINGBUF_TYPE_TIME_STAMP:
835 event->len =
836 (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
837 >> RB_ALIGNMENT_SHIFT;
838 break;
840 case RINGBUF_TYPE_DATA:
841 length -= RB_EVNT_HDR_SIZE;
842 if (length > RB_MAX_SMALL_DATA) {
843 event->len = 0;
844 event->array[0] = length;
845 } else
846 event->len =
847 (length + (RB_ALIGNMENT-1))
848 >> RB_ALIGNMENT_SHIFT;
849 break;
850 default:
851 BUG();
855 static inline unsigned rb_calculate_event_length(unsigned length)
857 struct ring_buffer_event event; /* Used only for sizeof array */
859 /* zero length can cause confusions */
860 if (!length)
861 length = 1;
863 if (length > RB_MAX_SMALL_DATA)
864 length += sizeof(event.array[0]);
866 length += RB_EVNT_HDR_SIZE;
867 length = ALIGN(length, RB_ALIGNMENT);
869 return length;
872 static struct ring_buffer_event *
873 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
874 unsigned type, unsigned long length, u64 *ts)
876 struct buffer_page *tail_page, *head_page, *reader_page;
877 unsigned long tail, write;
878 struct ring_buffer *buffer = cpu_buffer->buffer;
879 struct ring_buffer_event *event;
880 unsigned long flags;
882 tail_page = cpu_buffer->tail_page;
883 write = local_add_return(length, &tail_page->write);
884 tail = write - length;
886 /* See if we shot pass the end of this buffer page */
887 if (write > BUF_PAGE_SIZE) {
888 struct buffer_page *next_page = tail_page;
890 local_irq_save(flags);
891 __raw_spin_lock(&cpu_buffer->lock);
893 rb_inc_page(cpu_buffer, &next_page);
895 head_page = cpu_buffer->head_page;
896 reader_page = cpu_buffer->reader_page;
898 /* we grabbed the lock before incrementing */
899 RB_WARN_ON(cpu_buffer, next_page == reader_page);
902 * If for some reason, we had an interrupt storm that made
903 * it all the way around the buffer, bail, and warn
904 * about it.
906 if (unlikely(next_page == cpu_buffer->commit_page)) {
907 WARN_ON_ONCE(1);
908 goto out_unlock;
911 if (next_page == head_page) {
912 if (!(buffer->flags & RB_FL_OVERWRITE)) {
913 /* reset write */
914 if (tail <= BUF_PAGE_SIZE)
915 local_set(&tail_page->write, tail);
916 goto out_unlock;
919 /* tail_page has not moved yet? */
920 if (tail_page == cpu_buffer->tail_page) {
921 /* count overflows */
922 rb_update_overflow(cpu_buffer);
924 rb_inc_page(cpu_buffer, &head_page);
925 cpu_buffer->head_page = head_page;
926 cpu_buffer->head_page->read = 0;
931 * If the tail page is still the same as what we think
932 * it is, then it is up to us to update the tail
933 * pointer.
935 if (tail_page == cpu_buffer->tail_page) {
936 local_set(&next_page->write, 0);
937 local_set(&next_page->commit, 0);
938 cpu_buffer->tail_page = next_page;
940 /* reread the time stamp */
941 *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
942 cpu_buffer->tail_page->time_stamp = *ts;
946 * The actual tail page has moved forward.
948 if (tail < BUF_PAGE_SIZE) {
949 /* Mark the rest of the page with padding */
950 event = __rb_page_index(tail_page, tail);
951 event->type = RINGBUF_TYPE_PADDING;
954 if (tail <= BUF_PAGE_SIZE)
955 /* Set the write back to the previous setting */
956 local_set(&tail_page->write, tail);
959 * If this was a commit entry that failed,
960 * increment that too
962 if (tail_page == cpu_buffer->commit_page &&
963 tail == rb_commit_index(cpu_buffer)) {
964 rb_set_commit_to_write(cpu_buffer);
967 __raw_spin_unlock(&cpu_buffer->lock);
968 local_irq_restore(flags);
970 /* fail and let the caller try again */
971 return ERR_PTR(-EAGAIN);
974 /* We reserved something on the buffer */
976 RB_WARN_ON_RET_NULL(cpu_buffer, write > BUF_PAGE_SIZE);
978 event = __rb_page_index(tail_page, tail);
979 rb_update_event(event, type, length);
982 * If this is a commit and the tail is zero, then update
983 * this page's time stamp.
