4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
61 * dentry->d_inode->i_lock
64 * dcache_hash_bucket lock
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
70 * dentry->d_parent->d_lock
73 * If no ancestor relationship:
74 * if (dentry1 < dentry2)
78 int sysctl_vfs_cache_pressure __read_mostly
= 100;
79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
81 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lru_lock
);
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
84 EXPORT_SYMBOL(rename_lock
);
86 static struct kmem_cache
*dentry_cache __read_mostly
;
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
96 #define D_HASHBITS d_hash_shift
97 #define D_HASHMASK d_hash_mask
99 static unsigned int d_hash_mask __read_mostly
;
100 static unsigned int d_hash_shift __read_mostly
;
102 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
104 static inline struct hlist_bl_head
*d_hash(struct dentry
*parent
,
107 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
108 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
109 return dentry_hashtable
+ (hash
& D_HASHMASK
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(unsigned int, nr_dentry
);
119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
120 static int get_nr_dentry(void)
124 for_each_possible_cpu(i
)
125 sum
+= per_cpu(nr_dentry
, i
);
126 return sum
< 0 ? 0 : sum
;
129 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
130 size_t *lenp
, loff_t
*ppos
)
132 dentry_stat
.nr_dentry
= get_nr_dentry();
133 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
137 static void __d_free(struct rcu_head
*head
)
139 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
141 WARN_ON(!list_empty(&dentry
->d_alias
));
142 if (dname_external(dentry
))
143 kfree(dentry
->d_name
.name
);
144 kmem_cache_free(dentry_cache
, dentry
);
150 static void d_free(struct dentry
*dentry
)
152 BUG_ON(dentry
->d_count
);
153 this_cpu_dec(nr_dentry
);
154 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
155 dentry
->d_op
->d_release(dentry
);
157 /* if dentry was never visible to RCU, immediate free is OK */
158 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
159 __d_free(&dentry
->d_u
.d_rcu
);
161 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
165 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
166 * @dentry: the target dentry
167 * After this call, in-progress rcu-walk path lookup will fail. This
168 * should be called after unhashing, and after changing d_inode (if
169 * the dentry has not already been unhashed).
171 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
173 assert_spin_locked(&dentry
->d_lock
);
174 /* Go through a barrier */
175 write_seqcount_barrier(&dentry
->d_seq
);
179 * Release the dentry's inode, using the filesystem
180 * d_iput() operation if defined. Dentry has no refcount
183 static void dentry_iput(struct dentry
* dentry
)
184 __releases(dentry
->d_lock
)
185 __releases(dentry
->d_inode
->i_lock
)
187 struct inode
*inode
= dentry
->d_inode
;
189 dentry
->d_inode
= NULL
;
190 list_del_init(&dentry
->d_alias
);
191 spin_unlock(&dentry
->d_lock
);
192 spin_unlock(&inode
->i_lock
);
194 fsnotify_inoderemove(inode
);
195 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
196 dentry
->d_op
->d_iput(dentry
, inode
);
200 spin_unlock(&dentry
->d_lock
);
205 * Release the dentry's inode, using the filesystem
206 * d_iput() operation if defined. dentry remains in-use.
208 static void dentry_unlink_inode(struct dentry
* dentry
)
209 __releases(dentry
->d_lock
)
210 __releases(dentry
->d_inode
->i_lock
)
212 struct inode
*inode
= dentry
->d_inode
;
213 dentry
->d_inode
= NULL
;
214 list_del_init(&dentry
->d_alias
);
215 dentry_rcuwalk_barrier(dentry
);
216 spin_unlock(&dentry
->d_lock
);
217 spin_unlock(&inode
->i_lock
);
219 fsnotify_inoderemove(inode
);
220 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
221 dentry
->d_op
->d_iput(dentry
, inode
);
227 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
229 static void dentry_lru_add(struct dentry
*dentry
)
231 if (list_empty(&dentry
->d_lru
)) {
232 spin_lock(&dcache_lru_lock
);
233 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
234 dentry
->d_sb
->s_nr_dentry_unused
++;
235 dentry_stat
.nr_unused
++;
236 spin_unlock(&dcache_lru_lock
);
240 static void __dentry_lru_del(struct dentry
*dentry
)
242 list_del_init(&dentry
->d_lru
);
243 dentry
->d_sb
->s_nr_dentry_unused
--;
244 dentry_stat
.nr_unused
--;
247 static void dentry_lru_del(struct dentry
*dentry
)
249 if (!list_empty(&dentry
->d_lru
)) {
250 spin_lock(&dcache_lru_lock
);
251 __dentry_lru_del(dentry
);
252 spin_unlock(&dcache_lru_lock
);
256 static void dentry_lru_move_tail(struct dentry
*dentry
)
258 spin_lock(&dcache_lru_lock
);
259 if (list_empty(&dentry
->d_lru
)) {
260 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
261 dentry
->d_sb
->s_nr_dentry_unused
++;
262 dentry_stat
.nr_unused
++;
264 list_move_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
266 spin_unlock(&dcache_lru_lock
);
270 * d_kill - kill dentry and return parent
271 * @dentry: dentry to kill
272 * @parent: parent dentry
274 * The dentry must already be unhashed and removed from the LRU.
276 * If this is the root of the dentry tree, return NULL.
278 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
281 static struct dentry
*d_kill(struct dentry
*dentry
, struct dentry
*parent
)
282 __releases(dentry
->d_lock
)
283 __releases(parent
->d_lock
)
284 __releases(dentry
->d_inode
->i_lock
)
286 list_del(&dentry
->d_u
.d_child
);
288 * Inform try_to_ascend() that we are no longer attached to the
291 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
293 spin_unlock(&parent
->d_lock
);
296 * dentry_iput drops the locks, at which point nobody (except
297 * transient RCU lookups) can reach this dentry.
304 * d_drop - drop a dentry
305 * @dentry: dentry to drop
307 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
308 * be found through a VFS lookup any more. Note that this is different from
309 * deleting the dentry - d_delete will try to mark the dentry negative if
310 * possible, giving a successful _negative_ lookup, while d_drop will
311 * just make the cache lookup fail.
313 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
314 * reason (NFS timeouts or autofs deletes).
316 * __d_drop requires dentry->d_lock.
318 void __d_drop(struct dentry
*dentry
)
320 if (!d_unhashed(dentry
)) {
321 struct hlist_bl_head
*b
;
322 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
323 b
= &dentry
->d_sb
->s_anon
;
325 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
328 __hlist_bl_del(&dentry
->d_hash
);
329 dentry
->d_hash
.pprev
= NULL
;
332 dentry_rcuwalk_barrier(dentry
);
335 EXPORT_SYMBOL(__d_drop
);
337 void d_drop(struct dentry
*dentry
)
339 spin_lock(&dentry
->d_lock
);
341 spin_unlock(&dentry
->d_lock
);
343 EXPORT_SYMBOL(d_drop
);
346 * Finish off a dentry we've decided to kill.
347 * dentry->d_lock must be held, returns with it unlocked.
348 * If ref is non-zero, then decrement the refcount too.
349 * Returns dentry requiring refcount drop, or NULL if we're done.
351 static inline struct dentry
*dentry_kill(struct dentry
*dentry
, int ref
)
352 __releases(dentry
->d_lock
)
355 struct dentry
*parent
;
357 inode
= dentry
->d_inode
;
358 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
360 spin_unlock(&dentry
->d_lock
);
362 return dentry
; /* try again with same dentry */
367 parent
= dentry
->d_parent
;
368 if (parent
&& !spin_trylock(&parent
->d_lock
)) {
370 spin_unlock(&inode
->i_lock
);
376 /* if dentry was on the d_lru list delete it from there */
377 dentry_lru_del(dentry
);
378 /* if it was on the hash then remove it */
380 return d_kill(dentry
, parent
);
386 * This is complicated by the fact that we do not want to put
387 * dentries that are no longer on any hash chain on the unused
388 * list: we'd much rather just get rid of them immediately.
390 * However, that implies that we have to traverse the dentry
391 * tree upwards to the parents which might _also_ now be
392 * scheduled for deletion (it may have been only waiting for
393 * its last child to go away).
395 * This tail recursion is done by hand as we don't want to depend
396 * on the compiler to always get this right (gcc generally doesn't).
397 * Real recursion would eat up our stack space.
401 * dput - release a dentry
402 * @dentry: dentry to release
404 * Release a dentry. This will drop the usage count and if appropriate
405 * call the dentry unlink method as well as removing it from the queues and
406 * releasing its resources. If the parent dentries were scheduled for release
407 * they too may now get deleted.
