1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
9 #include <linux/ioport.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
23 * - The third channel may be used to provide a 16-bit clockevent
24 * source, used in either periodic or oneshot mode. This runs
25 * at 32 KiHZ, and can handle delays of up to two seconds.
27 * A boot clocksource and clockevent source are also currently needed,
28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29 * this code can be used when init_timers() is called, well before most
30 * devices are set up. (Some low end AT91 parts, which can run uClinux,
31 * have only the timers in one TC block... they currently don't support
32 * the tclib code, because of that initialization issue.)
34 * REVISIT behavior during system suspend states... we should disable
35 * all clocks and save the power. Easily done for clockevent devices,
36 * but clocksources won't necessarily get the needed notifications.
37 * For deeper system sleep states, this will be mandatory...
40 static void __iomem
*tcaddr
;
42 static cycle_t
tc_get_cycles(struct clocksource
*cs
)
47 raw_local_irq_save(flags
);
49 upper
= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
));
50 lower
= __raw_readl(tcaddr
+ ATMEL_TC_REG(0, CV
));
51 } while (upper
!= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
)));
53 raw_local_irq_restore(flags
);
54 return (upper
<< 16) | lower
;
57 static struct clocksource clksrc
= {
60 .read
= tc_get_cycles
,
61 .mask
= CLOCKSOURCE_MASK(32),
63 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
66 #ifdef CONFIG_GENERIC_CLOCKEVENTS
68 struct tc_clkevt_device
{
69 struct clock_event_device clkevt
;
74 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
76 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
79 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
80 * because using one of the divided clocks would usually mean the
81 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
83 * A divided clock could be good for high resolution timers, since
84 * 30.5 usec resolution can seem "low".
86 static u32 timer_clock
;
88 static void tc_mode(enum clock_event_mode m
, struct clock_event_device
*d
)
90 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
91 void __iomem
*regs
= tcd
->regs
;
93 if (tcd
->clkevt
.mode
== CLOCK_EVT_MODE_PERIODIC
94 || tcd
->clkevt
.mode
== CLOCK_EVT_MODE_ONESHOT
) {
95 __raw_writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
96 __raw_writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
97 clk_disable(tcd
->clk
);
102 /* By not making the gentime core emulate periodic mode on top
103 * of oneshot, we get lower overhead and improved accuracy.
105 case CLOCK_EVT_MODE_PERIODIC
:
106 clk_enable(tcd
->clk
);
108 /* slow clock, count up to RC, then irq and restart */
109 __raw_writel(timer_clock
110 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
111 regs
+ ATMEL_TC_REG(2, CMR
));
112 __raw_writel((32768 + HZ
/2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
114 /* Enable clock and interrupts on RC compare */
115 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
118 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
119 regs
+ ATMEL_TC_REG(2, CCR
));
122 case CLOCK_EVT_MODE_ONESHOT
:
123 clk_enable(tcd
->clk
);
125 /* slow clock, count up to RC, then irq and stop */
126 __raw_writel(timer_clock
| ATMEL_TC_CPCSTOP
127 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
128 regs
+ ATMEL_TC_REG(2, CMR
));
129 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
131 /* set_next_event() configures and starts the timer */
139 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
141 __raw_writel(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
144 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
145 tcaddr
+ ATMEL_TC_REG(2, CCR
));
149 static struct tc_clkevt_device clkevt
= {
152 .features
= CLOCK_EVT_FEAT_PERIODIC
153 | CLOCK_EVT_FEAT_ONESHOT
,
155 /* Should be lower than at91rm9200's system timer */
157 .set_next_event
= tc_next_event
,
162 static irqreturn_t
ch2_irq(int irq
, void *handle
)
164 struct tc_clkevt_device
*dev
= handle
;
167 sr
= __raw_readl(dev
->regs
+ ATMEL_TC_REG(2, SR
));
168 if (sr
& ATMEL_TC_CPCS
) {
169 dev
->clkevt
.event_handler(&dev
->clkevt
);
176 static struct irqaction tc_irqaction
= {
178 .flags
= IRQF_TIMER
| IRQF_DISABLED
,
182 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
184 struct clk
*t2_clk
= tc
->clk
[2];
185 int irq
= tc
->irq
[2];
187 clkevt
.regs
= tc
->regs
;
189 tc_irqaction
.dev_id
= &clkevt
;
191 timer_clock
= clk32k_divisor_idx
;
193 clkevt
.clkevt
.mult
= div_sc(32768, NSEC_PER_SEC
, clkevt
.clkevt
.shift
);
194 clkevt
.clkevt
.max_delta_ns
195 = clockevent_delta2ns(0xffff, &clkevt
.clkevt
);
196 clkevt
.clkevt
.min_delta_ns
= clockevent_delta2ns(1, &clkevt
.clkevt
) + 1;
197 clkevt
.clkevt
.cpumask
= cpumask_of(0);
199 setup_irq(irq
, &tc_irqaction
);
201 clockevents_register_device(&clkevt
.clkevt
);
204 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
206 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
213 static int __init
tcb_clksrc_init(void)
215 static char bootinfo
[] __initdata
216 = KERN_DEBUG
"%s: tc%d at %d.%03d MHz\n";
218 struct platform_device
*pdev
;
221 u32 rate
, divided_rate
= 0;
222 int best_divisor_idx
= -1;
223 int clk32k_divisor_idx
= -1;
226 tc
= atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK
, clksrc
.name
);
228 pr_debug("can't alloc TC for clocksource\n");
237 /* How fast will we be counting? Pick something over 5 MHz. */
238 rate
= (u32
) clk_get_rate(t0_clk
);
239 for (i
= 0; i
< 5; i
++) {
240 unsigned divisor
= atmel_tc_divisors
[i
];
243 /* remember 32 KiHz clock for later */
245 clk32k_divisor_idx
= i
;
249 tmp
= rate
/ divisor
;
250 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
251 if (best_divisor_idx
> 0) {
252 if (tmp
< 5 * 1000 * 1000)
256 best_divisor_idx
= i
;
259 clksrc
.mult
= clocksource_hz2mult(divided_rate
, clksrc
.shift
);
261 printk(bootinfo
, clksrc
.name
, CONFIG_ATMEL_TCB_CLKSRC_BLOCK
,
262 divided_rate
/ 1000000,
263 ((divided_rate
+ 500000) % 1000000) / 1000);
265 /* tclib will give us three clocks no matter what the
266 * underlying platform supports.
268 clk_enable(tc
->clk
[1]);
270 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
271 __raw_writel(best_divisor_idx
/* likely divide-by-8 */
273 | ATMEL_TC_WAVESEL_UP
/* free-run */
274 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
275 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
276 tcaddr
+ ATMEL_TC_REG(0, CMR
));
277 __raw_writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
278 __raw_writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
279 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
280 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
282 /* channel 1: waveform mode, input TIOA0 */
283 __raw_writel(ATMEL_TC_XC1
/* input: TIOA0 */
285 | ATMEL_TC_WAVESEL_UP
, /* free-run */
286 tcaddr
+ ATMEL_TC_REG(1, CMR
));
287 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
288 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
290 /* chain channel 0 to channel 1, then reset all the timers */
291 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
292 __raw_writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
294 /* and away we go! */
295 clocksource_register(&clksrc
);
297 /* channel 2: periodic and oneshot timer support */
298 setup_clkevents(tc
, clk32k_divisor_idx
);
302 arch_initcall(tcb_clksrc_init
);