2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
50 CHUNK_ALLOC_NO_FORCE
= 0,
51 CHUNK_ALLOC_FORCE
= 1,
52 CHUNK_ALLOC_LIMITED
= 2,
55 static int update_block_group(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 bytenr
, u64 num_bytes
, int alloc
);
58 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
59 struct btrfs_root
*root
,
60 u64 bytenr
, u64 num_bytes
, u64 parent
,
61 u64 root_objectid
, u64 owner_objectid
,
62 u64 owner_offset
, int refs_to_drop
,
63 struct btrfs_delayed_extent_op
*extra_op
);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
65 struct extent_buffer
*leaf
,
66 struct btrfs_extent_item
*ei
);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
68 struct btrfs_root
*root
,
69 u64 parent
, u64 root_objectid
,
70 u64 flags
, u64 owner
, u64 offset
,
71 struct btrfs_key
*ins
, int ref_mod
);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
73 struct btrfs_root
*root
,
74 u64 parent
, u64 root_objectid
,
75 u64 flags
, struct btrfs_disk_key
*key
,
76 int level
, struct btrfs_key
*ins
);
77 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
79 u64 flags
, int force
);
80 static int find_next_key(struct btrfs_path
*path
, int level
,
81 struct btrfs_key
*key
);
82 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
83 int dump_block_groups
);
86 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
89 return cache
->cached
== BTRFS_CACHE_FINISHED
;
92 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
94 return (cache
->flags
& bits
) == bits
;
97 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
99 atomic_inc(&cache
->count
);
102 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
104 if (atomic_dec_and_test(&cache
->count
)) {
105 WARN_ON(cache
->pinned
> 0);
106 WARN_ON(cache
->reserved
> 0);
107 WARN_ON(cache
->reserved_pinned
> 0);
108 kfree(cache
->free_space_ctl
);
114 * this adds the block group to the fs_info rb tree for the block group
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
118 struct btrfs_block_group_cache
*block_group
)
121 struct rb_node
*parent
= NULL
;
122 struct btrfs_block_group_cache
*cache
;
124 spin_lock(&info
->block_group_cache_lock
);
125 p
= &info
->block_group_cache_tree
.rb_node
;
129 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
131 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
133 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
136 spin_unlock(&info
->block_group_cache_lock
);
141 rb_link_node(&block_group
->cache_node
, parent
, p
);
142 rb_insert_color(&block_group
->cache_node
,
143 &info
->block_group_cache_tree
);
144 spin_unlock(&info
->block_group_cache_lock
);
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
153 static struct btrfs_block_group_cache
*
154 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
157 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
161 spin_lock(&info
->block_group_cache_lock
);
162 n
= info
->block_group_cache_tree
.rb_node
;
165 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
167 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
168 start
= cache
->key
.objectid
;
170 if (bytenr
< start
) {
171 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
174 } else if (bytenr
> start
) {
175 if (contains
&& bytenr
<= end
) {
186 btrfs_get_block_group(ret
);
187 spin_unlock(&info
->block_group_cache_lock
);
192 static int add_excluded_extent(struct btrfs_root
*root
,
193 u64 start
, u64 num_bytes
)
195 u64 end
= start
+ num_bytes
- 1;
196 set_extent_bits(&root
->fs_info
->freed_extents
[0],
197 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
198 set_extent_bits(&root
->fs_info
->freed_extents
[1],
199 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
203 static void free_excluded_extents(struct btrfs_root
*root
,
204 struct btrfs_block_group_cache
*cache
)
208 start
= cache
->key
.objectid
;
209 end
= start
+ cache
->key
.offset
- 1;
211 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
212 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
213 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
214 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
217 static int exclude_super_stripes(struct btrfs_root
*root
,
218 struct btrfs_block_group_cache
*cache
)
225 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
226 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
227 cache
->bytes_super
+= stripe_len
;
228 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
233 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
234 bytenr
= btrfs_sb_offset(i
);
235 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
236 cache
->key
.objectid
, bytenr
,
237 0, &logical
, &nr
, &stripe_len
);
241 cache
->bytes_super
+= stripe_len
;
242 ret
= add_excluded_extent(root
, logical
[nr
],
252 static struct btrfs_caching_control
*
253 get_caching_control(struct btrfs_block_group_cache
*cache
)
255 struct btrfs_caching_control
*ctl
;
257 spin_lock(&cache
->lock
);
258 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
259 spin_unlock(&cache
->lock
);
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache
->caching_ctl
) {
265 spin_unlock(&cache
->lock
);
269 ctl
= cache
->caching_ctl
;
270 atomic_inc(&ctl
->count
);
271 spin_unlock(&cache
->lock
);
275 static void put_caching_control(struct btrfs_caching_control
*ctl
)
277 if (atomic_dec_and_test(&ctl
->count
))
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
286 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
287 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
289 u64 extent_start
, extent_end
, size
, total_added
= 0;
292 while (start
< end
) {
293 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
294 &extent_start
, &extent_end
,
295 EXTENT_DIRTY
| EXTENT_UPTODATE
);
299 if (extent_start
<= start
) {
300 start
= extent_end
+ 1;
301 } else if (extent_start
> start
&& extent_start
< end
) {
302 size
= extent_start
- start
;
304 ret
= btrfs_add_free_space(block_group
, start
,
307 start
= extent_end
+ 1;
316 ret
= btrfs_add_free_space(block_group
, start
, size
);
323 static noinline
void caching_thread(struct btrfs_work
*work
)
325 struct btrfs_block_group_cache
*block_group
;
326 struct btrfs_fs_info
*fs_info
;
327 struct btrfs_caching_control
*caching_ctl
;
328 struct btrfs_root
*extent_root
;
329 struct btrfs_path
*path
;
330 struct extent_buffer
*leaf
;
331 struct btrfs_key key
;
337 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
338 block_group
= caching_ctl
->block_group
;
339 fs_info
= block_group
->fs_info
;
340 extent_root
= fs_info
->extent_root
;
342 path
= btrfs_alloc_path();
346 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
349 * We don't want to deadlock with somebody trying to allocate a new
350 * extent for the extent root while also trying to search the extent
351 * root to add free space. So we skip locking and search the commit
352 * root, since its read-only
354 path
->skip_locking
= 1;
355 path
->search_commit_root
= 1;
360 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
362 mutex_lock(&caching_ctl
->mutex
);
363 /* need to make sure the commit_root doesn't disappear */
364 down_read(&fs_info
->extent_commit_sem
);
366 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
370 leaf
= path
->nodes
[0];
371 nritems
= btrfs_header_nritems(leaf
);
374 if (btrfs_fs_closing(fs_info
) > 1) {
379 if (path
->slots
[0] < nritems
) {
380 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
382 ret
= find_next_key(path
, 0, &key
);
386 if (need_resched() ||
387 btrfs_next_leaf(extent_root
, path
)) {
388 caching_ctl
->progress
= last
;
389 btrfs_release_path(path
);
390 up_read(&fs_info
->extent_commit_sem
);
391 mutex_unlock(&caching_ctl
->mutex
);
395 leaf
= path
->nodes
[0];
396 nritems
= btrfs_header_nritems(leaf
);
400 if (key
.objectid
< block_group
->key
.objectid
) {
405 if (key
.objectid
>= block_group
->key
.objectid
+
406 block_group
->key
.offset
)
409 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
410 total_found
+= add_new_free_space(block_group
,
413 last
= key
.objectid
+ key
.offset
;
415 if (total_found
> (1024 * 1024 * 2)) {
417 wake_up(&caching_ctl
->wait
);
424 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
425 block_group
->key
.objectid
+
426 block_group
->key
.offset
);
427 caching_ctl
->progress
= (u64
)-1;
429 spin_lock(&block_group
->lock
);
430 block_group
->caching_ctl
= NULL
;
431 block_group
->cached
= BTRFS_CACHE_FINISHED
;
432 spin_unlock(&block_group
->lock
);
435 btrfs_free_path(path
);
436 up_read(&fs_info
->extent_commit_sem
);
438 free_excluded_extents(extent_root
, block_group
);
440 mutex_unlock(&caching_ctl
->mutex
);
442 wake_up(&caching_ctl
->wait
);
444 put_caching_control(caching_ctl
);
445 btrfs_put_block_group(block_group
);
448 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
449 struct btrfs_trans_handle
*trans
,
450 struct btrfs_root
*root
,
453 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
454 struct btrfs_caching_control
*caching_ctl
;
458 if (cache
->cached
!= BTRFS_CACHE_NO
)
462 * We can't do the read from on-disk cache during a commit since we need
463 * to have the normal tree locking. Also if we are currently trying to
464 * allocate blocks for the tree root we can't do the fast caching since
465 * we likely hold important locks.
467 if (trans
&& (!trans
->transaction
->in_commit
) &&
468 (root
&& root
!= root
->fs_info
->tree_root
)) {
469 spin_lock(&cache
->lock
);
470 if (cache
->cached
!= BTRFS_CACHE_NO
) {
471 spin_unlock(&cache
->lock
);
474 cache
->cached
= BTRFS_CACHE_STARTED
;
475 spin_unlock(&cache
->lock
);
477 ret
= load_free_space_cache(fs_info
, cache
);
479 spin_lock(&cache
->lock
);
481 cache
->cached
= BTRFS_CACHE_FINISHED
;
482 cache
->last_byte_to_unpin
= (u64
)-1;
484 cache
->cached
= BTRFS_CACHE_NO
;
486 spin_unlock(&cache
->lock
);
488 free_excluded_extents(fs_info
->extent_root
, cache
);
496 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
497 BUG_ON(!caching_ctl
);
499 INIT_LIST_HEAD(&caching_ctl
->list
);
500 mutex_init(&caching_ctl
->mutex
);
501 init_waitqueue_head(&caching_ctl
->wait
);
502 caching_ctl
->block_group
= cache
;
503 caching_ctl
->progress
= cache
->key
.objectid
;
504 /* one for caching kthread, one for caching block group list */
505 atomic_set(&caching_ctl
->count
, 2);
506 caching_ctl
->work
.func
= caching_thread
;
508 spin_lock(&cache
->lock
);
509 if (cache
->cached
!= BTRFS_CACHE_NO
) {
510 spin_unlock(&cache
->lock
);
514 cache
->caching_ctl
= caching_ctl
;
515 cache
->cached
= BTRFS_CACHE_STARTED
;
516 spin_unlock(&cache
->lock
);
518 down_write(&fs_info
->extent_commit_sem
);
519 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
520 up_write(&fs_info
->extent_commit_sem
);
522 btrfs_get_block_group(cache
);
524 btrfs_queue_worker(&fs_info
->caching_workers
, &caching_ctl
->work
);
530 * return the block group that starts at or after bytenr
532 static struct btrfs_block_group_cache
*
533 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
535 struct btrfs_block_group_cache
*cache
;
537 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
543 * return the block group that contains the given bytenr
545 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
546 struct btrfs_fs_info
*info
,
549 struct btrfs_block_group_cache
*cache
;
551 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
556 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
559 struct list_head
*head
= &info
->space_info
;
560 struct btrfs_space_info
*found
;
562 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
563 BTRFS_BLOCK_GROUP_METADATA
;
566 list_for_each_entry_rcu(found
, head
, list
) {
567 if (found
->flags
& flags
) {
577 * after adding space to the filesystem, we need to clear the full flags
578 * on all the space infos.
580 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
582 struct list_head
*head
= &info
->space_info
;
583 struct btrfs_space_info
*found
;
586 list_for_each_entry_rcu(found
, head
, list
)
591 static u64
div_factor(u64 num
, int factor
)
600 static u64
div_factor_fine(u64 num
, int factor
)
609 u64
btrfs_find_block_group(struct btrfs_root
*root
,
610 u64 search_start
, u64 search_hint
, int owner
)
612 struct btrfs_block_group_cache
*cache
;
614 u64 last
= max(search_hint
, search_start
);
621 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
625 spin_lock(&cache
->lock
);
626 last
= cache
->key
.objectid
+ cache
->key
.offset
;
627 used
= btrfs_block_group_used(&cache
->item
);
629 if ((full_search
|| !cache
->ro
) &&
630 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
631 if (used
+ cache
->pinned
+ cache
->reserved
<
632 div_factor(cache
->key
.offset
, factor
)) {
633 group_start
= cache
->key
.objectid
;
634 spin_unlock(&cache
->lock
);
635 btrfs_put_block_group(cache
);
639 spin_unlock(&cache
->lock
);
640 btrfs_put_block_group(cache
);
648 if (!full_search
&& factor
< 10) {
658 /* simple helper to search for an existing extent at a given offset */
659 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
662 struct btrfs_key key
;
663 struct btrfs_path
*path
;
665 path
= btrfs_alloc_path();
669 key
.objectid
= start
;
671 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
672 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
674 btrfs_free_path(path
);
679 * helper function to lookup reference count and flags of extent.
681 * the head node for delayed ref is used to store the sum of all the
682 * reference count modifications queued up in the rbtree. the head
683 * node may also store the extent flags to set. This way you can check
684 * to see what the reference count and extent flags would be if all of
685 * the delayed refs are not processed.
687 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
688 struct btrfs_root
*root
, u64 bytenr
,
689 u64 num_bytes
, u64
*refs
, u64
*flags
)
691 struct btrfs_delayed_ref_head
*head
;
692 struct btrfs_delayed_ref_root
*delayed_refs
;
693 struct btrfs_path
*path
;
694 struct btrfs_extent_item
*ei
;
695 struct extent_buffer
*leaf
;
696 struct btrfs_key key
;
702 path
= btrfs_alloc_path();
706 key
.objectid
= bytenr
;
707 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
708 key
.offset
= num_bytes
;
710 path
->skip_locking
= 1;
711 path
->search_commit_root
= 1;
714 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
720 leaf
= path
->nodes
[0];
721 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
722 if (item_size
>= sizeof(*ei
)) {
723 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
724 struct btrfs_extent_item
);
725 num_refs
= btrfs_extent_refs(leaf
, ei
);
726 extent_flags
= btrfs_extent_flags(leaf
, ei
);
728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
729 struct btrfs_extent_item_v0
*ei0
;
730 BUG_ON(item_size
!= sizeof(*ei0
));
731 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
732 struct btrfs_extent_item_v0
);
733 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
734 /* FIXME: this isn't correct for data */
735 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
740 BUG_ON(num_refs
== 0);
750 delayed_refs
= &trans
->transaction
->delayed_refs
;
751 spin_lock(&delayed_refs
->lock
);
752 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
754 if (!mutex_trylock(&head
->mutex
)) {
755 atomic_inc(&head
->node
.refs
);
756 spin_unlock(&delayed_refs
->lock
);
758 btrfs_release_path(path
);
761 * Mutex was contended, block until it's released and try
764 mutex_lock(&head
->mutex
);
765 mutex_unlock(&head
->mutex
);
766 btrfs_put_delayed_ref(&head
->node
);
769 if (head
->extent_op
&& head
->extent_op
->update_flags
)
770 extent_flags
|= head
->extent_op
->flags_to_set
;
772 BUG_ON(num_refs
== 0);
774 num_refs
+= head
->node
.ref_mod
;
775 mutex_unlock(&head
->mutex
);
777 spin_unlock(&delayed_refs
->lock
);
779 WARN_ON(num_refs
== 0);
783 *flags
= extent_flags
;
785 btrfs_free_path(path
);
790 * Back reference rules. Back refs have three main goals:
792 * 1) differentiate between all holders of references to an extent so that
793 * when a reference is dropped we can make sure it was a valid reference
794 * before freeing the extent.
796 * 2) Provide enough information to quickly find the holders of an extent
797 * if we notice a given block is corrupted or bad.
799 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
800 * maintenance. This is actually the same as #2, but with a slightly
801 * different use case.
803 * There are two kinds of back refs. The implicit back refs is optimized
804 * for pointers in non-shared tree blocks. For a given pointer in a block,
805 * back refs of this kind provide information about the block's owner tree
806 * and the pointer's key. These information allow us to find the block by
807 * b-tree searching. The full back refs is for pointers in tree blocks not
808 * referenced by their owner trees. The location of tree block is recorded
809 * in the back refs. Actually the full back refs is generic, and can be
810 * used in all cases the implicit back refs is used. The major shortcoming
811 * of the full back refs is its overhead. Every time a tree block gets
812 * COWed, we have to update back refs entry for all pointers in it.
814 * For a newly allocated tree block, we use implicit back refs for
815 * pointers in it. This means most tree related operations only involve
816 * implicit back refs. For a tree block created in old transaction, the
817 * only way to drop a reference to it is COW it. So we can detect the
818 * event that tree block loses its owner tree's reference and do the
819 * back refs conversion.
821 * When a tree block is COW'd through a tree, there are four cases:
823 * The reference count of the block is one and the tree is the block's
824 * owner tree. Nothing to do in this case.
826 * The reference count of the block is one and the tree is not the
827 * block's owner tree. In this case, full back refs is used for pointers
828 * in the block. Remove these full back refs, add implicit back refs for
829 * every pointers in the new block.
831 * The reference count of the block is greater than one and the tree is
832 * the block's owner tree. In this case, implicit back refs is used for
833 * pointers in the block. Add full back refs for every pointers in the
834 * block, increase lower level extents' reference counts. The original
835 * implicit back refs are entailed to the new block.
837 * The reference count of the block is greater than one and the tree is
838 * not the block's owner tree. Add implicit back refs for every pointer in
839 * the new block, increase lower level extents' reference count.
