4 #include <linux/errno.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
23 struct writeback_control
;
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr
;
29 extern unsigned long num_physpages
;
30 extern unsigned long totalram_pages
;
31 extern void * high_memory
;
32 extern int page_cluster
;
35 extern int sysctl_legacy_va_layout
;
37 #define sysctl_legacy_va_layout 0
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
58 extern struct kmem_cache
*vm_area_cachep
;
61 extern struct rb_root nommu_region_tree
;
62 extern struct rw_semaphore nommu_region_sem
;
64 extern unsigned int kobjsize(const void *objp
);
68 * vm_flags in vm_area_struct, see mm_types.h.
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
85 #define VM_GROWSUP 0x00000000
86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
140 * Special vmas that are non-mergable, non-mlock()able.
141 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
143 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
146 * mapping from the currently active vm_flags protection bits (the
147 * low four bits) to a page protection mask..
149 extern pgprot_t protection_map
[16];
151 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
152 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
153 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
154 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
155 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
158 * This interface is used by x86 PAT code to identify a pfn mapping that is
159 * linear over entire vma. This is to optimize PAT code that deals with
160 * marking the physical region with a particular prot. This is not for generic
161 * mm use. Note also that this check will not work if the pfn mapping is
162 * linear for a vma starting at physical address 0. In which case PAT code
163 * falls back to slow path of reserving physical range page by page.
165 static inline int is_linear_pfn_mapping(struct vm_area_struct
*vma
)
167 return (vma
->vm_flags
& VM_PFN_AT_MMAP
);
170 static inline int is_pfn_mapping(struct vm_area_struct
*vma
)
172 return (vma
->vm_flags
& VM_PFNMAP
);
176 * vm_fault is filled by the the pagefault handler and passed to the vma's
177 * ->fault function. The vma's ->fault is responsible for returning a bitmask
178 * of VM_FAULT_xxx flags that give details about how the fault was handled.
180 * pgoff should be used in favour of virtual_address, if possible. If pgoff
181 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
185 unsigned int flags
; /* FAULT_FLAG_xxx flags */
186 pgoff_t pgoff
; /* Logical page offset based on vma */
187 void __user
*virtual_address
; /* Faulting virtual address */
189 struct page
*page
; /* ->fault handlers should return a
190 * page here, unless VM_FAULT_NOPAGE
191 * is set (which is also implied by
197 * These are the virtual MM functions - opening of an area, closing and
198 * unmapping it (needed to keep files on disk up-to-date etc), pointer
199 * to the functions called when a no-page or a wp-page exception occurs.
201 struct vm_operations_struct
{
202 void (*open
)(struct vm_area_struct
* area
);
203 void (*close
)(struct vm_area_struct
* area
);
204 int (*fault
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
206 /* notification that a previously read-only page is about to become
207 * writable, if an error is returned it will cause a SIGBUS */
208 int (*page_mkwrite
)(struct vm_area_struct
*vma
, struct vm_fault
*vmf
);
210 /* called by access_process_vm when get_user_pages() fails, typically
211 * for use by special VMAs that can switch between memory and hardware
213 int (*access
)(struct vm_area_struct
*vma
, unsigned long addr
,
214 void *buf
, int len
, int write
);
217 * set_policy() op must add a reference to any non-NULL @new mempolicy
218 * to hold the policy upon return. Caller should pass NULL @new to
219 * remove a policy and fall back to surrounding context--i.e. do not
220 * install a MPOL_DEFAULT policy, nor the task or system default
223 int (*set_policy
)(struct vm_area_struct
*vma
, struct mempolicy
*new);
226 * get_policy() op must add reference [mpol_get()] to any policy at
227 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
228 * in mm/mempolicy.c will do this automatically.
229 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
230 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
231 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
232 * must return NULL--i.e., do not "fallback" to task or system default
235 struct mempolicy
*(*get_policy
)(struct vm_area_struct
*vma
,
237 int (*migrate
)(struct vm_area_struct
*vma
, const nodemask_t
*from
,
238 const nodemask_t
*to
, unsigned long flags
);
245 #define page_private(page) ((page)->private)
246 #define set_page_private(page, v) ((page)->private = (v))
249 * FIXME: take this include out, include page-flags.h in
250 * files which need it (119 of them)
252 #include <linux/page-flags.h>
253 #include <linux/huge_mm.h>
256 * Methods to modify the page usage count.
258 * What counts for a page usage:
259 * - cache mapping (page->mapping)
260 * - private data (page->private)
261 * - page mapped in a task's page tables, each mapping
262 * is counted separately
264 * Also, many kernel routines increase the page count before a critical
265 * routine so they can be sure the page doesn't go away from under them.
269 * Drop a ref, return true if the refcount fell to zero (the page has no users)
271 static inline int put_page_testzero(struct page
*page
)
273 VM_BUG_ON(atomic_read(&page
->_count
) == 0);
274 return atomic_dec_and_test(&page
->_count
);
278 * Try to grab a ref unless the page has a refcount of zero, return false if
281 static inline int get_page_unless_zero(struct page
*page
)
283 return atomic_inc_not_zero(&page
->_count
);
286 extern int page_is_ram(unsigned long pfn
);
288 /* Support for virtually mapped pages */
289 struct page
*vmalloc_to_page(const void *addr
);
290 unsigned long vmalloc_to_pfn(const void *addr
);
293 * Determine if an address is within the vmalloc range
295 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
296 * is no special casing required.