985 if (!tail && rb_is_commit(cpu_buffer, event))
986 cpu_buffer->commit_page->time_stamp = *ts;
988 return event;
990 out_unlock:
991 __raw_spin_unlock(&cpu_buffer->lock);
992 local_irq_restore(flags);
993 return NULL;
996 static int
997 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
998 u64 *ts, u64 *delta)
1000 struct ring_buffer_event *event;
1001 static int once;
1002 int ret;
1004 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1005 printk(KERN_WARNING "Delta way too big! %llu"
1006 " ts=%llu write stamp = %llu\n",
1007 (unsigned long long)*delta,
1008 (unsigned long long)*ts,
1009 (unsigned long long)cpu_buffer->write_stamp);
1010 WARN_ON(1);
1014 * The delta is too big, we to add a
1015 * new timestamp.
1017 event = __rb_reserve_next(cpu_buffer,
1018 RINGBUF_TYPE_TIME_EXTEND,
1019 RB_LEN_TIME_EXTEND,
1020 ts);
1021 if (!event)
1022 return -EBUSY;
1024 if (PTR_ERR(event) == -EAGAIN)
1025 return -EAGAIN;
1027 /* Only a commited time event can update the write stamp */
1028 if (rb_is_commit(cpu_buffer, event)) {
1030 * If this is the first on the page, then we need to
1031 * update the page itself, and just put in a zero.
1033 if (rb_event_index(event)) {
1034 event->time_delta = *delta & TS_MASK;
1035 event->array[0] = *delta >> TS_SHIFT;
1036 } else {
1037 cpu_buffer->commit_page->time_stamp = *ts;
1038 event->time_delta = 0;
1039 event->array[0] = 0;
1041 cpu_buffer->write_stamp = *ts;
1042 /* let the caller know this was the commit */
1043 ret = 1;
1044 } else {
1045 /* Darn, this is just wasted space */
1046 event->time_delta = 0;
1047 event->array[0] = 0;
1048 ret = 0;
1051 *delta = 0;
1053 return ret;
1056 static struct ring_buffer_event *
1057 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1058 unsigned type, unsigned long length)
1060 struct ring_buffer_event *event;
1061 u64 ts, delta;
1062 int commit = 0;
1063 int nr_loops = 0;
1065 again:
1067 * We allow for interrupts to reenter here and do a trace.
1068 * If one does, it will cause this original code to loop
1069 * back here. Even with heavy interrupts happening, this
1070 * should only happen a few times in a row. If this happens
1071 * 1000 times in a row, there must be either an interrupt
1072 * storm or we have something buggy.
1073 * Bail!
1075 if (unlikely(++nr_loops > 1000)) {
1076 RB_WARN_ON(cpu_buffer, 1);
1077 return NULL;
1080 ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1083 * Only the first commit can update the timestamp.
1084 * Yes there is a race here. If an interrupt comes in
1085 * just after the conditional and it traces too, then it
1086 * will also check the deltas. More than one timestamp may
1087 * also be made. But only the entry that did the actual
1088 * commit will be something other than zero.
1090 if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1091 rb_page_write(cpu_buffer->tail_page) ==
1092 rb_commit_index(cpu_buffer)) {
1094 delta = ts - cpu_buffer->write_stamp;
1096 /* make sure this delta is calculated here */
1097 barrier();
1099 /* Did the write stamp get updated already? */
1100 if (unlikely(ts < cpu_buffer->write_stamp))
1101 delta = 0;
1103 if (test_time_stamp(delta)) {
1105 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1107 if (commit == -EBUSY)
1108 return NULL;
1110 if (commit == -EAGAIN)
1111 goto again;
1113 RB_WARN_ON(cpu_buffer, commit < 0);
1115 } else
1116 /* Non commits have zero deltas */
1117 delta = 0;
1119 event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1120 if (PTR_ERR(event) == -EAGAIN)
1121 goto again;
1123 if (!event) {
1124 if (unlikely(commit))
1126 * Ouch! We needed a timestamp and it was commited. But
1127 * we didn't get our event reserved.
1129 rb_set_commit_to_write(cpu_buffer);
1130 return NULL;
1134 * If the timestamp was commited, make the commit our entry
1135 * now so that we will update it when needed.
1137 if (commit)
1138 rb_set_commit_event(cpu_buffer, event);
1139 else if (!rb_is_commit(cpu_buffer, event))
1140 delta = 0;
1142 event->time_delta = delta;
1144 return event;
1147 static DEFINE_PER_CPU(int, rb_need_resched);
1150 * ring_buffer_lock_reserve - reserve a part of the buffer
1151 * @buffer: the ring buffer to reserve from
1152 * @length: the length of the data to reserve (excluding event header)
1153 * @flags: a pointer to save the interrupt flags
1155 * Returns a reseverd event on the ring buffer to copy directly to.