409 void dput(struct dentry
*dentry
)
415 if (dentry
->d_count
== 1)
417 spin_lock(&dentry
->d_lock
);
418 BUG_ON(!dentry
->d_count
);
419 if (dentry
->d_count
> 1) {
421 spin_unlock(&dentry
->d_lock
);
425 if (dentry
->d_flags
& DCACHE_OP_DELETE
) {
426 if (dentry
->d_op
->d_delete(dentry
))
430 /* Unreachable? Get rid of it */
431 if (d_unhashed(dentry
))
434 /* Otherwise leave it cached and ensure it's on the LRU */
435 dentry
->d_flags
|= DCACHE_REFERENCED
;
436 dentry_lru_add(dentry
);
439 spin_unlock(&dentry
->d_lock
);
443 dentry
= dentry_kill(dentry
, 1);
450 * d_invalidate - invalidate a dentry
451 * @dentry: dentry to invalidate
453 * Try to invalidate the dentry if it turns out to be
454 * possible. If there are other dentries that can be
455 * reached through this one we can't delete it and we
456 * return -EBUSY. On success we return 0.
461 int d_invalidate(struct dentry
* dentry
)
464 * If it's already been dropped, return OK.
466 spin_lock(&dentry
->d_lock
);
467 if (d_unhashed(dentry
)) {
468 spin_unlock(&dentry
->d_lock
);
472 * Check whether to do a partial shrink_dcache
473 * to get rid of unused child entries.
475 if (!list_empty(&dentry
->d_subdirs
)) {
476 spin_unlock(&dentry
->d_lock
);
477 shrink_dcache_parent(dentry
);
478 spin_lock(&dentry
->d_lock
);
482 * Somebody else still using it?
484 * If it's a directory, we can't drop it
485 * for fear of somebody re-populating it
486 * with children (even though dropping it
487 * would make it unreachable from the root,
488 * we might still populate it if it was a
489 * working directory or similar).
491 if (dentry
->d_count
> 1) {
492 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
493 spin_unlock(&dentry
->d_lock
);
499 spin_unlock(&dentry
->d_lock
);
502 EXPORT_SYMBOL(d_invalidate
);
504 /* This must be called with d_lock held */
505 static inline void __dget_dlock(struct dentry
*dentry
)
510 static inline void __dget(struct dentry
*dentry
)
512 spin_lock(&dentry
->d_lock
);
513 __dget_dlock(dentry
);
514 spin_unlock(&dentry
->d_lock
);
517 struct dentry
*dget_parent(struct dentry
*dentry
)
523 * Don't need rcu_dereference because we re-check it was correct under
527 ret
= dentry
->d_parent
;
532 spin_lock(&ret
->d_lock
);
533 if (unlikely(ret
!= dentry
->d_parent
)) {
534 spin_unlock(&ret
->d_lock
);
539 BUG_ON(!ret
->d_count
);
541 spin_unlock(&ret
->d_lock
);
545 EXPORT_SYMBOL(dget_parent
);
548 * d_find_alias - grab a hashed alias of inode
549 * @inode: inode in question
550 * @want_discon: flag, used by d_splice_alias, to request
551 * that only a DISCONNECTED alias be returned.
553 * If inode has a hashed alias, or is a directory and has any alias,
554 * acquire the reference to alias and return it. Otherwise return NULL.
555 * Notice that if inode is a directory there can be only one alias and
556 * it can be unhashed only if it has no children, or if it is the root
559 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
560 * any other hashed alias over that one unless @want_discon is set,
561 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
563 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
565 struct dentry
*alias
, *discon_alias
;
569 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
570 spin_lock(&alias
->d_lock
);
571 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
572 if (IS_ROOT(alias
) &&
573 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
574 discon_alias
= alias
;
575 } else if (!want_discon
) {
577 spin_unlock(&alias
->d_lock
);
581 spin_unlock(&alias
->d_lock
);
584 alias
= discon_alias
;
585 spin_lock(&alias
->d_lock
);
586 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
587 if (IS_ROOT(alias
) &&
588 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
590 spin_unlock(&alias
->d_lock
);
594 spin_unlock(&alias
->d_lock
);
600 struct dentry
*d_find_alias(struct inode
*inode
)
602 struct dentry
*de
= NULL
;
604 if (!list_empty(&inode
->i_dentry
)) {
605 spin_lock(&inode
->i_lock
);
606 de
= __d_find_alias(inode
, 0);
607 spin_unlock(&inode
->i_lock
);
611 EXPORT_SYMBOL(d_find_alias
);
614 * Try to kill dentries associated with this inode.
615 * WARNING: you must own a reference to inode.
617 void d_prune_aliases(struct inode
*inode
)
619 struct dentry
*dentry
;
621 spin_lock(&inode
->i_lock
);
622 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
623 spin_lock(&dentry
->d_lock
);
624 if (!dentry
->d_count
) {
625 __dget_dlock(dentry
);
627 spin_unlock(&dentry
->d_lock
);
628 spin_unlock(&inode
->i_lock
);
632 spin_unlock(&dentry
->d_lock
);
634 spin_unlock(&inode
->i_lock
);
636 EXPORT_SYMBOL(d_prune_aliases
);
639 * Try to throw away a dentry - free the inode, dput the parent.
640 * Requires dentry->d_lock is held, and dentry->d_count == 0.
641 * Releases dentry->d_lock.
643 * This may fail if locks cannot be acquired no problem, just try again.
645 static void try_prune_one_dentry(struct dentry
*dentry
)
646 __releases(dentry
->d_lock
)
648 struct dentry
*parent
;
650 parent
= dentry_kill(dentry
, 0);
652 * If dentry_kill returns NULL, we have nothing more to do.
653 * if it returns the same dentry, trylocks failed. In either
654 * case, just loop again.
656 * Otherwise, we need to prune ancestors too. This is necessary
657 * to prevent quadratic behavior of shrink_dcache_parent(), but
658 * is also expected to be beneficial in reducing dentry cache
663 if (parent
== dentry
)
666 /* Prune ancestors. */
669 spin_lock(&dentry
->d_lock
);
670 if (dentry
->d_count
> 1) {
672 spin_unlock(&dentry
->d_lock
);
675 dentry
= dentry_kill(dentry
, 1);
679 static void shrink_dentry_list(struct list_head
*list
)
681 struct dentry
*dentry
;
685 dentry
= list_entry_rcu(list
->prev
, struct dentry
, d_lru
);
686 if (&dentry
->d_lru
== list
)
688 spin_lock(&dentry
->d_lock
);
689 if (dentry
!= list_entry(list
->prev
, struct dentry
, d_lru
)) {
690 spin_unlock(&dentry
->d_lock
);
695 * We found an inuse dentry which was not removed from
696 * the LRU because of laziness during lookup. Do not free
697 * it - just keep it off the LRU list.
699 if (dentry
->d_count
) {
700 dentry_lru_del(dentry
);
701 spin_unlock(&dentry
->d_lock
);
707 try_prune_one_dentry(dentry
);
715 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
716 * @sb: superblock to shrink dentry LRU.
717 * @count: number of entries to prune
718 * @flags: flags to control the dentry processing
720 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
722 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
724 /* called from prune_dcache() and shrink_dcache_parent() */
725 struct dentry
*dentry
;
726 LIST_HEAD(referenced
);
731 spin_lock(&dcache_lru_lock
);
732 while (!list_empty(&sb
->s_dentry_lru
)) {
733 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
734 struct dentry
, d_lru
);
735 BUG_ON(dentry
->d_sb
!= sb
);
737 if (!spin_trylock(&dentry
->d_lock
)) {
738 spin_unlock(&dcache_lru_lock
);
744 * If we are honouring the DCACHE_REFERENCED flag and the
745 * dentry has this flag set, don't free it. Clear the flag
746 * and put it back on the LRU.
748 if (flags
& DCACHE_REFERENCED
&&
749 dentry
->d_flags
& DCACHE_REFERENCED
) {
750 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
751 list_move(&dentry
->d_lru
, &referenced
);
752 spin_unlock(&dentry
->d_lock
);
754 list_move_tail(&dentry
->d_lru
, &tmp
);
755 spin_unlock(&dentry
->d_lock
);
759 cond_resched_lock(&dcache_lru_lock
);
761 if (!list_empty(&referenced
))
762 list_splice(&referenced
, &sb
->s_dentry_lru
);
763 spin_unlock(&dcache_lru_lock
);
765 shrink_dentry_list(&tmp
);
771 * prune_dcache - shrink the dcache
772 * @count: number of entries to try to free
774 * Shrink the dcache. This is done when we need more memory, or simply when we
775 * need to unmount something (at which point we need to unuse all dentries).
777 * This function may fail to free any resources if all the dentries are in use.
779 static void prune_dcache(int count
)
781 struct super_block
*sb
, *p
= NULL
;
783 int unused
= dentry_stat
.nr_unused
;
787 if (unused
== 0 || count
== 0)
792 prune_ratio
= unused
/ count
;
794 list_for_each_entry(sb
, &super_blocks
, s_list
) {
795 if (list_empty(&sb
->s_instances
))
797 if (sb
->s_nr_dentry_unused
== 0)
800 /* Now, we reclaim unused dentrins with fairness.
801 * We reclaim them same percentage from each superblock.
