ARM: shmobile: convert logical CPU numbers to physical numbers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / slub_def.h
blobf58d6413d230225c4e9771b63169d3d99a3aeca8
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
4 /*
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
8 */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
14 #include <linux/kmemleak.h>
16 enum stat_item {
17 ALLOC_FASTPATH, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH, /* Free to cpu slub */
20 FREE_SLOWPATH, /* Freeing not to cpu slab */
21 FREE_FROZEN, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
27 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
35 DEACTIVATE_BYPASS, /* Implicit deactivation */
36 ORDER_FALLBACK, /* Number of times fallback was necessary */
37 CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
38 CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
39 NR_SLUB_STAT_ITEMS };
41 struct kmem_cache_cpu {
42 void **freelist; /* Pointer to next available object */
43 unsigned long tid; /* Globally unique transaction id */
44 struct page *page; /* The slab from which we are allocating */
45 int node; /* The node of the page (or -1 for debug) */
46 #ifdef CONFIG_SLUB_STATS
47 unsigned stat[NR_SLUB_STAT_ITEMS];
48 #endif
51 struct kmem_cache_node {
52 spinlock_t list_lock; /* Protect partial list and nr_partial */
53 unsigned long nr_partial;
54 struct list_head partial;
55 #ifdef CONFIG_SLUB_DEBUG
56 atomic_long_t nr_slabs;
57 atomic_long_t total_objects;
58 struct list_head full;
59 #endif
63 * Word size structure that can be atomically updated or read and that
64 * contains both the order and the number of objects that a slab of the
65 * given order would contain.
67 struct kmem_cache_order_objects {
68 unsigned long x;
72 * Slab cache management.
74 struct kmem_cache {
75 struct kmem_cache_cpu __percpu *cpu_slab;
76 /* Used for retriving partial slabs etc */
77 unsigned long flags;
78 unsigned long min_partial;
79 int size; /* The size of an object including meta data */
80 int objsize; /* The size of an object without meta data */
81 int offset; /* Free pointer offset. */
82 struct kmem_cache_order_objects oo;
84 /* Allocation and freeing of slabs */
85 struct kmem_cache_order_objects max;
86 struct kmem_cache_order_objects min;
87 gfp_t allocflags; /* gfp flags to use on each alloc */
88 int refcount; /* Refcount for slab cache destroy */
89 void (*ctor)(void *);
90 int inuse; /* Offset to metadata */
91 int align; /* Alignment */
92 int reserved; /* Reserved bytes at the end of slabs */
93 const char *name; /* Name (only for display!) */
94 struct list_head list; /* List of slab caches */
95 #ifdef CONFIG_SYSFS
96 struct kobject kobj; /* For sysfs */
97 #endif
99 #ifdef CONFIG_NUMA
101 * Defragmentation by allocating from a remote node.
103 int remote_node_defrag_ratio;
104 #endif
105 struct kmem_cache_node *node[MAX_NUMNODES];
109 * Kmalloc subsystem.
111 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
112 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
113 #else
114 #define KMALLOC_MIN_SIZE 8
115 #endif
117 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
120 * Maximum kmalloc object size handled by SLUB. Larger object allocations
121 * are passed through to the page allocator. The page allocator "fastpath"
122 * is relatively slow so we need this value sufficiently high so that
123 * performance critical objects are allocated through the SLUB fastpath.
125 * This should be dropped to PAGE_SIZE / 2 once the page allocator
126 * "fastpath" becomes competitive with the slab allocator fastpaths.
128 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
130 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
132 #ifdef CONFIG_ZONE_DMA
133 #define SLUB_DMA __GFP_DMA
134 #else
135 /* Disable DMA functionality */
136 #define SLUB_DMA (__force gfp_t)0
137 #endif
140 * We keep the general caches in an array of slab caches that are used for
141 * 2^x bytes of allocations.
143 extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
146 * Sorry that the following has to be that ugly but some versions of GCC
147 * have trouble with constant propagation and loops.