1156 * The user of this interface will need to get the body to write into
1157 * and can use the ring_buffer_event_data() interface.
1159 * The length is the length of the data needed, not the event length
1160 * which also includes the event header.
1162 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1163 * If NULL is returned, then nothing has been allocated or locked.
1165 struct ring_buffer_event *
1166 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1167 unsigned long length,
1168 unsigned long *flags)
1170 struct ring_buffer_per_cpu *cpu_buffer;
1171 struct ring_buffer_event *event;
1172 int cpu, resched;
1174 if (atomic_read(&buffer->record_disabled))
1175 return NULL;
1177 /* If we are tracing schedule, we don't want to recurse */
1178 resched = ftrace_preempt_disable();
1180 cpu = raw_smp_processor_id();
1182 if (!cpu_isset(cpu, buffer->cpumask))
1183 goto out;
1185 cpu_buffer = buffer->buffers[cpu];
1187 if (atomic_read(&cpu_buffer->record_disabled))
1188 goto out;
1190 length = rb_calculate_event_length(length);
1191 if (length > BUF_PAGE_SIZE)
1192 goto out;
1194 event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1195 if (!event)
1196 goto out;
1199 * Need to store resched state on this cpu.
1200 * Only the first needs to.
1203 if (preempt_count() == 1)
1204 per_cpu(rb_need_resched, cpu) = resched;
1206 return event;
1208 out:
1209 ftrace_preempt_enable(resched);
1210 return NULL;
1213 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1214 struct ring_buffer_event *event)
1216 cpu_buffer->entries++;
1218 /* Only process further if we own the commit */
1219 if (!rb_is_commit(cpu_buffer, event))
1220 return;
1222 cpu_buffer->write_stamp += event->time_delta;
1224 rb_set_commit_to_write(cpu_buffer);
1228 * ring_buffer_unlock_commit - commit a reserved
1229 * @buffer: The buffer to commit to
1230 * @event: The event pointer to commit.
1231 * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1233 * This commits the data to the ring buffer, and releases any locks held.
1235 * Must be paired with ring_buffer_lock_reserve.
1237 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1238 struct ring_buffer_event *event,
1239 unsigned long flags)
1241 struct ring_buffer_per_cpu *cpu_buffer;
1242 int cpu = raw_smp_processor_id();
1244 cpu_buffer = buffer->buffers[cpu];
1246 rb_commit(cpu_buffer, event);
1249 * Only the last preempt count needs to restore preemption.
1251 if (preempt_count() == 1)
1252 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1253 else
1254 preempt_enable_no_resched_notrace();
1256 return 0;
1260 * ring_buffer_write - write data to the buffer without reserving
1261 * @buffer: The ring buffer to write to.
1262 * @length: The length of the data being written (excluding the event header)
1263 * @data: The data to write to the buffer.
1265 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1266 * one function. If you already have the data to write to the buffer, it
1267 * may be easier to simply call this function.
1269 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1270 * and not the length of the event which would hold the header.
1272 int ring_buffer_write(struct ring_buffer *buffer,
1273 unsigned long length,
1274 void *data)
1276 struct ring_buffer_per_cpu *cpu_buffer;
1277 struct ring_buffer_event *event;
1278 unsigned long event_length;
1279 void *body;
1280 int ret = -EBUSY;
1281 int cpu, resched;
1283 if (atomic_read(&buffer->record_disabled))
1284 return -EBUSY;
1286 resched = ftrace_preempt_disable();
1288 cpu = raw_smp_processor_id();
1290 if (!cpu_isset(cpu, buffer->cpumask))
1291 goto out;
1293 cpu_buffer = buffer->buffers[cpu];
1295 if (atomic_read(&cpu_buffer->record_disabled))
1296 goto out;
1298 event_length = rb_calculate_event_length(length);
1299 event = rb_reserve_next_event(cpu_buffer,
1300 RINGBUF_TYPE_DATA, event_length);
1301 if (!event)
1302 goto out;
1304 body = rb_event_data(event);
1306 memcpy(body, data, length);
1308 rb_commit(cpu_buffer, event);
1310 ret = 0;
1311 out:
1312 ftrace_preempt_enable(resched);
1314 return ret;
1317 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1319 struct buffer_page *reader = cpu_buffer->reader_page;
1320 struct buffer_page *head = cpu_buffer->head_page;
1321 struct buffer_page *commit = cpu_buffer->commit_page;
1323 return reader->read == rb_page_commit(reader) &&
1324 (commit == reader ||
1325 (commit == head &&
1326 head->read == rb_page_commit(commit)));
1330 * ring_buffer_record_disable - stop all writes into the buffer
1331 * @buffer: The ring buffer to stop writes to.