802 * We calculate number of dentries to scan on this sb
803 * as follows, but the implementation is arranged to avoid
805 * number of dentries to scan on this sb =
806 * count * (number of dentries on this sb /
807 * number of dentries in the machine)
809 spin_unlock(&sb_lock
);
810 if (prune_ratio
!= 1)
811 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
813 w_count
= sb
->s_nr_dentry_unused
;
816 * We need to be sure this filesystem isn't being unmounted,
817 * otherwise we could race with generic_shutdown_super(), and
818 * end up holding a reference to an inode while the filesystem
819 * is unmounted. So we try to get s_umount, and make sure
822 if (down_read_trylock(&sb
->s_umount
)) {
823 if ((sb
->s_root
!= NULL
) &&
824 (!list_empty(&sb
->s_dentry_lru
))) {
825 __shrink_dcache_sb(sb
, &w_count
,
829 up_read(&sb
->s_umount
);
836 /* more work left to do? */
842 spin_unlock(&sb_lock
);
846 * shrink_dcache_sb - shrink dcache for a superblock
849 * Shrink the dcache for the specified super block. This is used to free
850 * the dcache before unmounting a file system.
852 void shrink_dcache_sb(struct super_block
*sb
)
856 spin_lock(&dcache_lru_lock
);
857 while (!list_empty(&sb
->s_dentry_lru
)) {
858 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
859 spin_unlock(&dcache_lru_lock
);
860 shrink_dentry_list(&tmp
);
861 spin_lock(&dcache_lru_lock
);
863 spin_unlock(&dcache_lru_lock
);
865 EXPORT_SYMBOL(shrink_dcache_sb
);
868 * destroy a single subtree of dentries for unmount
869 * - see the comments on shrink_dcache_for_umount() for a description of the
872 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
874 struct dentry
*parent
;
875 unsigned detached
= 0;
877 BUG_ON(!IS_ROOT(dentry
));
879 /* detach this root from the system */
880 spin_lock(&dentry
->d_lock
);
881 dentry_lru_del(dentry
);
883 spin_unlock(&dentry
->d_lock
);
886 /* descend to the first leaf in the current subtree */
887 while (!list_empty(&dentry
->d_subdirs
)) {
890 /* this is a branch with children - detach all of them
891 * from the system in one go */
892 spin_lock(&dentry
->d_lock
);
893 list_for_each_entry(loop
, &dentry
->d_subdirs
,
895 spin_lock_nested(&loop
->d_lock
,
896 DENTRY_D_LOCK_NESTED
);
897 dentry_lru_del(loop
);
899 spin_unlock(&loop
->d_lock
);
901 spin_unlock(&dentry
->d_lock
);
903 /* move to the first child */
904 dentry
= list_entry(dentry
->d_subdirs
.next
,
905 struct dentry
, d_u
.d_child
);
908 /* consume the dentries from this leaf up through its parents
909 * until we find one with children or run out altogether */
913 if (dentry
->d_count
!= 0) {
915 "BUG: Dentry %p{i=%lx,n=%s}"
917 " [unmount of %s %s]\n",
920 dentry
->d_inode
->i_ino
: 0UL,
923 dentry
->d_sb
->s_type
->name
,
928 if (IS_ROOT(dentry
)) {
930 list_del(&dentry
->d_u
.d_child
);
932 parent
= dentry
->d_parent
;
933 spin_lock(&parent
->d_lock
);
935 list_del(&dentry
->d_u
.d_child
);
936 spin_unlock(&parent
->d_lock
);
941 inode
= dentry
->d_inode
;
943 dentry
->d_inode
= NULL
;
944 list_del_init(&dentry
->d_alias
);
945 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
946 dentry
->d_op
->d_iput(dentry
, inode
);
953 /* finished when we fall off the top of the tree,
954 * otherwise we ascend to the parent and move to the
955 * next sibling if there is one */
959 } while (list_empty(&dentry
->d_subdirs
));
961 dentry
= list_entry(dentry
->d_subdirs
.next
,
962 struct dentry
, d_u
.d_child
);
967 * destroy the dentries attached to a superblock on unmounting
968 * - we don't need to use dentry->d_lock because:
969 * - the superblock is detached from all mountings and open files, so the
970 * dentry trees will not be rearranged by the VFS
971 * - s_umount is write-locked, so the memory pressure shrinker will ignore
972 * any dentries belonging to this superblock that it comes across
973 * - the filesystem itself is no longer permitted to rearrange the dentries
976 void shrink_dcache_for_umount(struct super_block
*sb
)
978 struct dentry
*dentry
;
980 if (down_read_trylock(&sb
->s_umount
))
985 spin_lock(&dentry
->d_lock
);
987 spin_unlock(&dentry
->d_lock
);
988 shrink_dcache_for_umount_subtree(dentry
);
990 while (!hlist_bl_empty(&sb
->s_anon
)) {
991 dentry
= hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
);
992 shrink_dcache_for_umount_subtree(dentry
);
997 * This tries to ascend one level of parenthood, but
998 * we can race with renaming, so we need to re-check
999 * the parenthood after dropping the lock and check
1000 * that the sequence number still matches.
1002 static struct dentry
*try_to_ascend(struct dentry
*old
, int locked
, unsigned seq
)
1004 struct dentry
*new = old
->d_parent
;
1007 spin_unlock(&old
->d_lock
);
1008 spin_lock(&new->d_lock
);
1011 * might go back up the wrong parent if we have had a rename
1014 if (new != old
->d_parent
||
1015 (old
->d_flags
& DCACHE_DISCONNECTED
) ||
1016 (!locked
&& read_seqretry(&rename_lock
, seq
))) {
1017 spin_unlock(&new->d_lock
);
1026 * Search for at least 1 mount point in the dentry's subdirs.
1027 * We descend to the next level whenever the d_subdirs
1028 * list is non-empty and continue searching.
1032 * have_submounts - check for mounts over a dentry
1033 * @parent: dentry to check.
1035 * Return true if the parent or its subdirectories contain
1038 int have_submounts(struct dentry
*parent
)
1040 struct dentry
*this_parent
;
1041 struct list_head
*next
;
1045 seq
= read_seqbegin(&rename_lock
);
1047 this_parent
= parent
;
1049 if (d_mountpoint(parent
))
1051 spin_lock(&this_parent
->d_lock
);
1053 next
= this_parent
->d_subdirs
.next
;
1055 while (next
!= &this_parent
->d_subdirs
) {
1056 struct list_head
*tmp
= next
;
1057 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1060 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1061 /* Have we found a mount point ? */
1062 if (d_mountpoint(dentry
)) {
1063 spin_unlock(&dentry
->d_lock
);
1064 spin_unlock(&this_parent
->d_lock
);
1067 if (!list_empty(&dentry
->d_subdirs
)) {
1068 spin_unlock(&this_parent
->d_lock
);
1069 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1070 this_parent
= dentry
;
1071 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1074 spin_unlock(&dentry
->d_lock
);
1077 * All done at this level ... ascend and resume the search.
1079 if (this_parent
!= parent
) {
1080 struct dentry
*child
= this_parent
;
1081 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1084 next
= child
->d_u
.d_child
.next
;
1087 spin_unlock(&this_parent
->d_lock
);
1088 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1091 write_sequnlock(&rename_lock
);
1092 return 0; /* No mount points found in tree */
1094 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1097 write_sequnlock(&rename_lock
);
1102 write_seqlock(&rename_lock
);
1105 EXPORT_SYMBOL(have_submounts
);
1108 * Search the dentry child list for the specified parent,
1109 * and move any unused dentries to the end of the unused
1110 * list for prune_dcache(). We descend to the next level
1111 * whenever the d_subdirs list is non-empty and continue
1114 * It returns zero iff there are no unused children,
1115 * otherwise it returns the number of children moved to
1116 * the end of the unused list. This may not be the total
1117 * number of unused children, because select_parent can
1118 * drop the lock and return early due to latency
1121 static int select_parent(struct dentry
* parent
)
1123 struct dentry
*this_parent
;
1124 struct list_head
*next
;
1129 seq
= read_seqbegin(&rename_lock
);
1131 this_parent
= parent
;
1132 spin_lock(&this_parent
->d_lock
);
1134 next
= this_parent
->d_subdirs
.next
;
1136 while (next
!= &this_parent
->d_subdirs
) {
1137 struct list_head
*tmp
= next
;
1138 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1141 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1144 * move only zero ref count dentries to the end
1145 * of the unused list for prune_dcache
1147 if (!dentry
->d_count
) {
1148 dentry_lru_move_tail(dentry
);
1151 dentry_lru_del(dentry
);
1155 * We can return to the caller if we have found some (this
1156 * ensures forward progress). We'll be coming back to find
1159 if (found
&& need_resched()) {
1160 spin_unlock(&dentry
->d_lock
);
1165 * Descend a level if the d_subdirs list is non-empty.
1167 if (!list_empty(&dentry
->d_subdirs
)) {
1168 spin_unlock(&this_parent
->d_lock
);
1169 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1170 this_parent
= dentry
;
1171 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1175 spin_unlock(&dentry
->d_lock
);
1178 * All done at this level ... ascend and resume the search.