149 static __always_inline int kmalloc_index(size_t size)
151 if (!size)
152 return 0;
154 if (size <= KMALLOC_MIN_SIZE)
155 return KMALLOC_SHIFT_LOW;
157 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
158 return 1;
159 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
160 return 2;
161 if (size <= 8) return 3;
162 if (size <= 16) return 4;
163 if (size <= 32) return 5;
164 if (size <= 64) return 6;
165 if (size <= 128) return 7;
166 if (size <= 256) return 8;
167 if (size <= 512) return 9;
168 if (size <= 1024) return 10;
169 if (size <= 2 * 1024) return 11;
170 if (size <= 4 * 1024) return 12;
172 * The following is only needed to support architectures with a larger page
173 * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
174 * size we would have to go up to 128k.
176 if (size <= 8 * 1024) return 13;
177 if (size <= 16 * 1024) return 14;
178 if (size <= 32 * 1024) return 15;
179 if (size <= 64 * 1024) return 16;
180 if (size <= 128 * 1024) return 17;
181 if (size <= 256 * 1024) return 18;
182 if (size <= 512 * 1024) return 19;
183 if (size <= 1024 * 1024) return 20;
184 if (size <= 2 * 1024 * 1024) return 21;
185 BUG();
186 return -1; /* Will never be reached */
189 * What we really wanted to do and cannot do because of compiler issues is:
190 * int i;
191 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
192 * if (size <= (1 << i))
193 * return i;
198 * Find the slab cache for a given combination of allocation flags and size.
200 * This ought to end up with a global pointer to the right cache
201 * in kmalloc_caches.
203 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
205 int index = kmalloc_index(size);
207 if (index == 0)
208 return NULL;
210 return kmalloc_caches[index];
213 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
214 void *__kmalloc(size_t size, gfp_t flags);
216 static __always_inline void *
217 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
219 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
220 kmemleak_alloc(ret, size, 1, flags);
221 return ret;
225 * Calling this on allocated memory will check that the memory
226 * is expected to be in use, and print warnings if not.
228 #ifdef CONFIG_SLUB_DEBUG
229 extern bool verify_mem_not_deleted(const void *x);
230 #else
231 static inline bool verify_mem_not_deleted(const void *x)
233 return true;
235 #endif
237 #ifdef CONFIG_TRACING
238 extern void *
239 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
240 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
241 #else
242 static __always_inline void *
243 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
245 return kmem_cache_alloc(s, gfpflags);
248 static __always_inline void *
249 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
251 return kmalloc_order(size, flags, order);
253 #endif
255 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
257 unsigned int order = get_order(size);
258 return kmalloc_order_trace(size, flags, order);
261 static __always_inline void *kmalloc(size_t size, gfp_t flags)
263 if (__builtin_constant_p(size)) {
264 if (size > SLUB_MAX_SIZE)
265 return kmalloc_large(size, flags);
267 if (!(flags & SLUB_DMA)) {
268 struct kmem_cache *s = kmalloc_slab(size);
270 if (!s)
271 return ZERO_SIZE_PTR;
273 return kmem_cache_alloc_trace(s, flags, size);
276 return __kmalloc(size, flags);
279 #ifdef CONFIG_NUMA
280 void *__kmalloc_node(size_t size, gfp_t flags, int node);
281 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
283 #ifdef CONFIG_TRACING
284 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
285 gfp_t gfpflags,
286 int node, size_t size);
287 #else
288 static __always_inline void *
289 kmem_cache_alloc_node_trace(struct kmem_cache *s,
290 gfp_t gfpflags,
291 int node, size_t size)
293 return kmem_cache_alloc_node(s, gfpflags, node);
295 #endif
297 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
299 if (__builtin_constant_p(size) &&
300 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
301 struct kmem_cache *s = kmalloc_slab(size);
303 if (!s)
304 return ZERO_SIZE_PTR;
306 return kmem_cache_alloc_node_trace(s, flags, node, size);
308 return __kmalloc_node(size, flags, node);
310 #endif
312 #endif /* _LINUX_SLUB_DEF_H */