298 static inline int is_vmalloc_addr(const void *x
)
301 unsigned long addr
= (unsigned long)x
;
303 return addr
>= VMALLOC_START
&& addr
< VMALLOC_END
;
309 extern int is_vmalloc_or_module_addr(const void *x
);
311 static inline int is_vmalloc_or_module_addr(const void *x
)
317 static inline void compound_lock(struct page
*page
)
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 bit_spin_lock(PG_compound_lock
, &page
->flags
);
324 static inline void compound_unlock(struct page
*page
)
326 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
327 bit_spin_unlock(PG_compound_lock
, &page
->flags
);
331 static inline unsigned long compound_lock_irqsave(struct page
*page
)
333 unsigned long uninitialized_var(flags
);
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 local_irq_save(flags
);
341 static inline void compound_unlock_irqrestore(struct page
*page
,
344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
345 compound_unlock(page
);
346 local_irq_restore(flags
);
350 static inline struct page
*compound_head(struct page
*page
)
352 if (unlikely(PageTail(page
)))
353 return page
->first_page
;
357 static inline int page_count(struct page
*page
)
359 return atomic_read(&compound_head(page
)->_count
);
362 static inline void get_page(struct page
*page
)
365 * Getting a normal page or the head of a compound page
366 * requires to already have an elevated page->_count. Only if
367 * we're getting a tail page, the elevated page->_count is
368 * required only in the head page, so for tail pages the
369 * bugcheck only verifies that the page->_count isn't
372 VM_BUG_ON(atomic_read(&page
->_count
) < !PageTail(page
));
373 atomic_inc(&page
->_count
);
375 * Getting a tail page will elevate both the head and tail
378 if (unlikely(PageTail(page
))) {
380 * This is safe only because
381 * __split_huge_page_refcount can't run under
384 VM_BUG_ON(atomic_read(&page
->first_page
->_count
) <= 0);
385 atomic_inc(&page
->first_page
->_count
);
389 static inline struct page
*virt_to_head_page(const void *x
)
391 struct page
*page
= virt_to_page(x
);
392 return compound_head(page
);
396 * Setup the page count before being freed into the page allocator for
397 * the first time (boot or memory hotplug)
399 static inline void init_page_count(struct page
*page
)
401 atomic_set(&page
->_count
, 1);
405 * PageBuddy() indicate that the page is free and in the buddy system
406 * (see mm/page_alloc.c).
408 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
409 * -2 so that an underflow of the page_mapcount() won't be mistaken
410 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
411 * efficiently by most CPU architectures.
413 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
415 static inline int PageBuddy(struct page
*page
)
417 return atomic_read(&page
->_mapcount
) == PAGE_BUDDY_MAPCOUNT_VALUE
;
420 static inline void __SetPageBuddy(struct page
*page
)
422 VM_BUG_ON(atomic_read(&page
->_mapcount
) != -1);
423 atomic_set(&page
->_mapcount
, PAGE_BUDDY_MAPCOUNT_VALUE
);
426 static inline void __ClearPageBuddy(struct page
*page
)
428 VM_BUG_ON(!PageBuddy(page
));
429 atomic_set(&page
->_mapcount
, -1);
432 void put_page(struct page
*page
);
433 void put_pages_list(struct list_head
*pages
);
435 void split_page(struct page
*page
, unsigned int order
);
436 int split_free_page(struct page
*page
);
439 * Compound pages have a destructor function. Provide a
440 * prototype for that function and accessor functions.
441 * These are _only_ valid on the head of a PG_compound page.
443 typedef void compound_page_dtor(struct page
*);
445 static inline void set_compound_page_dtor(struct page
*page
,
446 compound_page_dtor
*dtor
)
448 page
[1].lru
.next
= (void *)dtor
;
451 static inline compound_page_dtor
*get_compound_page_dtor(struct page
*page
)
453 return (compound_page_dtor
*)page
[1].lru
.next
;
456 static inline int compound_order(struct page
*page
)
460 return (unsigned long)page
[1].lru
.prev
;
463 static inline int compound_trans_order(struct page
*page
)
471 flags
= compound_lock_irqsave(page
);
472 order
= compound_order(page
);
473 compound_unlock_irqrestore(page
, flags
);
477 static inline void set_compound_order(struct page
*page
, unsigned long order
)
479 page
[1].lru
.prev
= (void *)order
;
484 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
485 * servicing faults for write access. In the normal case, do always want
486 * pte_mkwrite. But get_user_pages can cause write faults for mappings
487 * that do not have writing enabled, when used by access_process_vm.
489 static inline pte_t
maybe_mkwrite(pte_t pte
, struct vm_area_struct
*vma
)
491 if (likely(vma
->vm_flags
& VM_WRITE
))
492 pte
= pte_mkwrite(pte
);
498 * Multiple processes may "see" the same page. E.g. for untouched
499 * mappings of /dev/null, all processes see the same page full of
500 * zeroes, and text pages of executables and shared libraries have
501 * only one copy in memory, at most, normally.
503 * For the non-reserved pages, page_count(page) denotes a reference count.
504 * page_count() == 0 means the page is free. page->lru is then used for
505 * freelist management in the buddy allocator.
506 * page_count() > 0 means the page has been allocated.
508 * Pages are allocated by the slab allocator in order to provide memory
509 * to kmalloc and kmem_cache_alloc. In this case, the management of the
510 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
511 * unless a particular usage is carefully commented. (the responsibility of
512 * freeing the kmalloc memory is the caller's, of course).
514 * A page may be used by anyone else who does a __get_free_page().
515 * In this case, page_count still tracks the references, and should only
516 * be used through the normal accessor functions. The top bits of page->flags
517 * and page->virtual store page management information, but all other fields
518 * are unused and could be used privately, carefully. The management of this
519 * page is the responsibility of the one who allocated it, and those who have
520 * subsequently been given references to it.
522 * The other pages (we may call them "pagecache pages") are completely
523 * managed by the Linux memory manager: I/O, buffers, swapping etc.
524 * The following discussion applies only to them.
526 * A pagecache page contains an opaque `private' member, which belongs to the
527 * page's address_space. Usually, this is the address of a circular list of
528 * the page's disk buffers. PG_private must be set to tell the VM to call
529 * into the filesystem to release these pages.
531 * A page may belong to an inode's memory mapping. In this case, page->mapping
532 * is the pointer to the inode, and page->index is the file offset of the page,
533 * in units of PAGE_CACHE_SIZE.
535 * If pagecache pages are not associated with an inode, they are said to be
536 * anonymous pages. These may become associated with the swapcache, and in that
537 * case PG_swapcache is set, and page->private is an offset into the swapcache.
539 * In either case (swapcache or inode backed), the pagecache itself holds one
540 * reference to the page. Setting PG_private should also increment the
541 * refcount. The each user mapping also has a reference to the page.
543 * The pagecache pages are stored in a per-mapping radix tree, which is
544 * rooted at mapping->page_tree, and indexed by offset.
545 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
546 * lists, we instead now tag pages as dirty/writeback in the radix tree.