1180 if (this_parent
!= parent
) {
1181 struct dentry
*child
= this_parent
;
1182 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
1185 next
= child
->d_u
.d_child
.next
;
1189 spin_unlock(&this_parent
->d_lock
);
1190 if (!locked
&& read_seqretry(&rename_lock
, seq
))
1193 write_sequnlock(&rename_lock
);
1200 write_seqlock(&rename_lock
);
1205 * shrink_dcache_parent - prune dcache
1206 * @parent: parent of entries to prune
1208 * Prune the dcache to remove unused children of the parent dentry.
1211 void shrink_dcache_parent(struct dentry
* parent
)
1213 struct super_block
*sb
= parent
->d_sb
;
1216 while ((found
= select_parent(parent
)) != 0)
1217 __shrink_dcache_sb(sb
, &found
, 0);
1219 EXPORT_SYMBOL(shrink_dcache_parent
);
1222 * Scan `nr' dentries and return the number which remain.
1224 * We need to avoid reentering the filesystem if the caller is performing a
1225 * GFP_NOFS allocation attempt. One example deadlock is:
1227 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1228 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1229 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1231 * In this case we return -1 to tell the caller that we baled.
1233 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
1236 if (!(gfp_mask
& __GFP_FS
))
1241 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
1244 static struct shrinker dcache_shrinker
= {
1245 .shrink
= shrink_dcache_memory
,
1246 .seeks
= DEFAULT_SEEKS
,
1250 * d_alloc - allocate a dcache entry
1251 * @parent: parent of entry to allocate
1252 * @name: qstr of the name
1254 * Allocates a dentry. It returns %NULL if there is insufficient memory
1255 * available. On a success the dentry is returned. The name passed in is
1256 * copied and the copy passed in may be reused after this call.
1259 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1261 struct dentry
*dentry
;
1264 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1268 if (name
->len
> DNAME_INLINE_LEN
-1) {
1269 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1271 kmem_cache_free(dentry_cache
, dentry
);
1275 dname
= dentry
->d_iname
;
1277 dentry
->d_name
.name
= dname
;
1279 dentry
->d_name
.len
= name
->len
;
1280 dentry
->d_name
.hash
= name
->hash
;
1281 memcpy(dname
, name
->name
, name
->len
);
1282 dname
[name
->len
] = 0;
1284 dentry
->d_count
= 1;
1285 dentry
->d_flags
= 0;
1286 spin_lock_init(&dentry
->d_lock
);
1287 seqcount_init(&dentry
->d_seq
);
1288 dentry
->d_inode
= NULL
;
1289 dentry
->d_parent
= NULL
;
1290 dentry
->d_sb
= NULL
;
1291 dentry
->d_op
= NULL
;
1292 dentry
->d_fsdata
= NULL
;
1293 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1294 INIT_LIST_HEAD(&dentry
->d_lru
);
1295 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1296 INIT_LIST_HEAD(&dentry
->d_alias
);
1297 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1300 spin_lock(&parent
->d_lock
);
1302 * don't need child lock because it is not subject
1303 * to concurrency here
1305 __dget_dlock(parent
);
1306 dentry
->d_parent
= parent
;
1307 dentry
->d_sb
= parent
->d_sb
;
1308 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1309 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1310 spin_unlock(&parent
->d_lock
);
1313 this_cpu_inc(nr_dentry
);
1317 EXPORT_SYMBOL(d_alloc
);
1319 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1321 struct dentry
*dentry
= d_alloc(NULL
, name
);
1324 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1325 dentry
->d_parent
= dentry
;
1326 dentry
->d_flags
|= DCACHE_DISCONNECTED
;
1330 EXPORT_SYMBOL(d_alloc_pseudo
);
1332 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1337 q
.len
= strlen(name
);
1338 q
.hash
= full_name_hash(q
.name
, q
.len
);
1339 return d_alloc(parent
, &q
);
1341 EXPORT_SYMBOL(d_alloc_name
);
1343 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1345 WARN_ON_ONCE(dentry
->d_op
);
1346 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1348 DCACHE_OP_REVALIDATE
|
1349 DCACHE_OP_DELETE
));
1354 dentry
->d_flags
|= DCACHE_OP_HASH
;
1356 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1357 if (op
->d_revalidate
)
1358 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1360 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1363 EXPORT_SYMBOL(d_set_d_op
);
1365 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1367 spin_lock(&dentry
->d_lock
);
1369 if (unlikely(IS_AUTOMOUNT(inode
)))
1370 dentry
->d_flags
|= DCACHE_NEED_AUTOMOUNT
;
1371 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1373 dentry
->d_inode
= inode
;
1374 dentry_rcuwalk_barrier(dentry
);
1375 spin_unlock(&dentry
->d_lock
);
1376 fsnotify_d_instantiate(dentry
, inode
);
1380 * d_instantiate - fill in inode information for a dentry
1381 * @entry: dentry to complete
1382 * @inode: inode to attach to this dentry
1384 * Fill in inode information in the entry.
1386 * This turns negative dentries into productive full members
1389 * NOTE! This assumes that the inode count has been incremented
1390 * (or otherwise set) by the caller to indicate that it is now
1391 * in use by the dcache.
1394 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1396 BUG_ON(!list_empty(&entry
->d_alias
));
1398 spin_lock(&inode
->i_lock
);
1399 __d_instantiate(entry
, inode
);
1401 spin_unlock(&inode
->i_lock
);
1402 security_d_instantiate(entry
, inode
);
1404 EXPORT_SYMBOL(d_instantiate
);
1407 * d_instantiate_unique - instantiate a non-aliased dentry
1408 * @entry: dentry to instantiate
1409 * @inode: inode to attach to this dentry
1411 * Fill in inode information in the entry. On success, it returns NULL.
1412 * If an unhashed alias of "entry" already exists, then we return the
1413 * aliased dentry instead and drop one reference to inode.
1415 * Note that in order to avoid conflicts with rename() etc, the caller
1416 * had better be holding the parent directory semaphore.
1418 * This also assumes that the inode count has been incremented
1419 * (or otherwise set) by the caller to indicate that it is now
1420 * in use by the dcache.
1422 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1423 struct inode
*inode
)
1425 struct dentry
*alias
;
1426 int len
= entry
->d_name
.len
;
1427 const char *name
= entry
->d_name
.name
;
1428 unsigned int hash
= entry
->d_name
.hash
;
1431 __d_instantiate(entry
, NULL
);
1435 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1436 struct qstr
*qstr
= &alias
->d_name
;
1439 * Don't need alias->d_lock here, because aliases with
1440 * d_parent == entry->d_parent are not subject to name or
1441 * parent changes, because the parent inode i_mutex is held.
1443 if (qstr
->hash
!= hash
)
1445 if (alias
->d_parent
!= entry
->d_parent
)
1447 if (dentry_cmp(qstr
->name
, qstr
->len
, name
, len
))
1453 __d_instantiate(entry
, inode
);
1457 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1459 struct dentry
*result
;
1461 BUG_ON(!list_empty(&entry
->d_alias
));
1464 spin_lock(&inode
->i_lock
);
1465 result
= __d_instantiate_unique(entry
, inode
);
1467 spin_unlock(&inode
->i_lock
);
1470 security_d_instantiate(entry
, inode
);
1474 BUG_ON(!d_unhashed(result
));
1479 EXPORT_SYMBOL(d_instantiate_unique
);
1482 * d_alloc_root - allocate root dentry
1483 * @root_inode: inode to allocate the root for
1485 * Allocate a root ("/") dentry for the inode given. The inode is
1486 * instantiated and returned. %NULL is returned if there is insufficient
1487 * memory or the inode passed is %NULL.
1490 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1492 struct dentry
*res
= NULL
;
1495 static const struct qstr name
= { .name
= "/", .len
= 1 };
1497 res
= d_alloc(NULL
, &name
);
1499 res
->d_sb
= root_inode
->i_sb
;
1500 d_set_d_op(res
, res
->d_sb
->s_d_op
);
1501 res
->d_parent
= res
;
1502 d_instantiate(res
, root_inode
);
1507 EXPORT_SYMBOL(d_alloc_root
);
1509 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1511 struct dentry
*alias
;
1513 if (list_empty(&inode
->i_dentry
))
1515 alias
= list_first_entry(&inode
->i_dentry
, struct dentry
, d_alias
);
1520 static struct dentry
* d_find_any_alias(struct inode
*inode
)
1524 spin_lock(&inode
->i_lock
);
1525 de
= __d_find_any_alias(inode
);
1526 spin_unlock(&inode
->i_lock
);
1532 * d_obtain_alias - find or allocate a dentry for a given inode
1533 * @inode: inode to allocate the dentry for
1535 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536 * similar open by handle operations. The returned dentry may be anonymous,
1537 * or may have a full name (if the inode was already in the cache).
1539 * When called on a directory inode, we must ensure that the inode only ever
1540 * has one dentry. If a dentry is found, that is returned instead of
1541 * allocating a new one.
1543 * On successful return, the reference to the inode has been transferred
1544 * to the dentry. In case of an error the reference on the inode is released.