1333 * This prevents all writes to the buffer. Any attempt to write
1334 * to the buffer after this will fail and return NULL.
1336 * The caller should call synchronize_sched() after this.
1338 void ring_buffer_record_disable(struct ring_buffer *buffer)
1340 atomic_inc(&buffer->record_disabled);
1344 * ring_buffer_record_enable - enable writes to the buffer
1345 * @buffer: The ring buffer to enable writes
1347 * Note, multiple disables will need the same number of enables
1348 * to truely enable the writing (much like preempt_disable).
1350 void ring_buffer_record_enable(struct ring_buffer *buffer)
1352 atomic_dec(&buffer->record_disabled);
1356 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1357 * @buffer: The ring buffer to stop writes to.
1358 * @cpu: The CPU buffer to stop
1360 * This prevents all writes to the buffer. Any attempt to write
1361 * to the buffer after this will fail and return NULL.
1363 * The caller should call synchronize_sched() after this.
1365 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1367 struct ring_buffer_per_cpu *cpu_buffer;
1369 if (!cpu_isset(cpu, buffer->cpumask))
1370 return;
1372 cpu_buffer = buffer->buffers[cpu];
1373 atomic_inc(&cpu_buffer->record_disabled);
1377 * ring_buffer_record_enable_cpu - enable writes to the buffer
1378 * @buffer: The ring buffer to enable writes
1379 * @cpu: The CPU to enable.
1381 * Note, multiple disables will need the same number of enables
1382 * to truely enable the writing (much like preempt_disable).
1384 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1386 struct ring_buffer_per_cpu *cpu_buffer;
1388 if (!cpu_isset(cpu, buffer->cpumask))
1389 return;
1391 cpu_buffer = buffer->buffers[cpu];
1392 atomic_dec(&cpu_buffer->record_disabled);
1396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1397 * @buffer: The ring buffer
1398 * @cpu: The per CPU buffer to get the entries from.
1400 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1402 struct ring_buffer_per_cpu *cpu_buffer;
1404 if (!cpu_isset(cpu, buffer->cpumask))
1405 return 0;
1407 cpu_buffer = buffer->buffers[cpu];
1408 return cpu_buffer->entries;
1412 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1413 * @buffer: The ring buffer
1414 * @cpu: The per CPU buffer to get the number of overruns from
1416 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1418 struct ring_buffer_per_cpu *cpu_buffer;
1420 if (!cpu_isset(cpu, buffer->cpumask))
1421 return 0;
1423 cpu_buffer = buffer->buffers[cpu];
1424 return cpu_buffer->overrun;
1428 * ring_buffer_entries - get the number of entries in a buffer
1429 * @buffer: The ring buffer
1431 * Returns the total number of entries in the ring buffer
1432 * (all CPU entries)
1434 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1436 struct ring_buffer_per_cpu *cpu_buffer;
1437 unsigned long entries = 0;
1438 int cpu;
1440 /* if you care about this being correct, lock the buffer */
1441 for_each_buffer_cpu(buffer, cpu) {
1442 cpu_buffer = buffer->buffers[cpu];
1443 entries += cpu_buffer->entries;
1446 return entries;
1450 * ring_buffer_overrun_cpu - get the number of overruns in buffer
1451 * @buffer: The ring buffer
1453 * Returns the total number of overruns in the ring buffer
1454 * (all CPU entries)
1456 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1458 struct ring_buffer_per_cpu *cpu_buffer;
1459 unsigned long overruns = 0;
1460 int cpu;
1462 /* if you care about this being correct, lock the buffer */
1463 for_each_buffer_cpu(buffer, cpu) {
1464 cpu_buffer = buffer->buffers[cpu];
1465 overruns += cpu_buffer->overrun;
1468 return overruns;
1472 * ring_buffer_iter_reset - reset an iterator
1473 * @iter: The iterator to reset
1475 * Resets the iterator, so that it will start from the beginning
1476 * again.