841 * Back Reference Key composing:
843 * The key objectid corresponds to the first byte in the extent,
844 * The key type is used to differentiate between types of back refs.
845 * There are different meanings of the key offset for different types
848 * File extents can be referenced by:
850 * - multiple snapshots, subvolumes, or different generations in one subvol
851 * - different files inside a single subvolume
852 * - different offsets inside a file (bookend extents in file.c)
854 * The extent ref structure for the implicit back refs has fields for:
856 * - Objectid of the subvolume root
857 * - objectid of the file holding the reference
858 * - original offset in the file
859 * - how many bookend extents
861 * The key offset for the implicit back refs is hash of the first
864 * The extent ref structure for the full back refs has field for:
866 * - number of pointers in the tree leaf
868 * The key offset for the implicit back refs is the first byte of
871 * When a file extent is allocated, The implicit back refs is used.
872 * the fields are filled in:
874 * (root_key.objectid, inode objectid, offset in file, 1)
876 * When a file extent is removed file truncation, we find the
877 * corresponding implicit back refs and check the following fields:
879 * (btrfs_header_owner(leaf), inode objectid, offset in file)
881 * Btree extents can be referenced by:
883 * - Different subvolumes
885 * Both the implicit back refs and the full back refs for tree blocks
886 * only consist of key. The key offset for the implicit back refs is
887 * objectid of block's owner tree. The key offset for the full back refs
888 * is the first byte of parent block.
890 * When implicit back refs is used, information about the lowest key and
891 * level of the tree block are required. These information are stored in
892 * tree block info structure.
895 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
896 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
897 struct btrfs_root
*root
,
898 struct btrfs_path
*path
,
899 u64 owner
, u32 extra_size
)
901 struct btrfs_extent_item
*item
;
902 struct btrfs_extent_item_v0
*ei0
;
903 struct btrfs_extent_ref_v0
*ref0
;
904 struct btrfs_tree_block_info
*bi
;
905 struct extent_buffer
*leaf
;
906 struct btrfs_key key
;
907 struct btrfs_key found_key
;
908 u32 new_size
= sizeof(*item
);
912 leaf
= path
->nodes
[0];
913 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
915 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
916 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
917 struct btrfs_extent_item_v0
);
918 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
920 if (owner
== (u64
)-1) {
922 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
923 ret
= btrfs_next_leaf(root
, path
);
927 leaf
= path
->nodes
[0];
929 btrfs_item_key_to_cpu(leaf
, &found_key
,
931 BUG_ON(key
.objectid
!= found_key
.objectid
);
932 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
936 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
937 struct btrfs_extent_ref_v0
);
938 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
942 btrfs_release_path(path
);
944 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
945 new_size
+= sizeof(*bi
);
947 new_size
-= sizeof(*ei0
);
948 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
949 new_size
+ extra_size
, 1);
954 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
956 leaf
= path
->nodes
[0];
957 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
958 btrfs_set_extent_refs(leaf
, item
, refs
);
959 /* FIXME: get real generation */
960 btrfs_set_extent_generation(leaf
, item
, 0);
961 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
962 btrfs_set_extent_flags(leaf
, item
,
963 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
964 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
965 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
966 /* FIXME: get first key of the block */
967 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
968 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
970 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
972 btrfs_mark_buffer_dirty(leaf
);
977 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
979 u32 high_crc
= ~(u32
)0;
980 u32 low_crc
= ~(u32
)0;
983 lenum
= cpu_to_le64(root_objectid
);
984 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
985 lenum
= cpu_to_le64(owner
);
986 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
987 lenum
= cpu_to_le64(offset
);
988 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
990 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
993 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
994 struct btrfs_extent_data_ref
*ref
)
996 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
997 btrfs_extent_data_ref_objectid(leaf
, ref
),
998 btrfs_extent_data_ref_offset(leaf
, ref
));
1001 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1002 struct btrfs_extent_data_ref
*ref
,
1003 u64 root_objectid
, u64 owner
, u64 offset
)
1005 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1006 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1007 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1012 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1013 struct btrfs_root
*root
,
1014 struct btrfs_path
*path
,
1015 u64 bytenr
, u64 parent
,
1017 u64 owner
, u64 offset
)
1019 struct btrfs_key key
;
1020 struct btrfs_extent_data_ref
*ref
;
1021 struct extent_buffer
*leaf
;
1027 key
.objectid
= bytenr
;
1029 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1030 key
.offset
= parent
;
1032 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1033 key
.offset
= hash_extent_data_ref(root_objectid
,
1038 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1047 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1048 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1049 btrfs_release_path(path
);
1050 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1061 leaf
= path
->nodes
[0];
1062 nritems
= btrfs_header_nritems(leaf
);
1064 if (path
->slots
[0] >= nritems
) {
1065 ret
= btrfs_next_leaf(root
, path
);
1071 leaf
= path
->nodes
[0];
1072 nritems
= btrfs_header_nritems(leaf
);
1076 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1077 if (key
.objectid
!= bytenr
||
1078 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1081 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1082 struct btrfs_extent_data_ref
);
1084 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1087 btrfs_release_path(path
);
1099 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1100 struct btrfs_root
*root
,
1101 struct btrfs_path
*path
,
1102 u64 bytenr
, u64 parent
,
1103 u64 root_objectid
, u64 owner
,
1104 u64 offset
, int refs_to_add
)
1106 struct btrfs_key key
;
1107 struct extent_buffer
*leaf
;
1112 key
.objectid
= bytenr
;
1114 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1115 key
.offset
= parent
;
1116 size
= sizeof(struct btrfs_shared_data_ref
);
1118 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1119 key
.offset
= hash_extent_data_ref(root_objectid
,
1121 size
= sizeof(struct btrfs_extent_data_ref
);
1124 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1125 if (ret
&& ret
!= -EEXIST
)
1128 leaf
= path
->nodes
[0];
1130 struct btrfs_shared_data_ref
*ref
;
1131 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1132 struct btrfs_shared_data_ref
);
1134 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1136 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1137 num_refs
+= refs_to_add
;
1138 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1141 struct btrfs_extent_data_ref
*ref
;
1142 while (ret
== -EEXIST
) {
1143 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1144 struct btrfs_extent_data_ref
);
1145 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1148 btrfs_release_path(path
);
1150 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1152 if (ret
&& ret
!= -EEXIST
)
1155 leaf
= path
->nodes
[0];
1157 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1158 struct btrfs_extent_data_ref
);
1160 btrfs_set_extent_data_ref_root(leaf
, ref
,
1162 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1163 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1164 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1166 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1167 num_refs
+= refs_to_add
;
1168 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1171 btrfs_mark_buffer_dirty(leaf
);
1174 btrfs_release_path(path
);
1178 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1179 struct btrfs_root
*root
,
1180 struct btrfs_path
*path
,
1183 struct btrfs_key key
;
1184 struct btrfs_extent_data_ref
*ref1
= NULL
;
1185 struct btrfs_shared_data_ref
*ref2
= NULL
;
1186 struct extent_buffer
*leaf
;
1190 leaf
= path
->nodes
[0];
1191 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1193 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1194 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1195 struct btrfs_extent_data_ref
);
1196 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1197 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1198 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1199 struct btrfs_shared_data_ref
);
1200 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1202 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1203 struct btrfs_extent_ref_v0
*ref0
;
1204 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1205 struct btrfs_extent_ref_v0
);
1206 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1212 BUG_ON(num_refs
< refs_to_drop
);
1213 num_refs
-= refs_to_drop
;
1215 if (num_refs
== 0) {
1216 ret
= btrfs_del_item(trans
, root
, path
);
1218 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1219 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1220 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1221 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1224 struct btrfs_extent_ref_v0
*ref0
;
1225 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1226 struct btrfs_extent_ref_v0
);
1227 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1230 btrfs_mark_buffer_dirty(leaf
);
1235 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1236 struct btrfs_path
*path
,
1237 struct btrfs_extent_inline_ref
*iref
)
1239 struct btrfs_key key
;
1240 struct extent_buffer
*leaf
;
1241 struct btrfs_extent_data_ref
*ref1
;
1242 struct btrfs_shared_data_ref
*ref2
;
1245 leaf
= path
->nodes
[0];
1246 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1248 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1249 BTRFS_EXTENT_DATA_REF_KEY
) {
1250 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1251 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1253 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1254 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1256 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1257 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1258 struct btrfs_extent_data_ref
);
1259 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1260 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1261 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1262 struct btrfs_shared_data_ref
);
1263 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1264 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1265 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1266 struct btrfs_extent_ref_v0
*ref0
;
1267 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1268 struct btrfs_extent_ref_v0
);
1269 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1277 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1278 struct btrfs_root
*root
,
1279 struct btrfs_path
*path
,
1280 u64 bytenr
, u64 parent
,
1283 struct btrfs_key key
;
1286 key
.objectid
= bytenr
;
1288 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1289 key
.offset
= parent
;
1291 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1292 key
.offset
= root_objectid
;
1295 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 if (ret
== -ENOENT
&& parent
) {
1300 btrfs_release_path(path
);
1301 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1302 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1310 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1311 struct btrfs_root
*root
,
1312 struct btrfs_path
*path
,
1313 u64 bytenr
, u64 parent
,
1316 struct btrfs_key key
;
1319 key
.objectid
= bytenr
;
1321 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1322 key
.offset
= parent
;
1324 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1325 key
.offset
= root_objectid
;
1328 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1329 btrfs_release_path(path
);
1333 static inline int extent_ref_type(u64 parent
, u64 owner
)
1336 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1338 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1340 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1343 type
= BTRFS_SHARED_DATA_REF_KEY
;
1345 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1350 static int find_next_key(struct btrfs_path
*path
, int level
,
1351 struct btrfs_key
*key
)
1354 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1355 if (!path
->nodes
[level
])
1357 if (path
->slots
[level
] + 1 >=
1358 btrfs_header_nritems(path
->nodes
[level
]))
1361 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1362 path
->slots
[level
] + 1);
1364 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1365 path
->slots
[level
] + 1);
1372 * look for inline back ref. if back ref is found, *ref_ret is set
1373 * to the address of inline back ref, and 0 is returned.
1375 * if back ref isn't found, *ref_ret is set to the address where it
1376 * should be inserted, and -ENOENT is returned.
1378 * if insert is true and there are too many inline back refs, the path
1379 * points to the extent item, and -EAGAIN is returned.
1381 * NOTE: inline back refs are ordered in the same way that back ref
1382 * items in the tree are ordered.
1384 static noinline_for_stack
1385 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1386 struct btrfs_root
*root
,
1387 struct btrfs_path
*path
,
1388 struct btrfs_extent_inline_ref
**ref_ret
,
1389 u64 bytenr
, u64 num_bytes
,
1390 u64 parent
, u64 root_objectid
,
1391 u64 owner
, u64 offset
, int insert
)
1393 struct btrfs_key key
;
1394 struct extent_buffer
*leaf
;
1395 struct btrfs_extent_item
*ei
;
1396 struct btrfs_extent_inline_ref
*iref
;
1407 key
.objectid
= bytenr
;
1408 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1409 key
.offset
= num_bytes
;
1411 want
= extent_ref_type(parent
, owner
);
1413 extra_size
= btrfs_extent_inline_ref_size(want
);
1414 path
->keep_locks
= 1;
1417 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1424 leaf
= path
->nodes
[0];
1425 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 if (item_size
< sizeof(*ei
)) {
1432 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1438 leaf
= path
->nodes
[0];
1439 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1442 BUG_ON(item_size
< sizeof(*ei
));
1444 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1445 flags
= btrfs_extent_flags(leaf
, ei
);
1447 ptr
= (unsigned long)(ei
+ 1);
1448 end
= (unsigned long)ei
+ item_size
;
1450 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1451 ptr
+= sizeof(struct btrfs_tree_block_info
);
1454 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1463 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1464 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1468 ptr
+= btrfs_extent_inline_ref_size(type
);
1472 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1473 struct btrfs_extent_data_ref
*dref
;
1474 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1475 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1480 if (hash_extent_data_ref_item(leaf
, dref
) <
1481 hash_extent_data_ref(root_objectid
, owner
, offset
))
1485 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1487 if (parent
== ref_offset
) {
1491 if (ref_offset
< parent
)
1494 if (root_objectid
== ref_offset
) {
1498 if (ref_offset
< root_objectid
)
1502 ptr
+= btrfs_extent_inline_ref_size(type
);
1504 if (err
== -ENOENT
&& insert
) {
1505 if (item_size
+ extra_size
>=
1506 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1511 * To add new inline back ref, we have to make sure
1512 * there is no corresponding back ref item.
1513 * For simplicity, we just do not add new inline back
1514 * ref if there is any kind of item for this block
1516 if (find_next_key(path
, 0, &key
) == 0 &&
1517 key
.objectid
== bytenr
&&
1518 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1523 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1526 path
->keep_locks
= 0;
1527 btrfs_unlock_up_safe(path
, 1);
1533 * helper to add new inline back ref
1535 static noinline_for_stack
1536 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1537 struct btrfs_root
*root
,
1538 struct btrfs_path
*path
,
1539 struct btrfs_extent_inline_ref
*iref
,
1540 u64 parent
, u64 root_objectid
,
1541 u64 owner
, u64 offset
, int refs_to_add
,
1542 struct btrfs_delayed_extent_op
*extent_op
)
1544 struct extent_buffer
*leaf
;
1545 struct btrfs_extent_item
*ei
;
1548 unsigned long item_offset
;
1554 leaf
= path
->nodes
[0];
1555 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1556 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1558 type
= extent_ref_type(parent
, owner
);
1559 size
= btrfs_extent_inline_ref_size(type
);
1561 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1563 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1564 refs
= btrfs_extent_refs(leaf
, ei
);
1565 refs
+= refs_to_add
;
1566 btrfs_set_extent_refs(leaf
, ei
, refs
);
1568 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1570 ptr
= (unsigned long)ei
+ item_offset
;
1571 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1572 if (ptr
< end
- size
)
1573 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1576 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1577 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1578 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1579 struct btrfs_extent_data_ref
*dref
;
1580 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1581 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1582 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1583 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1584 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1585 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1586 struct btrfs_shared_data_ref
*sref
;
1587 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1588 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1589 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1590 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1591 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1593 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1595 btrfs_mark_buffer_dirty(leaf
);
1599 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1600 struct btrfs_root
*root
,
1601 struct btrfs_path
*path
,
1602 struct btrfs_extent_inline_ref
**ref_ret
,
1603 u64 bytenr
, u64 num_bytes
, u64 parent
,
1604 u64 root_objectid
, u64 owner
, u64 offset
)
1608 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1609 bytenr
, num_bytes
, parent
,
1610 root_objectid
, owner
, offset
, 0);
1614 btrfs_release_path(path
);
1617 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1618 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1621 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1622 root_objectid
, owner
, offset
);
1628 * helper to update/remove inline back ref
1630 static noinline_for_stack
1631 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1632 struct btrfs_root
*root
,
1633 struct btrfs_path
*path
,
1634 struct btrfs_extent_inline_ref
*iref
,
1636 struct btrfs_delayed_extent_op
*extent_op
)
1638 struct extent_buffer
*leaf
;
1639 struct btrfs_extent_item
*ei
;
1640 struct btrfs_extent_data_ref
*dref
= NULL
;
1641 struct btrfs_shared_data_ref
*sref
= NULL
;
1650 leaf
= path
->nodes
[0];
1651 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1652 refs
= btrfs_extent_refs(leaf
, ei
);
1653 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1654 refs
+= refs_to_mod
;
1655 btrfs_set_extent_refs(leaf
, ei
, refs
);
1657 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1659 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1661 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1662 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1663 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1664 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1665 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1666 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1669 BUG_ON(refs_to_mod
!= -1);
1672 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1673 refs
+= refs_to_mod
;
1676 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1677 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1679 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1681 size
= btrfs_extent_inline_ref_size(type
);
1682 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1683 ptr
= (unsigned long)iref
;
1684 end
= (unsigned long)ei
+ item_size
;
1685 if (ptr
+ size
< end
)
1686 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1689 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1691 btrfs_mark_buffer_dirty(leaf
);
1695 static noinline_for_stack
1696 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1697 struct btrfs_root
*root
,
1698 struct btrfs_path
*path
,
1699 u64 bytenr
, u64 num_bytes
, u64 parent
,
1700 u64 root_objectid
, u64 owner
,
1701 u64 offset
, int refs_to_add
,
1702 struct btrfs_delayed_extent_op
*extent_op
)
1704 struct btrfs_extent_inline_ref
*iref
;
1707 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1708 bytenr
, num_bytes
, parent
,
1709 root_objectid
, owner
, offset
, 1);
1711 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1712 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1713 refs_to_add
, extent_op
);
1714 } else if (ret
== -ENOENT
) {
1715 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1716 parent
, root_objectid
,
1717 owner
, offset
, refs_to_add
,
1723 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1724 struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 u64 bytenr
, u64 parent
, u64 root_objectid
,
1727 u64 owner
, u64 offset
, int refs_to_add
)
1730 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1731 BUG_ON(refs_to_add
!= 1);
1732 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1733 parent
, root_objectid
);
1735 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1736 parent
, root_objectid
,
1737 owner
, offset
, refs_to_add
);
1742 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1743 struct btrfs_root
*root
,
1744 struct btrfs_path
*path
,
1745 struct btrfs_extent_inline_ref
*iref
,
1746 int refs_to_drop
, int is_data
)
1750 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1752 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1753 -refs_to_drop
, NULL
);
1754 } else if (is_data
) {
1755 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1757 ret
= btrfs_del_item(trans
, root
, path
);
1762 static int btrfs_issue_discard(struct block_device
*bdev
,
1765 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1768 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1769 u64 num_bytes
, u64
*actual_bytes
)
1772 u64 discarded_bytes
= 0;
1773 struct btrfs_multi_bio
*multi
= NULL
;
1776 /* Tell the block device(s) that the sectors can be discarded */
1777 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, REQ_DISCARD
,
1778 bytenr
, &num_bytes
, &multi
, 0);
1780 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1784 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1785 if (!stripe
->dev
->can_discard
)
1788 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1792 discarded_bytes
+= stripe
->length
;
1793 else if (ret
!= -EOPNOTSUPP
)
1797 * Just in case we get back EOPNOTSUPP for some reason,
1798 * just ignore the return value so we don't screw up
1799 * people calling discard_extent.
