2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
85 * Overloading of page flags that are otherwise used for LRU management.
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
99 * freelist that allows lockless access to
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
105 * the fast path and disables lockless freelists.
108 #ifdef CONFIG_SLUB_DEBUG
115 * Issues still to be resolved:
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 * - Variable sizing of the per node arrays
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 5
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
142 * Set of flags that will prevent slab merging
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
159 #define OO_MASK ((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON 0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166 static int kmem_size
= sizeof(struct kmem_cache
);
169 static struct notifier_block slab_notifier
;
173 DOWN
, /* No slab functionality available */
174 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
175 UP
, /* Everything works but does not show up in sysfs */
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock
);
181 static LIST_HEAD(slab_caches
);
184 * Tracking user of a slab.
187 unsigned long addr
; /* Called from address */
188 int cpu
; /* Was running on cpu */
189 int pid
; /* Pid context */
190 unsigned long when
; /* When did the operation occur */
193 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache
*);
197 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
198 static void sysfs_slab_remove(struct kmem_cache
*);
201 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
204 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
211 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
213 #ifdef CONFIG_SLUB_STATS
218 /********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
222 int slab_is_available(void)
224 return slab_state
>= UP
;
227 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
230 return s
->node
[node
];
232 return &s
->local_node
;
236 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
239 return s
->cpu_slab
[cpu
];
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache
*s
,
247 struct page
*page
, const void *object
)
254 base
= page_address(page
);
255 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
256 (object
- base
) % s
->size
) {
264 * Slow version of get and set free pointer.
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
270 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
272 return *(void **)(object
+ s
->offset
);
275 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
277 *(void **)(object
+ s
->offset
) = fp
;
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
292 return (p
- addr
) / s
->size
;
295 static inline struct kmem_cache_order_objects
oo_make(int order
,
298 struct kmem_cache_order_objects x
= {
299 (order
<< OO_SHIFT
) + (PAGE_SIZE
<< order
) / size
305 static inline int oo_order(struct kmem_cache_order_objects x
)
307 return x
.x
>> OO_SHIFT
;
310 static inline int oo_objects(struct kmem_cache_order_objects x
)
312 return x
.x
& OO_MASK
;
315 #ifdef CONFIG_SLUB_DEBUG
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
322 static int slub_debug
;
325 static char *slub_debug_slabs
;
330 static void print_section(char *text
, u8
*addr
, unsigned int length
)
338 for (i
= 0; i
< length
; i
++) {
340 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
343 printk(KERN_CONT
" %02x", addr
[i
]);
345 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
347 printk(KERN_CONT
" %s\n", ascii
);
354 printk(KERN_CONT
" ");
358 printk(KERN_CONT
" %s\n", ascii
);
362 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
363 enum track_item alloc
)
368 p
= object
+ s
->offset
+ sizeof(void *);
370 p
= object
+ s
->inuse
;
375 static void set_track(struct kmem_cache
*s
, void *object
,
376 enum track_item alloc
, unsigned long addr
)
381 p
= object
+ s
->offset
+ sizeof(void *);
383 p
= object
+ s
->inuse
;
388 p
->cpu
= smp_processor_id();
389 p
->pid
= current
->pid
;
392 memset(p
, 0, sizeof(struct track
));
395 static void init_tracking(struct kmem_cache
*s
, void *object
)
397 if (!(s
->flags
& SLAB_STORE_USER
))
400 set_track(s
, object
, TRACK_FREE
, 0UL);
401 set_track(s
, object
, TRACK_ALLOC
, 0UL);
404 static void print_track(const char *s
, struct track
*t
)
409 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
410 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
413 static void print_tracking(struct kmem_cache
*s
, void *object
)
415 if (!(s
->flags
& SLAB_STORE_USER
))
418 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
419 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
422 static void print_page_info(struct page
*page
)
424 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
425 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
429 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
435 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
437 printk(KERN_ERR
"========================================"
438 "=====================================\n");
439 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
440 printk(KERN_ERR
"----------------------------------------"
441 "-------------------------------------\n\n");
444 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
450 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
452 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
455 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
457 unsigned int off
; /* Offset of last byte */
458 u8
*addr
= page_address(page
);
460 print_tracking(s
, p
);
462 print_page_info(page
);
464 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
465 p
, p
- addr
, get_freepointer(s
, p
));
468 print_section("Bytes b4", p
- 16, 16);
470 print_section("Object", p
, min_t(unsigned long, s
->objsize
, PAGE_SIZE
));
472 if (s
->flags
& SLAB_RED_ZONE
)
473 print_section("Redzone", p
+ s
->objsize
,
474 s
->inuse
- s
->objsize
);
477 off
= s
->offset
+ sizeof(void *);
481 if (s
->flags
& SLAB_STORE_USER
)
482 off
+= 2 * sizeof(struct track
);
485 /* Beginning of the filler is the free pointer */
486 print_section("Padding", p
+ off
, s
->size
- off
);
491 static void object_err(struct kmem_cache
*s
, struct page
*page
,
492 u8
*object
, char *reason
)
494 slab_bug(s
, "%s", reason
);
495 print_trailer(s
, page
, object
);
498 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
504 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
506 slab_bug(s
, "%s", buf
);
507 print_page_info(page
);
511 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
515 if (s
->flags
& __OBJECT_POISON
) {
516 memset(p
, POISON_FREE
, s
->objsize
- 1);
517 p
[s
->objsize
- 1] = POISON_END
;
520 if (s
->flags
& SLAB_RED_ZONE
)
521 memset(p
+ s
->objsize
,
522 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
523 s
->inuse
- s
->objsize
);
526 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
529 if (*start
!= (u8
)value
)
537 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
538 void *from
, void *to
)
540 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
541 memset(from
, data
, to
- from
);
544 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
545 u8
*object
, char *what
,
546 u8
*start
, unsigned int value
, unsigned int bytes
)
551 fault
= check_bytes(start
, value
, bytes
);
556 while (end
> fault
&& end
[-1] == value
)
559 slab_bug(s
, "%s overwritten", what
);
560 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
561 fault
, end
- 1, fault
[0], value
);
562 print_trailer(s
, page
, object
);
564 restore_bytes(s
, what
, value
, fault
, end
);
572 * Bytes of the object to be managed.
573 * If the freepointer may overlay the object then the free
574 * pointer is the first word of the object.
576 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
579 * object + s->objsize
580 * Padding to reach word boundary. This is also used for Redzoning.
581 * Padding is extended by another word if Redzoning is enabled and
584 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
585 * 0xcc (RED_ACTIVE) for objects in use.
588 * Meta data starts here.
590 * A. Free pointer (if we cannot overwrite object on free)
591 * B. Tracking data for SLAB_STORE_USER
592 * C. Padding to reach required alignment boundary or at mininum
593 * one word if debugging is on to be able to detect writes
594 * before the word boundary.
596 * Padding is done using 0x5a (POISON_INUSE)
599 * Nothing is used beyond s->size.
601 * If slabcaches are merged then the objsize and inuse boundaries are mostly
602 * ignored. And therefore no slab options that rely on these boundaries
603 * may be used with merged slabcaches.
606 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
608 unsigned long off
= s
->inuse
; /* The end of info */
611 /* Freepointer is placed after the object. */
612 off
+= sizeof(void *);
614 if (s
->flags
& SLAB_STORE_USER
)
615 /* We also have user information there */
616 off
+= 2 * sizeof(struct track
);
621 return check_bytes_and_report(s
, page
, p
, "Object padding",
622 p
+ off
, POISON_INUSE
, s
->size
- off
);
625 /* Check the pad bytes at the end of a slab page */
626 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
634 if (!(s
->flags
& SLAB_POISON
))
637 start
= page_address(page
);
638 length
= (PAGE_SIZE
<< compound_order(page
));
639 end
= start
+ length
;
640 remainder
= length
% s
->size
;
644 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
647 while (end
> fault
&& end
[-1] == POISON_INUSE
)
650 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
651 print_section("Padding", end
- remainder
, remainder
);
653 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
657 static int check_object(struct kmem_cache
*s
, struct page
*page
,
658 void *object
, int active
)
661 u8
*endobject
= object
+ s
->objsize
;
663 if (s
->flags
& SLAB_RED_ZONE
) {
665 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
667 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
668 endobject
, red
, s
->inuse
- s
->objsize
))
671 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
672 check_bytes_and_report(s
, page
, p
, "Alignment padding",
673 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
677 if (s
->flags
& SLAB_POISON
) {
678 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
679 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
680 POISON_FREE
, s
->objsize
- 1) ||
681 !check_bytes_and_report(s
, page
, p
, "Poison",
682 p
+ s
->objsize
- 1, POISON_END
, 1)))
685 * check_pad_bytes cleans up on its own.
687 check_pad_bytes(s
, page
, p
);
690 if (!s
->offset
&& active
)
692 * Object and freepointer overlap. Cannot check
693 * freepointer while object is allocated.
697 /* Check free pointer validity */
698 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
699 object_err(s
, page
, p
, "Freepointer corrupt");
701 * No choice but to zap it and thus lose the remainder
702 * of the free objects in this slab. May cause
703 * another error because the object count is now wrong.
705 set_freepointer(s
, p
, NULL
);
711 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
715 VM_BUG_ON(!irqs_disabled());
717 if (!PageSlab(page
)) {
718 slab_err(s
, page
, "Not a valid slab page");
722 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
723 if (page
->objects
> maxobj
) {
724 slab_err(s
, page
, "objects %u > max %u",
725 s
->name
, page
->objects
, maxobj
);
728 if (page
->inuse
> page
->objects
) {
729 slab_err(s
, page
, "inuse %u > max %u",
730 s
->name
, page
->inuse
, page
->objects
);
733 /* Slab_pad_check fixes things up after itself */
734 slab_pad_check(s
, page
);
739 * Determine if a certain object on a page is on the freelist. Must hold the
740 * slab lock to guarantee that the chains are in a consistent state.
742 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
745 void *fp
= page
->freelist
;
747 unsigned long max_objects
;
749 while (fp
&& nr
<= page
->objects
) {
752 if (!check_valid_pointer(s
, page
, fp
)) {
754 object_err(s
, page
, object
,
755 "Freechain corrupt");
756 set_freepointer(s
, object
, NULL
);
759 slab_err(s
, page
, "Freepointer corrupt");
760 page
->freelist
= NULL
;
761 page
->inuse
= page
->objects
;
762 slab_fix(s
, "Freelist cleared");
768 fp
= get_freepointer(s
, object
);
772 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
773 if (max_objects
> MAX_OBJS_PER_PAGE
)
774 max_objects
= MAX_OBJS_PER_PAGE
;
776 if (page
->objects
!= max_objects
) {
777 slab_err(s
, page
, "Wrong number of objects. Found %d but "
778 "should be %d", page
->objects
, max_objects
);
779 page
->objects
= max_objects
;
780 slab_fix(s
, "Number of objects adjusted.");
782 if (page
->inuse
!= page
->objects
- nr
) {
783 slab_err(s
, page
, "Wrong object count. Counter is %d but "
784 "counted were %d", page
->inuse
, page
->objects
- nr
);
785 page
->inuse
= page
->objects
- nr
;
786 slab_fix(s
, "Object count adjusted.");
788 return search
== NULL
;
791 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
794 if (s
->flags
& SLAB_TRACE
) {
795 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
797 alloc
? "alloc" : "free",
802 print_section("Object", (void *)object
, s
->objsize
);
809 * Tracking of fully allocated slabs for debugging purposes.