1478 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1480 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1481 unsigned long flags;
1483 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1485 /* Iterator usage is expected to have record disabled */
1486 if (list_empty(&cpu_buffer->reader_page->list)) {
1487 iter->head_page = cpu_buffer->head_page;
1488 iter->head = cpu_buffer->head_page->read;
1489 } else {
1490 iter->head_page = cpu_buffer->reader_page;
1491 iter->head = cpu_buffer->reader_page->read;
1493 if (iter->head)
1494 iter->read_stamp = cpu_buffer->read_stamp;
1495 else
1496 iter->read_stamp = iter->head_page->time_stamp;
1498 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1502 * ring_buffer_iter_empty - check if an iterator has no more to read
1503 * @iter: The iterator to check
1505 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1507 struct ring_buffer_per_cpu *cpu_buffer;
1509 cpu_buffer = iter->cpu_buffer;
1511 return iter->head_page == cpu_buffer->commit_page &&
1512 iter->head == rb_commit_index(cpu_buffer);
1515 static void
1516 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1517 struct ring_buffer_event *event)
1519 u64 delta;
1521 switch (event->type) {
1522 case RINGBUF_TYPE_PADDING:
1523 return;
1525 case RINGBUF_TYPE_TIME_EXTEND:
1526 delta = event->array[0];
1527 delta <<= TS_SHIFT;
1528 delta += event->time_delta;
1529 cpu_buffer->read_stamp += delta;
1530 return;
1532 case RINGBUF_TYPE_TIME_STAMP:
1533 /* FIXME: not implemented */
1534 return;
1536 case RINGBUF_TYPE_DATA:
1537 cpu_buffer->read_stamp += event->time_delta;
1538 return;
1540 default:
1541 BUG();
1543 return;
1546 static void
1547 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1548 struct ring_buffer_event *event)
1550 u64 delta;
1552 switch (event->type) {
1553 case RINGBUF_TYPE_PADDING:
1554 return;
1556 case RINGBUF_TYPE_TIME_EXTEND:
1557 delta = event->array[0];
1558 delta <<= TS_SHIFT;
1559 delta += event->time_delta;
1560 iter->read_stamp += delta;
1561 return;
1563 case RINGBUF_TYPE_TIME_STAMP:
1564 /* FIXME: not implemented */
1565 return;
1567 case RINGBUF_TYPE_DATA:
1568 iter->read_stamp += event->time_delta;
1569 return;
1571 default:
1572 BUG();
1574 return;
1577 static struct buffer_page *
1578 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1580 struct buffer_page *reader = NULL;
1581 unsigned long flags;
1582 int nr_loops = 0;
1584 local_irq_save(flags);
1585 __raw_spin_lock(&cpu_buffer->lock);
1587 again:
1589 * This should normally only loop twice. But because the
1590 * start of the reader inserts an empty page, it causes
1591 * a case where we will loop three times. There should be no
1592 * reason to loop four times (that I know of).
1594 if (unlikely(++nr_loops > 3)) {
1595 RB_WARN_ON(cpu_buffer, 1);
1596 reader = NULL;
1597 goto out;
1600 reader = cpu_buffer->reader_page;
1602 /* If there's more to read, return this page */
1603 if (cpu_buffer->reader_page->read < rb_page_size(reader))
1604 goto out;
1606 /* Never should we have an index greater than the size */
1607 RB_WARN_ON(cpu_buffer,
1608 cpu_buffer->reader_page->read > rb_page_size(reader));
1610 /* check if we caught up to the tail */
1611 reader = NULL;
1612 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1613 goto out;
1616 * Splice the empty reader page into the list around the head.
1617 * Reset the reader page to size zero.
1620 reader = cpu_buffer->head_page;
1621 cpu_buffer->reader_page->list.next = reader->list.next;
1622 cpu_buffer->reader_page->list.prev = reader->list.prev;
1624 local_set(&cpu_buffer->reader_page->write, 0);
1625 local_set(&cpu_buffer->reader_page->commit, 0);
1627 /* Make the reader page now replace the head */
1628 reader->list.prev->next = &cpu_buffer->reader_page->list;
1629 reader->list.next->prev = &cpu_buffer->reader_page->list;
1632 * If the tail is on the reader, then we must set the head
1633 * to the inserted page, otherwise we set it one before.