1807 *actual_bytes
= discarded_bytes
;
1813 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1814 struct btrfs_root
*root
,
1815 u64 bytenr
, u64 num_bytes
, u64 parent
,
1816 u64 root_objectid
, u64 owner
, u64 offset
)
1819 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1820 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1822 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1823 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1824 parent
, root_objectid
, (int)owner
,
1825 BTRFS_ADD_DELAYED_REF
, NULL
);
1827 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1828 parent
, root_objectid
, owner
, offset
,
1829 BTRFS_ADD_DELAYED_REF
, NULL
);
1834 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1835 struct btrfs_root
*root
,
1836 u64 bytenr
, u64 num_bytes
,
1837 u64 parent
, u64 root_objectid
,
1838 u64 owner
, u64 offset
, int refs_to_add
,
1839 struct btrfs_delayed_extent_op
*extent_op
)
1841 struct btrfs_path
*path
;
1842 struct extent_buffer
*leaf
;
1843 struct btrfs_extent_item
*item
;
1848 path
= btrfs_alloc_path();
1853 path
->leave_spinning
= 1;
1854 /* this will setup the path even if it fails to insert the back ref */
1855 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1856 path
, bytenr
, num_bytes
, parent
,
1857 root_objectid
, owner
, offset
,
1858 refs_to_add
, extent_op
);
1862 if (ret
!= -EAGAIN
) {
1867 leaf
= path
->nodes
[0];
1868 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1869 refs
= btrfs_extent_refs(leaf
, item
);
1870 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1872 __run_delayed_extent_op(extent_op
, leaf
, item
);
1874 btrfs_mark_buffer_dirty(leaf
);
1875 btrfs_release_path(path
);
1878 path
->leave_spinning
= 1;
1880 /* now insert the actual backref */
1881 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1882 path
, bytenr
, parent
, root_objectid
,
1883 owner
, offset
, refs_to_add
);
1886 btrfs_free_path(path
);
1890 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1891 struct btrfs_root
*root
,
1892 struct btrfs_delayed_ref_node
*node
,
1893 struct btrfs_delayed_extent_op
*extent_op
,
1894 int insert_reserved
)
1897 struct btrfs_delayed_data_ref
*ref
;
1898 struct btrfs_key ins
;
1903 ins
.objectid
= node
->bytenr
;
1904 ins
.offset
= node
->num_bytes
;
1905 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1907 ref
= btrfs_delayed_node_to_data_ref(node
);
1908 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1909 parent
= ref
->parent
;
1911 ref_root
= ref
->root
;
1913 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1915 BUG_ON(extent_op
->update_key
);
1916 flags
|= extent_op
->flags_to_set
;
1918 ret
= alloc_reserved_file_extent(trans
, root
,
1919 parent
, ref_root
, flags
,
1920 ref
->objectid
, ref
->offset
,
1921 &ins
, node
->ref_mod
);
1922 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1923 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1924 node
->num_bytes
, parent
,
1925 ref_root
, ref
->objectid
,
1926 ref
->offset
, node
->ref_mod
,
1928 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1929 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1930 node
->num_bytes
, parent
,
1931 ref_root
, ref
->objectid
,
1932 ref
->offset
, node
->ref_mod
,
1940 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1941 struct extent_buffer
*leaf
,
1942 struct btrfs_extent_item
*ei
)
1944 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1945 if (extent_op
->update_flags
) {
1946 flags
|= extent_op
->flags_to_set
;
1947 btrfs_set_extent_flags(leaf
, ei
, flags
);
1950 if (extent_op
->update_key
) {
1951 struct btrfs_tree_block_info
*bi
;
1952 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1953 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1954 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1958 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1959 struct btrfs_root
*root
,
1960 struct btrfs_delayed_ref_node
*node
,
1961 struct btrfs_delayed_extent_op
*extent_op
)
1963 struct btrfs_key key
;
1964 struct btrfs_path
*path
;
1965 struct btrfs_extent_item
*ei
;
1966 struct extent_buffer
*leaf
;
1971 path
= btrfs_alloc_path();
1975 key
.objectid
= node
->bytenr
;
1976 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1977 key
.offset
= node
->num_bytes
;
1980 path
->leave_spinning
= 1;
1981 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1992 leaf
= path
->nodes
[0];
1993 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1995 if (item_size
< sizeof(*ei
)) {
1996 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2002 leaf
= path
->nodes
[0];
2003 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2006 BUG_ON(item_size
< sizeof(*ei
));
2007 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2008 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2010 btrfs_mark_buffer_dirty(leaf
);
2012 btrfs_free_path(path
);
2016 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2017 struct btrfs_root
*root
,
2018 struct btrfs_delayed_ref_node
*node
,
2019 struct btrfs_delayed_extent_op
*extent_op
,
2020 int insert_reserved
)
2023 struct btrfs_delayed_tree_ref
*ref
;
2024 struct btrfs_key ins
;
2028 ins
.objectid
= node
->bytenr
;
2029 ins
.offset
= node
->num_bytes
;
2030 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2032 ref
= btrfs_delayed_node_to_tree_ref(node
);
2033 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2034 parent
= ref
->parent
;
2036 ref_root
= ref
->root
;
2038 BUG_ON(node
->ref_mod
!= 1);
2039 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2040 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2041 !extent_op
->update_key
);
2042 ret
= alloc_reserved_tree_block(trans
, root
,
2044 extent_op
->flags_to_set
,
2047 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2048 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2049 node
->num_bytes
, parent
, ref_root
,
2050 ref
->level
, 0, 1, extent_op
);
2051 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2052 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2053 node
->num_bytes
, parent
, ref_root
,
2054 ref
->level
, 0, 1, extent_op
);
2061 /* helper function to actually process a single delayed ref entry */
2062 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2063 struct btrfs_root
*root
,
2064 struct btrfs_delayed_ref_node
*node
,
2065 struct btrfs_delayed_extent_op
*extent_op
,
2066 int insert_reserved
)
2069 if (btrfs_delayed_ref_is_head(node
)) {
2070 struct btrfs_delayed_ref_head
*head
;
2072 * we've hit the end of the chain and we were supposed
2073 * to insert this extent into the tree. But, it got
2074 * deleted before we ever needed to insert it, so all
2075 * we have to do is clean up the accounting
2078 head
= btrfs_delayed_node_to_head(node
);
2079 if (insert_reserved
) {
2080 btrfs_pin_extent(root
, node
->bytenr
,
2081 node
->num_bytes
, 1);
2082 if (head
->is_data
) {
2083 ret
= btrfs_del_csums(trans
, root
,
2089 mutex_unlock(&head
->mutex
);
2093 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2094 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2095 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2097 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2098 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2099 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2106 static noinline
struct btrfs_delayed_ref_node
*
2107 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2109 struct rb_node
*node
;
2110 struct btrfs_delayed_ref_node
*ref
;
2111 int action
= BTRFS_ADD_DELAYED_REF
;
2114 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2115 * this prevents ref count from going down to zero when
2116 * there still are pending delayed ref.
2118 node
= rb_prev(&head
->node
.rb_node
);
2122 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2124 if (ref
->bytenr
!= head
->node
.bytenr
)
2126 if (ref
->action
== action
)
2128 node
= rb_prev(node
);
2130 if (action
== BTRFS_ADD_DELAYED_REF
) {
2131 action
= BTRFS_DROP_DELAYED_REF
;
2137 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2138 struct btrfs_root
*root
,
2139 struct list_head
*cluster
)
2141 struct btrfs_delayed_ref_root
*delayed_refs
;
2142 struct btrfs_delayed_ref_node
*ref
;
2143 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2144 struct btrfs_delayed_extent_op
*extent_op
;
2147 int must_insert_reserved
= 0;
2149 delayed_refs
= &trans
->transaction
->delayed_refs
;
2152 /* pick a new head ref from the cluster list */
2153 if (list_empty(cluster
))
2156 locked_ref
= list_entry(cluster
->next
,
2157 struct btrfs_delayed_ref_head
, cluster
);
2159 /* grab the lock that says we are going to process
2160 * all the refs for this head */
2161 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2164 * we may have dropped the spin lock to get the head
2165 * mutex lock, and that might have given someone else
2166 * time to free the head. If that's true, it has been
2167 * removed from our list and we can move on.
2169 if (ret
== -EAGAIN
) {
2177 * record the must insert reserved flag before we
2178 * drop the spin lock.
2180 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2181 locked_ref
->must_insert_reserved
= 0;
2183 extent_op
= locked_ref
->extent_op
;
2184 locked_ref
->extent_op
= NULL
;
2187 * locked_ref is the head node, so we have to go one
2188 * node back for any delayed ref updates
2190 ref
= select_delayed_ref(locked_ref
);
2192 /* All delayed refs have been processed, Go ahead
2193 * and send the head node to run_one_delayed_ref,
2194 * so that any accounting fixes can happen
2196 ref
= &locked_ref
->node
;
2198 if (extent_op
&& must_insert_reserved
) {
2204 spin_unlock(&delayed_refs
->lock
);
2206 ret
= run_delayed_extent_op(trans
, root
,
2212 spin_lock(&delayed_refs
->lock
);
2216 list_del_init(&locked_ref
->cluster
);
2221 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2222 delayed_refs
->num_entries
--;
2224 spin_unlock(&delayed_refs
->lock
);
2226 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2227 must_insert_reserved
);
2230 btrfs_put_delayed_ref(ref
);
2235 spin_lock(&delayed_refs
->lock
);
2241 * this starts processing the delayed reference count updates and
2242 * extent insertions we have queued up so far. count can be
2243 * 0, which means to process everything in the tree at the start
2244 * of the run (but not newly added entries), or it can be some target
2245 * number you'd like to process.
2247 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2248 struct btrfs_root
*root
, unsigned long count
)
2250 struct rb_node
*node
;
2251 struct btrfs_delayed_ref_root
*delayed_refs
;
2252 struct btrfs_delayed_ref_node
*ref
;
2253 struct list_head cluster
;
2255 int run_all
= count
== (unsigned long)-1;
2258 if (root
== root
->fs_info
->extent_root
)
2259 root
= root
->fs_info
->tree_root
;
2261 delayed_refs
= &trans
->transaction
->delayed_refs
;
2262 INIT_LIST_HEAD(&cluster
);
2264 spin_lock(&delayed_refs
->lock
);
2266 count
= delayed_refs
->num_entries
* 2;
2270 if (!(run_all
|| run_most
) &&
2271 delayed_refs
->num_heads_ready
< 64)
2275 * go find something we can process in the rbtree. We start at
2276 * the beginning of the tree, and then build a cluster
2277 * of refs to process starting at the first one we are able to
2280 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2281 delayed_refs
->run_delayed_start
);
2285 ret
= run_clustered_refs(trans
, root
, &cluster
);
2288 count
-= min_t(unsigned long, ret
, count
);
2295 node
= rb_first(&delayed_refs
->root
);
2298 count
= (unsigned long)-1;
2301 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2303 if (btrfs_delayed_ref_is_head(ref
)) {
2304 struct btrfs_delayed_ref_head
*head
;
2306 head
= btrfs_delayed_node_to_head(ref
);
2307 atomic_inc(&ref
->refs
);
2309 spin_unlock(&delayed_refs
->lock
);
2311 * Mutex was contended, block until it's
2312 * released and try again
2314 mutex_lock(&head
->mutex
);
2315 mutex_unlock(&head
->mutex
);
2317 btrfs_put_delayed_ref(ref
);
2321 node
= rb_next(node
);
2323 spin_unlock(&delayed_refs
->lock
);
2324 schedule_timeout(1);
2328 spin_unlock(&delayed_refs
->lock
);
2332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2333 struct btrfs_root
*root
,
2334 u64 bytenr
, u64 num_bytes
, u64 flags
,
2337 struct btrfs_delayed_extent_op
*extent_op
;
2340 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2344 extent_op
->flags_to_set
= flags
;
2345 extent_op
->update_flags
= 1;
2346 extent_op
->update_key
= 0;
2347 extent_op
->is_data
= is_data
? 1 : 0;
2349 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2355 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2356 struct btrfs_root
*root
,
2357 struct btrfs_path
*path
,
2358 u64 objectid
, u64 offset
, u64 bytenr
)
2360 struct btrfs_delayed_ref_head
*head
;
2361 struct btrfs_delayed_ref_node
*ref
;
2362 struct btrfs_delayed_data_ref
*data_ref
;
2363 struct btrfs_delayed_ref_root
*delayed_refs
;
2364 struct rb_node
*node
;
2368 delayed_refs
= &trans
->transaction
->delayed_refs
;
2369 spin_lock(&delayed_refs
->lock
);
2370 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2374 if (!mutex_trylock(&head
->mutex
)) {
2375 atomic_inc(&head
->node
.refs
);
2376 spin_unlock(&delayed_refs
->lock
);
2378 btrfs_release_path(path
);
2381 * Mutex was contended, block until it's released and let
2384 mutex_lock(&head
->mutex
);
2385 mutex_unlock(&head
->mutex
);
2386 btrfs_put_delayed_ref(&head
->node
);
2390 node
= rb_prev(&head
->node
.rb_node
);
2394 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2396 if (ref
->bytenr
!= bytenr
)
2400 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2403 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2405 node
= rb_prev(node
);
2407 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2408 if (ref
->bytenr
== bytenr
)
2412 if (data_ref
->root
!= root
->root_key
.objectid
||
2413 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2418 mutex_unlock(&head
->mutex
);
2420 spin_unlock(&delayed_refs
->lock
);
2424 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2425 struct btrfs_root
*root
,
2426 struct btrfs_path
*path
,
2427 u64 objectid
, u64 offset
, u64 bytenr
)
2429 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2430 struct extent_buffer
*leaf
;
2431 struct btrfs_extent_data_ref
*ref
;
2432 struct btrfs_extent_inline_ref
*iref
;
2433 struct btrfs_extent_item
*ei
;
2434 struct btrfs_key key
;
2438 key
.objectid
= bytenr
;
2439 key
.offset
= (u64
)-1;
2440 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2442 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2448 if (path
->slots
[0] == 0)
2452 leaf
= path
->nodes
[0];
2453 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2455 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2459 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2461 if (item_size
< sizeof(*ei
)) {
2462 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2466 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2468 if (item_size
!= sizeof(*ei
) +
2469 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2472 if (btrfs_extent_generation(leaf
, ei
) <=
2473 btrfs_root_last_snapshot(&root
->root_item
))
2476 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2477 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2478 BTRFS_EXTENT_DATA_REF_KEY
)
2481 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2482 if (btrfs_extent_refs(leaf
, ei
) !=
2483 btrfs_extent_data_ref_count(leaf
, ref
) ||
2484 btrfs_extent_data_ref_root(leaf
, ref
) !=
2485 root
->root_key
.objectid
||
2486 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2487 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2495 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2496 struct btrfs_root
*root
,
2497 u64 objectid
, u64 offset
, u64 bytenr
)
2499 struct btrfs_path
*path
;
2503 path
= btrfs_alloc_path();
2508 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2510 if (ret
&& ret
!= -ENOENT
)
2513 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2515 } while (ret2
== -EAGAIN
);
2517 if (ret2
&& ret2
!= -ENOENT
) {
2522 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2525 btrfs_free_path(path
);
2526 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2531 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2532 struct btrfs_root
*root
,
2533 struct extent_buffer
*buf
,
2534 int full_backref
, int inc
)
2541 struct btrfs_key key
;
2542 struct btrfs_file_extent_item
*fi
;
2546 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2547 u64
, u64
, u64
, u64
, u64
, u64
);
2549 ref_root
= btrfs_header_owner(buf
);
2550 nritems
= btrfs_header_nritems(buf
);
2551 level
= btrfs_header_level(buf
);
2553 if (!root
->ref_cows
&& level
== 0)
2557 process_func
= btrfs_inc_extent_ref
;
2559 process_func
= btrfs_free_extent
;
2562 parent
= buf
->start
;
2566 for (i
= 0; i
< nritems
; i
++) {
2568 btrfs_item_key_to_cpu(buf
, &key
, i
);
2569 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2571 fi
= btrfs_item_ptr(buf
, i
,
2572 struct btrfs_file_extent_item
);
2573 if (btrfs_file_extent_type(buf
, fi
) ==
2574 BTRFS_FILE_EXTENT_INLINE
)
2576 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2580 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2581 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2582 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2583 parent
, ref_root
, key
.objectid
,
2588 bytenr
= btrfs_node_blockptr(buf
, i
);
2589 num_bytes
= btrfs_level_size(root
, level
- 1);
2590 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2591 parent
, ref_root
, level
- 1, 0);
2602 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2603 struct extent_buffer
*buf
, int full_backref
)
2605 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2608 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2609 struct extent_buffer
*buf
, int full_backref
)
2611 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2614 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2615 struct btrfs_root
*root
,
2616 struct btrfs_path
*path
,
2617 struct btrfs_block_group_cache
*cache
)
2620 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2622 struct extent_buffer
*leaf
;
2624 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2629 leaf
= path
->nodes
[0];
2630 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2631 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2632 btrfs_mark_buffer_dirty(leaf
);
2633 btrfs_release_path(path
);
2641 static struct btrfs_block_group_cache
*
2642 next_block_group(struct btrfs_root
*root
,
2643 struct btrfs_block_group_cache
*cache
)
2645 struct rb_node
*node
;
2646 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2647 node
= rb_next(&cache
->cache_node
);
2648 btrfs_put_block_group(cache
);
2650 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2652 btrfs_get_block_group(cache
);
2655 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2659 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2660 struct btrfs_trans_handle
*trans
,
2661 struct btrfs_path
*path
)
2663 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2664 struct inode
*inode
= NULL
;
2666 int dcs
= BTRFS_DC_ERROR
;
2672 * If this block group is smaller than 100 megs don't bother caching the
2675 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2676 spin_lock(&block_group
->lock
);
2677 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2678 spin_unlock(&block_group
->lock
);
2683 inode
= lookup_free_space_inode(root
, block_group
, path
);
2684 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2685 ret
= PTR_ERR(inode
);
2686 btrfs_release_path(path
);
2690 if (IS_ERR(inode
)) {
2694 if (block_group
->ro
)
2697 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2704 * We want to set the generation to 0, that way if anything goes wrong
2705 * from here on out we know not to trust this cache when we load up next
2708 BTRFS_I(inode
)->generation
= 0;
2709 ret
= btrfs_update_inode(trans
, root
, inode
);
2712 if (i_size_read(inode
) > 0) {
2713 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2719 spin_lock(&block_group
->lock
);
2720 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2721 /* We're not cached, don't bother trying to write stuff out */
2722 dcs
= BTRFS_DC_WRITTEN
;
2723 spin_unlock(&block_group
->lock
);
2726 spin_unlock(&block_group
->lock
);
2728 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2733 * Just to make absolutely sure we have enough space, we're going to
2734 * preallocate 12 pages worth of space for each block group. In
2735 * practice we ought to use at most 8, but we need extra space so we can
2736 * add our header and have a terminator between the extents and the
2740 num_pages
*= PAGE_CACHE_SIZE
;
2742 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2746 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2747 num_pages
, num_pages
,
2750 dcs
= BTRFS_DC_SETUP
;
2751 btrfs_free_reserved_data_space(inode
, num_pages
);
2755 btrfs_release_path(path
);
2757 spin_lock(&block_group
->lock
);
2758 block_group
->disk_cache_state
= dcs
;
2759 spin_unlock(&block_group
->lock
);
2764 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2765 struct btrfs_root
*root
)
2767 struct btrfs_block_group_cache
*cache
;
2769 struct btrfs_path
*path
;
2772 path
= btrfs_alloc_path();
2778 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2780 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2782 cache
= next_block_group(root
, cache
);
2790 err
= cache_save_setup(cache
, trans
, path
);
2791 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2792 btrfs_put_block_group(cache
);
2797 err
= btrfs_run_delayed_refs(trans
, root
,
2802 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2804 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2805 btrfs_put_block_group(cache
);
2811 cache
= next_block_group(root
, cache
);
2820 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2821 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2823 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2825 err
= write_one_cache_group(trans
, root
, path
, cache
);
2827 btrfs_put_block_group(cache
);
2832 * I don't think this is needed since we're just marking our
2833 * preallocated extent as written, but just in case it can't
2837 err
= btrfs_run_delayed_refs(trans
, root
,
2842 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2845 * Really this shouldn't happen, but it could if we
2846 * couldn't write the entire preallocated extent and
2847 * splitting the extent resulted in a new block.