548 * All pagecache pages may be subject to I/O:
549 * - inode pages may need to be read from disk,
550 * - inode pages which have been modified and are MAP_SHARED may need
551 * to be written back to the inode on disk,
552 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
553 * modified may need to be swapped out to swap space and (later) to be read
558 * The zone field is never updated after free_area_init_core()
559 * sets it, so none of the operations on it need to be atomic.
564 * page->flags layout:
566 * There are three possibilities for how page->flags get
567 * laid out. The first is for the normal case, without
568 * sparsemem. The second is for sparsemem when there is
569 * plenty of space for node and section. The last is when
570 * we have run out of space and have to fall back to an
571 * alternate (slower) way of determining the node.
573 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
574 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
575 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
577 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
578 #define SECTIONS_WIDTH SECTIONS_SHIFT
580 #define SECTIONS_WIDTH 0
583 #define ZONES_WIDTH ZONES_SHIFT
585 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
586 #define NODES_WIDTH NODES_SHIFT
588 #ifdef CONFIG_SPARSEMEM_VMEMMAP
589 #error "Vmemmap: No space for nodes field in page flags"
591 #define NODES_WIDTH 0
594 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
595 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
596 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
597 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
600 * We are going to use the flags for the page to node mapping if its in
601 * there. This includes the case where there is no node, so it is implicit.
603 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
604 #define NODE_NOT_IN_PAGE_FLAGS
607 #ifndef PFN_SECTION_SHIFT
608 #define PFN_SECTION_SHIFT 0
612 * Define the bit shifts to access each section. For non-existent
613 * sections we define the shift as 0; that plus a 0 mask ensures
614 * the compiler will optimise away reference to them.
616 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
617 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
618 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
620 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
621 #ifdef NODE_NOT_IN_PAGE_FLAGS
622 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
623 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
624 SECTIONS_PGOFF : ZONES_PGOFF)
626 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
627 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
628 NODES_PGOFF : ZONES_PGOFF)
631 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
633 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
634 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
637 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
638 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
639 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
640 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
642 static inline enum zone_type
page_zonenum(struct page
*page
)
644 return (page
->flags
>> ZONES_PGSHIFT
) & ZONES_MASK
;
648 * The identification function is only used by the buddy allocator for
649 * determining if two pages could be buddies. We are not really
650 * identifying a zone since we could be using a the section number
651 * id if we have not node id available in page flags.
652 * We guarantee only that it will return the same value for two
653 * combinable pages in a zone.
655 static inline int page_zone_id(struct page
*page
)
657 return (page
->flags
>> ZONEID_PGSHIFT
) & ZONEID_MASK
;
660 static inline int zone_to_nid(struct zone
*zone
)
669 #ifdef NODE_NOT_IN_PAGE_FLAGS
670 extern int page_to_nid(struct page
*page
);
672 static inline int page_to_nid(struct page
*page
)
674 return (page
->flags
>> NODES_PGSHIFT
) & NODES_MASK
;
678 static inline struct zone
*page_zone(struct page
*page
)
680 return &NODE_DATA(page_to_nid(page
))->node_zones
[page_zonenum(page
)];
683 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
684 static inline unsigned long page_to_section(struct page
*page
)
686 return (page
->flags
>> SECTIONS_PGSHIFT
) & SECTIONS_MASK
;
690 static inline void set_page_zone(struct page
*page
, enum zone_type zone
)
692 page
->flags
&= ~(ZONES_MASK
<< ZONES_PGSHIFT
);
693 page
->flags
|= (zone
& ZONES_MASK
) << ZONES_PGSHIFT
;
696 static inline void set_page_node(struct page
*page
, unsigned long node
)
698 page
->flags
&= ~(NODES_MASK
<< NODES_PGSHIFT
);
699 page
->flags
|= (node
& NODES_MASK
) << NODES_PGSHIFT
;
702 static inline void set_page_section(struct page
*page
, unsigned long section
)
704 page
->flags
&= ~(SECTIONS_MASK
<< SECTIONS_PGSHIFT
);
705 page
->flags
|= (section
& SECTIONS_MASK
) << SECTIONS_PGSHIFT
;
708 static inline void set_page_links(struct page
*page
, enum zone_type zone
,
709 unsigned long node
, unsigned long pfn
)
711 set_page_zone(page
, zone
);
712 set_page_node(page
, node
);
713 set_page_section(page
, pfn_to_section_nr(pfn
));
717 * Some inline functions in vmstat.h depend on page_zone()
719 #include <linux/vmstat.h>
721 static __always_inline
void *lowmem_page_address(struct page
*page
)
723 return __va(PFN_PHYS(page_to_pfn(page
)));
726 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
727 #define HASHED_PAGE_VIRTUAL
730 #if defined(WANT_PAGE_VIRTUAL)
731 #define page_address(page) ((page)->virtual)
732 #define set_page_address(page, address) \
734 (page)->virtual = (address); \
736 #define page_address_init() do { } while(0)
739 #if defined(HASHED_PAGE_VIRTUAL)
740 void *page_address(struct page
*page
);
741 void set_page_address(struct page
*page
, void *virtual);
742 void page_address_init(void);
745 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
746 #define page_address(page) lowmem_page_address(page)
747 #define set_page_address(page, address) do { } while(0)
748 #define page_address_init() do { } while(0)
752 * On an anonymous page mapped into a user virtual memory area,
753 * page->mapping points to its anon_vma, not to a struct address_space;
754 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
756 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
757 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
758 * and then page->mapping points, not to an anon_vma, but to a private
759 * structure which KSM associates with that merged page. See ksm.h.
761 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
763 * Please note that, confusingly, "page_mapping" refers to the inode
764 * address_space which maps the page from disk; whereas "page_mapped"
765 * refers to user virtual address space into which the page is mapped.