811 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
813 spin_lock(&n
->list_lock
);
814 list_add(&page
->lru
, &n
->full
);
815 spin_unlock(&n
->list_lock
);
818 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
820 struct kmem_cache_node
*n
;
822 if (!(s
->flags
& SLAB_STORE_USER
))
825 n
= get_node(s
, page_to_nid(page
));
827 spin_lock(&n
->list_lock
);
828 list_del(&page
->lru
);
829 spin_unlock(&n
->list_lock
);
832 /* Tracking of the number of slabs for debugging purposes */
833 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
835 struct kmem_cache_node
*n
= get_node(s
, node
);
837 return atomic_long_read(&n
->nr_slabs
);
840 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
842 struct kmem_cache_node
*n
= get_node(s
, node
);
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
850 if (!NUMA_BUILD
|| n
) {
851 atomic_long_inc(&n
->nr_slabs
);
852 atomic_long_add(objects
, &n
->total_objects
);
855 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
857 struct kmem_cache_node
*n
= get_node(s
, node
);
859 atomic_long_dec(&n
->nr_slabs
);
860 atomic_long_sub(objects
, &n
->total_objects
);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
867 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
870 init_object(s
, object
, 0);
871 init_tracking(s
, object
);
874 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
875 void *object
, unsigned long addr
)
877 if (!check_slab(s
, page
))
880 if (!on_freelist(s
, page
, object
)) {
881 object_err(s
, page
, object
, "Object already allocated");
885 if (!check_valid_pointer(s
, page
, object
)) {
886 object_err(s
, page
, object
, "Freelist Pointer check fails");
890 if (!check_object(s
, page
, object
, 0))
893 /* Success perform special debug activities for allocs */
894 if (s
->flags
& SLAB_STORE_USER
)
895 set_track(s
, object
, TRACK_ALLOC
, addr
);
896 trace(s
, page
, object
, 1);
897 init_object(s
, object
, 1);
901 if (PageSlab(page
)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s
, "Marking all objects used");
908 page
->inuse
= page
->objects
;
909 page
->freelist
= NULL
;
914 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
915 void *object
, unsigned long addr
)
917 if (!check_slab(s
, page
))
920 if (!check_valid_pointer(s
, page
, object
)) {
921 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
925 if (on_freelist(s
, page
, object
)) {
926 object_err(s
, page
, object
, "Object already free");
930 if (!check_object(s
, page
, object
, 1))
933 if (unlikely(s
!= page
->slab
)) {
934 if (!PageSlab(page
)) {
935 slab_err(s
, page
, "Attempt to free object(0x%p) "
936 "outside of slab", object
);
937 } else if (!page
->slab
) {
939 "SLUB <none>: no slab for object 0x%p.\n",
943 object_err(s
, page
, object
,
944 "page slab pointer corrupt.");
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page
) && !page
->freelist
)
950 remove_full(s
, page
);
951 if (s
->flags
& SLAB_STORE_USER
)
952 set_track(s
, object
, TRACK_FREE
, addr
);
953 trace(s
, page
, object
, 0);
954 init_object(s
, object
, 0);
958 slab_fix(s
, "Object at 0x%p not freed", object
);
962 static int __init
setup_slub_debug(char *str
)
964 slub_debug
= DEBUG_DEFAULT_FLAGS
;
965 if (*str
++ != '=' || !*str
)
967 * No options specified. Switch on full debugging.
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
981 * Switch off all debugging measures.
986 * Determine which debug features should be switched on
988 for (; *str
&& *str
!= ','; str
++) {
989 switch (tolower(*str
)) {
991 slub_debug
|= SLAB_DEBUG_FREE
;
994 slub_debug
|= SLAB_RED_ZONE
;
997 slub_debug
|= SLAB_POISON
;
1000 slub_debug
|= SLAB_STORE_USER
;
1003 slub_debug
|= SLAB_TRACE
;
1006 printk(KERN_ERR
"slub_debug option '%c' "
1007 "unknown. skipped\n", *str
);
1013 slub_debug_slabs
= str
+ 1;
1018 __setup("slub_debug", setup_slub_debug
);
1020 static unsigned long kmem_cache_flags(unsigned long objsize
,
1021 unsigned long flags
, const char *name
,
1022 void (*ctor
)(void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug
&& (!slub_debug_slabs
||
1028 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1029 flags
|= slub_debug
;
1034 static inline void setup_object_debug(struct kmem_cache
*s
,
1035 struct page
*page
, void *object
) {}
1037 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1038 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache
*s
,
1041 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1045 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1046 void *object
, int active
) { return 1; }
1047 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1049 unsigned long flags
, const char *name
,
1050 void (*ctor
)(void *))
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1058 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1060 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1065 * Slab allocation and freeing
1067 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1068 struct kmem_cache_order_objects oo
)
1070 int order
= oo_order(oo
);
1073 return alloc_pages(flags
, order
);
1075 return alloc_pages_node(node
, flags
, order
);
1078 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1081 struct kmem_cache_order_objects oo
= s
->oo
;
1083 flags
|= s
->allocflags
;
1085 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1087 if (unlikely(!page
)) {
1090 * Allocation may have failed due to fragmentation.
1091 * Try a lower order alloc if possible
1093 page
= alloc_slab_page(flags
, node
, oo
);
1097 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1099 page
->objects
= oo_objects(oo
);
1100 mod_zone_page_state(page_zone(page
),
1101 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1102 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1108 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1111 setup_object_debug(s
, page
, object
);
1112 if (unlikely(s
->ctor
))
1116 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1123 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1125 page
= allocate_slab(s
,
1126 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1130 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1132 page
->flags
|= 1 << PG_slab
;
1133 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1134 SLAB_STORE_USER
| SLAB_TRACE
))
1135 __SetPageSlubDebug(page
);
1137 start
= page_address(page
);
1139 if (unlikely(s
->flags
& SLAB_POISON
))
1140 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1143 for_each_object(p
, s
, start
, page
->objects
) {
1144 setup_object(s
, page
, last
);
1145 set_freepointer(s
, last
, p
);
1148 setup_object(s
, page
, last
);
1149 set_freepointer(s
, last
, NULL
);
1151 page
->freelist
= start
;
1157 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1159 int order
= compound_order(page
);
1160 int pages
= 1 << order
;
1162 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
))) {
1165 slab_pad_check(s
, page
);
1166 for_each_object(p
, s
, page_address(page
),
1168 check_object(s
, page
, p
, 0);
1169 __ClearPageSlubDebug(page
);
1172 mod_zone_page_state(page_zone(page
),
1173 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1174 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1177 __ClearPageSlab(page
);
1178 reset_page_mapcount(page
);
1179 if (current
->reclaim_state
)
1180 current
->reclaim_state
->reclaimed_slab
+= pages
;
1181 __free_pages(page
, order
);
1184 static void rcu_free_slab(struct rcu_head
*h
)
1188 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1189 __free_slab(page
->slab
, page
);
1192 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1194 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1196 * RCU free overloads the RCU head over the LRU
1198 struct rcu_head
*head
= (void *)&page
->lru
;
1200 call_rcu(head
, rcu_free_slab
);
1202 __free_slab(s
, page
);
1205 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1207 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1212 * Per slab locking using the pagelock
1214 static __always_inline
void slab_lock(struct page
*page
)
1216 bit_spin_lock(PG_locked
, &page
->flags
);
1219 static __always_inline
void slab_unlock(struct page
*page
)
1221 __bit_spin_unlock(PG_locked
, &page
->flags
);
1224 static __always_inline
int slab_trylock(struct page
*page
)
1228 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1233 * Management of partially allocated slabs
1235 static void add_partial(struct kmem_cache_node
*n
,
1236 struct page
*page
, int tail
)
1238 spin_lock(&n
->list_lock
);
1241 list_add_tail(&page
->lru
, &n
->partial
);
1243 list_add(&page
->lru
, &n
->partial
);
1244 spin_unlock(&n
->list_lock
);
1247 static void remove_partial(struct kmem_cache
*s
, struct page
*page
)
1249 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1251 spin_lock(&n
->list_lock
);
1252 list_del(&page
->lru
);
1254 spin_unlock(&n
->list_lock
);
1258 * Lock slab and remove from the partial list.
1260 * Must hold list_lock.
1262 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
,
1265 if (slab_trylock(page
)) {
1266 list_del(&page
->lru
);
1268 __SetPageSlubFrozen(page
);
1275 * Try to allocate a partial slab from a specific node.
1277 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1282 * Racy check. If we mistakenly see no partial slabs then we
1283 * just allocate an empty slab. If we mistakenly try to get a
1284 * partial slab and there is none available then get_partials()
1287 if (!n
|| !n
->nr_partial
)
1290 spin_lock(&n
->list_lock
);
1291 list_for_each_entry(page
, &n
->partial
, lru
)
1292 if (lock_and_freeze_slab(n
, page
))
1296 spin_unlock(&n
->list_lock
);
1301 * Get a page from somewhere. Search in increasing NUMA distances.
1303 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1306 struct zonelist
*zonelist
;
1309 enum zone_type high_zoneidx
= gfp_zone(flags
);
1313 * The defrag ratio allows a configuration of the tradeoffs between
1314 * inter node defragmentation and node local allocations. A lower
1315 * defrag_ratio increases the tendency to do local allocations
1316 * instead of attempting to obtain partial slabs from other nodes.
1318 * If the defrag_ratio is set to 0 then kmalloc() always
1319 * returns node local objects. If the ratio is higher then kmalloc()
1320 * may return off node objects because partial slabs are obtained
1321 * from other nodes and filled up.
1323 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1324 * defrag_ratio = 1000) then every (well almost) allocation will
1325 * first attempt to defrag slab caches on other nodes. This means
1326 * scanning over all nodes to look for partial slabs which may be
1327 * expensive if we do it every time we are trying to find a slab
1328 * with available objects.
1330 if (!s
->remote_node_defrag_ratio
||
1331 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1334 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1335 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1336 struct kmem_cache_node
*n
;
1338 n
= get_node(s
, zone_to_nid(zone
));
1340 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1341 n
->nr_partial
> n
->min_partial
) {
1342 page
= get_partial_node(n
);
1352 * Get a partial page, lock it and return it.