2850 btrfs_put_block_group(cache
);
2853 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2855 cache
= next_block_group(root
, cache
);
2864 btrfs_write_out_cache(root
, trans
, cache
, path
);
2867 * If we didn't have an error then the cache state is still
2868 * NEED_WRITE, so we can set it to WRITTEN.
2870 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2871 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2872 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2873 btrfs_put_block_group(cache
);
2876 btrfs_free_path(path
);
2880 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2882 struct btrfs_block_group_cache
*block_group
;
2885 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2886 if (!block_group
|| block_group
->ro
)
2889 btrfs_put_block_group(block_group
);
2893 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2894 u64 total_bytes
, u64 bytes_used
,
2895 struct btrfs_space_info
**space_info
)
2897 struct btrfs_space_info
*found
;
2901 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2902 BTRFS_BLOCK_GROUP_RAID10
))
2907 found
= __find_space_info(info
, flags
);
2909 spin_lock(&found
->lock
);
2910 found
->total_bytes
+= total_bytes
;
2911 found
->disk_total
+= total_bytes
* factor
;
2912 found
->bytes_used
+= bytes_used
;
2913 found
->disk_used
+= bytes_used
* factor
;
2915 spin_unlock(&found
->lock
);
2916 *space_info
= found
;
2919 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
2923 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
2924 INIT_LIST_HEAD(&found
->block_groups
[i
]);
2925 init_rwsem(&found
->groups_sem
);
2926 spin_lock_init(&found
->lock
);
2927 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
2928 BTRFS_BLOCK_GROUP_SYSTEM
|
2929 BTRFS_BLOCK_GROUP_METADATA
);
2930 found
->total_bytes
= total_bytes
;
2931 found
->disk_total
= total_bytes
* factor
;
2932 found
->bytes_used
= bytes_used
;
2933 found
->disk_used
= bytes_used
* factor
;
2934 found
->bytes_pinned
= 0;
2935 found
->bytes_reserved
= 0;
2936 found
->bytes_readonly
= 0;
2937 found
->bytes_may_use
= 0;
2939 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
2940 found
->chunk_alloc
= 0;
2942 init_waitqueue_head(&found
->wait
);
2943 *space_info
= found
;
2944 list_add_rcu(&found
->list
, &info
->space_info
);
2948 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
2950 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
2951 BTRFS_BLOCK_GROUP_RAID1
|
2952 BTRFS_BLOCK_GROUP_RAID10
|
2953 BTRFS_BLOCK_GROUP_DUP
);
2955 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
2956 fs_info
->avail_data_alloc_bits
|= extra_flags
;
2957 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
2958 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
2959 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
2960 fs_info
->avail_system_alloc_bits
|= extra_flags
;
2964 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
2967 * we add in the count of missing devices because we want
2968 * to make sure that any RAID levels on a degraded FS
2969 * continue to be honored.
2971 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
2972 root
->fs_info
->fs_devices
->missing_devices
;
2974 if (num_devices
== 1)
2975 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
2976 if (num_devices
< 4)
2977 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
2979 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
2980 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
2981 BTRFS_BLOCK_GROUP_RAID10
))) {
2982 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
2985 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
2986 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
2987 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
2990 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
2991 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
2992 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
2993 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
2994 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
2998 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3000 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3001 flags
|= root
->fs_info
->avail_data_alloc_bits
&
3002 root
->fs_info
->data_alloc_profile
;
3003 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3004 flags
|= root
->fs_info
->avail_system_alloc_bits
&
3005 root
->fs_info
->system_alloc_profile
;
3006 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3007 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3008 root
->fs_info
->metadata_alloc_profile
;
3009 return btrfs_reduce_alloc_profile(root
, flags
);
3012 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3017 flags
= BTRFS_BLOCK_GROUP_DATA
;
3018 else if (root
== root
->fs_info
->chunk_root
)
3019 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3021 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3023 return get_alloc_profile(root
, flags
);
3026 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3028 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3029 BTRFS_BLOCK_GROUP_DATA
);
3033 * This will check the space that the inode allocates from to make sure we have
3034 * enough space for bytes.
3036 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3038 struct btrfs_space_info
*data_sinfo
;
3039 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3041 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3043 /* make sure bytes are sectorsize aligned */
3044 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3046 if (root
== root
->fs_info
->tree_root
||
3047 BTRFS_I(inode
)->location
.objectid
== BTRFS_FREE_INO_OBJECTID
) {
3052 data_sinfo
= BTRFS_I(inode
)->space_info
;
3057 /* make sure we have enough space to handle the data first */
3058 spin_lock(&data_sinfo
->lock
);
3059 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3060 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3061 data_sinfo
->bytes_may_use
;
3063 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3064 struct btrfs_trans_handle
*trans
;
3067 * if we don't have enough free bytes in this space then we need
3068 * to alloc a new chunk.
3070 if (!data_sinfo
->full
&& alloc_chunk
) {
3073 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3074 spin_unlock(&data_sinfo
->lock
);
3076 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3077 trans
= btrfs_join_transaction(root
);
3079 return PTR_ERR(trans
);
3081 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3082 bytes
+ 2 * 1024 * 1024,
3084 CHUNK_ALLOC_NO_FORCE
);
3085 btrfs_end_transaction(trans
, root
);
3094 btrfs_set_inode_space_info(root
, inode
);
3095 data_sinfo
= BTRFS_I(inode
)->space_info
;
3101 * If we have less pinned bytes than we want to allocate then
3102 * don't bother committing the transaction, it won't help us.
3104 if (data_sinfo
->bytes_pinned
< bytes
)
3106 spin_unlock(&data_sinfo
->lock
);
3108 /* commit the current transaction and try again */
3111 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3113 trans
= btrfs_join_transaction(root
);
3115 return PTR_ERR(trans
);
3116 ret
= btrfs_commit_transaction(trans
, root
);
3124 data_sinfo
->bytes_may_use
+= bytes
;
3125 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3126 spin_unlock(&data_sinfo
->lock
);
3132 * called when we are clearing an delalloc extent from the
3133 * inode's io_tree or there was an error for whatever reason
3134 * after calling btrfs_check_data_free_space
3136 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3138 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3139 struct btrfs_space_info
*data_sinfo
;
3141 /* make sure bytes are sectorsize aligned */
3142 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3144 data_sinfo
= BTRFS_I(inode
)->space_info
;
3145 spin_lock(&data_sinfo
->lock
);
3146 data_sinfo
->bytes_may_use
-= bytes
;
3147 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3148 spin_unlock(&data_sinfo
->lock
);
3151 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3153 struct list_head
*head
= &info
->space_info
;
3154 struct btrfs_space_info
*found
;
3157 list_for_each_entry_rcu(found
, head
, list
) {
3158 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3159 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3164 static int should_alloc_chunk(struct btrfs_root
*root
,
3165 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
,
3168 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3169 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3172 if (force
== CHUNK_ALLOC_FORCE
)
3176 * in limited mode, we want to have some free space up to
3177 * about 1% of the FS size.
3179 if (force
== CHUNK_ALLOC_LIMITED
) {
3180 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3181 thresh
= max_t(u64
, 64 * 1024 * 1024,
3182 div_factor_fine(thresh
, 1));
3184 if (num_bytes
- num_allocated
< thresh
)
3189 * we have two similar checks here, one based on percentage
3190 * and once based on a hard number of 256MB. The idea
3191 * is that if we have a good amount of free
3192 * room, don't allocate a chunk. A good mount is
3193 * less than 80% utilized of the chunks we have allocated,
3194 * or more than 256MB free
3196 if (num_allocated
+ alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3199 if (num_allocated
+ alloc_bytes
< div_factor(num_bytes
, 8))
3202 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3204 /* 256MB or 5% of the FS */
3205 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3207 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3212 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3213 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3214 u64 flags
, int force
)
3216 struct btrfs_space_info
*space_info
;
3217 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3218 int wait_for_alloc
= 0;
3221 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3223 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3225 ret
= update_space_info(extent_root
->fs_info
, flags
,
3229 BUG_ON(!space_info
);
3232 spin_lock(&space_info
->lock
);
3233 if (space_info
->force_alloc
)
3234 force
= space_info
->force_alloc
;
3235 if (space_info
->full
) {
3236 spin_unlock(&space_info
->lock
);
3240 if (!should_alloc_chunk(extent_root
, space_info
, alloc_bytes
, force
)) {
3241 spin_unlock(&space_info
->lock
);
3243 } else if (space_info
->chunk_alloc
) {
3246 space_info
->chunk_alloc
= 1;
3249 spin_unlock(&space_info
->lock
);
3251 mutex_lock(&fs_info
->chunk_mutex
);
3254 * The chunk_mutex is held throughout the entirety of a chunk
3255 * allocation, so once we've acquired the chunk_mutex we know that the
3256 * other guy is done and we need to recheck and see if we should
3259 if (wait_for_alloc
) {
3260 mutex_unlock(&fs_info
->chunk_mutex
);
3266 * If we have mixed data/metadata chunks we want to make sure we keep
3267 * allocating mixed chunks instead of individual chunks.
3269 if (btrfs_mixed_space_info(space_info
))
3270 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3273 * if we're doing a data chunk, go ahead and make sure that
3274 * we keep a reasonable number of metadata chunks allocated in the
3277 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3278 fs_info
->data_chunk_allocations
++;
3279 if (!(fs_info
->data_chunk_allocations
%
3280 fs_info
->metadata_ratio
))
3281 force_metadata_allocation(fs_info
);
3284 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3285 if (ret
< 0 && ret
!= -ENOSPC
)
3288 spin_lock(&space_info
->lock
);
3290 space_info
->full
= 1;
3294 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3295 space_info
->chunk_alloc
= 0;
3296 spin_unlock(&space_info
->lock
);
3298 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3303 * shrink metadata reservation for delalloc
3305 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3306 struct btrfs_root
*root
, u64 to_reclaim
, int sync
)
3308 struct btrfs_block_rsv
*block_rsv
;
3309 struct btrfs_space_info
*space_info
;
3314 int nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3316 unsigned long progress
;
3318 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3319 space_info
= block_rsv
->space_info
;
3322 reserved
= space_info
->bytes_reserved
;
3323 progress
= space_info
->reservation_progress
;
3329 if (root
->fs_info
->delalloc_bytes
== 0) {
3332 btrfs_wait_ordered_extents(root
, 0, 0);
3336 max_reclaim
= min(reserved
, to_reclaim
);
3338 while (loops
< 1024) {
3339 /* have the flusher threads jump in and do some IO */
3341 nr_pages
= min_t(unsigned long, nr_pages
,
3342 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3343 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
);
3345 spin_lock(&space_info
->lock
);
3346 if (reserved
> space_info
->bytes_reserved
)
3347 reclaimed
+= reserved
- space_info
->bytes_reserved
;
3348 reserved
= space_info
->bytes_reserved
;
3349 spin_unlock(&space_info
->lock
);
3353 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3356 if (trans
&& trans
->transaction
->blocked
)
3359 time_left
= schedule_timeout_interruptible(1);
3361 /* We were interrupted, exit */
3365 /* we've kicked the IO a few times, if anything has been freed,
3366 * exit. There is no sense in looping here for a long time
3367 * when we really need to commit the transaction, or there are
3368 * just too many writers without enough free space
3373 if (progress
!= space_info
->reservation_progress
)
3378 if (reclaimed
>= to_reclaim
&& !trans
)
3379 btrfs_wait_ordered_extents(root
, 0, 0);
3380 return reclaimed
>= to_reclaim
;
3384 * Retries tells us how many times we've called reserve_metadata_bytes. The
3385 * idea is if this is the first call (retries == 0) then we will add to our
3386 * reserved count if we can't make the allocation in order to hold our place
3387 * while we go and try and free up space. That way for retries > 1 we don't try
3388 * and add space, we just check to see if the amount of unused space is >= the
3389 * total space, meaning that our reservation is valid.
3391 * However if we don't intend to retry this reservation, pass -1 as retries so
3392 * that it short circuits this logic.
3394 static int reserve_metadata_bytes(struct btrfs_trans_handle
*trans
,
3395 struct btrfs_root
*root
,
3396 struct btrfs_block_rsv
*block_rsv
,
3397 u64 orig_bytes
, int flush
)
3399 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3401 u64 num_bytes
= orig_bytes
;
3404 bool committed
= false;
3405 bool flushing
= false;
3409 spin_lock(&space_info
->lock
);
3411 * We only want to wait if somebody other than us is flushing and we are
3412 * actually alloed to flush.
3414 while (flush
&& !flushing
&& space_info
->flush
) {
3415 spin_unlock(&space_info
->lock
);
3417 * If we have a trans handle we can't wait because the flusher
3418 * may have to commit the transaction, which would mean we would
3419 * deadlock since we are waiting for the flusher to finish, but
3420 * hold the current transaction open.