767 #define PAGE_MAPPING_ANON 1
768 #define PAGE_MAPPING_KSM 2
769 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
771 extern struct address_space swapper_space
;
772 static inline struct address_space
*page_mapping(struct page
*page
)
774 struct address_space
*mapping
= page
->mapping
;
776 VM_BUG_ON(PageSlab(page
));
777 if (unlikely(PageSwapCache(page
)))
778 mapping
= &swapper_space
;
779 else if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
784 /* Neutral page->mapping pointer to address_space or anon_vma or other */
785 static inline void *page_rmapping(struct page
*page
)
787 return (void *)((unsigned long)page
->mapping
& ~PAGE_MAPPING_FLAGS
);
790 static inline int PageAnon(struct page
*page
)
792 return ((unsigned long)page
->mapping
& PAGE_MAPPING_ANON
) != 0;
796 * Return the pagecache index of the passed page. Regular pagecache pages
797 * use ->index whereas swapcache pages use ->private
799 static inline pgoff_t
page_index(struct page
*page
)
801 if (unlikely(PageSwapCache(page
)))
802 return page_private(page
);
807 * The atomic page->_mapcount, like _count, starts from -1:
808 * so that transitions both from it and to it can be tracked,
809 * using atomic_inc_and_test and atomic_add_negative(-1).
811 static inline void reset_page_mapcount(struct page
*page
)
813 atomic_set(&(page
)->_mapcount
, -1);
816 static inline int page_mapcount(struct page
*page
)
818 return atomic_read(&(page
)->_mapcount
) + 1;
822 * Return true if this page is mapped into pagetables.
824 static inline int page_mapped(struct page
*page
)
826 return atomic_read(&(page
)->_mapcount
) >= 0;
830 * Different kinds of faults, as returned by handle_mm_fault().
831 * Used to decide whether a process gets delivered SIGBUS or
832 * just gets major/minor fault counters bumped up.
835 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
837 #define VM_FAULT_OOM 0x0001
838 #define VM_FAULT_SIGBUS 0x0002
839 #define VM_FAULT_MAJOR 0x0004
840 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
841 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
842 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
844 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
845 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
846 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
848 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
850 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
851 VM_FAULT_HWPOISON_LARGE)
853 /* Encode hstate index for a hwpoisoned large page */
854 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
855 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
858 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
860 extern void pagefault_out_of_memory(void);
862 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
865 * Flags passed to show_mem() and __show_free_areas() to suppress output in
868 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
870 extern void show_free_areas(void);
871 extern void __show_free_areas(unsigned int flags
);
873 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
);
874 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
);
875 int shmem_zero_setup(struct vm_area_struct
*);
878 extern unsigned long shmem_get_unmapped_area(struct file
*file
,
882 unsigned long flags
);
885 extern int can_do_mlock(void);
886 extern int user_shm_lock(size_t, struct user_struct
*);
887 extern void user_shm_unlock(size_t, struct user_struct
*);
890 * Parameter block passed down to zap_pte_range in exceptional cases.
893 struct vm_area_struct
*nonlinear_vma
; /* Check page->index if set */
894 struct address_space
*check_mapping
; /* Check page->mapping if set */
895 pgoff_t first_index
; /* Lowest page->index to unmap */
896 pgoff_t last_index
; /* Highest page->index to unmap */
897 spinlock_t
*i_mmap_lock
; /* For unmap_mapping_range: */
898 unsigned long truncate_count
; /* Compare vm_truncate_count */
901 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
904 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
906 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
907 unsigned long size
, struct zap_details
*);
908 unsigned long unmap_vmas(struct mmu_gather
**tlb
,
909 struct vm_area_struct
*start_vma
, unsigned long start_addr
,
910 unsigned long end_addr
, unsigned long *nr_accounted
,
911 struct zap_details
*);
914 * mm_walk - callbacks for walk_page_range
915 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
916 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
917 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
918 * this handler is required to be able to handle
919 * pmd_trans_huge() pmds. They may simply choose to
920 * split_huge_page() instead of handling it explicitly.
921 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
922 * @pte_hole: if set, called for each hole at all levels
923 * @hugetlb_entry: if set, called for each hugetlb entry
925 * (see walk_page_range for more details)
928 int (*pgd_entry
)(pgd_t
*, unsigned long, unsigned long, struct mm_walk
*);
929 int (*pud_entry
)(pud_t
*, unsigned long, unsigned long, struct mm_walk
*);
930 int (*pmd_entry
)(pmd_t
*, unsigned long, unsigned long, struct mm_walk
*);
931 int (*pte_entry
)(pte_t
*, unsigned long, unsigned long, struct mm_walk
*);
932 int (*pte_hole
)(unsigned long, unsigned long, struct mm_walk
*);
933 int (*hugetlb_entry
)(pte_t
*, unsigned long,
934 unsigned long, unsigned long, struct mm_walk
*);
935 struct mm_struct
*mm
;
939 int walk_page_range(unsigned long addr
, unsigned long end
,
940 struct mm_walk
*walk
);
941 void free_pgd_range(struct mmu_gather
*tlb
, unsigned long addr
,
942 unsigned long end
, unsigned long floor
, unsigned long ceiling
);
943 int copy_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
944 struct vm_area_struct
*vma
);
945 void unmap_mapping_range(struct address_space
*mapping
,
946 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
);
947 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
949 int follow_phys(struct vm_area_struct
*vma
, unsigned long address
,
950 unsigned int flags
, unsigned long *prot
, resource_size_t
*phys
);
951 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
952 void *buf
, int len
, int write
);
954 static inline void unmap_shared_mapping_range(struct address_space
*mapping
,
955 loff_t
const holebegin
, loff_t
const holelen
)
957 unmap_mapping_range(mapping
, holebegin
, holelen
, 0);