1635 cpu_buffer->head_page = cpu_buffer->reader_page;
1637 if (cpu_buffer->commit_page != reader)
1638 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1640 /* Finally update the reader page to the new head */
1641 cpu_buffer->reader_page = reader;
1642 rb_reset_reader_page(cpu_buffer);
1644 goto again;
1646 out:
1647 __raw_spin_unlock(&cpu_buffer->lock);
1648 local_irq_restore(flags);
1650 return reader;
1653 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1655 struct ring_buffer_event *event;
1656 struct buffer_page *reader;
1657 unsigned length;
1659 reader = rb_get_reader_page(cpu_buffer);
1661 /* This function should not be called when buffer is empty */
1662 RB_WARN_ON_RET(cpu_buffer, !reader);
1664 event = rb_reader_event(cpu_buffer);
1666 if (event->type == RINGBUF_TYPE_DATA)
1667 cpu_buffer->entries--;
1669 rb_update_read_stamp(cpu_buffer, event);
1671 length = rb_event_length(event);
1672 cpu_buffer->reader_page->read += length;
1675 static void rb_advance_iter(struct ring_buffer_iter *iter)
1677 struct ring_buffer *buffer;
1678 struct ring_buffer_per_cpu *cpu_buffer;
1679 struct ring_buffer_event *event;
1680 unsigned length;
1682 cpu_buffer = iter->cpu_buffer;
1683 buffer = cpu_buffer->buffer;
1686 * Check if we are at the end of the buffer.
1688 if (iter->head >= rb_page_size(iter->head_page)) {
1689 RB_WARN_ON_RET(buffer,
1690 iter->head_page == cpu_buffer->commit_page);
1691 rb_inc_iter(iter);
1692 return;
1695 event = rb_iter_head_event(iter);
1697 length = rb_event_length(event);
1700 * This should not be called to advance the header if we are
1701 * at the tail of the buffer.
1703 RB_WARN_ON_RET(cpu_buffer,
1704 (iter->head_page == cpu_buffer->commit_page) &&
1705 (iter->head + length > rb_commit_index(cpu_buffer)));
1707 rb_update_iter_read_stamp(iter, event);
1709 iter->head += length;
1711 /* check for end of page padding */
1712 if ((iter->head >= rb_page_size(iter->head_page)) &&
1713 (iter->head_page != cpu_buffer->commit_page))
1714 rb_advance_iter(iter);
1717 static struct ring_buffer_event *
1718 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1720 struct ring_buffer_per_cpu *cpu_buffer;
1721 struct ring_buffer_event *event;
1722 struct buffer_page *reader;
1723 int nr_loops = 0;
1725 if (!cpu_isset(cpu, buffer->cpumask))
1726 return NULL;
1728 cpu_buffer = buffer->buffers[cpu];
1730 again:
1732 * We repeat when a timestamp is encountered. It is possible
1733 * to get multiple timestamps from an interrupt entering just
1734 * as one timestamp is about to be written. The max times
1735 * that this can happen is the number of nested interrupts we
1736 * can have. Nesting 10 deep of interrupts is clearly
1737 * an anomaly.
1739 if (unlikely(++nr_loops > 10)) {
1740 RB_WARN_ON(cpu_buffer, 1);
1741 return NULL;
1744 reader = rb_get_reader_page(cpu_buffer);
1745 if (!reader)
1746 return NULL;
1748 event = rb_reader_event(cpu_buffer);
1750 switch (event->type) {
1751 case RINGBUF_TYPE_PADDING:
1752 RB_WARN_ON(cpu_buffer, 1);
1753 rb_advance_reader(cpu_buffer);
1754 return NULL;
1756 case RINGBUF_TYPE_TIME_EXTEND:
1757 /* Internal data, OK to advance */
1758 rb_advance_reader(cpu_buffer);
1759 goto again;
1761 case RINGBUF_TYPE_TIME_STAMP:
1762 /* FIXME: not implemented */
1763 rb_advance_reader(cpu_buffer);
1764 goto again;
1766 case RINGBUF_TYPE_DATA:
1767 if (ts) {
1768 *ts = cpu_buffer->read_stamp + event->time_delta;
1769 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1771 return event;
1773 default:
1774 BUG();
1777 return NULL;
1780 static struct ring_buffer_event *
1781 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1783 struct ring_buffer *buffer;
1784 struct ring_buffer_per_cpu *cpu_buffer;
1785 struct ring_buffer_event *event;
1786 int nr_loops = 0;
1788 if (ring_buffer_iter_empty(iter))
1789 return NULL;
1791 cpu_buffer = iter->cpu_buffer;
1792 buffer = cpu_buffer->buffer;
1794 again:
1796 * We repeat when a timestamp is encountered. It is possible
1797 * to get multiple timestamps from an interrupt entering just
1798 * as one timestamp is about to be written. The max times
1799 * that this can happen is the number of nested interrupts we
1800 * can have. Nesting 10 deep of interrupts is clearly
1801 * an anomaly.