3424 ret
= wait_event_interruptible(space_info
->wait
,
3425 !space_info
->flush
);
3426 /* Must have been interrupted, return */
3430 spin_lock(&space_info
->lock
);
3434 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3435 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3436 space_info
->bytes_may_use
;
3439 * The idea here is that we've not already over-reserved the block group
3440 * then we can go ahead and save our reservation first and then start
3441 * flushing if we need to. Otherwise if we've already overcommitted
3442 * lets start flushing stuff first and then come back and try to make
3445 if (unused
<= space_info
->total_bytes
) {
3446 unused
= space_info
->total_bytes
- unused
;
3447 if (unused
>= num_bytes
) {
3448 space_info
->bytes_reserved
+= orig_bytes
;
3452 * Ok set num_bytes to orig_bytes since we aren't
3453 * overocmmitted, this way we only try and reclaim what
3456 num_bytes
= orig_bytes
;
3460 * Ok we're over committed, set num_bytes to the overcommitted
3461 * amount plus the amount of bytes that we need for this
3464 num_bytes
= unused
- space_info
->total_bytes
+
3465 (orig_bytes
* (retries
+ 1));
3469 * Couldn't make our reservation, save our place so while we're trying
3470 * to reclaim space we can actually use it instead of somebody else
3471 * stealing it from us.
3475 space_info
->flush
= 1;
3478 spin_unlock(&space_info
->lock
);
3484 * We do synchronous shrinking since we don't actually unreserve
3485 * metadata until after the IO is completed.
3487 ret
= shrink_delalloc(trans
, root
, num_bytes
, 1);
3494 * So if we were overcommitted it's possible that somebody else flushed
3495 * out enough space and we simply didn't have enough space to reclaim,
3496 * so go back around and try again.
3504 * Not enough space to be reclaimed, don't bother committing the
3507 spin_lock(&space_info
->lock
);
3508 if (space_info
->bytes_pinned
< orig_bytes
)
3510 spin_unlock(&space_info
->lock
);
3522 trans
= btrfs_join_transaction(root
);
3525 ret
= btrfs_commit_transaction(trans
, root
);
3534 spin_lock(&space_info
->lock
);
3535 space_info
->flush
= 0;
3536 wake_up_all(&space_info
->wait
);
3537 spin_unlock(&space_info
->lock
);
3542 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3543 struct btrfs_root
*root
)
3545 struct btrfs_block_rsv
*block_rsv
;
3547 block_rsv
= trans
->block_rsv
;
3549 block_rsv
= root
->block_rsv
;
3552 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3557 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3561 spin_lock(&block_rsv
->lock
);
3562 if (block_rsv
->reserved
>= num_bytes
) {
3563 block_rsv
->reserved
-= num_bytes
;
3564 if (block_rsv
->reserved
< block_rsv
->size
)
3565 block_rsv
->full
= 0;
3568 spin_unlock(&block_rsv
->lock
);
3572 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3573 u64 num_bytes
, int update_size
)
3575 spin_lock(&block_rsv
->lock
);
3576 block_rsv
->reserved
+= num_bytes
;
3578 block_rsv
->size
+= num_bytes
;
3579 else if (block_rsv
->reserved
>= block_rsv
->size
)
3580 block_rsv
->full
= 1;
3581 spin_unlock(&block_rsv
->lock
);
3584 static void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3585 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3587 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3589 spin_lock(&block_rsv
->lock
);
3590 if (num_bytes
== (u64
)-1)
3591 num_bytes
= block_rsv
->size
;
3592 block_rsv
->size
-= num_bytes
;
3593 if (block_rsv
->reserved
>= block_rsv
->size
) {
3594 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3595 block_rsv
->reserved
= block_rsv
->size
;
3596 block_rsv
->full
= 1;
3600 spin_unlock(&block_rsv
->lock
);
3602 if (num_bytes
> 0) {
3604 spin_lock(&dest
->lock
);
3608 bytes_to_add
= dest
->size
- dest
->reserved
;
3609 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3610 dest
->reserved
+= bytes_to_add
;
3611 if (dest
->reserved
>= dest
->size
)
3613 num_bytes
-= bytes_to_add
;
3615 spin_unlock(&dest
->lock
);
3618 spin_lock(&space_info
->lock
);
3619 space_info
->bytes_reserved
-= num_bytes
;
3620 space_info
->reservation_progress
++;
3621 spin_unlock(&space_info
->lock
);
3626 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3627 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3631 ret
= block_rsv_use_bytes(src
, num_bytes
);
3635 block_rsv_add_bytes(dst
, num_bytes
, 1);
3639 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3641 memset(rsv
, 0, sizeof(*rsv
));
3642 spin_lock_init(&rsv
->lock
);
3643 atomic_set(&rsv
->usage
, 1);
3645 INIT_LIST_HEAD(&rsv
->list
);
3648 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3650 struct btrfs_block_rsv
*block_rsv
;
3651 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3653 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3657 btrfs_init_block_rsv(block_rsv
);
3658 block_rsv
->space_info
= __find_space_info(fs_info
,
3659 BTRFS_BLOCK_GROUP_METADATA
);
3663 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3664 struct btrfs_block_rsv
*rsv
)
3666 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3667 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3674 * make the block_rsv struct be able to capture freed space.
3675 * the captured space will re-add to the the block_rsv struct
3676 * after transaction commit
3678 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3679 struct btrfs_block_rsv
*block_rsv
)
3681 block_rsv
->durable
= 1;
3682 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3683 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3684 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3687 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3688 struct btrfs_root
*root
,
3689 struct btrfs_block_rsv
*block_rsv
,
3697 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, num_bytes
, 1);
3699 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3706 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3707 struct btrfs_root
*root
,
3708 struct btrfs_block_rsv
*block_rsv
,
3709 u64 min_reserved
, int min_factor
)
3712 int commit_trans
= 0;
3718 spin_lock(&block_rsv
->lock
);
3720 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3721 if (min_reserved
> num_bytes
)
3722 num_bytes
= min_reserved
;
3724 if (block_rsv
->reserved
>= num_bytes
) {
3727 num_bytes
-= block_rsv
->reserved
;
3728 if (block_rsv
->durable
&&
3729 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3732 spin_unlock(&block_rsv
->lock
);
3736 if (block_rsv
->refill_used
) {
3737 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
3740 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3748 trans
= btrfs_join_transaction(root
);
3749 BUG_ON(IS_ERR(trans
));
3750 ret
= btrfs_commit_transaction(trans
, root
);
3757 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3758 struct btrfs_block_rsv
*dst_rsv
,
3761 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3764 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3765 struct btrfs_block_rsv
*block_rsv
,
3768 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3769 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3770 block_rsv
->space_info
!= global_rsv
->space_info
)
3772 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3776 * helper to calculate size of global block reservation.
3777 * the desired value is sum of space used by extent tree,
3778 * checksum tree and root tree
3780 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3782 struct btrfs_space_info
*sinfo
;
3786 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3788 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3789 spin_lock(&sinfo
->lock
);
3790 data_used
= sinfo
->bytes_used
;
3791 spin_unlock(&sinfo
->lock
);
3793 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3794 spin_lock(&sinfo
->lock
);
3795 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3797 meta_used
= sinfo
->bytes_used
;
3798 spin_unlock(&sinfo
->lock
);
3800 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3802 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3804 if (num_bytes
* 3 > meta_used
)
3805 num_bytes
= div64_u64(meta_used
, 3);
3807 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3810 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3812 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3813 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3816 num_bytes
= calc_global_metadata_size(fs_info
);
3818 spin_lock(&block_rsv
->lock
);
3819 spin_lock(&sinfo
->lock
);
3821 block_rsv
->size
= num_bytes
;
3823 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3824 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
3825 sinfo
->bytes_may_use
;
3827 if (sinfo
->total_bytes
> num_bytes
) {
3828 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3829 block_rsv
->reserved
+= num_bytes
;
3830 sinfo
->bytes_reserved
+= num_bytes
;
3833 if (block_rsv
->reserved
>= block_rsv
->size
) {
3834 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3835 sinfo
->bytes_reserved
-= num_bytes
;
3836 sinfo
->reservation_progress
++;
3837 block_rsv
->reserved
= block_rsv
->size
;
3838 block_rsv
->full
= 1;
3841 spin_unlock(&sinfo
->lock
);
3842 spin_unlock(&block_rsv
->lock
);
3845 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3847 struct btrfs_space_info
*space_info
;
3849 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3850 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3851 fs_info
->chunk_block_rsv
.priority
= 10;
3853 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3854 fs_info
->global_block_rsv
.space_info
= space_info
;
3855 fs_info
->global_block_rsv
.priority
= 10;
3856 fs_info
->global_block_rsv
.refill_used
= 1;
3857 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3858 fs_info
->trans_block_rsv
.space_info
= space_info
;
3859 fs_info
->empty_block_rsv
.space_info
= space_info
;
3860 fs_info
->empty_block_rsv
.priority
= 10;
3862 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3863 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3864 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3865 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3866 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3868 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3870 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3872 update_global_block_rsv(fs_info
);
3875 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3877 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3878 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3879 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3880 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3881 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3882 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3883 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3886 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle
*trans
,
3887 struct btrfs_root
*root
,
3888 struct btrfs_block_rsv
*rsv
)
3890 struct btrfs_block_rsv
*trans_rsv
= &root
->fs_info
->trans_block_rsv
;
3895 * Truncate should be freeing data, but give us 2 items just in case it
3896 * needs to use some space. We may want to be smarter about this in the
3899 num_bytes
= btrfs_calc_trans_metadata_size(root
, 2);
3901 /* We already have enough bytes, just return */
3902 if (rsv
->reserved
>= num_bytes
)
3905 num_bytes
-= rsv
->reserved
;
3908 * You should have reserved enough space before hand to do this, so this
3911 ret
= block_rsv_migrate_bytes(trans_rsv
, rsv
, num_bytes
);
3917 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
3918 struct btrfs_root
*root
)
3920 if (!trans
->bytes_reserved
)
3923 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
3924 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3925 trans
->bytes_reserved
);
3926 trans
->bytes_reserved
= 0;
3929 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
3930 struct inode
*inode
)
3932 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3933 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3934 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
3937 * We need to hold space in order to delete our orphan item once we've
3938 * added it, so this takes the reservation so we can release it later
3939 * when we are truly done with the orphan item.
3941 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
3942 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3945 void btrfs_orphan_release_metadata(struct inode
*inode
)
3947 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3948 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
3949 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
3952 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
3953 struct btrfs_pending_snapshot
*pending
)
3955 struct btrfs_root
*root
= pending
->root
;
3956 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3957 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
3959 * two for root back/forward refs, two for directory entries
3960 * and one for root of the snapshot.
3962 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 5);
3963 dst_rsv
->space_info
= src_rsv
->space_info
;
3964 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3967 static unsigned drop_outstanding_extent(struct inode
*inode
)
3969 unsigned dropped_extents
= 0;
3971 spin_lock(&BTRFS_I(inode
)->lock
);
3972 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
3973 BTRFS_I(inode
)->outstanding_extents
--;
3976 * If we have more or the same amount of outsanding extents than we have
3977 * reserved then we need to leave the reserved extents count alone.
3979 if (BTRFS_I(inode
)->outstanding_extents
>=
3980 BTRFS_I(inode
)->reserved_extents
)
3983 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
3984 BTRFS_I(inode
)->outstanding_extents
;
3985 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
3987 spin_unlock(&BTRFS_I(inode
)->lock
);
3988 return dropped_extents
;
3991 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
3993 return num_bytes
>>= 3;
3996 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
3998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3999 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4001 unsigned nr_extents
= 0;
4004 if (btrfs_transaction_in_commit(root
->fs_info
))
4005 schedule_timeout(1);
4007 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4009 spin_lock(&BTRFS_I(inode
)->lock
);
4010 BTRFS_I(inode
)->outstanding_extents
++;
4012 if (BTRFS_I(inode
)->outstanding_extents
>
4013 BTRFS_I(inode
)->reserved_extents
) {
4014 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
4015 BTRFS_I(inode
)->reserved_extents
;
4016 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4018 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
4020 spin_unlock(&BTRFS_I(inode
)->lock
);
4022 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
4023 ret
= reserve_metadata_bytes(NULL
, root
, block_rsv
, to_reserve
, 1);
4027 * We don't need the return value since our reservation failed,
4028 * we just need to clean up our counter.
4030 dropped
= drop_outstanding_extent(inode
);
4031 WARN_ON(dropped
> 1);
4035 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4040 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4042 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4046 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4047 dropped
= drop_outstanding_extent(inode
);
4049 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
4051 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
4053 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4057 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4061 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4065 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4067 btrfs_free_reserved_data_space(inode
, num_bytes
);
4074 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4076 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4077 btrfs_free_reserved_data_space(inode
, num_bytes
);
4080 static int update_block_group(struct btrfs_trans_handle
*trans
,
4081 struct btrfs_root
*root
,
4082 u64 bytenr
, u64 num_bytes
, int alloc
)
4084 struct btrfs_block_group_cache
*cache
= NULL
;
4085 struct btrfs_fs_info
*info
= root
->fs_info
;
4086 u64 total
= num_bytes
;
4091 /* block accounting for super block */
4092 spin_lock(&info
->delalloc_lock
);
4093 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
4095 old_val
+= num_bytes
;
4097 old_val
-= num_bytes
;
4098 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
4099 spin_unlock(&info
->delalloc_lock
);
4102 cache
= btrfs_lookup_block_group(info
, bytenr
);
4105 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4106 BTRFS_BLOCK_GROUP_RAID1
|
4107 BTRFS_BLOCK_GROUP_RAID10
))
4112 * If this block group has free space cache written out, we
4113 * need to make sure to load it if we are removing space. This
4114 * is because we need the unpinning stage to actually add the
4115 * space back to the block group, otherwise we will leak space.
4117 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4118 cache_block_group(cache
, trans
, NULL
, 1);
4120 byte_in_group
= bytenr
- cache
->key
.objectid
;
4121 WARN_ON(byte_in_group
> cache
->key
.offset
);
4123 spin_lock(&cache
->space_info
->lock
);
4124 spin_lock(&cache
->lock
);
4126 if (btrfs_super_cache_generation(&info
->super_copy
) != 0 &&
4127 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4128 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4131 old_val
= btrfs_block_group_used(&cache
->item
);
4132 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4134 old_val
+= num_bytes
;
4135 btrfs_set_block_group_used(&cache
->item
, old_val
);
4136 cache
->reserved
-= num_bytes
;
4137 cache
->space_info
->bytes_reserved
-= num_bytes
;
4138 cache
->space_info
->reservation_progress
++;
4139 cache
->space_info
->bytes_used
+= num_bytes
;
4140 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4141 spin_unlock(&cache
->lock
);
4142 spin_unlock(&cache
->space_info
->lock
);
4144 old_val
-= num_bytes
;
4145 btrfs_set_block_group_used(&cache
->item
, old_val
);
4146 cache
->pinned
+= num_bytes
;
4147 cache
->space_info
->bytes_pinned
+= num_bytes
;
4148 cache
->space_info
->bytes_used
-= num_bytes
;
4149 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4150 spin_unlock(&cache
->lock
);
4151 spin_unlock(&cache
->space_info
->lock
);
4153 set_extent_dirty(info
->pinned_extents
,
4154 bytenr
, bytenr
+ num_bytes
- 1,
4155 GFP_NOFS
| __GFP_NOFAIL
);
4157 btrfs_put_block_group(cache
);
4159 bytenr
+= num_bytes
;
4164 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4166 struct btrfs_block_group_cache
*cache
;
4169 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4173 bytenr
= cache
->key
.objectid
;
4174 btrfs_put_block_group(cache
);
4179 static int pin_down_extent(struct btrfs_root
*root
,
4180 struct btrfs_block_group_cache
*cache
,
4181 u64 bytenr
, u64 num_bytes
, int reserved
)
4183 spin_lock(&cache
->space_info
->lock
);
4184 spin_lock(&cache
->lock
);
4185 cache
->pinned
+= num_bytes
;
4186 cache
->space_info
->bytes_pinned
+= num_bytes
;
4188 cache
->reserved
-= num_bytes
;
4189 cache
->space_info
->bytes_reserved
-= num_bytes
;
4190 cache
->space_info
->reservation_progress
++;
4192 spin_unlock(&cache
->lock
);
4193 spin_unlock(&cache
->space_info
->lock
);
4195 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4196 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4201 * this function must be called within transaction
4203 int btrfs_pin_extent(struct btrfs_root
*root
,
4204 u64 bytenr
, u64 num_bytes
, int reserved
)
4206 struct btrfs_block_group_cache
*cache
;
4208 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4211 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4213 btrfs_put_block_group(cache
);
4218 * update size of reserved extents. this function may return -EAGAIN
4219 * if 'reserve' is true or 'sinfo' is false.