960 extern void truncate_pagecache(struct inode
*inode
, loff_t old
, loff_t
new);
961 extern void truncate_setsize(struct inode
*inode
, loff_t newsize
);
962 extern int vmtruncate(struct inode
*inode
, loff_t offset
);
963 extern int vmtruncate_range(struct inode
*inode
, loff_t offset
, loff_t end
);
965 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
);
966 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
);
968 int invalidate_inode_page(struct page
*page
);
971 extern int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
972 unsigned long address
, unsigned int flags
);
974 static inline int handle_mm_fault(struct mm_struct
*mm
,
975 struct vm_area_struct
*vma
, unsigned long address
,
978 /* should never happen if there's no MMU */
980 return VM_FAULT_SIGBUS
;
984 extern int make_pages_present(unsigned long addr
, unsigned long end
);
985 extern int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
);
986 extern int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
987 void *buf
, int len
, int write
);
989 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
990 unsigned long start
, int len
, unsigned int foll_flags
,
991 struct page
**pages
, struct vm_area_struct
**vmas
,
993 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
994 unsigned long start
, int nr_pages
, int write
, int force
,
995 struct page
**pages
, struct vm_area_struct
**vmas
);
996 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
997 struct page
**pages
);
998 struct page
*get_dump_page(unsigned long addr
);
1000 extern int try_to_release_page(struct page
* page
, gfp_t gfp_mask
);
1001 extern void do_invalidatepage(struct page
*page
, unsigned long offset
);
1003 int __set_page_dirty_nobuffers(struct page
*page
);
1004 int __set_page_dirty_no_writeback(struct page
*page
);
1005 int redirty_page_for_writepage(struct writeback_control
*wbc
,
1007 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
);
1008 void account_page_writeback(struct page
*page
);
1009 int set_page_dirty(struct page
*page
);
1010 int set_page_dirty_lock(struct page
*page
);
1011 int clear_page_dirty_for_io(struct page
*page
);
1013 /* Is the vma a continuation of the stack vma above it? */
1014 static inline int vma_growsdown(struct vm_area_struct
*vma
, unsigned long addr
)
1016 return vma
&& (vma
->vm_end
== addr
) && (vma
->vm_flags
& VM_GROWSDOWN
);
1019 static inline int stack_guard_page_start(struct vm_area_struct
*vma
,
1022 return (vma
->vm_flags
& VM_GROWSDOWN
) &&
1023 (vma
->vm_start
== addr
) &&
1024 !vma_growsdown(vma
->vm_prev
, addr
);
1027 /* Is the vma a continuation of the stack vma below it? */
1028 static inline int vma_growsup(struct vm_area_struct
*vma
, unsigned long addr
)
1030 return vma
&& (vma
->vm_start
== addr
) && (vma
->vm_flags
& VM_GROWSUP
);
1033 static inline int stack_guard_page_end(struct vm_area_struct
*vma
,
1036 return (vma
->vm_flags
& VM_GROWSUP
) &&
1037 (vma
->vm_end
== addr
) &&
1038 !vma_growsup(vma
->vm_next
, addr
);
1041 extern unsigned long move_page_tables(struct vm_area_struct
*vma
,
1042 unsigned long old_addr
, struct vm_area_struct
*new_vma
,
1043 unsigned long new_addr
, unsigned long len
);
1044 extern unsigned long do_mremap(unsigned long addr
,
1045 unsigned long old_len
, unsigned long new_len
,
1046 unsigned long flags
, unsigned long new_addr
);
1047 extern int mprotect_fixup(struct vm_area_struct
*vma
,
1048 struct vm_area_struct
**pprev
, unsigned long start
,
1049 unsigned long end
, unsigned long newflags
);
1052 * doesn't attempt to fault and will return short.
1054 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1055 struct page
**pages
);
1057 * per-process(per-mm_struct) statistics.
1059 #if defined(SPLIT_RSS_COUNTING)
1061 * The mm counters are not protected by its page_table_lock,
1062 * so must be incremented atomically.
1064 static inline void set_mm_counter(struct mm_struct
*mm
, int member
, long value
)
1066 atomic_long_set(&mm
->rss_stat
.count
[member
], value
);
1069 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
);
1071 static inline void add_mm_counter(struct mm_struct
*mm
, int member
, long value
)
1073 atomic_long_add(value
, &mm
->rss_stat
.count
[member
]);
1076 static inline void inc_mm_counter(struct mm_struct
*mm
, int member
)
1078 atomic_long_inc(&mm
->rss_stat
.count
[member
]);
1081 static inline void dec_mm_counter(struct mm_struct
*mm
, int member
)
1083 atomic_long_dec(&mm
->rss_stat
.count
[member
]);
1086 #else /* !USE_SPLIT_PTLOCKS */
1088 * The mm counters are protected by its page_table_lock,
1089 * so can be incremented directly.
1091 static inline void set_mm_counter(struct mm_struct
*mm
, int member
, long value
)
1093 mm
->rss_stat
.count
[member
] = value
;
1096 static inline unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
1098 return mm
->rss_stat
.count
[member
];
1101 static inline void add_mm_counter(struct mm_struct
*mm
, int member
, long value
)
1103 mm
->rss_stat
.count
[member
] += value
;
1106 static inline void inc_mm_counter(struct mm_struct
*mm
, int member
)
1108 mm
->rss_stat
.count
[member
]++;
1111 static inline void dec_mm_counter(struct mm_struct
*mm
, int member
)
1113 mm
->rss_stat
.count
[member
]--;
1116 #endif /* !USE_SPLIT_PTLOCKS */
1118 static inline unsigned long get_mm_rss(struct mm_struct
*mm
)
1120 return get_mm_counter(mm
, MM_FILEPAGES
) +
1121 get_mm_counter(mm
, MM_ANONPAGES
);
1124 static inline unsigned long get_mm_hiwater_rss(struct mm_struct
*mm
)
1126 return max(mm
->hiwater_rss
, get_mm_rss(mm
));
1129 static inline unsigned long get_mm_hiwater_vm(struct mm_struct
*mm
)
1131 return max(mm
->hiwater_vm
, mm
->total_vm
);
1134 static inline void update_hiwater_rss(struct mm_struct
*mm
)
1136 unsigned long _rss
= get_mm_rss(mm
);
1138 if ((mm
)->hiwater_rss
< _rss
)
1139 (mm
)->hiwater_rss
= _rss
;
1142 static inline void update_hiwater_vm(struct mm_struct
*mm
)
1144 if (mm
->hiwater_vm
< mm
->total_vm
)
1145 mm
->hiwater_vm
= mm
->total_vm
;
1148 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss
,
1149 struct mm_struct
*mm
)
1151 unsigned long hiwater_rss
= get_mm_hiwater_rss(mm
);
1153 if (*maxrss
< hiwater_rss
)
1154 *maxrss
= hiwater_rss
;
1157 #if defined(SPLIT_RSS_COUNTING)
1158 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
);
1160 static inline void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
1166 * A callback you can register to apply pressure to ageable caches.