1803 if (unlikely(++nr_loops > 10)) {
1804 RB_WARN_ON(cpu_buffer, 1);
1805 return NULL;
1808 if (rb_per_cpu_empty(cpu_buffer))
1809 return NULL;
1811 event = rb_iter_head_event(iter);
1813 switch (event->type) {
1814 case RINGBUF_TYPE_PADDING:
1815 rb_inc_iter(iter);
1816 goto again;
1818 case RINGBUF_TYPE_TIME_EXTEND:
1819 /* Internal data, OK to advance */
1820 rb_advance_iter(iter);
1821 goto again;
1823 case RINGBUF_TYPE_TIME_STAMP:
1824 /* FIXME: not implemented */
1825 rb_advance_iter(iter);
1826 goto again;
1828 case RINGBUF_TYPE_DATA:
1829 if (ts) {
1830 *ts = iter->read_stamp + event->time_delta;
1831 ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1833 return event;
1835 default:
1836 BUG();
1839 return NULL;
1843 * ring_buffer_peek - peek at the next event to be read
1844 * @buffer: The ring buffer to read
1845 * @cpu: The cpu to peak at
1846 * @ts: The timestamp counter of this event.
1848 * This will return the event that will be read next, but does
1849 * not consume the data.
1851 struct ring_buffer_event *
1852 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1854 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1855 struct ring_buffer_event *event;
1856 unsigned long flags;
1858 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1859 event = rb_buffer_peek(buffer, cpu, ts);
1860 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1862 return event;
1866 * ring_buffer_iter_peek - peek at the next event to be read
1867 * @iter: The ring buffer iterator
1868 * @ts: The timestamp counter of this event.
1870 * This will return the event that will be read next, but does
1871 * not increment the iterator.
1873 struct ring_buffer_event *
1874 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1876 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1877 struct ring_buffer_event *event;
1878 unsigned long flags;
1880 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1881 event = rb_iter_peek(iter, ts);
1882 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1884 return event;
1888 * ring_buffer_consume - return an event and consume it
1889 * @buffer: The ring buffer to get the next event from
1891 * Returns the next event in the ring buffer, and that event is consumed.
1892 * Meaning, that sequential reads will keep returning a different event,
1893 * and eventually empty the ring buffer if the producer is slower.
1895 struct ring_buffer_event *
1896 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
1898 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1899 struct ring_buffer_event *event;
1900 unsigned long flags;
1902 if (!cpu_isset(cpu, buffer->cpumask))
1903 return NULL;
1905 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1907 event = rb_buffer_peek(buffer, cpu, ts);
1908 if (!event)
1909 goto out;
1911 rb_advance_reader(cpu_buffer);
1913 out:
1914 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1916 return event;
1920 * ring_buffer_read_start - start a non consuming read of the buffer
1921 * @buffer: The ring buffer to read from
1922 * @cpu: The cpu buffer to iterate over
1924 * This starts up an iteration through the buffer. It also disables
1925 * the recording to the buffer until the reading is finished.
1926 * This prevents the reading from being corrupted. This is not
1927 * a consuming read, so a producer is not expected.
1929 * Must be paired with ring_buffer_finish.
1931 struct ring_buffer_iter *
1932 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
1934 struct ring_buffer_per_cpu *cpu_buffer;
1935 struct ring_buffer_iter *iter;
1936 unsigned long flags;
1938 if (!cpu_isset(cpu, buffer->cpumask))
1939 return NULL;
1941 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1942 if (!iter)
1943 return NULL;
1945 cpu_buffer = buffer->buffers[cpu];
1947 iter->cpu_buffer = cpu_buffer;
1949 atomic_inc(&cpu_buffer->record_disabled);
1950 synchronize_sched();
1952 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1953 __raw_spin_lock(&cpu_buffer->lock);
1954 ring_buffer_iter_reset(iter);
1955 __raw_spin_unlock(&cpu_buffer->lock);
1956 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1958 return iter;
1962 * ring_buffer_finish - finish reading the iterator of the buffer
1963 * @iter: The iterator retrieved by ring_buffer_start
1965 * This re-enables the recording to the buffer, and frees the
1966 * iterator.
1968 void
1969 ring_buffer_read_finish(struct ring_buffer_iter *iter)
1971 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1973 atomic_dec(&cpu_buffer->record_disabled);
1974 kfree(iter);
1978 * ring_buffer_read - read the next item in the ring buffer by the iterator
1979 * @iter: The ring buffer iterator
1980 * @ts: The time stamp of the event read.
1982 * This reads the next event in the ring buffer and increments the iterator.
1984 struct ring_buffer_event *
1985 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
1987 struct ring_buffer_event *event;
1988 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1989 unsigned long flags;
1991 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1992 event = rb_iter_peek(iter, ts);
1993 if (!event)
1994 goto out;
1996 rb_advance_iter(iter);
1997 out:
1998 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2000 return event;
2004 * ring_buffer_size - return the size of the ring buffer (in bytes)
2005 * @buffer: The ring buffer.