1354 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1357 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1359 page
= get_partial_node(get_node(s
, searchnode
));
1360 if (page
|| (flags
& __GFP_THISNODE
))
1363 return get_any_partial(s
, flags
);
1367 * Move a page back to the lists.
1369 * Must be called with the slab lock held.
1371 * On exit the slab lock will have been dropped.
1373 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1375 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1376 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1378 __ClearPageSlubFrozen(page
);
1381 if (page
->freelist
) {
1382 add_partial(n
, page
, tail
);
1383 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1385 stat(c
, DEACTIVATE_FULL
);
1386 if (SLABDEBUG
&& PageSlubDebug(page
) &&
1387 (s
->flags
& SLAB_STORE_USER
))
1392 stat(c
, DEACTIVATE_EMPTY
);
1393 if (n
->nr_partial
< n
->min_partial
) {
1395 * Adding an empty slab to the partial slabs in order
1396 * to avoid page allocator overhead. This slab needs
1397 * to come after the other slabs with objects in
1398 * so that the others get filled first. That way the
1399 * size of the partial list stays small.
1401 * kmem_cache_shrink can reclaim any empty slabs from
1404 add_partial(n
, page
, 1);
1408 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1409 discard_slab(s
, page
);
1415 * Remove the cpu slab
1417 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1419 struct page
*page
= c
->page
;
1423 stat(c
, DEACTIVATE_REMOTE_FREES
);
1425 * Merge cpu freelist into slab freelist. Typically we get here
1426 * because both freelists are empty. So this is unlikely
1429 while (unlikely(c
->freelist
)) {
1432 tail
= 0; /* Hot objects. Put the slab first */
1434 /* Retrieve object from cpu_freelist */
1435 object
= c
->freelist
;
1436 c
->freelist
= c
->freelist
[c
->offset
];
1438 /* And put onto the regular freelist */
1439 object
[c
->offset
] = page
->freelist
;
1440 page
->freelist
= object
;
1444 unfreeze_slab(s
, page
, tail
);
1447 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1449 stat(c
, CPUSLAB_FLUSH
);
1451 deactivate_slab(s
, c
);
1457 * Called from IPI handler with interrupts disabled.
1459 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1461 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1463 if (likely(c
&& c
->page
))
1467 static void flush_cpu_slab(void *d
)
1469 struct kmem_cache
*s
= d
;
1471 __flush_cpu_slab(s
, smp_processor_id());
1474 static void flush_all(struct kmem_cache
*s
)
1476 on_each_cpu(flush_cpu_slab
, s
, 1);
1480 * Check if the objects in a per cpu structure fit numa
1481 * locality expectations.
1483 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1486 if (node
!= -1 && c
->node
!= node
)
1493 * Slow path. The lockless freelist is empty or we need to perform
1496 * Interrupts are disabled.
1498 * Processing is still very fast if new objects have been freed to the
1499 * regular freelist. In that case we simply take over the regular freelist
1500 * as the lockless freelist and zap the regular freelist.
1502 * If that is not working then we fall back to the partial lists. We take the
1503 * first element of the freelist as the object to allocate now and move the
1504 * rest of the freelist to the lockless freelist.
1506 * And if we were unable to get a new slab from the partial slab lists then
1507 * we need to allocate a new slab. This is the slowest path since it involves
1508 * a call to the page allocator and the setup of a new slab.
1510 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
1511 unsigned long addr
, struct kmem_cache_cpu
*c
)
1516 /* We handle __GFP_ZERO in the caller */
1517 gfpflags
&= ~__GFP_ZERO
;
1523 if (unlikely(!node_match(c
, node
)))
1526 stat(c
, ALLOC_REFILL
);
1529 object
= c
->page
->freelist
;
1530 if (unlikely(!object
))
1532 if (unlikely(SLABDEBUG
&& PageSlubDebug(c
->page
)))
1535 c
->freelist
= object
[c
->offset
];
1536 c
->page
->inuse
= c
->page
->objects
;
1537 c
->page
->freelist
= NULL
;
1538 c
->node
= page_to_nid(c
->page
);
1540 slab_unlock(c
->page
);
1541 stat(c
, ALLOC_SLOWPATH
);
1545 deactivate_slab(s
, c
);
1548 new = get_partial(s
, gfpflags
, node
);
1551 stat(c
, ALLOC_FROM_PARTIAL
);
1555 if (gfpflags
& __GFP_WAIT
)
1558 new = new_slab(s
, gfpflags
, node
);
1560 if (gfpflags
& __GFP_WAIT
)
1561 local_irq_disable();
1564 c
= get_cpu_slab(s
, smp_processor_id());
1565 stat(c
, ALLOC_SLAB
);
1569 __SetPageSlubFrozen(new);
1575 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1579 c
->page
->freelist
= object
[c
->offset
];
1585 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1586 * have the fastpath folded into their functions. So no function call
1587 * overhead for requests that can be satisfied on the fastpath.
1589 * The fastpath works by first checking if the lockless freelist can be used.
1590 * If not then __slab_alloc is called for slow processing.
1592 * Otherwise we can simply pick the next object from the lockless free list.
1594 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1595 gfp_t gfpflags
, int node
, unsigned long addr
)
1598 struct kmem_cache_cpu
*c
;
1599 unsigned long flags
;
1600 unsigned int objsize
;
1602 might_sleep_if(gfpflags
& __GFP_WAIT
);
1604 if (should_failslab(s
->objsize
, gfpflags
))
1607 local_irq_save(flags
);
1608 c
= get_cpu_slab(s
, smp_processor_id());
1609 objsize
= c
->objsize
;
1610 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1612 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1615 object
= c
->freelist
;
1616 c
->freelist
= object
[c
->offset
];
1617 stat(c
, ALLOC_FASTPATH
);
1619 local_irq_restore(flags
);
1621 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1622 memset(object
, 0, objsize
);
1627 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1629 return slab_alloc(s
, gfpflags
, -1, _RET_IP_
);
1631 EXPORT_SYMBOL(kmem_cache_alloc
);
1634 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1636 return slab_alloc(s
, gfpflags
, node
, _RET_IP_
);
1638 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
1649 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1650 void *x
, unsigned long addr
, unsigned int offset
)
1653 void **object
= (void *)x
;
1654 struct kmem_cache_cpu
*c
;
1656 c
= get_cpu_slab(s
, raw_smp_processor_id());
1657 stat(c
, FREE_SLOWPATH
);
1660 if (unlikely(SLABDEBUG
&& PageSlubDebug(page
)))
1664 prior
= object
[offset
] = page
->freelist
;
1665 page
->freelist
= object
;
1668 if (unlikely(PageSlubFrozen(page
))) {
1669 stat(c
, FREE_FROZEN
);
1673 if (unlikely(!page
->inuse
))
1677 * Objects left in the slab. If it was not on the partial list before
1680 if (unlikely(!prior
)) {
1681 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1682 stat(c
, FREE_ADD_PARTIAL
);
1692 * Slab still on the partial list.
1694 remove_partial(s
, page
);
1695 stat(c
, FREE_REMOVE_PARTIAL
);
1699 discard_slab(s
, page
);
1703 if (!free_debug_processing(s
, page
, x
, addr
))
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1719 static __always_inline
void slab_free(struct kmem_cache
*s
,
1720 struct page
*page
, void *x
, unsigned long addr
)
1722 void **object
= (void *)x
;
1723 struct kmem_cache_cpu
*c
;
1724 unsigned long flags
;
1726 local_irq_save(flags
);
1727 c
= get_cpu_slab(s
, smp_processor_id());
1728 debug_check_no_locks_freed(object
, c
->objsize
);
1729 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1730 debug_check_no_obj_freed(object
, s
->objsize
);
1731 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1732 object
[c
->offset
] = c
->freelist
;
1733 c
->freelist
= object
;
1734 stat(c
, FREE_FASTPATH
);
1736 __slab_free(s
, page
, x
, addr
, c
->offset
);
1738 local_irq_restore(flags
);
1741 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1745 page
= virt_to_head_page(x
);
1747 slab_free(s
, page
, x
, _RET_IP_
);
1749 EXPORT_SYMBOL(kmem_cache_free
);
1751 /* Figure out on which slab page the object resides */
1752 static struct page
*get_object_page(const void *x
)
1754 struct page
*page
= virt_to_head_page(x
);
1756 if (!PageSlab(page
))
1763 * Object placement in a slab is made very easy because we always start at
1764 * offset 0. If we tune the size of the object to the alignment then we can
1765 * get the required alignment by putting one properly sized object after
1768 * Notice that the allocation order determines the sizes of the per cpu
1769 * caches. Each processor has always one slab available for allocations.
1770 * Increasing the allocation order reduces the number of times that slabs
1771 * must be moved on and off the partial lists and is therefore a factor in
1776 * Mininum / Maximum order of slab pages. This influences locking overhead
1777 * and slab fragmentation. A higher order reduces the number of partial slabs
1778 * and increases the number of allocations possible without having to
1779 * take the list_lock.
1781 static int slub_min_order
;
1782 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1783 static int slub_min_objects
;
1786 * Merge control. If this is set then no merging of slab caches will occur.
1787 * (Could be removed. This was introduced to pacify the merge skeptics.)
1789 static int slub_nomerge
;
1792 * Calculate the order of allocation given an slab object size.
1794 * The order of allocation has significant impact on performance and other
1795 * system components. Generally order 0 allocations should be preferred since
1796 * order 0 does not cause fragmentation in the page allocator. Larger objects
1797 * be problematic to put into order 0 slabs because there may be too much
1798 * unused space left. We go to a higher order if more than 1/16th of the slab
1801 * In order to reach satisfactory performance we must ensure that a minimum
1802 * number of objects is in one slab. Otherwise we may generate too much
1803 * activity on the partial lists which requires taking the list_lock. This is
1804 * less a concern for large slabs though which are rarely used.
1806 * slub_max_order specifies the order where we begin to stop considering the
1807 * number of objects in a slab as critical. If we reach slub_max_order then
1808 * we try to keep the page order as low as possible. So we accept more waste
1809 * of space in favor of a small page order.
1811 * Higher order allocations also allow the placement of more objects in a
1812 * slab and thereby reduce object handling overhead. If the user has
1813 * requested a higher mininum order then we start with that one instead of
1814 * the smallest order which will fit the object.
1816 static inline int slab_order(int size
, int min_objects
,
1817 int max_order
, int fract_leftover
)
1821 int min_order
= slub_min_order
;
1823 if ((PAGE_SIZE
<< min_order
) / size
> MAX_OBJS_PER_PAGE
)
1824 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
1826 for (order
= max(min_order
,
1827 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1828 order
<= max_order
; order
++) {
1830 unsigned long slab_size
= PAGE_SIZE
<< order
;
1832 if (slab_size
< min_objects
* size
)
1835 rem
= slab_size
% size
;
1837 if (rem
<= slab_size
/ fract_leftover
)
1845 static inline int calculate_order(int size
)
1852 * Attempt to find best configuration for a slab. This
1853 * works by first attempting to generate a layout with
1854 * the best configuration and backing off gradually.