1168 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1169 * look through the least-recently-used 'nr_to_scan' entries and
1170 * attempt to free them up. It should return the number of objects
1171 * which remain in the cache. If it returns -1, it means it cannot do
1172 * any scanning at this time (eg. there is a risk of deadlock).
1174 * The 'gfpmask' refers to the allocation we are currently trying to
1177 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1178 * querying the cache size, so a fastpath for that case is appropriate.
1181 int (*shrink
)(struct shrinker
*, int nr_to_scan
, gfp_t gfp_mask
);
1182 int seeks
; /* seeks to recreate an obj */
1184 /* These are for internal use */
1185 struct list_head list
;
1186 long nr
; /* objs pending delete */
1188 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1189 extern void register_shrinker(struct shrinker
*);
1190 extern void unregister_shrinker(struct shrinker
*);
1192 int vma_wants_writenotify(struct vm_area_struct
*vma
);
1194 extern pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1196 static inline pte_t
*get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1200 __cond_lock(*ptl
, ptep
= __get_locked_pte(mm
, addr
, ptl
));
1204 #ifdef __PAGETABLE_PUD_FOLDED
1205 static inline int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
,
1206 unsigned long address
)
1211 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
);
1214 #ifdef __PAGETABLE_PMD_FOLDED
1215 static inline int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
,
1216 unsigned long address
)
1221 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
);
1224 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1225 pmd_t
*pmd
, unsigned long address
);
1226 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
);
1229 * The following ifdef needed to get the 4level-fixup.h header to work.
1230 * Remove it when 4level-fixup.h has been removed.
1232 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1233 static inline pud_t
*pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
1235 return (unlikely(pgd_none(*pgd
)) && __pud_alloc(mm
, pgd
, address
))?
1236 NULL
: pud_offset(pgd
, address
);
1239 static inline pmd_t
*pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
1241 return (unlikely(pud_none(*pud
)) && __pmd_alloc(mm
, pud
, address
))?
1242 NULL
: pmd_offset(pud
, address
);
1244 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1246 #if USE_SPLIT_PTLOCKS
1248 * We tuck a spinlock to guard each pagetable page into its struct page,
1249 * at page->private, with BUILD_BUG_ON to make sure that this will not
1250 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1251 * When freeing, reset page->mapping so free_pages_check won't complain.
1253 #define __pte_lockptr(page) &((page)->ptl)
1254 #define pte_lock_init(_page) do { \
1255 spin_lock_init(__pte_lockptr(_page)); \
1257 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1258 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1259 #else /* !USE_SPLIT_PTLOCKS */
1261 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1263 #define pte_lock_init(page) do {} while (0)
1264 #define pte_lock_deinit(page) do {} while (0)
1265 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1266 #endif /* USE_SPLIT_PTLOCKS */
1268 static inline void pgtable_page_ctor(struct page
*page
)
1270 pte_lock_init(page
);
1271 inc_zone_page_state(page
, NR_PAGETABLE
);
1274 static inline void pgtable_page_dtor(struct page
*page
)
1276 pte_lock_deinit(page
);
1277 dec_zone_page_state(page
, NR_PAGETABLE
);
1280 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1282 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1283 pte_t *__pte = pte_offset_map(pmd, address); \
1289 #define pte_unmap_unlock(pte, ptl) do { \
1294 #define pte_alloc_map(mm, vma, pmd, address) \
1295 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1297 NULL: pte_offset_map(pmd, address))
1299 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1300 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1302 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1304 #define pte_alloc_kernel(pmd, address) \
1305 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1306 NULL: pte_offset_kernel(pmd, address))
1308 extern void free_area_init(unsigned long * zones_size
);
1309 extern void free_area_init_node(int nid
, unsigned long * zones_size
,
1310 unsigned long zone_start_pfn
, unsigned long *zholes_size
);
1311 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1313 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1314 * zones, allocate the backing mem_map and account for memory holes in a more
1315 * architecture independent manner. This is a substitute for creating the
1316 * zone_sizes[] and zholes_size[] arrays and passing them to
1317 * free_area_init_node()
1319 * An architecture is expected to register range of page frames backed by
1320 * physical memory with add_active_range() before calling
1321 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1322 * usage, an architecture is expected to do something like
1324 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1326 * for_each_valid_physical_page_range()
1327 * add_active_range(node_id, start_pfn, end_pfn)
1328 * free_area_init_nodes(max_zone_pfns);
1330 * If the architecture guarantees that there are no holes in the ranges
1331 * registered with add_active_range(), free_bootmem_active_regions()
1332 * will call free_bootmem_node() for each registered physical page range.
1333 * Similarly sparse_memory_present_with_active_regions() calls
1334 * memory_present() for each range when SPARSEMEM is enabled.