4221 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4222 u64 num_bytes
, int reserve
, int sinfo
)
4226 struct btrfs_space_info
*space_info
= cache
->space_info
;
4227 spin_lock(&space_info
->lock
);
4228 spin_lock(&cache
->lock
);
4233 cache
->reserved
+= num_bytes
;
4234 space_info
->bytes_reserved
+= num_bytes
;
4238 space_info
->bytes_readonly
+= num_bytes
;
4239 cache
->reserved
-= num_bytes
;
4240 space_info
->bytes_reserved
-= num_bytes
;
4241 space_info
->reservation_progress
++;
4243 spin_unlock(&cache
->lock
);
4244 spin_unlock(&space_info
->lock
);
4246 spin_lock(&cache
->lock
);
4251 cache
->reserved
+= num_bytes
;
4253 cache
->reserved
-= num_bytes
;
4255 spin_unlock(&cache
->lock
);
4260 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4261 struct btrfs_root
*root
)
4263 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4264 struct btrfs_caching_control
*next
;
4265 struct btrfs_caching_control
*caching_ctl
;
4266 struct btrfs_block_group_cache
*cache
;
4268 down_write(&fs_info
->extent_commit_sem
);
4270 list_for_each_entry_safe(caching_ctl
, next
,
4271 &fs_info
->caching_block_groups
, list
) {
4272 cache
= caching_ctl
->block_group
;
4273 if (block_group_cache_done(cache
)) {
4274 cache
->last_byte_to_unpin
= (u64
)-1;
4275 list_del_init(&caching_ctl
->list
);
4276 put_caching_control(caching_ctl
);
4278 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4282 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4283 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4285 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4287 up_write(&fs_info
->extent_commit_sem
);
4289 update_global_block_rsv(fs_info
);
4293 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4295 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4296 struct btrfs_block_group_cache
*cache
= NULL
;
4299 while (start
<= end
) {
4301 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4303 btrfs_put_block_group(cache
);
4304 cache
= btrfs_lookup_block_group(fs_info
, start
);
4308 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4309 len
= min(len
, end
+ 1 - start
);
4311 if (start
< cache
->last_byte_to_unpin
) {
4312 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4313 btrfs_add_free_space(cache
, start
, len
);
4318 spin_lock(&cache
->space_info
->lock
);
4319 spin_lock(&cache
->lock
);
4320 cache
->pinned
-= len
;
4321 cache
->space_info
->bytes_pinned
-= len
;
4323 cache
->space_info
->bytes_readonly
+= len
;
4324 } else if (cache
->reserved_pinned
> 0) {
4325 len
= min(len
, cache
->reserved_pinned
);
4326 cache
->reserved_pinned
-= len
;
4327 cache
->space_info
->bytes_reserved
+= len
;
4329 spin_unlock(&cache
->lock
);
4330 spin_unlock(&cache
->space_info
->lock
);
4334 btrfs_put_block_group(cache
);
4338 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4339 struct btrfs_root
*root
)
4341 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4342 struct extent_io_tree
*unpin
;
4343 struct btrfs_block_rsv
*block_rsv
;
4344 struct btrfs_block_rsv
*next_rsv
;
4350 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4351 unpin
= &fs_info
->freed_extents
[1];
4353 unpin
= &fs_info
->freed_extents
[0];
4356 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4361 if (btrfs_test_opt(root
, DISCARD
))
4362 ret
= btrfs_discard_extent(root
, start
,
4363 end
+ 1 - start
, NULL
);
4365 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4366 unpin_extent_range(root
, start
, end
);
4370 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4371 list_for_each_entry_safe(block_rsv
, next_rsv
,
4372 &fs_info
->durable_block_rsv_list
, list
) {
4374 idx
= trans
->transid
& 0x1;
4375 if (block_rsv
->freed
[idx
] > 0) {
4376 block_rsv_add_bytes(block_rsv
,
4377 block_rsv
->freed
[idx
], 0);
4378 block_rsv
->freed
[idx
] = 0;
4380 if (atomic_read(&block_rsv
->usage
) == 0) {
4381 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4383 if (block_rsv
->freed
[0] == 0 &&
4384 block_rsv
->freed
[1] == 0) {
4385 list_del_init(&block_rsv
->list
);
4389 btrfs_block_rsv_release(root
, block_rsv
, 0);
4392 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4397 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4398 struct btrfs_root
*root
,
4399 u64 bytenr
, u64 num_bytes
, u64 parent
,
4400 u64 root_objectid
, u64 owner_objectid
,
4401 u64 owner_offset
, int refs_to_drop
,
4402 struct btrfs_delayed_extent_op
*extent_op
)
4404 struct btrfs_key key
;
4405 struct btrfs_path
*path
;
4406 struct btrfs_fs_info
*info
= root
->fs_info
;
4407 struct btrfs_root
*extent_root
= info
->extent_root
;
4408 struct extent_buffer
*leaf
;
4409 struct btrfs_extent_item
*ei
;
4410 struct btrfs_extent_inline_ref
*iref
;
4413 int extent_slot
= 0;
4414 int found_extent
= 0;
4419 path
= btrfs_alloc_path();
4424 path
->leave_spinning
= 1;
4426 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4427 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4429 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4430 bytenr
, num_bytes
, parent
,
4431 root_objectid
, owner_objectid
,
4434 extent_slot
= path
->slots
[0];
4435 while (extent_slot
>= 0) {
4436 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4438 if (key
.objectid
!= bytenr
)
4440 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4441 key
.offset
== num_bytes
) {
4445 if (path
->slots
[0] - extent_slot
> 5)
4449 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4450 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4451 if (found_extent
&& item_size
< sizeof(*ei
))
4454 if (!found_extent
) {
4456 ret
= remove_extent_backref(trans
, extent_root
, path
,
4460 btrfs_release_path(path
);
4461 path
->leave_spinning
= 1;
4463 key
.objectid
= bytenr
;
4464 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4465 key
.offset
= num_bytes
;
4467 ret
= btrfs_search_slot(trans
, extent_root
,
4470 printk(KERN_ERR
"umm, got %d back from search"
4471 ", was looking for %llu\n", ret
,
4472 (unsigned long long)bytenr
);
4474 btrfs_print_leaf(extent_root
,
4478 extent_slot
= path
->slots
[0];
4481 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4483 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4484 "parent %llu root %llu owner %llu offset %llu\n",
4485 (unsigned long long)bytenr
,
4486 (unsigned long long)parent
,
4487 (unsigned long long)root_objectid
,
4488 (unsigned long long)owner_objectid
,
4489 (unsigned long long)owner_offset
);
4492 leaf
= path
->nodes
[0];
4493 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4495 if (item_size
< sizeof(*ei
)) {
4496 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4497 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4501 btrfs_release_path(path
);
4502 path
->leave_spinning
= 1;
4504 key
.objectid
= bytenr
;
4505 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4506 key
.offset
= num_bytes
;
4508 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4511 printk(KERN_ERR
"umm, got %d back from search"
4512 ", was looking for %llu\n", ret
,
4513 (unsigned long long)bytenr
);
4514 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4517 extent_slot
= path
->slots
[0];
4518 leaf
= path
->nodes
[0];
4519 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4522 BUG_ON(item_size
< sizeof(*ei
));
4523 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4524 struct btrfs_extent_item
);
4525 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4526 struct btrfs_tree_block_info
*bi
;
4527 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4528 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4529 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4532 refs
= btrfs_extent_refs(leaf
, ei
);
4533 BUG_ON(refs
< refs_to_drop
);
4534 refs
-= refs_to_drop
;
4538 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4540 * In the case of inline back ref, reference count will
4541 * be updated by remove_extent_backref
4544 BUG_ON(!found_extent
);
4546 btrfs_set_extent_refs(leaf
, ei
, refs
);
4547 btrfs_mark_buffer_dirty(leaf
);
4550 ret
= remove_extent_backref(trans
, extent_root
, path
,
4557 BUG_ON(is_data
&& refs_to_drop
!=
4558 extent_data_ref_count(root
, path
, iref
));
4560 BUG_ON(path
->slots
[0] != extent_slot
);
4562 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4563 path
->slots
[0] = extent_slot
;
4568 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4571 btrfs_release_path(path
);
4574 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4577 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4578 bytenr
>> PAGE_CACHE_SHIFT
,
4579 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4582 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4585 btrfs_free_path(path
);
4590 * when we free an block, it is possible (and likely) that we free the last
4591 * delayed ref for that extent as well. This searches the delayed ref tree for
4592 * a given extent, and if there are no other delayed refs to be processed, it
4593 * removes it from the tree.
4595 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4596 struct btrfs_root
*root
, u64 bytenr
)
4598 struct btrfs_delayed_ref_head
*head
;
4599 struct btrfs_delayed_ref_root
*delayed_refs
;
4600 struct btrfs_delayed_ref_node
*ref
;
4601 struct rb_node
*node
;
4604 delayed_refs
= &trans
->transaction
->delayed_refs
;
4605 spin_lock(&delayed_refs
->lock
);
4606 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4610 node
= rb_prev(&head
->node
.rb_node
);
4614 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4616 /* there are still entries for this ref, we can't drop it */
4617 if (ref
->bytenr
== bytenr
)
4620 if (head
->extent_op
) {
4621 if (!head
->must_insert_reserved
)
4623 kfree(head
->extent_op
);
4624 head
->extent_op
= NULL
;
4628 * waiting for the lock here would deadlock. If someone else has it
4629 * locked they are already in the process of dropping it anyway
4631 if (!mutex_trylock(&head
->mutex
))
4635 * at this point we have a head with no other entries. Go
4636 * ahead and process it.
4638 head
->node
.in_tree
= 0;
4639 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4641 delayed_refs
->num_entries
--;
4644 * we don't take a ref on the node because we're removing it from the
4645 * tree, so we just steal the ref the tree was holding.
4647 delayed_refs
->num_heads
--;
4648 if (list_empty(&head
->cluster
))
4649 delayed_refs
->num_heads_ready
--;
4651 list_del_init(&head
->cluster
);
4652 spin_unlock(&delayed_refs
->lock
);
4654 BUG_ON(head
->extent_op
);
4655 if (head
->must_insert_reserved
)
4658 mutex_unlock(&head
->mutex
);
4659 btrfs_put_delayed_ref(&head
->node
);
4662 spin_unlock(&delayed_refs
->lock
);
4666 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4667 struct btrfs_root
*root
,
4668 struct extent_buffer
*buf
,
4669 u64 parent
, int last_ref
)
4671 struct btrfs_block_rsv
*block_rsv
;
4672 struct btrfs_block_group_cache
*cache
= NULL
;
4675 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4676 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4677 parent
, root
->root_key
.objectid
,
4678 btrfs_header_level(buf
),
4679 BTRFS_DROP_DELAYED_REF
, NULL
);
4686 block_rsv
= get_block_rsv(trans
, root
);
4687 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4688 if (block_rsv
->space_info
!= cache
->space_info
)
4691 if (btrfs_header_generation(buf
) == trans
->transid
) {
4692 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4693 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4698 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4699 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4703 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4705 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4706 ret
= btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 0);
4707 if (ret
== -EAGAIN
) {
4708 /* block group became read-only */
4709 btrfs_update_reserved_bytes(cache
, buf
->len
, 0, 1);
4714 spin_lock(&block_rsv
->lock
);
4715 if (block_rsv
->reserved
< block_rsv
->size
) {
4716 block_rsv
->reserved
+= buf
->len
;
4719 spin_unlock(&block_rsv
->lock
);
4722 spin_lock(&cache
->space_info
->lock
);
4723 cache
->space_info
->bytes_reserved
-= buf
->len
;
4724 cache
->space_info
->reservation_progress
++;
4725 spin_unlock(&cache
->space_info
->lock
);
4730 if (block_rsv
->durable
&& !cache
->ro
) {
4732 spin_lock(&cache
->lock
);
4734 cache
->reserved_pinned
+= buf
->len
;
4737 spin_unlock(&cache
->lock
);
4740 spin_lock(&block_rsv
->lock
);
4741 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4742 spin_unlock(&block_rsv
->lock
);
4747 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4750 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
4751 btrfs_put_block_group(cache
);
4754 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4755 struct btrfs_root
*root
,
4756 u64 bytenr
, u64 num_bytes
, u64 parent
,
4757 u64 root_objectid
, u64 owner
, u64 offset
)
4762 * tree log blocks never actually go into the extent allocation
4763 * tree, just update pinning info and exit early.
4765 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4766 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4767 /* unlocks the pinned mutex */
4768 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4770 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4771 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4772 parent
, root_objectid
, (int)owner
,
4773 BTRFS_DROP_DELAYED_REF
, NULL
);
4776 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4777 parent
, root_objectid
, owner
,
4778 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4784 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4786 u64 mask
= ((u64
)root
->stripesize
- 1);
4787 u64 ret
= (val
+ mask
) & ~mask
;
4792 * when we wait for progress in the block group caching, its because
4793 * our allocation attempt failed at least once. So, we must sleep
4794 * and let some progress happen before we try again.
4796 * This function will sleep at least once waiting for new free space to
4797 * show up, and then it will check the block group free space numbers
4798 * for our min num_bytes. Another option is to have it go ahead
4799 * and look in the rbtree for a free extent of a given size, but this
4803 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4806 struct btrfs_caching_control
*caching_ctl
;
4809 caching_ctl
= get_caching_control(cache
);
4813 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4814 (cache
->free_space_ctl
->free_space
>= num_bytes
));
4816 put_caching_control(caching_ctl
);
4821 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4823 struct btrfs_caching_control
*caching_ctl
;
4826 caching_ctl
= get_caching_control(cache
);
4830 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4832 put_caching_control(caching_ctl
);
4836 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4839 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4841 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4843 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4845 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4852 enum btrfs_loop_type
{
4853 LOOP_FIND_IDEAL
= 0,
4854 LOOP_CACHING_NOWAIT
= 1,
4855 LOOP_CACHING_WAIT
= 2,
4856 LOOP_ALLOC_CHUNK
= 3,
4857 LOOP_NO_EMPTY_SIZE
= 4,
4861 * walks the btree of allocated extents and find a hole of a given size.
4862 * The key ins is changed to record the hole:
4863 * ins->objectid == block start
4864 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4865 * ins->offset == number of blocks
4866 * Any available blocks before search_start are skipped.
4868 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4869 struct btrfs_root
*orig_root
,
4870 u64 num_bytes
, u64 empty_size
,
4871 u64 search_start
, u64 search_end
,
4872 u64 hint_byte
, struct btrfs_key
*ins
,
4876 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4877 struct btrfs_free_cluster
*last_ptr
= NULL
;
4878 struct btrfs_block_group_cache
*block_group
= NULL
;
4879 int empty_cluster
= 2 * 1024 * 1024;
4880 int allowed_chunk_alloc
= 0;
4881 int done_chunk_alloc
= 0;
4882 struct btrfs_space_info
*space_info
;
4883 int last_ptr_loop
= 0;
4886 bool found_uncached_bg
= false;
4887 bool failed_cluster_refill
= false;
4888 bool failed_alloc
= false;
4889 bool use_cluster
= true;
4890 u64 ideal_cache_percent
= 0;
4891 u64 ideal_cache_offset
= 0;
4893 WARN_ON(num_bytes
< root
->sectorsize
);
4894 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4898 space_info
= __find_space_info(root
->fs_info
, data
);
4900 printk(KERN_ERR
"No space info for %llu\n", data
);
4905 * If the space info is for both data and metadata it means we have a
4906 * small filesystem and we can't use the clustering stuff.
4908 if (btrfs_mixed_space_info(space_info
))
4909 use_cluster
= false;
4911 if (orig_root
->ref_cows
|| empty_size
)
4912 allowed_chunk_alloc
= 1;
4914 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
4915 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4916 if (!btrfs_test_opt(root
, SSD
))
4917 empty_cluster
= 64 * 1024;
4920 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
4921 btrfs_test_opt(root
, SSD
)) {
4922 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4926 spin_lock(&last_ptr
->lock
);
4927 if (last_ptr
->block_group
)
4928 hint_byte
= last_ptr
->window_start
;
4929 spin_unlock(&last_ptr
->lock
);
4932 search_start
= max(search_start
, first_logical_byte(root
, 0));
4933 search_start
= max(search_start
, hint_byte
);
4938 if (search_start
== hint_byte
) {
4940 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4943 * we don't want to use the block group if it doesn't match our
4944 * allocation bits, or if its not cached.
4946 * However if we are re-searching with an ideal block group
4947 * picked out then we don't care that the block group is cached.
4949 if (block_group
&& block_group_bits(block_group
, data
) &&
4950 (block_group
->cached
!= BTRFS_CACHE_NO
||
4951 search_start
== ideal_cache_offset
)) {
4952 down_read(&space_info
->groups_sem
);
4953 if (list_empty(&block_group
->list
) ||
4956 * someone is removing this block group,
4957 * we can't jump into the have_block_group
4958 * target because our list pointers are not
4961 btrfs_put_block_group(block_group
);
4962 up_read(&space_info
->groups_sem
);
4964 index
= get_block_group_index(block_group
);
4965 goto have_block_group
;
4967 } else if (block_group
) {
4968 btrfs_put_block_group(block_group
);
4972 down_read(&space_info
->groups_sem
);
4973 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
4978 btrfs_get_block_group(block_group
);
4979 search_start
= block_group
->key
.objectid
;
4982 * this can happen if we end up cycling through all the
4983 * raid types, but we want to make sure we only allocate
4984 * for the proper type.
4986 if (!block_group_bits(block_group
, data
)) {
4987 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4988 BTRFS_BLOCK_GROUP_RAID1
|
4989 BTRFS_BLOCK_GROUP_RAID10
;
4992 * if they asked for extra copies and this block group
4993 * doesn't provide them, bail. This does allow us to
4994 * fill raid0 from raid1.
4996 if ((data
& extra
) && !(block_group
->flags
& extra
))
5001 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
5004 ret
= cache_block_group(block_group
, trans
,
5006 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
5007 goto have_block_group
;
5009 free_percent
= btrfs_block_group_used(&block_group
->item
);
5010 free_percent
*= 100;
5011 free_percent
= div64_u64(free_percent
,
5012 block_group
->key
.offset
);
5013 free_percent
= 100 - free_percent
;
5014 if (free_percent
> ideal_cache_percent
&&
5015 likely(!block_group
->ro
)) {
5016 ideal_cache_offset
= block_group
->key
.objectid
;
5017 ideal_cache_percent
= free_percent
;
5021 * The caching workers are limited to 2 threads, so we
5022 * can queue as much work as we care to.