1545 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546 * be passed in and will be the error will be propagate to the return value,
1547 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1549 struct dentry
*d_obtain_alias(struct inode
*inode
)
1551 static const struct qstr anonstring
= { .name
= "" };
1556 return ERR_PTR(-ESTALE
);
1558 return ERR_CAST(inode
);
1560 res
= d_find_any_alias(inode
);
1564 tmp
= d_alloc(NULL
, &anonstring
);
1566 res
= ERR_PTR(-ENOMEM
);
1569 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1572 spin_lock(&inode
->i_lock
);
1573 res
= __d_find_any_alias(inode
);
1575 spin_unlock(&inode
->i_lock
);
1580 /* attach a disconnected dentry */
1581 spin_lock(&tmp
->d_lock
);
1582 tmp
->d_sb
= inode
->i_sb
;
1583 d_set_d_op(tmp
, tmp
->d_sb
->s_d_op
);
1584 tmp
->d_inode
= inode
;
1585 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1586 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1587 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1588 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1589 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1590 spin_unlock(&tmp
->d_lock
);
1591 spin_unlock(&inode
->i_lock
);
1592 security_d_instantiate(tmp
, inode
);
1597 if (res
&& !IS_ERR(res
))
1598 security_d_instantiate(res
, inode
);
1602 EXPORT_SYMBOL(d_obtain_alias
);
1605 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1606 * @inode: the inode which may have a disconnected dentry
1607 * @dentry: a negative dentry which we want to point to the inode.
1609 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1610 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1611 * and return it, else simply d_add the inode to the dentry and return NULL.
1613 * This is needed in the lookup routine of any filesystem that is exportable
1614 * (via knfsd) so that we can build dcache paths to directories effectively.
1616 * If a dentry was found and moved, then it is returned. Otherwise NULL
1617 * is returned. This matches the expected return value of ->lookup.
1620 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1622 struct dentry
*new = NULL
;
1624 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1625 spin_lock(&inode
->i_lock
);
1626 new = __d_find_alias(inode
, 1);
1628 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1629 spin_unlock(&inode
->i_lock
);
1630 security_d_instantiate(new, inode
);
1631 d_move(new, dentry
);
1634 /* already taking inode->i_lock, so d_add() by hand */
1635 __d_instantiate(dentry
, inode
);
1636 spin_unlock(&inode
->i_lock
);
1637 security_d_instantiate(dentry
, inode
);
1641 d_add(dentry
, inode
);
1644 EXPORT_SYMBOL(d_splice_alias
);
1647 * d_add_ci - lookup or allocate new dentry with case-exact name
1648 * @inode: the inode case-insensitive lookup has found
1649 * @dentry: the negative dentry that was passed to the parent's lookup func
1650 * @name: the case-exact name to be associated with the returned dentry
1652 * This is to avoid filling the dcache with case-insensitive names to the
1653 * same inode, only the actual correct case is stored in the dcache for
1654 * case-insensitive filesystems.
1656 * For a case-insensitive lookup match and if the the case-exact dentry
1657 * already exists in in the dcache, use it and return it.
1659 * If no entry exists with the exact case name, allocate new dentry with
1660 * the exact case, and return the spliced entry.
1662 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1666 struct dentry
*found
;
1670 * First check if a dentry matching the name already exists,
1671 * if not go ahead and create it now.
1673 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1675 new = d_alloc(dentry
->d_parent
, name
);
1681 found
= d_splice_alias(inode
, new);
1690 * If a matching dentry exists, and it's not negative use it.
1692 * Decrement the reference count to balance the iget() done
1695 if (found
->d_inode
) {
1696 if (unlikely(found
->d_inode
!= inode
)) {
1697 /* This can't happen because bad inodes are unhashed. */
1698 BUG_ON(!is_bad_inode(inode
));
1699 BUG_ON(!is_bad_inode(found
->d_inode
));
1706 * Negative dentry: instantiate it unless the inode is a directory and
1707 * already has a dentry.
1709 spin_lock(&inode
->i_lock
);
1710 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1711 __d_instantiate(found
, inode
);
1712 spin_unlock(&inode
->i_lock
);
1713 security_d_instantiate(found
, inode
);
1718 * In case a directory already has a (disconnected) entry grab a
1719 * reference to it, move it in place and use it.
1721 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1723 spin_unlock(&inode
->i_lock
);
1724 security_d_instantiate(found
, inode
);
1732 return ERR_PTR(error
);
1734 EXPORT_SYMBOL(d_add_ci
);
1737 * __d_lookup_rcu - search for a dentry (racy, store-free)
1738 * @parent: parent dentry
1739 * @name: qstr of name we wish to find
1740 * @seq: returns d_seq value at the point where the dentry was found
1741 * @inode: returns dentry->d_inode when the inode was found valid.
1742 * Returns: dentry, or NULL
1744 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1745 * resolution (store-free path walking) design described in
1746 * Documentation/filesystems/path-lookup.txt.
1748 * This is not to be used outside core vfs.
1750 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1751 * held, and rcu_read_lock held. The returned dentry must not be stored into
1752 * without taking d_lock and checking d_seq sequence count against @seq
1755 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1758 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1759 * the returned dentry, so long as its parent's seqlock is checked after the
1760 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1761 * is formed, giving integrity down the path walk.
1763 struct dentry
*__d_lookup_rcu(struct dentry
*parent
, struct qstr
*name
,
1764 unsigned *seq
, struct inode
**inode
)
1766 unsigned int len
= name
->len
;
1767 unsigned int hash
= name
->hash
;
1768 const unsigned char *str
= name
->name
;
1769 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1770 struct hlist_bl_node
*node
;
1771 struct dentry
*dentry
;
1774 * Note: There is significant duplication with __d_lookup_rcu which is
1775 * required to prevent single threaded performance regressions
1776 * especially on architectures where smp_rmb (in seqcounts) are costly.
1777 * Keep the two functions in sync.
1781 * The hash list is protected using RCU.
1783 * Carefully use d_seq when comparing a candidate dentry, to avoid
1784 * races with d_move().
1786 * It is possible that concurrent renames can mess up our list
1787 * walk here and result in missing our dentry, resulting in the
1788 * false-negative result. d_lookup() protects against concurrent
1789 * renames using rename_lock seqlock.
1791 * See Documentation/filesystems/path-lookup.txt for more details.
1793 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1798 if (dentry
->d_name
.hash
!= hash
)
1802 *seq
= read_seqcount_begin(&dentry
->d_seq
);
1803 if (dentry
->d_parent
!= parent
)
1805 if (d_unhashed(dentry
))
1807 tlen
= dentry
->d_name
.len
;
1808 tname
= dentry
->d_name
.name
;
1809 i
= dentry
->d_inode
;
1814 * This seqcount check is required to ensure name and
1815 * len are loaded atomically, so as not to walk off the
1816 * edge of memory when walking. If we could load this
1817 * atomically some other way, we could drop this check.
1819 if (read_seqcount_retry(&dentry
->d_seq
, *seq
))
1821 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1822 if (parent
->d_op
->d_compare(parent
, *inode
,
1827 if (dentry_cmp(tname
, tlen
, str
, len
))
1831 * No extra seqcount check is required after the name
1832 * compare. The caller must perform a seqcount check in
1833 * order to do anything useful with the returned dentry
1843 * d_lookup - search for a dentry
1844 * @parent: parent dentry
1845 * @name: qstr of name we wish to find
1846 * Returns: dentry, or NULL
1848 * d_lookup searches the children of the parent dentry for the name in
1849 * question. If the dentry is found its reference count is incremented and the
1850 * dentry is returned. The caller must use dput to free the entry when it has
1851 * finished using it. %NULL is returned if the dentry does not exist.
1853 struct dentry
*d_lookup(struct dentry
*parent
, struct qstr
*name
)
1855 struct dentry
*dentry
;
1859 seq
= read_seqbegin(&rename_lock
);
1860 dentry
= __d_lookup(parent
, name
);
1863 } while (read_seqretry(&rename_lock
, seq
));
1866 EXPORT_SYMBOL(d_lookup
);
1869 * __d_lookup - search for a dentry (racy)
1870 * @parent: parent dentry
1871 * @name: qstr of name we wish to find
1872 * Returns: dentry, or NULL
1874 * __d_lookup is like d_lookup, however it may (rarely) return a
1875 * false-negative result due to unrelated rename activity.
1877 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1878 * however it must be used carefully, eg. with a following d_lookup in
1879 * the case of failure.
1881 * __d_lookup callers must be commented.
1883 struct dentry
*__d_lookup(struct dentry
*parent
, struct qstr
*name
)
1885 unsigned int len
= name
->len
;
1886 unsigned int hash
= name
->hash
;
1887 const unsigned char *str
= name
->name
;
1888 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
1889 struct hlist_bl_node
*node
;
1890 struct dentry
*found
= NULL
;
1891 struct dentry
*dentry
;
1894 * Note: There is significant duplication with __d_lookup_rcu which is
1895 * required to prevent single threaded performance regressions
1896 * especially on architectures where smp_rmb (in seqcounts) are costly.