1856 * First we reduce the acceptable waste in a slab. Then
1857 * we reduce the minimum objects required in a slab.
1859 min_objects
= slub_min_objects
;
1861 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1862 while (min_objects
> 1) {
1864 while (fraction
>= 4) {
1865 order
= slab_order(size
, min_objects
,
1866 slub_max_order
, fraction
);
1867 if (order
<= slub_max_order
)
1875 * We were unable to place multiple objects in a slab. Now
1876 * lets see if we can place a single object there.
1878 order
= slab_order(size
, 1, slub_max_order
, 1);
1879 if (order
<= slub_max_order
)
1883 * Doh this slab cannot be placed using slub_max_order.
1885 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1886 if (order
<= MAX_ORDER
)
1892 * Figure out what the alignment of the objects will be.
1894 static unsigned long calculate_alignment(unsigned long flags
,
1895 unsigned long align
, unsigned long size
)
1898 * If the user wants hardware cache aligned objects then follow that
1899 * suggestion if the object is sufficiently large.
1901 * The hardware cache alignment cannot override the specified
1902 * alignment though. If that is greater then use it.
1904 if (flags
& SLAB_HWCACHE_ALIGN
) {
1905 unsigned long ralign
= cache_line_size();
1906 while (size
<= ralign
/ 2)
1908 align
= max(align
, ralign
);
1911 if (align
< ARCH_SLAB_MINALIGN
)
1912 align
= ARCH_SLAB_MINALIGN
;
1914 return ALIGN(align
, sizeof(void *));
1917 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1918 struct kmem_cache_cpu
*c
)
1923 c
->offset
= s
->offset
/ sizeof(void *);
1924 c
->objsize
= s
->objsize
;
1925 #ifdef CONFIG_SLUB_STATS
1926 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1931 init_kmem_cache_node(struct kmem_cache_node
*n
, struct kmem_cache
*s
)
1936 * The larger the object size is, the more pages we want on the partial
1937 * list to avoid pounding the page allocator excessively.
1939 n
->min_partial
= ilog2(s
->size
);
1940 if (n
->min_partial
< MIN_PARTIAL
)
1941 n
->min_partial
= MIN_PARTIAL
;
1942 else if (n
->min_partial
> MAX_PARTIAL
)
1943 n
->min_partial
= MAX_PARTIAL
;
1945 spin_lock_init(&n
->list_lock
);
1946 INIT_LIST_HEAD(&n
->partial
);
1947 #ifdef CONFIG_SLUB_DEBUG
1948 atomic_long_set(&n
->nr_slabs
, 0);
1949 atomic_long_set(&n
->total_objects
, 0);
1950 INIT_LIST_HEAD(&n
->full
);
1956 * Per cpu array for per cpu structures.
1958 * The per cpu array places all kmem_cache_cpu structures from one processor
1959 * close together meaning that it becomes possible that multiple per cpu
1960 * structures are contained in one cacheline. This may be particularly
1961 * beneficial for the kmalloc caches.
1963 * A desktop system typically has around 60-80 slabs. With 100 here we are
1964 * likely able to get per cpu structures for all caches from the array defined
1965 * here. We must be able to cover all kmalloc caches during bootstrap.
1967 * If the per cpu array is exhausted then fall back to kmalloc
1968 * of individual cachelines. No sharing is possible then.
1970 #define NR_KMEM_CACHE_CPU 100
1972 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1973 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1975 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1976 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once
, CONFIG_NR_CPUS
);
1978 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1979 int cpu
, gfp_t flags
)
1981 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1984 per_cpu(kmem_cache_cpu_free
, cpu
) =
1985 (void *)c
->freelist
;
1987 /* Table overflow: So allocate ourselves */
1989 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1990 flags
, cpu_to_node(cpu
));
1995 init_kmem_cache_cpu(s
, c
);
1999 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2001 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2002 c
>= per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2006 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2007 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2010 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2014 for_each_online_cpu(cpu
) {
2015 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2018 s
->cpu_slab
[cpu
] = NULL
;
2019 free_kmem_cache_cpu(c
, cpu
);
2024 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2028 for_each_online_cpu(cpu
) {
2029 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2034 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2036 free_kmem_cache_cpus(s
);
2039 s
->cpu_slab
[cpu
] = c
;
2045 * Initialize the per cpu array.
2047 static void init_alloc_cpu_cpu(int cpu
)
2051 if (cpumask_test_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
)))
2054 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2055 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2057 cpumask_set_cpu(cpu
, to_cpumask(kmem_cach_cpu_free_init_once
));
2060 static void __init
init_alloc_cpu(void)
2064 for_each_online_cpu(cpu
)
2065 init_alloc_cpu_cpu(cpu
);
2069 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2070 static inline void init_alloc_cpu(void) {}
2072 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2074 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2081 * No kmalloc_node yet so do it by hand. We know that this is the first
2082 * slab on the node for this slabcache. There are no concurrent accesses
2085 * Note that this function only works on the kmalloc_node_cache
2086 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2087 * memory on a fresh node that has no slab structures yet.
2089 static void early_kmem_cache_node_alloc(gfp_t gfpflags
, int node
)
2092 struct kmem_cache_node
*n
;
2093 unsigned long flags
;
2095 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2097 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2100 if (page_to_nid(page
) != node
) {
2101 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2103 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2104 "in order to be able to continue\n");
2109 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2111 kmalloc_caches
->node
[node
] = n
;
2112 #ifdef CONFIG_SLUB_DEBUG
2113 init_object(kmalloc_caches
, n
, 1);
2114 init_tracking(kmalloc_caches
, n
);
2116 init_kmem_cache_node(n
, kmalloc_caches
);
2117 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2120 * lockdep requires consistent irq usage for each lock
2121 * so even though there cannot be a race this early in
2122 * the boot sequence, we still disable irqs.
2124 local_irq_save(flags
);
2125 add_partial(n
, page
, 0);
2126 local_irq_restore(flags
);
2129 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2133 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2134 struct kmem_cache_node
*n
= s
->node
[node
];
2135 if (n
&& n
!= &s
->local_node
)
2136 kmem_cache_free(kmalloc_caches
, n
);
2137 s
->node
[node
] = NULL
;
2141 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2146 if (slab_state
>= UP
)
2147 local_node
= page_to_nid(virt_to_page(s
));
2151 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2152 struct kmem_cache_node
*n
;
2154 if (local_node
== node
)
2157 if (slab_state
== DOWN
) {
2158 early_kmem_cache_node_alloc(gfpflags
, node
);
2161 n
= kmem_cache_alloc_node(kmalloc_caches
,
2165 free_kmem_cache_nodes(s
);
2171 init_kmem_cache_node(n
, s
);
2176 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2180 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2182 init_kmem_cache_node(&s
->local_node
, s
);
2188 * calculate_sizes() determines the order and the distribution of data within
2191 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2193 unsigned long flags
= s
->flags
;
2194 unsigned long size
= s
->objsize
;
2195 unsigned long align
= s
->align
;
2199 * Round up object size to the next word boundary. We can only
2200 * place the free pointer at word boundaries and this determines
2201 * the possible location of the free pointer.
2203 size
= ALIGN(size
, sizeof(void *));
2205 #ifdef CONFIG_SLUB_DEBUG
2207 * Determine if we can poison the object itself. If the user of
2208 * the slab may touch the object after free or before allocation
2209 * then we should never poison the object itself.
2211 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2213 s
->flags
|= __OBJECT_POISON
;
2215 s
->flags
&= ~__OBJECT_POISON
;
2219 * If we are Redzoning then check if there is some space between the
2220 * end of the object and the free pointer. If not then add an
2221 * additional word to have some bytes to store Redzone information.
2223 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2224 size
+= sizeof(void *);
2228 * With that we have determined the number of bytes in actual use
2229 * by the object. This is the potential offset to the free pointer.
2233 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2236 * Relocate free pointer after the object if it is not
2237 * permitted to overwrite the first word of the object on
2240 * This is the case if we do RCU, have a constructor or
2241 * destructor or are poisoning the objects.
2244 size
+= sizeof(void *);
2247 #ifdef CONFIG_SLUB_DEBUG
2248 if (flags
& SLAB_STORE_USER
)
2250 * Need to store information about allocs and frees after
2253 size
+= 2 * sizeof(struct track
);
2255 if (flags
& SLAB_RED_ZONE
)
2257 * Add some empty padding so that we can catch
2258 * overwrites from earlier objects rather than let
2259 * tracking information or the free pointer be
2260 * corrupted if a user writes before the start
2263 size
+= sizeof(void *);
2267 * Determine the alignment based on various parameters that the
2268 * user specified and the dynamic determination of cache line size
2271 align
= calculate_alignment(flags
, align
, s
->objsize
);
2274 * SLUB stores one object immediately after another beginning from
2275 * offset 0. In order to align the objects we have to simply size
2276 * each object to conform to the alignment.
2278 size
= ALIGN(size
, align
);
2280 if (forced_order
>= 0)
2281 order
= forced_order
;
2283 order
= calculate_order(size
);
2290 s
->allocflags
|= __GFP_COMP
;
2292 if (s
->flags
& SLAB_CACHE_DMA
)
2293 s
->allocflags
|= SLUB_DMA
;
2295 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2296 s
->allocflags
|= __GFP_RECLAIMABLE
;
2299 * Determine the number of objects per slab
2301 s
->oo
= oo_make(order
, size
);
2302 s
->min
= oo_make(get_order(size
), size
);
2303 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2306 return !!oo_objects(s
->oo
);
2310 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2311 const char *name
, size_t size
,
2312 size_t align
, unsigned long flags
,
2313 void (*ctor
)(void *))
2315 memset(s
, 0, kmem_size
);
2320 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2322 if (!calculate_sizes(s
, -1))
2327 s
->remote_node_defrag_ratio
= 1000;
2329 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2332 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2334 free_kmem_cache_nodes(s
);
2336 if (flags
& SLAB_PANIC
)
2337 panic("Cannot create slab %s size=%lu realsize=%u "
2338 "order=%u offset=%u flags=%lx\n",
2339 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2345 * Check if a given pointer is valid
2347 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2351 page
= get_object_page(object
);
2353 if (!page
|| s
!= page
->slab
)
2354 /* No slab or wrong slab */
2357 if (!check_valid_pointer(s
, page
, object
))
2361 * We could also check if the object is on the slabs freelist.
2362 * But this would be too expensive and it seems that the main
2363 * purpose of kmem_ptr_valid() is to check if the object belongs
2364 * to a certain slab.