1336 * See mm/page_alloc.c for more information on each function exposed by
1337 * CONFIG_ARCH_POPULATES_NODE_MAP
1339 extern void free_area_init_nodes(unsigned long *max_zone_pfn
);
1340 extern void add_active_range(unsigned int nid
, unsigned long start_pfn
,
1341 unsigned long end_pfn
);
1342 extern void remove_active_range(unsigned int nid
, unsigned long start_pfn
,
1343 unsigned long end_pfn
);
1344 extern void remove_all_active_ranges(void);
1345 void sort_node_map(void);
1346 unsigned long __absent_pages_in_range(int nid
, unsigned long start_pfn
,
1347 unsigned long end_pfn
);
1348 extern unsigned long absent_pages_in_range(unsigned long start_pfn
,
1349 unsigned long end_pfn
);
1350 extern void get_pfn_range_for_nid(unsigned int nid
,
1351 unsigned long *start_pfn
, unsigned long *end_pfn
);
1352 extern unsigned long find_min_pfn_with_active_regions(void);
1353 extern void free_bootmem_with_active_regions(int nid
,
1354 unsigned long max_low_pfn
);
1355 int add_from_early_node_map(struct range
*range
, int az
,
1356 int nr_range
, int nid
);
1357 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
1358 u64 goal
, u64 limit
);
1359 typedef int (*work_fn_t
)(unsigned long, unsigned long, void *);
1360 extern void work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
);
1361 extern void sparse_memory_present_with_active_regions(int nid
);
1362 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1364 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1365 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1366 static inline int __early_pfn_to_nid(unsigned long pfn
)
1371 /* please see mm/page_alloc.c */
1372 extern int __meminit
early_pfn_to_nid(unsigned long pfn
);
1373 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1374 /* there is a per-arch backend function. */
1375 extern int __meminit
__early_pfn_to_nid(unsigned long pfn
);
1376 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1379 extern void set_dma_reserve(unsigned long new_dma_reserve
);
1380 extern void memmap_init_zone(unsigned long, int, unsigned long,
1381 unsigned long, enum memmap_context
);
1382 extern void setup_per_zone_wmarks(void);
1383 extern void calculate_zone_inactive_ratio(struct zone
*zone
);
1384 extern void mem_init(void);
1385 extern void __init
mmap_init(void);
1386 extern void show_mem(unsigned int flags
);
1387 extern void si_meminfo(struct sysinfo
* val
);
1388 extern void si_meminfo_node(struct sysinfo
*val
, int nid
);
1389 extern int after_bootmem
;
1391 extern void setup_per_cpu_pageset(void);
1393 extern void zone_pcp_update(struct zone
*zone
);
1396 extern atomic_long_t mmap_pages_allocated
;
1397 extern int nommu_shrink_inode_mappings(struct inode
*, size_t, size_t);
1400 void vma_prio_tree_add(struct vm_area_struct
*, struct vm_area_struct
*old
);
1401 void vma_prio_tree_insert(struct vm_area_struct
*, struct prio_tree_root
*);
1402 void vma_prio_tree_remove(struct vm_area_struct
*, struct prio_tree_root
*);
1403 struct vm_area_struct
*vma_prio_tree_next(struct vm_area_struct
*vma
,
1404 struct prio_tree_iter
*iter
);
1406 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1407 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1408 (vma = vma_prio_tree_next(vma, iter)); )
1410 static inline void vma_nonlinear_insert(struct vm_area_struct
*vma
,
1411 struct list_head
*list
)
1413 vma
->shared
.vm_set
.parent
= NULL
;
1414 list_add_tail(&vma
->shared
.vm_set
.list
, list
);
1418 extern int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
);
1419 extern int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
1420 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
);
1421 extern struct vm_area_struct
*vma_merge(struct mm_struct
*,
1422 struct vm_area_struct
*prev
, unsigned long addr
, unsigned long end
,
1423 unsigned long vm_flags
, struct anon_vma
*, struct file
*, pgoff_t
,
1424 struct mempolicy
*);
1425 extern struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*);
1426 extern int split_vma(struct mm_struct
*,
1427 struct vm_area_struct
*, unsigned long addr
, int new_below
);
1428 extern int insert_vm_struct(struct mm_struct
*, struct vm_area_struct
*);
1429 extern void __vma_link_rb(struct mm_struct
*, struct vm_area_struct
*,
1430 struct rb_node
**, struct rb_node
*);
1431 extern void unlink_file_vma(struct vm_area_struct
*);
1432 extern struct vm_area_struct
*copy_vma(struct vm_area_struct
**,
1433 unsigned long addr
, unsigned long len
, pgoff_t pgoff
);
1434 extern void exit_mmap(struct mm_struct
*);
1436 extern int mm_take_all_locks(struct mm_struct
*mm
);
1437 extern void mm_drop_all_locks(struct mm_struct
*mm
);
1439 #ifdef CONFIG_PROC_FS
1440 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1441 extern void added_exe_file_vma(struct mm_struct
*mm
);
1442 extern void removed_exe_file_vma(struct mm_struct
*mm
);
1444 static inline void added_exe_file_vma(struct mm_struct
*mm
)
1447 static inline void removed_exe_file_vma(struct mm_struct
*mm
)
1449 #endif /* CONFIG_PROC_FS */
1451 extern int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
);
1452 extern int install_special_mapping(struct mm_struct
*mm
,
1453 unsigned long addr
, unsigned long len
,
1454 unsigned long flags
, struct page
**pages
);
1456 extern unsigned long get_unmapped_area(struct file
*, unsigned long, unsigned long, unsigned long, unsigned long);
1458 extern unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1459 unsigned long len
, unsigned long prot
,
1460 unsigned long flag
, unsigned long pgoff
);
1461 extern unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1462 unsigned long len
, unsigned long flags
,
1463 unsigned int vm_flags
, unsigned long pgoff
);
1465 static inline unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1466 unsigned long len
, unsigned long prot
,
1467 unsigned long flag
, unsigned long offset
)
1469 unsigned long ret
= -EINVAL
;
1470 if ((offset
+ PAGE_ALIGN(len
)) < offset
)
1472 if (!(offset
& ~PAGE_MASK
))
1473 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
1478 extern int do_munmap(struct mm_struct
*, unsigned long, size_t);
1480 extern unsigned long do_brk(unsigned long, unsigned long);
1483 extern unsigned long page_unuse(struct page
*);
1484 extern void truncate_inode_pages(struct address_space
*, loff_t
);
1485 extern void truncate_inode_pages_range(struct address_space
*,
1486 loff_t lstart
, loff_t lend
);
1488 /* generic vm_area_ops exported for stackable file systems */
1489 extern int filemap_fault(struct vm_area_struct
*, struct vm_fault
*);
1491 /* mm/page-writeback.c */
1492 int write_one_page(struct page
*page
, int wait
);
1493 void task_dirty_inc(struct task_struct
*tsk
);
1496 #define VM_MAX_READAHEAD 128 /* kbytes */