1897 * Keep the two functions in sync.
1901 * The hash list is protected using RCU.
1903 * Take d_lock when comparing a candidate dentry, to avoid races
1906 * It is possible that concurrent renames can mess up our list
1907 * walk here and result in missing our dentry, resulting in the
1908 * false-negative result. d_lookup() protects against concurrent
1909 * renames using rename_lock seqlock.
1911 * See Documentation/filesystems/path-lookup.txt for more details.
1915 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
1919 if (dentry
->d_name
.hash
!= hash
)
1922 spin_lock(&dentry
->d_lock
);
1923 if (dentry
->d_parent
!= parent
)
1925 if (d_unhashed(dentry
))
1929 * It is safe to compare names since d_move() cannot
1930 * change the qstr (protected by d_lock).
1932 tlen
= dentry
->d_name
.len
;
1933 tname
= dentry
->d_name
.name
;
1934 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
1935 if (parent
->d_op
->d_compare(parent
, parent
->d_inode
,
1936 dentry
, dentry
->d_inode
,
1940 if (dentry_cmp(tname
, tlen
, str
, len
))
1946 spin_unlock(&dentry
->d_lock
);
1949 spin_unlock(&dentry
->d_lock
);
1957 * d_hash_and_lookup - hash the qstr then search for a dentry
1958 * @dir: Directory to search in
1959 * @name: qstr of name we wish to find
1961 * On hash failure or on lookup failure NULL is returned.
1963 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1965 struct dentry
*dentry
= NULL
;
1968 * Check for a fs-specific hash function. Note that we must
1969 * calculate the standard hash first, as the d_op->d_hash()
1970 * routine may choose to leave the hash value unchanged.
1972 name
->hash
= full_name_hash(name
->name
, name
->len
);
1973 if (dir
->d_flags
& DCACHE_OP_HASH
) {
1974 if (dir
->d_op
->d_hash(dir
, dir
->d_inode
, name
) < 0)
1977 dentry
= d_lookup(dir
, name
);
1983 * d_validate - verify dentry provided from insecure source (deprecated)
1984 * @dentry: The dentry alleged to be valid child of @dparent
1985 * @dparent: The parent dentry (known to be valid)
1987 * An insecure source has sent us a dentry, here we verify it and dget() it.
1988 * This is used by ncpfs in its readdir implementation.
1989 * Zero is returned in the dentry is invalid.
1991 * This function is slow for big directories, and deprecated, do not use it.
1993 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1995 struct dentry
*child
;
1997 spin_lock(&dparent
->d_lock
);
1998 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
1999 if (dentry
== child
) {
2000 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2001 __dget_dlock(dentry
);
2002 spin_unlock(&dentry
->d_lock
);
2003 spin_unlock(&dparent
->d_lock
);
2007 spin_unlock(&dparent
->d_lock
);
2011 EXPORT_SYMBOL(d_validate
);
2014 * When a file is deleted, we have two options:
2015 * - turn this dentry into a negative dentry
2016 * - unhash this dentry and free it.
2018 * Usually, we want to just turn this into
2019 * a negative dentry, but if anybody else is
2020 * currently using the dentry or the inode
2021 * we can't do that and we fall back on removing
2022 * it from the hash queues and waiting for
2023 * it to be deleted later when it has no users
2027 * d_delete - delete a dentry
2028 * @dentry: The dentry to delete
2030 * Turn the dentry into a negative dentry if possible, otherwise
2031 * remove it from the hash queues so it can be deleted later
2034 void d_delete(struct dentry
* dentry
)
2036 struct inode
*inode
;
2039 * Are we the only user?
2042 spin_lock(&dentry
->d_lock
);
2043 inode
= dentry
->d_inode
;
2044 isdir
= S_ISDIR(inode
->i_mode
);
2045 if (dentry
->d_count
== 1) {
2046 if (inode
&& !spin_trylock(&inode
->i_lock
)) {
2047 spin_unlock(&dentry
->d_lock
);
2051 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2052 dentry_unlink_inode(dentry
);
2053 fsnotify_nameremove(dentry
, isdir
);
2057 if (!d_unhashed(dentry
))
2060 spin_unlock(&dentry
->d_lock
);
2062 fsnotify_nameremove(dentry
, isdir
);
2064 EXPORT_SYMBOL(d_delete
);
2066 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2068 BUG_ON(!d_unhashed(entry
));
2070 entry
->d_flags
|= DCACHE_RCUACCESS
;
2071 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2075 static void _d_rehash(struct dentry
* entry
)
2077 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2081 * d_rehash - add an entry back to the hash
2082 * @entry: dentry to add to the hash
2084 * Adds a dentry to the hash according to its name.
2087 void d_rehash(struct dentry
* entry
)
2089 spin_lock(&entry
->d_lock
);
2091 spin_unlock(&entry
->d_lock
);
2093 EXPORT_SYMBOL(d_rehash
);
2096 * dentry_update_name_case - update case insensitive dentry with a new name
2097 * @dentry: dentry to be updated
2100 * Update a case insensitive dentry with new case of name.
2102 * dentry must have been returned by d_lookup with name @name. Old and new
2103 * name lengths must match (ie. no d_compare which allows mismatched name
2106 * Parent inode i_mutex must be held over d_lookup and into this call (to
2107 * keep renames and concurrent inserts, and readdir(2) away).
2109 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2111 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2112 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2114 spin_lock(&dentry
->d_lock
);
2115 write_seqcount_begin(&dentry
->d_seq
);
2116 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2117 write_seqcount_end(&dentry
->d_seq
);
2118 spin_unlock(&dentry
->d_lock
);
2120 EXPORT_SYMBOL(dentry_update_name_case
);
2122 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2124 if (dname_external(target
)) {
2125 if (dname_external(dentry
)) {
2127 * Both external: swap the pointers
2129 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2132 * dentry:internal, target:external. Steal target's
2133 * storage and make target internal.
2135 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2136 dentry
->d_name
.len
+ 1);
2137 dentry
->d_name
.name
= target
->d_name
.name
;
2138 target
->d_name
.name
= target
->d_iname
;
2141 if (dname_external(dentry
)) {
2143 * dentry:external, target:internal. Give dentry's
2144 * storage to target and make dentry internal
2146 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2147 target
->d_name
.len
+ 1);
2148 target
->d_name
.name
= dentry
->d_name
.name
;
2149 dentry
->d_name
.name
= dentry
->d_iname
;
2152 * Both are internal. Just copy target to dentry
2154 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2155 target
->d_name
.len
+ 1);
2156 dentry
->d_name
.len
= target
->d_name
.len
;
2160 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2163 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2166 * XXXX: do we really need to take target->d_lock?
2168 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2169 spin_lock(&target
->d_parent
->d_lock
);
2171 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2172 spin_lock(&dentry
->d_parent
->d_lock
);
2173 spin_lock_nested(&target
->d_parent
->d_lock
,
2174 DENTRY_D_LOCK_NESTED
);
2176 spin_lock(&target
->d_parent
->d_lock
);
2177 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2178 DENTRY_D_LOCK_NESTED
);
2181 if (target
< dentry
) {
2182 spin_lock_nested(&target
->d_lock
, 2);
2183 spin_lock_nested(&dentry
->d_lock
, 3);
2185 spin_lock_nested(&dentry
->d_lock
, 2);
2186 spin_lock_nested(&target
->d_lock
, 3);
2190 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2191 struct dentry
*target
)
2193 if (target
->d_parent
!= dentry
->d_parent
)
2194 spin_unlock(&dentry
->d_parent
->d_lock
);
2195 if (target
->d_parent
!= target
)
2196 spin_unlock(&target
->d_parent
->d_lock
);
2200 * When switching names, the actual string doesn't strictly have to
2201 * be preserved in the target - because we're dropping the target
2202 * anyway. As such, we can just do a simple memcpy() to copy over
2203 * the new name before we switch.
2205 * Note that we have to be a lot more careful about getting the hash
2206 * switched - we have to switch the hash value properly even if it
2207 * then no longer matches the actual (corrupted) string of the target.
2208 * The hash value has to match the hash queue that the dentry is on..
2211 * d_move - move a dentry
2212 * @dentry: entry to move
2213 * @target: new dentry
2215 * Update the dcache to reflect the move of a file name. Negative
2216 * dcache entries should not be moved in this way.
2218 void d_move(struct dentry
* dentry
, struct dentry
* target
)
2220 if (!dentry
->d_inode
)
2221 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2223 BUG_ON(d_ancestor(dentry
, target
));
2224 BUG_ON(d_ancestor(target
, dentry
));
2226 write_seqlock(&rename_lock
);
2228 dentry_lock_for_move(dentry
, target
);
2230 write_seqcount_begin(&dentry
->d_seq
);
2231 write_seqcount_begin(&target
->d_seq
);
2233 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2236 * Move the dentry to the target hash queue. Don't bother checking
2237 * for the same hash queue because of how unlikely it is.