2368 EXPORT_SYMBOL(kmem_ptr_validate
);
2371 * Determine the size of a slab object
2373 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2377 EXPORT_SYMBOL(kmem_cache_size
);
2379 const char *kmem_cache_name(struct kmem_cache
*s
)
2383 EXPORT_SYMBOL(kmem_cache_name
);
2385 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2388 #ifdef CONFIG_SLUB_DEBUG
2389 void *addr
= page_address(page
);
2391 DECLARE_BITMAP(map
, page
->objects
);
2393 bitmap_zero(map
, page
->objects
);
2394 slab_err(s
, page
, "%s", text
);
2396 for_each_free_object(p
, s
, page
->freelist
)
2397 set_bit(slab_index(p
, s
, addr
), map
);
2399 for_each_object(p
, s
, addr
, page
->objects
) {
2401 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2402 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2404 print_tracking(s
, p
);
2412 * Attempt to free all partial slabs on a node.
2414 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2416 unsigned long flags
;
2417 struct page
*page
, *h
;
2419 spin_lock_irqsave(&n
->list_lock
, flags
);
2420 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2422 list_del(&page
->lru
);
2423 discard_slab(s
, page
);
2426 list_slab_objects(s
, page
,
2427 "Objects remaining on kmem_cache_close()");
2430 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2434 * Release all resources used by a slab cache.
2436 static inline int kmem_cache_close(struct kmem_cache
*s
)
2442 /* Attempt to free all objects */
2443 free_kmem_cache_cpus(s
);
2444 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2445 struct kmem_cache_node
*n
= get_node(s
, node
);
2448 if (n
->nr_partial
|| slabs_node(s
, node
))
2451 free_kmem_cache_nodes(s
);
2456 * Close a cache and release the kmem_cache structure
2457 * (must be used for caches created using kmem_cache_create)
2459 void kmem_cache_destroy(struct kmem_cache
*s
)
2461 down_write(&slub_lock
);
2465 up_write(&slub_lock
);
2466 if (kmem_cache_close(s
)) {
2467 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2468 "still has objects.\n", s
->name
, __func__
);
2471 sysfs_slab_remove(s
);
2473 up_write(&slub_lock
);
2475 EXPORT_SYMBOL(kmem_cache_destroy
);
2477 /********************************************************************
2479 *******************************************************************/
2481 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2482 EXPORT_SYMBOL(kmalloc_caches
);
2484 static int __init
setup_slub_min_order(char *str
)
2486 get_option(&str
, &slub_min_order
);
2491 __setup("slub_min_order=", setup_slub_min_order
);
2493 static int __init
setup_slub_max_order(char *str
)
2495 get_option(&str
, &slub_max_order
);
2500 __setup("slub_max_order=", setup_slub_max_order
);
2502 static int __init
setup_slub_min_objects(char *str
)
2504 get_option(&str
, &slub_min_objects
);
2509 __setup("slub_min_objects=", setup_slub_min_objects
);
2511 static int __init
setup_slub_nomerge(char *str
)
2517 __setup("slub_nomerge", setup_slub_nomerge
);
2519 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2520 const char *name
, int size
, gfp_t gfp_flags
)
2522 unsigned int flags
= 0;
2524 if (gfp_flags
& SLUB_DMA
)
2525 flags
= SLAB_CACHE_DMA
;
2527 down_write(&slub_lock
);
2528 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2532 list_add(&s
->list
, &slab_caches
);
2533 up_write(&slub_lock
);
2534 if (sysfs_slab_add(s
))
2539 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2542 #ifdef CONFIG_ZONE_DMA
2543 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2545 static void sysfs_add_func(struct work_struct
*w
)
2547 struct kmem_cache
*s
;
2549 down_write(&slub_lock
);
2550 list_for_each_entry(s
, &slab_caches
, list
) {
2551 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2552 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2556 up_write(&slub_lock
);
2559 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2561 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2563 struct kmem_cache
*s
;
2567 s
= kmalloc_caches_dma
[index
];
2571 /* Dynamically create dma cache */
2572 if (flags
& __GFP_WAIT
)
2573 down_write(&slub_lock
);
2575 if (!down_write_trylock(&slub_lock
))
2579 if (kmalloc_caches_dma
[index
])
2582 realsize
= kmalloc_caches
[index
].objsize
;
2583 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2584 (unsigned int)realsize
);
2585 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2587 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2588 realsize
, ARCH_KMALLOC_MINALIGN
,
2589 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2595 list_add(&s
->list
, &slab_caches
);
2596 kmalloc_caches_dma
[index
] = s
;
2598 schedule_work(&sysfs_add_work
);
2601 up_write(&slub_lock
);
2603 return kmalloc_caches_dma
[index
];
2608 * Conversion table for small slabs sizes / 8 to the index in the
2609 * kmalloc array. This is necessary for slabs < 192 since we have non power
2610 * of two cache sizes there. The size of larger slabs can be determined using
2613 static s8 size_index
[24] = {
2640 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2646 return ZERO_SIZE_PTR
;
2648 index
= size_index
[(size
- 1) / 8];
2650 index
= fls(size
- 1);
2652 #ifdef CONFIG_ZONE_DMA
2653 if (unlikely((flags
& SLUB_DMA
)))
2654 return dma_kmalloc_cache(index
, flags
);
2657 return &kmalloc_caches
[index
];
2660 void *__kmalloc(size_t size
, gfp_t flags
)
2662 struct kmem_cache
*s
;
2664 if (unlikely(size
> PAGE_SIZE
))
2665 return kmalloc_large(size
, flags
);
2667 s
= get_slab(size
, flags
);
2669 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2672 return slab_alloc(s
, flags
, -1, _RET_IP_
);
2674 EXPORT_SYMBOL(__kmalloc
);
2676 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2678 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2682 return page_address(page
);
2688 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2690 struct kmem_cache
*s
;
2692 if (unlikely(size
> PAGE_SIZE
))
2693 return kmalloc_large_node(size
, flags
, node
);
2695 s
= get_slab(size
, flags
);
2697 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2700 return slab_alloc(s
, flags
, node
, _RET_IP_
);
2702 EXPORT_SYMBOL(__kmalloc_node
);
2705 size_t ksize(const void *object
)
2708 struct kmem_cache
*s
;
2710 if (unlikely(object
== ZERO_SIZE_PTR
))
2713 page
= virt_to_head_page(object
);
2715 if (unlikely(!PageSlab(page
))) {
2716 WARN_ON(!PageCompound(page
));
2717 return PAGE_SIZE
<< compound_order(page
);
2721 #ifdef CONFIG_SLUB_DEBUG
2723 * Debugging requires use of the padding between object
2724 * and whatever may come after it.
2726 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2731 * If we have the need to store the freelist pointer
2732 * back there or track user information then we can
2733 * only use the space before that information.
2735 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2738 * Else we can use all the padding etc for the allocation
2742 EXPORT_SYMBOL(ksize
);
2744 void kfree(const void *x
)
2747 void *object
= (void *)x
;
2749 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2752 page
= virt_to_head_page(x
);
2753 if (unlikely(!PageSlab(page
))) {
2754 BUG_ON(!PageCompound(page
));
2758 slab_free(page
->slab
, page
, object
, _RET_IP_
);
2760 EXPORT_SYMBOL(kfree
);
2763 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2764 * the remaining slabs by the number of items in use. The slabs with the
2765 * most items in use come first. New allocations will then fill those up
2766 * and thus they can be removed from the partial lists.
2768 * The slabs with the least items are placed last. This results in them
2769 * being allocated from last increasing the chance that the last objects
2770 * are freed in them.
2772 int kmem_cache_shrink(struct kmem_cache
*s
)
2776 struct kmem_cache_node
*n
;
2779 int objects
= oo_objects(s
->max
);
2780 struct list_head
*slabs_by_inuse
=
2781 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2782 unsigned long flags
;
2784 if (!slabs_by_inuse
)
2788 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2789 n
= get_node(s
, node
);
2794 for (i
= 0; i
< objects
; i
++)
2795 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2797 spin_lock_irqsave(&n
->list_lock
, flags
);
2800 * Build lists indexed by the items in use in each slab.
2802 * Note that concurrent frees may occur while we hold the
2803 * list_lock. page->inuse here is the upper limit.
2805 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2806 if (!page
->inuse
&& slab_trylock(page
)) {
2808 * Must hold slab lock here because slab_free
2809 * may have freed the last object and be
2810 * waiting to release the slab.
2812 list_del(&page
->lru
);
2815 discard_slab(s
, page
);
2817 list_move(&page
->lru
,
2818 slabs_by_inuse
+ page
->inuse
);
2823 * Rebuild the partial list with the slabs filled up most
2824 * first and the least used slabs at the end.
2826 for (i
= objects
- 1; i
>= 0; i
--)
2827 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2829 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2832 kfree(slabs_by_inuse
);
2835 EXPORT_SYMBOL(kmem_cache_shrink
);
2837 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2838 static int slab_mem_going_offline_callback(void *arg
)
2840 struct kmem_cache
*s
;
2842 down_read(&slub_lock
);
2843 list_for_each_entry(s
, &slab_caches
, list
)
2844 kmem_cache_shrink(s
);
2845 up_read(&slub_lock
);
2850 static void slab_mem_offline_callback(void *arg
)
2852 struct kmem_cache_node
*n
;
2853 struct kmem_cache
*s
;
2854 struct memory_notify
*marg
= arg
;
2857 offline_node
= marg
->status_change_nid
;
2860 * If the node still has available memory. we need kmem_cache_node
2863 if (offline_node
< 0)
2866 down_read(&slub_lock
);
2867 list_for_each_entry(s
, &slab_caches
, list
) {
2868 n
= get_node(s
, offline_node
);
2871 * if n->nr_slabs > 0, slabs still exist on the node
2872 * that is going down. We were unable to free them,
2873 * and offline_pages() function shoudn't call this
2874 * callback. So, we must fail.
2876 BUG_ON(slabs_node(s
, offline_node
));
2878 s
->node
[offline_node
] = NULL
;
2879 kmem_cache_free(kmalloc_caches
, n
);
2882 up_read(&slub_lock
);
2885 static int slab_mem_going_online_callback(void *arg
)
2887 struct kmem_cache_node
*n
;
2888 struct kmem_cache
*s
;
2889 struct memory_notify
*marg
= arg
;
2890 int nid
= marg
->status_change_nid
;
2894 * If the node's memory is already available, then kmem_cache_node is
2895 * already created. Nothing to do.