2007 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2009 return BUF_PAGE_SIZE * buffer->pages;
2012 static void
2013 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2015 cpu_buffer->head_page
2016 = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2017 local_set(&cpu_buffer->head_page->write, 0);
2018 local_set(&cpu_buffer->head_page->commit, 0);
2020 cpu_buffer->head_page->read = 0;
2022 cpu_buffer->tail_page = cpu_buffer->head_page;
2023 cpu_buffer->commit_page = cpu_buffer->head_page;
2025 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2026 local_set(&cpu_buffer->reader_page->write, 0);
2027 local_set(&cpu_buffer->reader_page->commit, 0);
2028 cpu_buffer->reader_page->read = 0;
2030 cpu_buffer->overrun = 0;
2031 cpu_buffer->entries = 0;
2035 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2036 * @buffer: The ring buffer to reset a per cpu buffer of
2037 * @cpu: The CPU buffer to be reset
2039 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2041 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2042 unsigned long flags;
2044 if (!cpu_isset(cpu, buffer->cpumask))
2045 return;
2047 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2049 __raw_spin_lock(&cpu_buffer->lock);
2051 rb_reset_cpu(cpu_buffer);
2053 __raw_spin_unlock(&cpu_buffer->lock);
2055 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2059 * ring_buffer_reset - reset a ring buffer
2060 * @buffer: The ring buffer to reset all cpu buffers
2062 void ring_buffer_reset(struct ring_buffer *buffer)
2064 int cpu;
2066 for_each_buffer_cpu(buffer, cpu)
2067 ring_buffer_reset_cpu(buffer, cpu);
2071 * rind_buffer_empty - is the ring buffer empty?
2072 * @buffer: The ring buffer to test
2074 int ring_buffer_empty(struct ring_buffer *buffer)
2076 struct ring_buffer_per_cpu *cpu_buffer;
2077 int cpu;
2079 /* yes this is racy, but if you don't like the race, lock the buffer */
2080 for_each_buffer_cpu(buffer, cpu) {
2081 cpu_buffer = buffer->buffers[cpu];
2082 if (!rb_per_cpu_empty(cpu_buffer))
2083 return 0;
2085 return 1;
2089 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2090 * @buffer: The ring buffer
2091 * @cpu: The CPU buffer to test
2093 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2095 struct ring_buffer_per_cpu *cpu_buffer;
2097 if (!cpu_isset(cpu, buffer->cpumask))
2098 return 1;
2100 cpu_buffer = buffer->buffers[cpu];
2101 return rb_per_cpu_empty(cpu_buffer);
2105 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2106 * @buffer_a: One buffer to swap with
2107 * @buffer_b: The other buffer to swap with
2109 * This function is useful for tracers that want to take a "snapshot"
2110 * of a CPU buffer and has another back up buffer lying around.
2111 * it is expected that the tracer handles the cpu buffer not being
2112 * used at the moment.
2114 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2115 struct ring_buffer *buffer_b, int cpu)
2117 struct ring_buffer_per_cpu *cpu_buffer_a;
2118 struct ring_buffer_per_cpu *cpu_buffer_b;
2120 if (!cpu_isset(cpu, buffer_a->cpumask) ||
2121 !cpu_isset(cpu, buffer_b->cpumask))
2122 return -EINVAL;
2124 /* At least make sure the two buffers are somewhat the same */
2125 if (buffer_a->size != buffer_b->size ||
2126 buffer_a->pages != buffer_b->pages)
2127 return -EINVAL;
2129 cpu_buffer_a = buffer_a->buffers[cpu];
2130 cpu_buffer_b = buffer_b->buffers[cpu];
2133 * We can't do a synchronize_sched here because this
2134 * function can be called in atomic context.
2135 * Normally this will be called from the same CPU as cpu.
2136 * If not it's up to the caller to protect this.
2138 atomic_inc(&cpu_buffer_a->record_disabled);
2139 atomic_inc(&cpu_buffer_b->record_disabled);
2141 buffer_a->buffers[cpu] = cpu_buffer_b;
2142 buffer_b->buffers[cpu] = cpu_buffer_a;
2144 cpu_buffer_b->buffer = buffer_a;
2145 cpu_buffer_a->buffer = buffer_b;
2147 atomic_dec(&cpu_buffer_a->record_disabled);
2148 atomic_dec(&cpu_buffer_b->record_disabled);
2150 return 0;