2240 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2242 /* Unhash the target: dput() will then get rid of it */
2245 list_del(&dentry
->d_u
.d_child
);
2246 list_del(&target
->d_u
.d_child
);
2248 /* Switch the names.. */
2249 switch_names(dentry
, target
);
2250 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2252 /* ... and switch the parents */
2253 if (IS_ROOT(dentry
)) {
2254 dentry
->d_parent
= target
->d_parent
;
2255 target
->d_parent
= target
;
2256 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2258 swap(dentry
->d_parent
, target
->d_parent
);
2260 /* And add them back to the (new) parent lists */
2261 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2264 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2266 write_seqcount_end(&target
->d_seq
);
2267 write_seqcount_end(&dentry
->d_seq
);
2269 dentry_unlock_parents_for_move(dentry
, target
);
2270 spin_unlock(&target
->d_lock
);
2271 fsnotify_d_move(dentry
);
2272 spin_unlock(&dentry
->d_lock
);
2273 write_sequnlock(&rename_lock
);
2275 EXPORT_SYMBOL(d_move
);
2278 * d_ancestor - search for an ancestor
2279 * @p1: ancestor dentry
2282 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2283 * an ancestor of p2, else NULL.
2285 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2289 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2290 if (p
->d_parent
== p1
)
2297 * This helper attempts to cope with remotely renamed directories
2299 * It assumes that the caller is already holding
2300 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2302 * Note: If ever the locking in lock_rename() changes, then please
2303 * remember to update this too...
2305 static struct dentry
*__d_unalias(struct inode
*inode
,
2306 struct dentry
*dentry
, struct dentry
*alias
)
2308 struct mutex
*m1
= NULL
, *m2
= NULL
;
2311 /* If alias and dentry share a parent, then no extra locks required */
2312 if (alias
->d_parent
== dentry
->d_parent
)
2315 /* Check for loops */
2316 ret
= ERR_PTR(-ELOOP
);
2317 if (d_ancestor(alias
, dentry
))
2320 /* See lock_rename() */
2321 ret
= ERR_PTR(-EBUSY
);
2322 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2324 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2325 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2327 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2329 d_move(alias
, dentry
);
2332 spin_unlock(&inode
->i_lock
);
2341 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2342 * named dentry in place of the dentry to be replaced.
2343 * returns with anon->d_lock held!
2345 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2347 struct dentry
*dparent
, *aparent
;
2349 dentry_lock_for_move(anon
, dentry
);
2351 write_seqcount_begin(&dentry
->d_seq
);
2352 write_seqcount_begin(&anon
->d_seq
);
2354 dparent
= dentry
->d_parent
;
2355 aparent
= anon
->d_parent
;
2357 switch_names(dentry
, anon
);
2358 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2360 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
2361 list_del(&dentry
->d_u
.d_child
);
2362 if (!IS_ROOT(dentry
))
2363 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2365 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
2367 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
2368 list_del(&anon
->d_u
.d_child
);
2370 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
2372 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
2374 write_seqcount_end(&dentry
->d_seq
);
2375 write_seqcount_end(&anon
->d_seq
);
2377 dentry_unlock_parents_for_move(anon
, dentry
);
2378 spin_unlock(&dentry
->d_lock
);
2380 /* anon->d_lock still locked, returns locked */
2381 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
2385 * d_materialise_unique - introduce an inode into the tree
2386 * @dentry: candidate dentry
2387 * @inode: inode to bind to the dentry, to which aliases may be attached
2389 * Introduces an dentry into the tree, substituting an extant disconnected
2390 * root directory alias in its place if there is one
2392 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2394 struct dentry
*actual
;
2396 BUG_ON(!d_unhashed(dentry
));
2400 __d_instantiate(dentry
, NULL
);
2405 spin_lock(&inode
->i_lock
);
2407 if (S_ISDIR(inode
->i_mode
)) {
2408 struct dentry
*alias
;
2410 /* Does an aliased dentry already exist? */
2411 alias
= __d_find_alias(inode
, 0);
2414 /* Is this an anonymous mountpoint that we could splice
2416 if (IS_ROOT(alias
)) {
2417 __d_materialise_dentry(dentry
, alias
);
2421 /* Nope, but we must(!) avoid directory aliasing */
2422 actual
= __d_unalias(inode
, dentry
, alias
);
2429 /* Add a unique reference */
2430 actual
= __d_instantiate_unique(dentry
, inode
);
2434 BUG_ON(!d_unhashed(actual
));
2436 spin_lock(&actual
->d_lock
);
2439 spin_unlock(&actual
->d_lock
);
2440 spin_unlock(&inode
->i_lock
);
2442 if (actual
== dentry
) {
2443 security_d_instantiate(dentry
, inode
);
2450 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2452 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2456 return -ENAMETOOLONG
;
2458 memcpy(*buffer
, str
, namelen
);
2462 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2464 return prepend(buffer
, buflen
, name
->name
, name
->len
);
2468 * prepend_path - Prepend path string to a buffer
2469 * @path: the dentry/vfsmount to report
2470 * @root: root vfsmnt/dentry (may be modified by this function)
2471 * @buffer: pointer to the end of the buffer
2472 * @buflen: pointer to buffer length
2474 * Caller holds the rename_lock.
2476 * If path is not reachable from the supplied root, then the value of
2477 * root is changed (without modifying refcounts).
2479 static int prepend_path(const struct path
*path
, struct path
*root
,
2480 char **buffer
, int *buflen
)
2482 struct dentry
*dentry
= path
->dentry
;
2483 struct vfsmount
*vfsmnt
= path
->mnt
;
2487 br_read_lock(vfsmount_lock
);
2488 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2489 struct dentry
* parent
;
2491 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2493 if (vfsmnt
->mnt_parent
== vfsmnt
) {
2496 dentry
= vfsmnt
->mnt_mountpoint
;
2497 vfsmnt
= vfsmnt
->mnt_parent
;
2500 parent
= dentry
->d_parent
;
2502 spin_lock(&dentry
->d_lock
);
2503 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
2504 spin_unlock(&dentry
->d_lock
);
2506 error
= prepend(buffer
, buflen
, "/", 1);
2515 if (!error
&& !slash
)
2516 error
= prepend(buffer
, buflen
, "/", 1);
2518 br_read_unlock(vfsmount_lock
);
2523 * Filesystems needing to implement special "root names"
2524 * should do so with ->d_dname()
2526 if (IS_ROOT(dentry
) &&
2527 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
2528 WARN(1, "Root dentry has weird name <%.*s>\n",
2529 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
2532 root
->dentry
= dentry
;
2537 * __d_path - return the path of a dentry
2538 * @path: the dentry/vfsmount to report
2539 * @root: root vfsmnt/dentry (may be modified by this function)
2540 * @buf: buffer to return value in
2541 * @buflen: buffer length
2543 * Convert a dentry into an ASCII path name.
2545 * Returns a pointer into the buffer or an error code if the
2546 * path was too long.
2548 * "buflen" should be positive.
2550 * If path is not reachable from the supplied root, then the value of
2551 * root is changed (without modifying refcounts).
2553 char *__d_path(const struct path
*path
, struct path
*root
,
2554 char *buf
, int buflen
)
2556 char *res
= buf
+ buflen
;
2559 prepend(&res
, &buflen
, "\0", 1);
2560 write_seqlock(&rename_lock
);
2561 error
= prepend_path(path
, root
, &res
, &buflen
);
2562 write_sequnlock(&rename_lock
);
2565 return ERR_PTR(error
);
2570 * same as __d_path but appends "(deleted)" for unlinked files.
2572 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2573 char **buf
, int *buflen
)
2575 prepend(buf
, buflen
, "\0", 1);
2576 if (d_unlinked(path
->dentry
)) {
2577 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2582 return prepend_path(path
, root
, buf
, buflen
);
2585 static int prepend_unreachable(char **buffer
, int *buflen
)
2587 return prepend(buffer
, buflen
, "(unreachable)", 13);
2591 * d_path - return the path of a dentry
2592 * @path: path to report
2593 * @buf: buffer to return value in
2594 * @buflen: buffer length
2596 * Convert a dentry into an ASCII path name. If the entry has been deleted
2597 * the string " (deleted)" is appended. Note that this is ambiguous.
2599 * Returns a pointer into the buffer or an error code if the path was
2600 * too long. Note: Callers should use the returned pointer, not the passed
2601 * in buffer, to use the name! The implementation often starts at an offset
2602 * into the buffer, and may leave 0 bytes at the start.
2604 * "buflen" should be positive.
2606 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2608 char *res
= buf
+ buflen
;
2614 * We have various synthetic filesystems that never get mounted. On
2615 * these filesystems dentries are never used for lookup purposes, and
2616 * thus don't need to be hashed. They also don't need a name until a
2617 * user wants to identify the object in /proc/pid/fd/. The little hack
2618 * below allows us to generate a name for these objects on demand:
2620 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2621 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2623 get_fs_root(current
->fs
, &root
);
2624 write_seqlock(&rename_lock
);
2626 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2628 res
= ERR_PTR(error
);
2629 write_sequnlock(&rename_lock
);
2633 EXPORT_SYMBOL(d_path
);
2636 * d_path_with_unreachable - return the path of a dentry
2637 * @path: path to report
2638 * @buf: buffer to return value in
2639 * @buflen: buffer length
2641 * The difference from d_path() is that this prepends "(unreachable)"
2642 * to paths which are unreachable from the current process' root.