2901 * We are bringing a node online. No memory is available yet. We must
2902 * allocate a kmem_cache_node structure in order to bring the node
2905 down_read(&slub_lock
);
2906 list_for_each_entry(s
, &slab_caches
, list
) {
2908 * XXX: kmem_cache_alloc_node will fallback to other nodes
2909 * since memory is not yet available from the node that
2912 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2917 init_kmem_cache_node(n
, s
);
2921 up_read(&slub_lock
);
2925 static int slab_memory_callback(struct notifier_block
*self
,
2926 unsigned long action
, void *arg
)
2931 case MEM_GOING_ONLINE
:
2932 ret
= slab_mem_going_online_callback(arg
);
2934 case MEM_GOING_OFFLINE
:
2935 ret
= slab_mem_going_offline_callback(arg
);
2938 case MEM_CANCEL_ONLINE
:
2939 slab_mem_offline_callback(arg
);
2942 case MEM_CANCEL_OFFLINE
:
2946 ret
= notifier_from_errno(ret
);
2952 #endif /* CONFIG_MEMORY_HOTPLUG */
2954 /********************************************************************
2955 * Basic setup of slabs
2956 *******************************************************************/
2958 void __init
kmem_cache_init(void)
2967 * Must first have the slab cache available for the allocations of the
2968 * struct kmem_cache_node's. There is special bootstrap code in
2969 * kmem_cache_open for slab_state == DOWN.
2971 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2972 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2973 kmalloc_caches
[0].refcount
= -1;
2976 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2979 /* Able to allocate the per node structures */
2980 slab_state
= PARTIAL
;
2982 /* Caches that are not of the two-to-the-power-of size */
2983 if (KMALLOC_MIN_SIZE
<= 64) {
2984 create_kmalloc_cache(&kmalloc_caches
[1],
2985 "kmalloc-96", 96, GFP_KERNEL
);
2987 create_kmalloc_cache(&kmalloc_caches
[2],
2988 "kmalloc-192", 192, GFP_KERNEL
);
2992 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2993 create_kmalloc_cache(&kmalloc_caches
[i
],
2994 "kmalloc", 1 << i
, GFP_KERNEL
);
3000 * Patch up the size_index table if we have strange large alignment
3001 * requirements for the kmalloc array. This is only the case for
3002 * MIPS it seems. The standard arches will not generate any code here.
3004 * Largest permitted alignment is 256 bytes due to the way we
3005 * handle the index determination for the smaller caches.
3007 * Make sure that nothing crazy happens if someone starts tinkering
3008 * around with ARCH_KMALLOC_MINALIGN
3010 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3011 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3013 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3014 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3016 if (KMALLOC_MIN_SIZE
== 128) {
3018 * The 192 byte sized cache is not used if the alignment
3019 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3022 for (i
= 128 + 8; i
<= 192; i
+= 8)
3023 size_index
[(i
- 1) / 8] = 8;
3028 /* Provide the correct kmalloc names now that the caches are up */
3029 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3030 kmalloc_caches
[i
]. name
=
3031 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3034 register_cpu_notifier(&slab_notifier
);
3035 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3036 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3038 kmem_size
= sizeof(struct kmem_cache
);
3042 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3043 " CPUs=%d, Nodes=%d\n",
3044 caches
, cache_line_size(),
3045 slub_min_order
, slub_max_order
, slub_min_objects
,
3046 nr_cpu_ids
, nr_node_ids
);
3050 * Find a mergeable slab cache
3052 static int slab_unmergeable(struct kmem_cache
*s
)
3054 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3061 * We may have set a slab to be unmergeable during bootstrap.
3063 if (s
->refcount
< 0)
3069 static struct kmem_cache
*find_mergeable(size_t size
,
3070 size_t align
, unsigned long flags
, const char *name
,
3071 void (*ctor
)(void *))
3073 struct kmem_cache
*s
;
3075 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3081 size
= ALIGN(size
, sizeof(void *));
3082 align
= calculate_alignment(flags
, align
, size
);
3083 size
= ALIGN(size
, align
);
3084 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3086 list_for_each_entry(s
, &slab_caches
, list
) {
3087 if (slab_unmergeable(s
))
3093 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3096 * Check if alignment is compatible.
3097 * Courtesy of Adrian Drzewiecki
3099 if ((s
->size
& ~(align
- 1)) != s
->size
)
3102 if (s
->size
- size
>= sizeof(void *))
3110 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3111 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3113 struct kmem_cache
*s
;
3115 down_write(&slub_lock
);
3116 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3122 * Adjust the object sizes so that we clear
3123 * the complete object on kzalloc.
3125 s
->objsize
= max(s
->objsize
, (int)size
);
3128 * And then we need to update the object size in the
3129 * per cpu structures
3131 for_each_online_cpu(cpu
)
3132 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3134 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3135 up_write(&slub_lock
);
3137 if (sysfs_slab_alias(s
, name
)) {
3138 down_write(&slub_lock
);
3140 up_write(&slub_lock
);
3146 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3148 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3149 size
, align
, flags
, ctor
)) {
3150 list_add(&s
->list
, &slab_caches
);
3151 up_write(&slub_lock
);
3152 if (sysfs_slab_add(s
)) {
3153 down_write(&slub_lock
);
3155 up_write(&slub_lock
);
3163 up_write(&slub_lock
);
3166 if (flags
& SLAB_PANIC
)
3167 panic("Cannot create slabcache %s\n", name
);
3172 EXPORT_SYMBOL(kmem_cache_create
);
3176 * Use the cpu notifier to insure that the cpu slabs are flushed when
3179 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3180 unsigned long action
, void *hcpu
)
3182 long cpu
= (long)hcpu
;
3183 struct kmem_cache
*s
;
3184 unsigned long flags
;
3187 case CPU_UP_PREPARE
:
3188 case CPU_UP_PREPARE_FROZEN
:
3189 init_alloc_cpu_cpu(cpu
);
3190 down_read(&slub_lock
);
3191 list_for_each_entry(s
, &slab_caches
, list
)
3192 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3194 up_read(&slub_lock
);
3197 case CPU_UP_CANCELED
:
3198 case CPU_UP_CANCELED_FROZEN
:
3200 case CPU_DEAD_FROZEN
:
3201 down_read(&slub_lock
);
3202 list_for_each_entry(s
, &slab_caches
, list
) {
3203 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3205 local_irq_save(flags
);
3206 __flush_cpu_slab(s
, cpu
);
3207 local_irq_restore(flags
);
3208 free_kmem_cache_cpu(c
, cpu
);
3209 s
->cpu_slab
[cpu
] = NULL
;
3211 up_read(&slub_lock
);
3219 static struct notifier_block __cpuinitdata slab_notifier
= {
3220 .notifier_call
= slab_cpuup_callback
3225 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
3227 struct kmem_cache
*s
;
3229 if (unlikely(size
> PAGE_SIZE
))
3230 return kmalloc_large(size
, gfpflags
);
3232 s
= get_slab(size
, gfpflags
);
3234 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3237 return slab_alloc(s
, gfpflags
, -1, caller
);
3240 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3241 int node
, unsigned long caller
)
3243 struct kmem_cache
*s
;
3245 if (unlikely(size
> PAGE_SIZE
))
3246 return kmalloc_large_node(size
, gfpflags
, node
);
3248 s
= get_slab(size
, gfpflags
);
3250 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3253 return slab_alloc(s
, gfpflags
, node
, caller
);
3256 #ifdef CONFIG_SLUB_DEBUG
3257 static unsigned long count_partial(struct kmem_cache_node
*n
,
3258 int (*get_count
)(struct page
*))
3260 unsigned long flags
;
3261 unsigned long x
= 0;
3264 spin_lock_irqsave(&n
->list_lock
, flags
);
3265 list_for_each_entry(page
, &n
->partial
, lru
)
3266 x
+= get_count(page
);
3267 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3271 static int count_inuse(struct page
*page
)
3276 static int count_total(struct page
*page
)
3278 return page
->objects
;
3281 static int count_free(struct page
*page
)
3283 return page
->objects
- page
->inuse
;
3286 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3290 void *addr
= page_address(page
);
3292 if (!check_slab(s
, page
) ||
3293 !on_freelist(s
, page
, NULL
))
3296 /* Now we know that a valid freelist exists */
3297 bitmap_zero(map
, page
->objects
);
3299 for_each_free_object(p
, s
, page
->freelist
) {
3300 set_bit(slab_index(p
, s
, addr
), map
);
3301 if (!check_object(s
, page
, p
, 0))
3305 for_each_object(p
, s
, addr
, page
->objects
)
3306 if (!test_bit(slab_index(p
, s
, addr
), map
))
3307 if (!check_object(s
, page
, p
, 1))
3312 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3315 if (slab_trylock(page
)) {
3316 validate_slab(s
, page
, map
);
3319 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3322 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3323 if (!PageSlubDebug(page
))
3324 printk(KERN_ERR
"SLUB %s: SlubDebug not set "
3325 "on slab 0x%p\n", s
->name
, page
);
3327 if (PageSlubDebug(page
))
3328 printk(KERN_ERR
"SLUB %s: SlubDebug set on "
3329 "slab 0x%p\n", s
->name
, page
);
3333 static int validate_slab_node(struct kmem_cache
*s
,
3334 struct kmem_cache_node
*n
, unsigned long *map
)
3336 unsigned long count
= 0;
3338 unsigned long flags
;
3340 spin_lock_irqsave(&n
->list_lock
, flags
);
3342 list_for_each_entry(page
, &n
->partial
, lru
) {
3343 validate_slab_slab(s
, page
, map
);
3346 if (count
!= n
->nr_partial
)
3347 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3348 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3350 if (!(s
->flags
& SLAB_STORE_USER
))
3353 list_for_each_entry(page
, &n
->full
, lru
) {
3354 validate_slab_slab(s
, page
, map
);
3357 if (count
!= atomic_long_read(&n
->nr_slabs
))
3358 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3359 "counter=%ld\n", s
->name
, count
,
3360 atomic_long_read(&n
->nr_slabs
));
3363 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3367 static long validate_slab_cache(struct kmem_cache
*s
)
3370 unsigned long count
= 0;
3371 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3372 sizeof(unsigned long), GFP_KERNEL
);
3378 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3379 struct kmem_cache_node
*n
= get_node(s
, node
);
3381 count
+= validate_slab_node(s
, n
, map
);
3387 #ifdef SLUB_RESILIENCY_TEST
3388 static void resiliency_test(void)
3392 printk(KERN_ERR
"SLUB resiliency testing\n");
3393 printk(KERN_ERR
"-----------------------\n");
3394 printk(KERN_ERR
"A. Corruption after allocation\n");
3396 p
= kzalloc(16, GFP_KERNEL
);
3398 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3399 " 0x12->0x%p\n\n", p
+ 16);
3401 validate_slab_cache(kmalloc_caches
+ 4);
3403 /* Hmmm... The next two are dangerous */
3404 p
= kzalloc(32, GFP_KERNEL
);
3405 p
[32 + sizeof(void *)] = 0x34;
3406 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3407 " 0x34 -> -0x%p\n", p
);
3409 "If allocated object is overwritten then not detectable\n\n");
3411 validate_slab_cache(kmalloc_caches
+ 5);
3412 p
= kzalloc(64, GFP_KERNEL
);
3413 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3415 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3418 "If allocated object is overwritten then not detectable\n\n");
3419 validate_slab_cache(kmalloc_caches
+ 6);
3421 printk(KERN_ERR
"\nB. Corruption after free\n");
3422 p
= kzalloc(128, GFP_KERNEL
);
3425 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3426 validate_slab_cache(kmalloc_caches
+ 7);
3428 p
= kzalloc(256, GFP_KERNEL
);
3431 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3433 validate_slab_cache(kmalloc_caches
+ 8);
3435 p
= kzalloc(512, GFP_KERNEL
);
3438 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3439 validate_slab_cache(kmalloc_caches
+ 9);
3442 static void resiliency_test(void) {};
3446 * Generate lists of code addresses where slabcache objects are allocated
3451 unsigned long count
;
3458 DECLARE_BITMAP(cpus
, NR_CPUS
);
3464 unsigned long count
;
3465 struct location
*loc
;
3468 static void free_loc_track(struct loc_track
*t
)
3471 free_pages((unsigned long)t
->loc
,
3472 get_order(sizeof(struct location
) * t
->max
));
3475 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3480 order
= get_order(sizeof(struct location
) * max
);
3482 l
= (void *)__get_free_pages(flags
, order
);
3487 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3495 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3496 const struct track
*track
)
3498 long start
, end
, pos
;
3500 unsigned long caddr
;
3501 unsigned long age
= jiffies
- track
->when
;
3507 pos
= start
+ (end
- start
+ 1) / 2;
3510 * There is nothing at "end". If we end up there
3511 * we need to add something to before end.