5024 if (loop
> LOOP_FIND_IDEAL
) {
5025 ret
= cache_block_group(block_group
, trans
,
5029 found_uncached_bg
= true;
5032 * If loop is set for cached only, try the next block
5035 if (loop
== LOOP_FIND_IDEAL
)
5039 cached
= block_group_cache_done(block_group
);
5040 if (unlikely(!cached
))
5041 found_uncached_bg
= true;
5043 if (unlikely(block_group
->ro
))
5046 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
5048 block_group
->free_space_ctl
->free_space
<
5049 num_bytes
+ empty_size
) {
5050 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5053 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
5056 * Ok we want to try and use the cluster allocator, so lets look
5057 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5058 * have tried the cluster allocator plenty of times at this
5059 * point and not have found anything, so we are likely way too
5060 * fragmented for the clustering stuff to find anything, so lets
5061 * just skip it and let the allocator find whatever block it can
5064 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5066 * the refill lock keeps out other
5067 * people trying to start a new cluster
5069 spin_lock(&last_ptr
->refill_lock
);
5070 if (last_ptr
->block_group
&&
5071 (last_ptr
->block_group
->ro
||
5072 !block_group_bits(last_ptr
->block_group
, data
))) {
5074 goto refill_cluster
;
5077 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
5078 num_bytes
, search_start
);
5080 /* we have a block, we're done */
5081 spin_unlock(&last_ptr
->refill_lock
);
5085 spin_lock(&last_ptr
->lock
);
5087 * whoops, this cluster doesn't actually point to
5088 * this block group. Get a ref on the block
5089 * group is does point to and try again
5091 if (!last_ptr_loop
&& last_ptr
->block_group
&&
5092 last_ptr
->block_group
!= block_group
&&
5094 get_block_group_index(last_ptr
->block_group
)) {
5096 btrfs_put_block_group(block_group
);
5097 block_group
= last_ptr
->block_group
;
5098 btrfs_get_block_group(block_group
);
5099 spin_unlock(&last_ptr
->lock
);
5100 spin_unlock(&last_ptr
->refill_lock
);
5103 search_start
= block_group
->key
.objectid
;
5105 * we know this block group is properly
5106 * in the list because
5107 * btrfs_remove_block_group, drops the
5108 * cluster before it removes the block
5109 * group from the list
5111 goto have_block_group
;
5113 spin_unlock(&last_ptr
->lock
);
5116 * this cluster didn't work out, free it and
5119 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5123 /* allocate a cluster in this block group */
5124 ret
= btrfs_find_space_cluster(trans
, root
,
5125 block_group
, last_ptr
,
5127 empty_cluster
+ empty_size
);
5130 * now pull our allocation out of this
5133 offset
= btrfs_alloc_from_cluster(block_group
,
5134 last_ptr
, num_bytes
,
5137 /* we found one, proceed */
5138 spin_unlock(&last_ptr
->refill_lock
);
5141 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5142 && !failed_cluster_refill
) {
5143 spin_unlock(&last_ptr
->refill_lock
);
5145 failed_cluster_refill
= true;
5146 wait_block_group_cache_progress(block_group
,
5147 num_bytes
+ empty_cluster
+ empty_size
);
5148 goto have_block_group
;
5152 * at this point we either didn't find a cluster
5153 * or we weren't able to allocate a block from our
5154 * cluster. Free the cluster we've been trying
5155 * to use, and go to the next block group
5157 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5158 spin_unlock(&last_ptr
->refill_lock
);
5162 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5163 num_bytes
, empty_size
);
5165 * If we didn't find a chunk, and we haven't failed on this
5166 * block group before, and this block group is in the middle of
5167 * caching and we are ok with waiting, then go ahead and wait
5168 * for progress to be made, and set failed_alloc to true.
5170 * If failed_alloc is true then we've already waited on this
5171 * block group once and should move on to the next block group.
5173 if (!offset
&& !failed_alloc
&& !cached
&&
5174 loop
> LOOP_CACHING_NOWAIT
) {
5175 wait_block_group_cache_progress(block_group
,
5176 num_bytes
+ empty_size
);
5177 failed_alloc
= true;
5178 goto have_block_group
;
5179 } else if (!offset
) {
5183 search_start
= stripe_align(root
, offset
);
5184 /* move on to the next group */
5185 if (search_start
+ num_bytes
>= search_end
) {
5186 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5190 /* move on to the next group */
5191 if (search_start
+ num_bytes
>
5192 block_group
->key
.objectid
+ block_group
->key
.offset
) {
5193 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5197 ins
->objectid
= search_start
;
5198 ins
->offset
= num_bytes
;
5200 if (offset
< search_start
)
5201 btrfs_add_free_space(block_group
, offset
,
5202 search_start
- offset
);
5203 BUG_ON(offset
> search_start
);
5205 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
, 1,
5206 (data
& BTRFS_BLOCK_GROUP_DATA
));
5207 if (ret
== -EAGAIN
) {
5208 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5212 /* we are all good, lets return */
5213 ins
->objectid
= search_start
;
5214 ins
->offset
= num_bytes
;
5216 if (offset
< search_start
)
5217 btrfs_add_free_space(block_group
, offset
,
5218 search_start
- offset
);
5219 BUG_ON(offset
> search_start
);
5220 btrfs_put_block_group(block_group
);
5223 failed_cluster_refill
= false;
5224 failed_alloc
= false;
5225 BUG_ON(index
!= get_block_group_index(block_group
));
5226 btrfs_put_block_group(block_group
);
5228 up_read(&space_info
->groups_sem
);
5230 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5233 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5234 * for them to make caching progress. Also
5235 * determine the best possible bg to cache
5236 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5237 * caching kthreads as we move along
5238 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5239 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5240 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5243 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5245 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5246 found_uncached_bg
= false;
5248 if (!ideal_cache_percent
)
5252 * 1 of the following 2 things have happened so far
5254 * 1) We found an ideal block group for caching that
5255 * is mostly full and will cache quickly, so we might
5256 * as well wait for it.
5258 * 2) We searched for cached only and we didn't find
5259 * anything, and we didn't start any caching kthreads
5260 * either, so chances are we will loop through and
5261 * start a couple caching kthreads, and then come back
5262 * around and just wait for them. This will be slower
5263 * because we will have 2 caching kthreads reading at
5264 * the same time when we could have just started one
5265 * and waited for it to get far enough to give us an
5266 * allocation, so go ahead and go to the wait caching
5269 loop
= LOOP_CACHING_WAIT
;
5270 search_start
= ideal_cache_offset
;
5271 ideal_cache_percent
= 0;
5273 } else if (loop
== LOOP_FIND_IDEAL
) {
5275 * Didn't find a uncached bg, wait on anything we find
5278 loop
= LOOP_CACHING_WAIT
;
5284 if (loop
== LOOP_ALLOC_CHUNK
) {
5285 if (allowed_chunk_alloc
) {
5286 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5287 2 * 1024 * 1024, data
,
5288 CHUNK_ALLOC_LIMITED
);
5289 allowed_chunk_alloc
= 0;
5291 done_chunk_alloc
= 1;
5292 } else if (!done_chunk_alloc
&&
5293 space_info
->force_alloc
==
5294 CHUNK_ALLOC_NO_FORCE
) {
5295 space_info
->force_alloc
= CHUNK_ALLOC_LIMITED
;
5299 * We didn't allocate a chunk, go ahead and drop the
5300 * empty size and loop again.
5302 if (!done_chunk_alloc
)
5303 loop
= LOOP_NO_EMPTY_SIZE
;
5306 if (loop
== LOOP_NO_EMPTY_SIZE
) {
5312 } else if (!ins
->objectid
) {
5314 } else if (ins
->objectid
) {
5321 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5322 int dump_block_groups
)
5324 struct btrfs_block_group_cache
*cache
;
5327 spin_lock(&info
->lock
);
5328 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
5329 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5330 info
->bytes_pinned
- info
->bytes_reserved
-
5331 info
->bytes_readonly
),
5332 (info
->full
) ? "" : "not ");
5333 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5334 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5335 (unsigned long long)info
->total_bytes
,
5336 (unsigned long long)info
->bytes_used
,
5337 (unsigned long long)info
->bytes_pinned
,
5338 (unsigned long long)info
->bytes_reserved
,
5339 (unsigned long long)info
->bytes_may_use
,
5340 (unsigned long long)info
->bytes_readonly
);
5341 spin_unlock(&info
->lock
);
5343 if (!dump_block_groups
)
5346 down_read(&info
->groups_sem
);
5348 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5349 spin_lock(&cache
->lock
);
5350 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5351 "%llu pinned %llu reserved\n",
5352 (unsigned long long)cache
->key
.objectid
,
5353 (unsigned long long)cache
->key
.offset
,
5354 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5355 (unsigned long long)cache
->pinned
,
5356 (unsigned long long)cache
->reserved
);
5357 btrfs_dump_free_space(cache
, bytes
);
5358 spin_unlock(&cache
->lock
);
5360 if (++index
< BTRFS_NR_RAID_TYPES
)
5362 up_read(&info
->groups_sem
);
5365 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5366 struct btrfs_root
*root
,
5367 u64 num_bytes
, u64 min_alloc_size
,
5368 u64 empty_size
, u64 hint_byte
,
5369 u64 search_end
, struct btrfs_key
*ins
,
5373 u64 search_start
= 0;
5375 data
= btrfs_get_alloc_profile(root
, data
);
5378 * the only place that sets empty_size is btrfs_realloc_node, which
5379 * is not called recursively on allocations
5381 if (empty_size
|| root
->ref_cows
)
5382 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5383 num_bytes
+ 2 * 1024 * 1024, data
,
5384 CHUNK_ALLOC_NO_FORCE
);
5386 WARN_ON(num_bytes
< root
->sectorsize
);
5387 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5388 search_start
, search_end
, hint_byte
,
5391 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5392 num_bytes
= num_bytes
>> 1;
5393 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5394 num_bytes
= max(num_bytes
, min_alloc_size
);
5395 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5396 num_bytes
, data
, CHUNK_ALLOC_FORCE
);
5399 if (ret
== -ENOSPC
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
5400 struct btrfs_space_info
*sinfo
;
5402 sinfo
= __find_space_info(root
->fs_info
, data
);
5403 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5404 "wanted %llu\n", (unsigned long long)data
,
5405 (unsigned long long)num_bytes
);
5406 dump_space_info(sinfo
, num_bytes
, 1);
5409 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
5414 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5416 struct btrfs_block_group_cache
*cache
;
5419 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5421 printk(KERN_ERR
"Unable to find block group for %llu\n",
5422 (unsigned long long)start
);
5426 if (btrfs_test_opt(root
, DISCARD
))
5427 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
5429 btrfs_add_free_space(cache
, start
, len
);
5430 btrfs_update_reserved_bytes(cache
, len
, 0, 1);
5431 btrfs_put_block_group(cache
);
5433 trace_btrfs_reserved_extent_free(root
, start
, len
);
5438 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5439 struct btrfs_root
*root
,
5440 u64 parent
, u64 root_objectid
,
5441 u64 flags
, u64 owner
, u64 offset
,
5442 struct btrfs_key
*ins
, int ref_mod
)
5445 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5446 struct btrfs_extent_item
*extent_item
;
5447 struct btrfs_extent_inline_ref
*iref
;
5448 struct btrfs_path
*path
;
5449 struct extent_buffer
*leaf
;
5454 type
= BTRFS_SHARED_DATA_REF_KEY
;
5456 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5458 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5460 path
= btrfs_alloc_path();
5464 path
->leave_spinning
= 1;
5465 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5469 leaf
= path
->nodes
[0];
5470 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5471 struct btrfs_extent_item
);
5472 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5473 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5474 btrfs_set_extent_flags(leaf
, extent_item
,
5475 flags
| BTRFS_EXTENT_FLAG_DATA
);
5477 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5478 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5480 struct btrfs_shared_data_ref
*ref
;
5481 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5482 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5483 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5485 struct btrfs_extent_data_ref
*ref
;
5486 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5487 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5488 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5489 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5490 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5493 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5494 btrfs_free_path(path
);
5496 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5498 printk(KERN_ERR
"btrfs update block group failed for %llu "
5499 "%llu\n", (unsigned long long)ins
->objectid
,
5500 (unsigned long long)ins
->offset
);
5506 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5507 struct btrfs_root
*root
,
5508 u64 parent
, u64 root_objectid
,
5509 u64 flags
, struct btrfs_disk_key
*key
,
5510 int level
, struct btrfs_key
*ins
)
5513 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5514 struct btrfs_extent_item
*extent_item
;
5515 struct btrfs_tree_block_info
*block_info
;
5516 struct btrfs_extent_inline_ref
*iref
;
5517 struct btrfs_path
*path
;
5518 struct extent_buffer
*leaf
;
5519 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5521 path
= btrfs_alloc_path();
5525 path
->leave_spinning
= 1;
5526 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5530 leaf
= path
->nodes
[0];
5531 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5532 struct btrfs_extent_item
);
5533 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5534 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5535 btrfs_set_extent_flags(leaf
, extent_item
,
5536 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5537 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5539 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5540 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5542 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5544 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5545 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5546 BTRFS_SHARED_BLOCK_REF_KEY
);
5547 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5549 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5550 BTRFS_TREE_BLOCK_REF_KEY
);
5551 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5554 btrfs_mark_buffer_dirty(leaf
);
5555 btrfs_free_path(path
);
5557 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5559 printk(KERN_ERR
"btrfs update block group failed for %llu "
5560 "%llu\n", (unsigned long long)ins
->objectid
,
5561 (unsigned long long)ins
->offset
);
5567 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5568 struct btrfs_root
*root
,
5569 u64 root_objectid
, u64 owner
,
5570 u64 offset
, struct btrfs_key
*ins
)
5574 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5576 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5577 0, root_objectid
, owner
, offset
,
5578 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5583 * this is used by the tree logging recovery code. It records that
5584 * an extent has been allocated and makes sure to clear the free
5585 * space cache bits as well
5587 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5588 struct btrfs_root
*root
,
5589 u64 root_objectid
, u64 owner
, u64 offset
,
5590 struct btrfs_key
*ins
)
5593 struct btrfs_block_group_cache
*block_group
;
5594 struct btrfs_caching_control
*caching_ctl
;
5595 u64 start
= ins
->objectid
;
5596 u64 num_bytes
= ins
->offset
;
5598 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5599 cache_block_group(block_group
, trans
, NULL
, 0);
5600 caching_ctl
= get_caching_control(block_group
);
5603 BUG_ON(!block_group_cache_done(block_group
));
5604 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5607 mutex_lock(&caching_ctl
->mutex
);
5609 if (start
>= caching_ctl
->progress
) {
5610 ret
= add_excluded_extent(root
, start
, num_bytes
);
5612 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5613 ret
= btrfs_remove_free_space(block_group
,
5617 num_bytes
= caching_ctl
->progress
- start
;
5618 ret
= btrfs_remove_free_space(block_group
,
5622 start
= caching_ctl
->progress
;
5623 num_bytes
= ins
->objectid
+ ins
->offset
-
5624 caching_ctl
->progress
;
5625 ret
= add_excluded_extent(root
, start
, num_bytes
);
5629 mutex_unlock(&caching_ctl
->mutex
);
5630 put_caching_control(caching_ctl
);
5633 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5635 btrfs_put_block_group(block_group
);
5636 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5637 0, owner
, offset
, ins
, 1);
5641 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5642 struct btrfs_root
*root
,
5643 u64 bytenr
, u32 blocksize
,
5646 struct extent_buffer
*buf
;
5648 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5650 return ERR_PTR(-ENOMEM
);
5651 btrfs_set_header_generation(buf
, trans
->transid
);
5652 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
5653 btrfs_tree_lock(buf
);
5654 clean_tree_block(trans
, root
, buf
);
5656 btrfs_set_lock_blocking(buf
);
5657 btrfs_set_buffer_uptodate(buf
);
5659 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5661 * we allow two log transactions at a time, use different
5662 * EXENT bit to differentiate dirty pages.
5664 if (root
->log_transid
% 2 == 0)
5665 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5666 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5668 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5669 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5671 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5672 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5674 trans
->blocks_used
++;
5675 /* this returns a buffer locked for blocking */
5679 static struct btrfs_block_rsv
*
5680 use_block_rsv(struct btrfs_trans_handle
*trans
,
5681 struct btrfs_root
*root
, u32 blocksize
)
5683 struct btrfs_block_rsv
*block_rsv
;
5684 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5687 block_rsv
= get_block_rsv(trans
, root
);
5689 if (block_rsv
->size
== 0) {
5690 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
5693 * If we couldn't reserve metadata bytes try and use some from
5694 * the global reserve.
5696 if (ret
&& block_rsv
!= global_rsv
) {
5697 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5700 return ERR_PTR(ret
);
5702 return ERR_PTR(ret
);
5707 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5712 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, blocksize
,
5715 spin_lock(&block_rsv
->lock
);
5716 block_rsv
->size
+= blocksize
;
5717 spin_unlock(&block_rsv
->lock
);
5719 } else if (ret
&& block_rsv
!= global_rsv
) {
5720 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5726 return ERR_PTR(-ENOSPC
);
5729 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5731 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5732 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5736 * finds a free extent and does all the dirty work required for allocation
5737 * returns the key for the extent through ins, and a tree buffer for
5738 * the first block of the extent through buf.