2644 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2646 char *res
= buf
+ buflen
;
2651 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2652 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2654 get_fs_root(current
->fs
, &root
);
2655 write_seqlock(&rename_lock
);
2657 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2658 if (!error
&& !path_equal(&tmp
, &root
))
2659 error
= prepend_unreachable(&res
, &buflen
);
2660 write_sequnlock(&rename_lock
);
2663 res
= ERR_PTR(error
);
2669 * Helper function for dentry_operations.d_dname() members
2671 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2672 const char *fmt
, ...)
2678 va_start(args
, fmt
);
2679 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2682 if (sz
> sizeof(temp
) || sz
> buflen
)
2683 return ERR_PTR(-ENAMETOOLONG
);
2685 buffer
+= buflen
- sz
;
2686 return memcpy(buffer
, temp
, sz
);
2690 * Write full pathname from the root of the filesystem into the buffer.
2692 static char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2694 char *end
= buf
+ buflen
;
2697 prepend(&end
, &buflen
, "\0", 1);
2704 while (!IS_ROOT(dentry
)) {
2705 struct dentry
*parent
= dentry
->d_parent
;
2709 spin_lock(&dentry
->d_lock
);
2710 error
= prepend_name(&end
, &buflen
, &dentry
->d_name
);
2711 spin_unlock(&dentry
->d_lock
);
2712 if (error
!= 0 || prepend(&end
, &buflen
, "/", 1) != 0)
2720 return ERR_PTR(-ENAMETOOLONG
);
2723 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
2727 write_seqlock(&rename_lock
);
2728 retval
= __dentry_path(dentry
, buf
, buflen
);
2729 write_sequnlock(&rename_lock
);
2733 EXPORT_SYMBOL(dentry_path_raw
);
2735 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2740 write_seqlock(&rename_lock
);
2741 if (d_unlinked(dentry
)) {
2743 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2747 retval
= __dentry_path(dentry
, buf
, buflen
);
2748 write_sequnlock(&rename_lock
);
2749 if (!IS_ERR(retval
) && p
)
2750 *p
= '/'; /* restore '/' overriden with '\0' */
2753 return ERR_PTR(-ENAMETOOLONG
);
2757 * NOTE! The user-level library version returns a
2758 * character pointer. The kernel system call just
2759 * returns the length of the buffer filled (which
2760 * includes the ending '\0' character), or a negative
2761 * error value. So libc would do something like
2763 * char *getcwd(char * buf, size_t size)
2767 * retval = sys_getcwd(buf, size);
2774 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2777 struct path pwd
, root
;
2778 char *page
= (char *) __get_free_page(GFP_USER
);
2783 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2786 write_seqlock(&rename_lock
);
2787 if (!d_unlinked(pwd
.dentry
)) {
2789 struct path tmp
= root
;
2790 char *cwd
= page
+ PAGE_SIZE
;
2791 int buflen
= PAGE_SIZE
;
2793 prepend(&cwd
, &buflen
, "\0", 1);
2794 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2795 write_sequnlock(&rename_lock
);
2800 /* Unreachable from current root */
2801 if (!path_equal(&tmp
, &root
)) {
2802 error
= prepend_unreachable(&cwd
, &buflen
);
2808 len
= PAGE_SIZE
+ page
- cwd
;
2811 if (copy_to_user(buf
, cwd
, len
))
2815 write_sequnlock(&rename_lock
);
2821 free_page((unsigned long) page
);
2826 * Test whether new_dentry is a subdirectory of old_dentry.
2828 * Trivially implemented using the dcache structure
2832 * is_subdir - is new dentry a subdirectory of old_dentry
2833 * @new_dentry: new dentry
2834 * @old_dentry: old dentry
2836 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2837 * Returns 0 otherwise.
2838 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2841 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2846 if (new_dentry
== old_dentry
)
2850 /* for restarting inner loop in case of seq retry */
2851 seq
= read_seqbegin(&rename_lock
);
2853 * Need rcu_readlock to protect against the d_parent trashing
2857 if (d_ancestor(old_dentry
, new_dentry
))
2862 } while (read_seqretry(&rename_lock
, seq
));
2867 int path_is_under(struct path
*path1
, struct path
*path2
)
2869 struct vfsmount
*mnt
= path1
->mnt
;
2870 struct dentry
*dentry
= path1
->dentry
;
2873 br_read_lock(vfsmount_lock
);
2874 if (mnt
!= path2
->mnt
) {
2876 if (mnt
->mnt_parent
== mnt
) {
2877 br_read_unlock(vfsmount_lock
);
2880 if (mnt
->mnt_parent
== path2
->mnt
)
2882 mnt
= mnt
->mnt_parent
;
2884 dentry
= mnt
->mnt_mountpoint
;
2886 res
= is_subdir(dentry
, path2
->dentry
);
2887 br_read_unlock(vfsmount_lock
);
2890 EXPORT_SYMBOL(path_is_under
);
2892 void d_genocide(struct dentry
*root
)
2894 struct dentry
*this_parent
;
2895 struct list_head
*next
;
2899 seq
= read_seqbegin(&rename_lock
);
2902 spin_lock(&this_parent
->d_lock
);
2904 next
= this_parent
->d_subdirs
.next
;
2906 while (next
!= &this_parent
->d_subdirs
) {
2907 struct list_head
*tmp
= next
;
2908 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2911 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2912 if (d_unhashed(dentry
) || !dentry
->d_inode
) {
2913 spin_unlock(&dentry
->d_lock
);
2916 if (!list_empty(&dentry
->d_subdirs
)) {
2917 spin_unlock(&this_parent
->d_lock
);
2918 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
2919 this_parent
= dentry
;
2920 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
2923 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
2924 dentry
->d_flags
|= DCACHE_GENOCIDE
;
2927 spin_unlock(&dentry
->d_lock
);
2929 if (this_parent
!= root
) {
2930 struct dentry
*child
= this_parent
;
2931 if (!(this_parent
->d_flags
& DCACHE_GENOCIDE
)) {
2932 this_parent
->d_flags
|= DCACHE_GENOCIDE
;
2933 this_parent
->d_count
--;
2935 this_parent
= try_to_ascend(this_parent
, locked
, seq
);
2938 next
= child
->d_u
.d_child
.next
;
2941 spin_unlock(&this_parent
->d_lock
);
2942 if (!locked
&& read_seqretry(&rename_lock
, seq
))
2945 write_sequnlock(&rename_lock
);
2950 write_seqlock(&rename_lock
);
2955 * find_inode_number - check for dentry with name
2956 * @dir: directory to check
2957 * @name: Name to find.
2959 * Check whether a dentry already exists for the given name,
2960 * and return the inode number if it has an inode. Otherwise
2963 * This routine is used to post-process directory listings for
2964 * filesystems using synthetic inode numbers, and is necessary
2965 * to keep getcwd() working.
2968 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2970 struct dentry
* dentry
;
2973 dentry
= d_hash_and_lookup(dir
, name
);
2975 if (dentry
->d_inode
)
2976 ino
= dentry
->d_inode
->i_ino
;
2981 EXPORT_SYMBOL(find_inode_number
);
2983 static __initdata
unsigned long dhash_entries
;
2984 static int __init
set_dhash_entries(char *str
)
2988 dhash_entries
= simple_strtoul(str
, &str
, 0);
2991 __setup("dhash_entries=", set_dhash_entries
);
2993 static void __init
dcache_init_early(void)
2997 /* If hashes are distributed across NUMA nodes, defer
2998 * hash allocation until vmalloc space is available.
3004 alloc_large_system_hash("Dentry cache",
3005 sizeof(struct hlist_bl_head
),
3013 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3014 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3017 static void __init
dcache_init(void)
3022 * A constructor could be added for stable state like the lists,
3023 * but it is probably not worth it because of the cache nature
3026 dentry_cache
= KMEM_CACHE(dentry
,
3027 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3029 register_shrinker(&dcache_shrinker
);
3031 /* Hash may have been set up in dcache_init_early */
3036 alloc_large_system_hash("Dentry cache",
3037 sizeof(struct hlist_bl_head
),
3045 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
3046 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3049 /* SLAB cache for __getname() consumers */
3050 struct kmem_cache
*names_cachep __read_mostly
;
3051 EXPORT_SYMBOL(names_cachep
);
3053 EXPORT_SYMBOL(d_genocide
);
3055 void __init
vfs_caches_init_early(void)
3057 dcache_init_early();
3061 void __init
vfs_caches_init(unsigned long mempages
)
3063 unsigned long reserve
;
3065 /* Base hash sizes on available memory, with a reserve equal to
3066 150% of current kernel size */
3068 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3069 mempages
-= reserve
;
3071 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3072 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3076 files_init(mempages
);