3516 caddr
= t
->loc
[pos
].addr
;
3517 if (track
->addr
== caddr
) {
3523 if (age
< l
->min_time
)
3525 if (age
> l
->max_time
)
3528 if (track
->pid
< l
->min_pid
)
3529 l
->min_pid
= track
->pid
;
3530 if (track
->pid
> l
->max_pid
)
3531 l
->max_pid
= track
->pid
;
3533 cpumask_set_cpu(track
->cpu
,
3534 to_cpumask(l
->cpus
));
3536 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3540 if (track
->addr
< caddr
)
3547 * Not found. Insert new tracking element.
3549 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3555 (t
->count
- pos
) * sizeof(struct location
));
3558 l
->addr
= track
->addr
;
3562 l
->min_pid
= track
->pid
;
3563 l
->max_pid
= track
->pid
;
3564 cpumask_clear(to_cpumask(l
->cpus
));
3565 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
3566 nodes_clear(l
->nodes
);
3567 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3571 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3572 struct page
*page
, enum track_item alloc
)
3574 void *addr
= page_address(page
);
3575 DECLARE_BITMAP(map
, page
->objects
);
3578 bitmap_zero(map
, page
->objects
);
3579 for_each_free_object(p
, s
, page
->freelist
)
3580 set_bit(slab_index(p
, s
, addr
), map
);
3582 for_each_object(p
, s
, addr
, page
->objects
)
3583 if (!test_bit(slab_index(p
, s
, addr
), map
))
3584 add_location(t
, s
, get_track(s
, p
, alloc
));
3587 static int list_locations(struct kmem_cache
*s
, char *buf
,
3588 enum track_item alloc
)
3592 struct loc_track t
= { 0, 0, NULL
};
3595 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3597 return sprintf(buf
, "Out of memory\n");
3599 /* Push back cpu slabs */
3602 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3603 struct kmem_cache_node
*n
= get_node(s
, node
);
3604 unsigned long flags
;
3607 if (!atomic_long_read(&n
->nr_slabs
))
3610 spin_lock_irqsave(&n
->list_lock
, flags
);
3611 list_for_each_entry(page
, &n
->partial
, lru
)
3612 process_slab(&t
, s
, page
, alloc
);
3613 list_for_each_entry(page
, &n
->full
, lru
)
3614 process_slab(&t
, s
, page
, alloc
);
3615 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3618 for (i
= 0; i
< t
.count
; i
++) {
3619 struct location
*l
= &t
.loc
[i
];
3621 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
3623 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3626 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3628 len
+= sprintf(buf
+ len
, "<not-available>");
3630 if (l
->sum_time
!= l
->min_time
) {
3631 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3633 (long)div_u64(l
->sum_time
, l
->count
),
3636 len
+= sprintf(buf
+ len
, " age=%ld",
3639 if (l
->min_pid
!= l
->max_pid
)
3640 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3641 l
->min_pid
, l
->max_pid
);
3643 len
+= sprintf(buf
+ len
, " pid=%ld",
3646 if (num_online_cpus() > 1 &&
3647 !cpumask_empty(to_cpumask(l
->cpus
)) &&
3648 len
< PAGE_SIZE
- 60) {
3649 len
+= sprintf(buf
+ len
, " cpus=");
3650 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3651 to_cpumask(l
->cpus
));
3654 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3655 len
< PAGE_SIZE
- 60) {
3656 len
+= sprintf(buf
+ len
, " nodes=");
3657 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3661 len
+= sprintf(buf
+ len
, "\n");
3666 len
+= sprintf(buf
, "No data\n");
3670 enum slab_stat_type
{
3671 SL_ALL
, /* All slabs */
3672 SL_PARTIAL
, /* Only partially allocated slabs */
3673 SL_CPU
, /* Only slabs used for cpu caches */
3674 SL_OBJECTS
, /* Determine allocated objects not slabs */
3675 SL_TOTAL
/* Determine object capacity not slabs */
3678 #define SO_ALL (1 << SL_ALL)
3679 #define SO_PARTIAL (1 << SL_PARTIAL)
3680 #define SO_CPU (1 << SL_CPU)
3681 #define SO_OBJECTS (1 << SL_OBJECTS)
3682 #define SO_TOTAL (1 << SL_TOTAL)
3684 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3685 char *buf
, unsigned long flags
)
3687 unsigned long total
= 0;
3690 unsigned long *nodes
;
3691 unsigned long *per_cpu
;
3693 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3696 per_cpu
= nodes
+ nr_node_ids
;
3698 if (flags
& SO_CPU
) {
3701 for_each_possible_cpu(cpu
) {
3702 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3704 if (!c
|| c
->node
< 0)
3708 if (flags
& SO_TOTAL
)
3709 x
= c
->page
->objects
;
3710 else if (flags
& SO_OBJECTS
)
3716 nodes
[c
->node
] += x
;
3722 if (flags
& SO_ALL
) {
3723 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3724 struct kmem_cache_node
*n
= get_node(s
, node
);
3726 if (flags
& SO_TOTAL
)
3727 x
= atomic_long_read(&n
->total_objects
);
3728 else if (flags
& SO_OBJECTS
)
3729 x
= atomic_long_read(&n
->total_objects
) -
3730 count_partial(n
, count_free
);
3733 x
= atomic_long_read(&n
->nr_slabs
);
3738 } else if (flags
& SO_PARTIAL
) {
3739 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3740 struct kmem_cache_node
*n
= get_node(s
, node
);
3742 if (flags
& SO_TOTAL
)
3743 x
= count_partial(n
, count_total
);
3744 else if (flags
& SO_OBJECTS
)
3745 x
= count_partial(n
, count_inuse
);
3752 x
= sprintf(buf
, "%lu", total
);
3754 for_each_node_state(node
, N_NORMAL_MEMORY
)
3756 x
+= sprintf(buf
+ x
, " N%d=%lu",
3760 return x
+ sprintf(buf
+ x
, "\n");
3763 static int any_slab_objects(struct kmem_cache
*s
)
3767 for_each_online_node(node
) {
3768 struct kmem_cache_node
*n
= get_node(s
, node
);
3773 if (atomic_long_read(&n
->total_objects
))
3779 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3780 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3782 struct slab_attribute
{
3783 struct attribute attr
;
3784 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3785 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3788 #define SLAB_ATTR_RO(_name) \
3789 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3791 #define SLAB_ATTR(_name) \
3792 static struct slab_attribute _name##_attr = \
3793 __ATTR(_name, 0644, _name##_show, _name##_store)
3795 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3797 return sprintf(buf
, "%d\n", s
->size
);
3799 SLAB_ATTR_RO(slab_size
);
3801 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3803 return sprintf(buf
, "%d\n", s
->align
);
3805 SLAB_ATTR_RO(align
);
3807 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3809 return sprintf(buf
, "%d\n", s
->objsize
);
3811 SLAB_ATTR_RO(object_size
);
3813 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3815 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3817 SLAB_ATTR_RO(objs_per_slab
);
3819 static ssize_t
order_store(struct kmem_cache
*s
,
3820 const char *buf
, size_t length
)
3822 unsigned long order
;
3825 err
= strict_strtoul(buf
, 10, &order
);
3829 if (order
> slub_max_order
|| order
< slub_min_order
)
3832 calculate_sizes(s
, order
);
3836 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3838 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3842 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3845 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3847 return n
+ sprintf(buf
+ n
, "\n");
3853 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3855 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3857 SLAB_ATTR_RO(aliases
);
3859 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3861 return show_slab_objects(s
, buf
, SO_ALL
);
3863 SLAB_ATTR_RO(slabs
);
3865 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3867 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3869 SLAB_ATTR_RO(partial
);
3871 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3873 return show_slab_objects(s
, buf
, SO_CPU
);
3875 SLAB_ATTR_RO(cpu_slabs
);
3877 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3879 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3881 SLAB_ATTR_RO(objects
);
3883 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3885 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3887 SLAB_ATTR_RO(objects_partial
);
3889 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3891 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3893 SLAB_ATTR_RO(total_objects
);
3895 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3897 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3900 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3901 const char *buf
, size_t length
)
3903 s
->flags
&= ~SLAB_DEBUG_FREE
;
3905 s
->flags
|= SLAB_DEBUG_FREE
;
3908 SLAB_ATTR(sanity_checks
);
3910 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3912 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3915 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3918 s
->flags
&= ~SLAB_TRACE
;
3920 s
->flags
|= SLAB_TRACE
;
3925 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3927 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3930 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3931 const char *buf
, size_t length
)
3933 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3935 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3938 SLAB_ATTR(reclaim_account
);
3940 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3942 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3944 SLAB_ATTR_RO(hwcache_align
);
3946 #ifdef CONFIG_ZONE_DMA
3947 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3949 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3951 SLAB_ATTR_RO(cache_dma
);
3954 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3956 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3958 SLAB_ATTR_RO(destroy_by_rcu
);
3960 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3962 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3965 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3966 const char *buf
, size_t length
)
3968 if (any_slab_objects(s
))
3971 s
->flags
&= ~SLAB_RED_ZONE
;
3973 s
->flags
|= SLAB_RED_ZONE
;
3974 calculate_sizes(s
, -1);
3977 SLAB_ATTR(red_zone
);
3979 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3981 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3984 static ssize_t
poison_store(struct kmem_cache
*s
,
3985 const char *buf
, size_t length
)
3987 if (any_slab_objects(s
))
3990 s
->flags
&= ~SLAB_POISON
;
3992 s
->flags
|= SLAB_POISON
;
3993 calculate_sizes(s
, -1);
3998 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4000 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4003 static ssize_t
store_user_store(struct kmem_cache
*s
,
4004 const char *buf
, size_t length
)
4006 if (any_slab_objects(s
))
4009 s
->flags
&= ~SLAB_STORE_USER
;
4011 s
->flags
|= SLAB_STORE_USER
;
4012 calculate_sizes(s
, -1);
4015 SLAB_ATTR(store_user