1497 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1499 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
1500 pgoff_t offset
, unsigned long nr_to_read
);
1502 void page_cache_sync_readahead(struct address_space
*mapping
,
1503 struct file_ra_state
*ra
,
1506 unsigned long size
);
1508 void page_cache_async_readahead(struct address_space
*mapping
,
1509 struct file_ra_state
*ra
,
1513 unsigned long size
);
1515 unsigned long max_sane_readahead(unsigned long nr
);
1516 unsigned long ra_submit(struct file_ra_state
*ra
,
1517 struct address_space
*mapping
,
1520 /* Do stack extension */
1521 extern int expand_stack(struct vm_area_struct
*vma
, unsigned long address
);
1523 extern int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
);
1525 #define expand_upwards(vma, address) do { } while (0)
1527 extern int expand_stack_downwards(struct vm_area_struct
*vma
,
1528 unsigned long address
);
1530 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1531 extern struct vm_area_struct
* find_vma(struct mm_struct
* mm
, unsigned long addr
);
1532 extern struct vm_area_struct
* find_vma_prev(struct mm_struct
* mm
, unsigned long addr
,
1533 struct vm_area_struct
**pprev
);
1535 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1536 NULL if none. Assume start_addr < end_addr. */
1537 static inline struct vm_area_struct
* find_vma_intersection(struct mm_struct
* mm
, unsigned long start_addr
, unsigned long end_addr
)
1539 struct vm_area_struct
* vma
= find_vma(mm
,start_addr
);
1541 if (vma
&& end_addr
<= vma
->vm_start
)
1546 static inline unsigned long vma_pages(struct vm_area_struct
*vma
)
1548 return (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
1552 pgprot_t
vm_get_page_prot(unsigned long vm_flags
);
1554 static inline pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
1560 struct vm_area_struct
*find_extend_vma(struct mm_struct
*, unsigned long addr
);
1561 int remap_pfn_range(struct vm_area_struct
*, unsigned long addr
,
1562 unsigned long pfn
, unsigned long size
, pgprot_t
);
1563 int vm_insert_page(struct vm_area_struct
*, unsigned long addr
, struct page
*);
1564 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1566 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1569 struct page
*follow_page(struct vm_area_struct
*, unsigned long address
,
1570 unsigned int foll_flags
);
1571 #define FOLL_WRITE 0x01 /* check pte is writable */
1572 #define FOLL_TOUCH 0x02 /* mark page accessed */
1573 #define FOLL_GET 0x04 /* do get_page on page */
1574 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1575 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1576 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1577 * and return without waiting upon it */
1578 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1579 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1580 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
1582 typedef int (*pte_fn_t
)(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
1584 extern int apply_to_page_range(struct mm_struct
*mm
, unsigned long address
,
1585 unsigned long size
, pte_fn_t fn
, void *data
);
1587 #ifdef CONFIG_PROC_FS
1588 void vm_stat_account(struct mm_struct
*, unsigned long, struct file
*, long);
1590 static inline void vm_stat_account(struct mm_struct
*mm
,
1591 unsigned long flags
, struct file
*file
, long pages
)
1594 #endif /* CONFIG_PROC_FS */
1596 #ifdef CONFIG_DEBUG_PAGEALLOC
1597 extern int debug_pagealloc_enabled
;
1599 extern void kernel_map_pages(struct page
*page
, int numpages
, int enable
);
1601 static inline void enable_debug_pagealloc(void)
1603 debug_pagealloc_enabled
= 1;
1605 #ifdef CONFIG_HIBERNATION
1606 extern bool kernel_page_present(struct page
*page
);
1607 #endif /* CONFIG_HIBERNATION */
1610 kernel_map_pages(struct page
*page
, int numpages
, int enable
) {}
1611 static inline void enable_debug_pagealloc(void)
1614 #ifdef CONFIG_HIBERNATION
1615 static inline bool kernel_page_present(struct page
*page
) { return true; }
1616 #endif /* CONFIG_HIBERNATION */
1619 extern struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
);
1620 #ifdef __HAVE_ARCH_GATE_AREA
1621 int in_gate_area_no_mm(unsigned long addr
);
1622 int in_gate_area(struct mm_struct
*mm
, unsigned long addr
);
1624 int in_gate_area_no_mm(unsigned long addr
);
1625 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1626 #endif /* __HAVE_ARCH_GATE_AREA */
1628 int drop_caches_sysctl_handler(struct ctl_table
*, int,
1629 void __user
*, size_t *, loff_t
*);
1630 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
1631 unsigned long lru_pages
);
1634 #define randomize_va_space 0
1636 extern int randomize_va_space
;
1639 const char * arch_vma_name(struct vm_area_struct
*vma
);
1640 void print_vma_addr(char *prefix
, unsigned long rip
);
1642 void sparse_mem_maps_populate_node(struct page
**map_map
,
1643 unsigned long pnum_begin
,
1644 unsigned long pnum_end
,
1645 unsigned long map_count
,
1648 struct page
*sparse_mem_map_populate(unsigned long pnum
, int nid
);
1649 pgd_t
*vmemmap_pgd_populate(unsigned long addr
, int node
);
1650 pud_t
*vmemmap_pud_populate(pgd_t
*pgd
, unsigned long addr
, int node
);
1651 pmd_t
*vmemmap_pmd_populate(pud_t
*pud
, unsigned long addr
, int node
);
1652 pte_t
*vmemmap_pte_populate(pmd_t
*pmd
, unsigned long addr
, int node
);
1653 void *vmemmap_alloc_block(unsigned long size
, int node
);
1654 void *vmemmap_alloc_block_buf(unsigned long size
, int node
);
1655 void vmemmap_verify(pte_t
*, int, unsigned long, unsigned long);
1656 int vmemmap_populate_basepages(struct page
*start_page
,
1657 unsigned long pages
, int node
);
1658 int vmemmap_populate(struct page
*start_page
, unsigned long pages
, int node
);
1659 void vmemmap_populate_print_last(void);
1663 MF_COUNT_INCREASED
= 1 << 0,
1665 extern void memory_failure(unsigned long pfn
, int trapno
);
1666 extern int __memory_failure(unsigned long pfn
, int trapno
, int flags
);
1667 extern int unpoison_memory(unsigned long pfn
);
1668 extern int sysctl_memory_failure_early_kill
;
1669 extern int sysctl_memory_failure_recovery
;
1670 extern void shake_page(struct page
*p
, int access
);
1671 extern atomic_long_t mce_bad_pages
;
1672 extern int soft_offline_page(struct page
*page
, int flags
);
1674 extern void dump_page(struct page
*page
);
1676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1677 extern void clear_huge_page(struct page
*page
,
1679 unsigned int pages_per_huge_page
);
1680 extern void copy_user_huge_page(struct page
*dst
, struct page
*src
,
1681 unsigned long addr
, struct vm_area_struct
*vma
,
1682 unsigned int pages_per_huge_page
);
1683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1685 #endif /* __KERNEL__ */
1686 #endif /* _LINUX_MM_H */