);
4017 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4022 static ssize_t
validate_store(struct kmem_cache
*s
,
4023 const char *buf
, size_t length
)
4027 if (buf
[0] == '1') {
4028 ret
= validate_slab_cache(s
);
4034 SLAB_ATTR(validate
);
4036 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4041 static ssize_t
shrink_store(struct kmem_cache
*s
,
4042 const char *buf
, size_t length
)
4044 if (buf
[0] == '1') {
4045 int rc
= kmem_cache_shrink(s
);
4055 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4057 if (!(s
->flags
& SLAB_STORE_USER
))
4059 return list_locations(s
, buf
, TRACK_ALLOC
);
4061 SLAB_ATTR_RO(alloc_calls
);
4063 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4065 if (!(s
->flags
& SLAB_STORE_USER
))
4067 return list_locations(s
, buf
, TRACK_FREE
);
4069 SLAB_ATTR_RO(free_calls
);
4072 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4074 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4077 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4078 const char *buf
, size_t length
)
4080 unsigned long ratio
;
4083 err
= strict_strtoul(buf
, 10, &ratio
);
4088 s
->remote_node_defrag_ratio
= ratio
* 10;
4092 SLAB_ATTR(remote_node_defrag_ratio
);
4095 #ifdef CONFIG_SLUB_STATS
4096 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4098 unsigned long sum
= 0;
4101 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4106 for_each_online_cpu(cpu
) {
4107 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4113 len
= sprintf(buf
, "%lu", sum
);
4116 for_each_online_cpu(cpu
) {
4117 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4118 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4122 return len
+ sprintf(buf
+ len
, "\n");
4125 #define STAT_ATTR(si, text) \
4126 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4128 return show_stat(s, buf, si); \
4130 SLAB_ATTR_RO(text); \
4132 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4133 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4134 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4135 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4136 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4137 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4138 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4139 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4140 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4141 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4142 STAT_ATTR(FREE_SLAB
, free_slab
);
4143 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4144 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4145 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4146 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4147 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4148 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4149 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4152 static struct attribute
*slab_attrs
[] = {
4153 &slab_size_attr
.attr
,
4154 &object_size_attr
.attr
,
4155 &objs_per_slab_attr
.attr
,
4158 &objects_partial_attr
.attr
,
4159 &total_objects_attr
.attr
,
4162 &cpu_slabs_attr
.attr
,
4166 &sanity_checks_attr
.attr
,
4168 &hwcache_align_attr
.attr
,
4169 &reclaim_account_attr
.attr
,
4170 &destroy_by_rcu_attr
.attr
,
4171 &red_zone_attr
.attr
,
4173 &store_user_attr
.attr
,
4174 &validate_attr
.attr
,
4176 &alloc_calls_attr
.attr
,
4177 &free_calls_attr
.attr
,
4178 #ifdef CONFIG_ZONE_DMA
4179 &cache_dma_attr
.attr
,
4182 &remote_node_defrag_ratio_attr
.attr
,
4184 #ifdef CONFIG_SLUB_STATS
4185 &alloc_fastpath_attr
.attr
,
4186 &alloc_slowpath_attr
.attr
,
4187 &free_fastpath_attr
.attr
,
4188 &free_slowpath_attr
.attr
,
4189 &free_frozen_attr
.attr
,
4190 &free_add_partial_attr
.attr
,
4191 &free_remove_partial_attr
.attr
,
4192 &alloc_from_partial_attr
.attr
,
4193 &alloc_slab_attr
.attr
,
4194 &alloc_refill_attr
.attr
,
4195 &free_slab_attr
.attr
,
4196 &cpuslab_flush_attr
.attr
,
4197 &deactivate_full_attr
.attr
,
4198 &deactivate_empty_attr
.attr
,
4199 &deactivate_to_head_attr
.attr
,
4200 &deactivate_to_tail_attr
.attr
,
4201 &deactivate_remote_frees_attr
.attr
,
4202 &order_fallback_attr
.attr
,
4207 static struct attribute_group slab_attr_group
= {
4208 .attrs
= slab_attrs
,
4211 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4212 struct attribute
*attr
,
4215 struct slab_attribute
*attribute
;
4216 struct kmem_cache
*s
;
4219 attribute
= to_slab_attr(attr
);
4222 if (!attribute
->show
)
4225 err
= attribute
->show(s
, buf
);
4230 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4231 struct attribute
*attr
,
4232 const char *buf
, size_t len
)
4234 struct slab_attribute
*attribute
;
4235 struct kmem_cache
*s
;
4238 attribute
= to_slab_attr(attr
);
4241 if (!attribute
->store
)
4244 err
= attribute
->store(s
, buf
, len
);
4249 static void kmem_cache_release(struct kobject
*kobj
)
4251 struct kmem_cache
*s
= to_slab(kobj
);
4256 static struct sysfs_ops slab_sysfs_ops
= {
4257 .show
= slab_attr_show
,
4258 .store
= slab_attr_store
,
4261 static struct kobj_type slab_ktype
= {
4262 .sysfs_ops
= &slab_sysfs_ops
,
4263 .release
= kmem_cache_release
4266 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4268 struct kobj_type
*ktype
= get_ktype(kobj
);
4270 if (ktype
== &slab_ktype
)
4275 static struct kset_uevent_ops slab_uevent_ops
= {
4276 .filter
= uevent_filter
,
4279 static struct kset
*slab_kset
;
4281 #define ID_STR_LENGTH 64
4283 /* Create a unique string id for a slab cache:
4285 * Format :[flags-]size
4287 static char *create_unique_id(struct kmem_cache
*s
)
4289 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4296 * First flags affecting slabcache operations. We will only
4297 * get here for aliasable slabs so we do not need to support
4298 * too many flags. The flags here must cover all flags that
4299 * are matched during merging to guarantee that the id is
4302 if (s
->flags
& SLAB_CACHE_DMA
)
4304 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4306 if (s
->flags
& SLAB_DEBUG_FREE
)
4310 p
+= sprintf(p
, "%07d", s
->size
);
4311 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4315 static int sysfs_slab_add(struct kmem_cache
*s
)
4321 if (slab_state
< SYSFS
)
4322 /* Defer until later */
4325 unmergeable
= slab_unmergeable(s
);
4328 * Slabcache can never be merged so we can use the name proper.
4329 * This is typically the case for debug situations. In that
4330 * case we can catch duplicate names easily.
4332 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4336 * Create a unique name for the slab as a target
4339 name
= create_unique_id(s
);
4342 s
->kobj
.kset
= slab_kset
;
4343 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4345 kobject_put(&s
->kobj
);
4349 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4352 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4354 /* Setup first alias */
4355 sysfs_slab_alias(s
, s
->name
);
4361 static void sysfs_slab_remove(struct kmem_cache
*s
)
4363 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4364 kobject_del(&s
->kobj
);
4365 kobject_put(&s
->kobj
);
4369 * Need to buffer aliases during bootup until sysfs becomes
4370 * available lest we lose that information.
4372 struct saved_alias
{
4373 struct kmem_cache
*s
;
4375 struct saved_alias
*next
;
4378 static struct saved_alias
*alias_list
;
4380 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4382 struct saved_alias
*al
;
4384 if (slab_state
== SYSFS
) {
4386 * If we have a leftover link then remove it.
4388 sysfs_remove_link(&slab_kset
->kobj
, name
);
4389 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4392 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4398 al
->next
= alias_list
;
4403 static int __init
slab_sysfs_init(void)
4405 struct kmem_cache
*s
;
4408 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4410 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4416 list_for_each_entry(s
, &slab_caches
, list
) {
4417 err
= sysfs_slab_add(s
);
4419 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4420 " to sysfs\n", s
->name
);
4423 while (alias_list
) {
4424 struct saved_alias
*al
= alias_list
;
4426 alias_list
= alias_list
->next
;
4427 err
= sysfs_slab_alias(al
->s
, al
->name
);
4429 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4430 " %s to sysfs\n", s
->name
);
4438 __initcall(slab_sysfs_init
);
4442 * The /proc/slabinfo ABI
4444 #ifdef CONFIG_SLABINFO
4445 static void print_slabinfo_header(struct seq_file
*m
)
4447 seq_puts(m
, "slabinfo - version: 2.1\n");
4448 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4449 "<objperslab> <pagesperslab>");
4450 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4451 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4455 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4459 down_read(&slub_lock
);
4461 print_slabinfo_header(m
);
4463 return seq_list_start(&slab_caches
, *pos
);
4466 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4468 return seq_list_next(p
, &slab_caches
, pos
);
4471 static void s_stop(struct seq_file
*m
, void *p
)
4473 up_read(&slub_lock
);
4476 static int s_show(struct seq_file
*m
, void *p
)
4478 unsigned long nr_partials
= 0;
4479 unsigned long nr_slabs
= 0;
4480 unsigned long nr_inuse
= 0;
4481 unsigned long nr_objs
= 0;
4482 unsigned long nr_free
= 0;
4483 struct kmem_cache
*s
;
4486 s
= list_entry(p
, struct kmem_cache
, list
);
4488 for_each_online_node(node
) {
4489 struct kmem_cache_node
*n
= get_node(s
, node
);
4494 nr_partials
+= n
->nr_partial
;
4495 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4496 nr_objs
+= atomic_long_read(&n
->total_objects
);
4497 nr_free
+= count_partial(n
, count_free
);
4500 nr_inuse
= nr_objs
- nr_free
;
4502 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4503 nr_objs
, s
->size
, oo_objects(s
->oo
),
4504 (1 << oo_order(s
->oo
)));
4505 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4506 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4512 static const struct seq_operations slabinfo_op
= {
4519 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4521 return seq_open(file
, &slabinfo_op
);
4524 static const struct file_operations proc_slabinfo_operations
= {
4525 .open
= slabinfo_open
,
4527 .llseek
= seq_lseek
,
4528 .release
= seq_release
,
4531 static int __init
slab_proc_init(void)
4533 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4536 module_init(slab_proc_init
);
4537 #endif /* CONFIG_SLABINFO */