5740 * returns the tree buffer or NULL.
5742 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5743 struct btrfs_root
*root
, u32 blocksize
,
5744 u64 parent
, u64 root_objectid
,
5745 struct btrfs_disk_key
*key
, int level
,
5746 u64 hint
, u64 empty_size
)
5748 struct btrfs_key ins
;
5749 struct btrfs_block_rsv
*block_rsv
;
5750 struct extent_buffer
*buf
;
5755 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5756 if (IS_ERR(block_rsv
))
5757 return ERR_CAST(block_rsv
);
5759 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5760 empty_size
, hint
, (u64
)-1, &ins
, 0);
5762 unuse_block_rsv(block_rsv
, blocksize
);
5763 return ERR_PTR(ret
);
5766 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5768 BUG_ON(IS_ERR(buf
));
5770 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5772 parent
= ins
.objectid
;
5773 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5777 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5778 struct btrfs_delayed_extent_op
*extent_op
;
5779 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5782 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5784 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5785 extent_op
->flags_to_set
= flags
;
5786 extent_op
->update_key
= 1;
5787 extent_op
->update_flags
= 1;
5788 extent_op
->is_data
= 0;
5790 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5791 ins
.offset
, parent
, root_objectid
,
5792 level
, BTRFS_ADD_DELAYED_EXTENT
,
5799 struct walk_control
{
5800 u64 refs
[BTRFS_MAX_LEVEL
];
5801 u64 flags
[BTRFS_MAX_LEVEL
];
5802 struct btrfs_key update_progress
;
5812 #define DROP_REFERENCE 1
5813 #define UPDATE_BACKREF 2
5815 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5816 struct btrfs_root
*root
,
5817 struct walk_control
*wc
,
5818 struct btrfs_path
*path
)
5826 struct btrfs_key key
;
5827 struct extent_buffer
*eb
;
5832 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5833 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5834 wc
->reada_count
= max(wc
->reada_count
, 2);
5836 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5837 wc
->reada_count
= min_t(int, wc
->reada_count
,
5838 BTRFS_NODEPTRS_PER_BLOCK(root
));
5841 eb
= path
->nodes
[wc
->level
];
5842 nritems
= btrfs_header_nritems(eb
);
5843 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5845 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5846 if (nread
>= wc
->reada_count
)
5850 bytenr
= btrfs_node_blockptr(eb
, slot
);
5851 generation
= btrfs_node_ptr_generation(eb
, slot
);
5853 if (slot
== path
->slots
[wc
->level
])
5856 if (wc
->stage
== UPDATE_BACKREF
&&
5857 generation
<= root
->root_key
.offset
)
5860 /* We don't lock the tree block, it's OK to be racy here */
5861 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5866 if (wc
->stage
== DROP_REFERENCE
) {
5870 if (wc
->level
== 1 &&
5871 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5873 if (!wc
->update_ref
||
5874 generation
<= root
->root_key
.offset
)
5876 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5877 ret
= btrfs_comp_cpu_keys(&key
,
5878 &wc
->update_progress
);
5882 if (wc
->level
== 1 &&
5883 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5887 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5893 wc
->reada_slot
= slot
;
5897 * hepler to process tree block while walking down the tree.
5899 * when wc->stage == UPDATE_BACKREF, this function updates
5900 * back refs for pointers in the block.
5902 * NOTE: return value 1 means we should stop walking down.
5904 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5905 struct btrfs_root
*root
,
5906 struct btrfs_path
*path
,
5907 struct walk_control
*wc
, int lookup_info
)
5909 int level
= wc
->level
;
5910 struct extent_buffer
*eb
= path
->nodes
[level
];
5911 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5914 if (wc
->stage
== UPDATE_BACKREF
&&
5915 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5919 * when reference count of tree block is 1, it won't increase
5920 * again. once full backref flag is set, we never clear it.
5923 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5924 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5925 BUG_ON(!path
->locks
[level
]);
5926 ret
= btrfs_lookup_extent_info(trans
, root
,
5931 BUG_ON(wc
->refs
[level
] == 0);
5934 if (wc
->stage
== DROP_REFERENCE
) {
5935 if (wc
->refs
[level
] > 1)
5938 if (path
->locks
[level
] && !wc
->keep_locks
) {
5939 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5940 path
->locks
[level
] = 0;
5945 /* wc->stage == UPDATE_BACKREF */
5946 if (!(wc
->flags
[level
] & flag
)) {
5947 BUG_ON(!path
->locks
[level
]);
5948 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5950 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5952 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5955 wc
->flags
[level
] |= flag
;
5959 * the block is shared by multiple trees, so it's not good to
5960 * keep the tree lock
5962 if (path
->locks
[level
] && level
> 0) {
5963 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5964 path
->locks
[level
] = 0;
5970 * hepler to process tree block pointer.
5972 * when wc->stage == DROP_REFERENCE, this function checks
5973 * reference count of the block pointed to. if the block
5974 * is shared and we need update back refs for the subtree
5975 * rooted at the block, this function changes wc->stage to
5976 * UPDATE_BACKREF. if the block is shared and there is no
5977 * need to update back, this function drops the reference
5980 * NOTE: return value 1 means we should stop walking down.
5982 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5983 struct btrfs_root
*root
,
5984 struct btrfs_path
*path
,
5985 struct walk_control
*wc
, int *lookup_info
)
5991 struct btrfs_key key
;
5992 struct extent_buffer
*next
;
5993 int level
= wc
->level
;
5997 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5998 path
->slots
[level
]);
6000 * if the lower level block was created before the snapshot
6001 * was created, we know there is no need to update back refs
6004 if (wc
->stage
== UPDATE_BACKREF
&&
6005 generation
<= root
->root_key
.offset
) {
6010 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
6011 blocksize
= btrfs_level_size(root
, level
- 1);
6013 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
6015 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
6020 btrfs_tree_lock(next
);
6021 btrfs_set_lock_blocking(next
);
6023 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
6024 &wc
->refs
[level
- 1],
6025 &wc
->flags
[level
- 1]);
6027 BUG_ON(wc
->refs
[level
- 1] == 0);
6030 if (wc
->stage
== DROP_REFERENCE
) {
6031 if (wc
->refs
[level
- 1] > 1) {
6033 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6036 if (!wc
->update_ref
||
6037 generation
<= root
->root_key
.offset
)
6040 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6041 path
->slots
[level
]);
6042 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6046 wc
->stage
= UPDATE_BACKREF
;
6047 wc
->shared_level
= level
- 1;
6051 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6055 if (!btrfs_buffer_uptodate(next
, generation
)) {
6056 btrfs_tree_unlock(next
);
6057 free_extent_buffer(next
);
6063 if (reada
&& level
== 1)
6064 reada_walk_down(trans
, root
, wc
, path
);
6065 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6068 btrfs_tree_lock(next
);
6069 btrfs_set_lock_blocking(next
);
6073 BUG_ON(level
!= btrfs_header_level(next
));
6074 path
->nodes
[level
] = next
;
6075 path
->slots
[level
] = 0;
6076 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6082 wc
->refs
[level
- 1] = 0;
6083 wc
->flags
[level
- 1] = 0;
6084 if (wc
->stage
== DROP_REFERENCE
) {
6085 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6086 parent
= path
->nodes
[level
]->start
;
6088 BUG_ON(root
->root_key
.objectid
!=
6089 btrfs_header_owner(path
->nodes
[level
]));
6093 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6094 root
->root_key
.objectid
, level
- 1, 0);
6097 btrfs_tree_unlock(next
);
6098 free_extent_buffer(next
);
6104 * hepler to process tree block while walking up the tree.
6106 * when wc->stage == DROP_REFERENCE, this function drops
6107 * reference count on the block.
6109 * when wc->stage == UPDATE_BACKREF, this function changes
6110 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6111 * to UPDATE_BACKREF previously while processing the block.
6113 * NOTE: return value 1 means we should stop walking up.
6115 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6116 struct btrfs_root
*root
,
6117 struct btrfs_path
*path
,
6118 struct walk_control
*wc
)
6121 int level
= wc
->level
;
6122 struct extent_buffer
*eb
= path
->nodes
[level
];
6125 if (wc
->stage
== UPDATE_BACKREF
) {
6126 BUG_ON(wc
->shared_level
< level
);
6127 if (level
< wc
->shared_level
)
6130 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6134 wc
->stage
= DROP_REFERENCE
;
6135 wc
->shared_level
= -1;
6136 path
->slots
[level
] = 0;
6139 * check reference count again if the block isn't locked.
6140 * we should start walking down the tree again if reference
6143 if (!path
->locks
[level
]) {
6145 btrfs_tree_lock(eb
);
6146 btrfs_set_lock_blocking(eb
);
6147 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6149 ret
= btrfs_lookup_extent_info(trans
, root
,
6154 BUG_ON(wc
->refs
[level
] == 0);
6155 if (wc
->refs
[level
] == 1) {
6156 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
6162 /* wc->stage == DROP_REFERENCE */
6163 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6165 if (wc
->refs
[level
] == 1) {
6167 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6168 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6170 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6173 /* make block locked assertion in clean_tree_block happy */
6174 if (!path
->locks
[level
] &&
6175 btrfs_header_generation(eb
) == trans
->transid
) {
6176 btrfs_tree_lock(eb
);
6177 btrfs_set_lock_blocking(eb
);
6178 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6180 clean_tree_block(trans
, root
, eb
);
6183 if (eb
== root
->node
) {
6184 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6187 BUG_ON(root
->root_key
.objectid
!=
6188 btrfs_header_owner(eb
));
6190 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6191 parent
= path
->nodes
[level
+ 1]->start
;
6193 BUG_ON(root
->root_key
.objectid
!=
6194 btrfs_header_owner(path
->nodes
[level
+ 1]));
6197 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6199 wc
->refs
[level
] = 0;
6200 wc
->flags
[level
] = 0;
6204 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6205 struct btrfs_root
*root
,
6206 struct btrfs_path
*path
,
6207 struct walk_control
*wc
)
6209 int level
= wc
->level
;
6210 int lookup_info
= 1;
6213 while (level
>= 0) {
6214 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6221 if (path
->slots
[level
] >=
6222 btrfs_header_nritems(path
->nodes
[level
]))
6225 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6227 path
->slots
[level
]++;
6236 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6237 struct btrfs_root
*root
,
6238 struct btrfs_path
*path
,
6239 struct walk_control
*wc
, int max_level
)
6241 int level
= wc
->level
;
6244 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6245 while (level
< max_level
&& path
->nodes
[level
]) {
6247 if (path
->slots
[level
] + 1 <
6248 btrfs_header_nritems(path
->nodes
[level
])) {
6249 path
->slots
[level
]++;
6252 ret
= walk_up_proc(trans
, root
, path
, wc
);
6256 if (path
->locks
[level
]) {
6257 btrfs_tree_unlock_rw(path
->nodes
[level
],
6258 path
->locks
[level
]);
6259 path
->locks
[level
] = 0;
6261 free_extent_buffer(path
->nodes
[level
]);
6262 path
->nodes
[level
] = NULL
;
6270 * drop a subvolume tree.
6272 * this function traverses the tree freeing any blocks that only
6273 * referenced by the tree.
6275 * when a shared tree block is found. this function decreases its
6276 * reference count by one. if update_ref is true, this function
6277 * also make sure backrefs for the shared block and all lower level
6278 * blocks are properly updated.
6280 void btrfs_drop_snapshot(struct btrfs_root
*root
,
6281 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6283 struct btrfs_path
*path
;
6284 struct btrfs_trans_handle
*trans
;
6285 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6286 struct btrfs_root_item
*root_item
= &root
->root_item
;
6287 struct walk_control
*wc
;
6288 struct btrfs_key key
;
6293 path
= btrfs_alloc_path();
6299 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6301 btrfs_free_path(path
);
6306 trans
= btrfs_start_transaction(tree_root
, 0);
6307 BUG_ON(IS_ERR(trans
));
6310 trans
->block_rsv
= block_rsv
;
6312 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6313 level
= btrfs_header_level(root
->node
);
6314 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6315 btrfs_set_lock_blocking(path
->nodes
[level
]);
6316 path
->slots
[level
] = 0;
6317 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6318 memset(&wc
->update_progress
, 0,
6319 sizeof(wc
->update_progress
));
6321 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6322 memcpy(&wc
->update_progress
, &key
,
6323 sizeof(wc
->update_progress
));
6325 level
= root_item
->drop_level
;
6327 path
->lowest_level
= level
;
6328 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6329 path
->lowest_level
= 0;
6337 * unlock our path, this is safe because only this
6338 * function is allowed to delete this snapshot
6340 btrfs_unlock_up_safe(path
, 0);
6342 level
= btrfs_header_level(root
->node
);
6344 btrfs_tree_lock(path
->nodes
[level
]);
6345 btrfs_set_lock_blocking(path
->nodes
[level
]);
6347 ret
= btrfs_lookup_extent_info(trans
, root
,
6348 path
->nodes
[level
]->start
,
6349 path
->nodes
[level
]->len
,
6353 BUG_ON(wc
->refs
[level
] == 0);
6355 if (level
== root_item
->drop_level
)
6358 btrfs_tree_unlock(path
->nodes
[level
]);
6359 WARN_ON(wc
->refs
[level
] != 1);
6365 wc
->shared_level
= -1;
6366 wc
->stage
= DROP_REFERENCE
;
6367 wc
->update_ref
= update_ref
;
6369 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6372 ret
= walk_down_tree(trans
, root
, path
, wc
);
6378 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6385 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6389 if (wc
->stage
== DROP_REFERENCE
) {
6391 btrfs_node_key(path
->nodes
[level
],
6392 &root_item
->drop_progress
,
6393 path
->slots
[level
]);
6394 root_item
->drop_level
= level
;
6397 BUG_ON(wc
->level
== 0);
6398 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6399 ret
= btrfs_update_root(trans
, tree_root
,
6404 btrfs_end_transaction_throttle(trans
, tree_root
);
6405 trans
= btrfs_start_transaction(tree_root
, 0);
6406 BUG_ON(IS_ERR(trans
));
6408 trans
->block_rsv
= block_rsv
;
6411 btrfs_release_path(path
);
6414 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6417 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6418 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6422 /* if we fail to delete the orphan item this time
6423 * around, it'll get picked up the next time.
6425 * The most common failure here is just -ENOENT.
6427 btrfs_del_orphan_item(trans
, tree_root
,
6428 root
->root_key
.objectid
);
6432 if (root
->in_radix
) {
6433 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6435 free_extent_buffer(root
->node
);
6436 free_extent_buffer(root
->commit_root
);
6440 btrfs_end_transaction_throttle(trans
, tree_root
);
6442 btrfs_free_path(path
);
6445 btrfs_std_error(root
->fs_info
, err
);
6450 * drop subtree rooted at tree block 'node'.
6452 * NOTE: this function will unlock and release tree block 'node'
6454 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6455 struct btrfs_root
*root
,
6456 struct extent_buffer
*node
,
6457 struct extent_buffer
*parent
)
6459 struct btrfs_path
*path
;
6460 struct walk_control
*wc
;
6466 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6468 path
= btrfs_alloc_path();
6472 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6474 btrfs_free_path(path
);
6478 btrfs_assert_tree_locked(parent
);
6479 parent_level
= btrfs_header_level(parent
);
6480 extent_buffer_get(parent
);
6481 path
->nodes
[parent_level
] = parent
;
6482 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6484 btrfs_assert_tree_locked(node
);
6485 level
= btrfs_header_level(node
);
6486 path
->nodes
[level
] = node
;
6487 path
->slots
[level
] = 0;
6488 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
6490 wc
->refs
[parent_level
] = 1;
6491 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6493 wc
->shared_level
= -1;
6494 wc
->stage
= DROP_REFERENCE
;
6497 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6500 wret
= walk_down_tree(trans
, root
, path
, wc
);
6506 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6514 btrfs_free_path(path
);
6518 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
6521 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
6522 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
6525 * we add in the count of missing devices because we want
6526 * to make sure that any RAID levels on a degraded FS
6527 * continue to be honored.
6529 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
6530 root
->fs_info
->fs_devices
->missing_devices
;
6532 if (num_devices
== 1) {
6533 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6534 stripped
= flags
& ~stripped
;
6536 /* turn raid0 into single device chunks */
6537 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6540 /* turn mirroring into duplication */
6541 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6542 BTRFS_BLOCK_GROUP_RAID10
))
6543 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
6546 /* they already had raid on here, just return */
6547 if (flags
& stripped
)
6550 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
6551 stripped
= flags
& ~stripped
;
6553 /* switch duplicated blocks with raid1 */
6554 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6555 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
6557 /* turn single device chunks into raid0 */
6558 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
6563 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
6565 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6567 u64 min_allocable_bytes
;
6572 * We need some metadata space and system metadata space for
6573 * allocating chunks in some corner cases until we force to set
6574 * it to be readonly.
6577 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
6579 min_allocable_bytes
= 1 * 1024 * 1024;
6581 min_allocable_bytes
= 0;
6583 spin_lock(&sinfo
->lock
);
6584 spin_lock(&cache
->lock
);
6591 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6592 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6594 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
6595 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
6596 cache
->reserved_pinned
+ num_bytes
+ min_allocable_bytes
<=
6597 sinfo
->total_bytes
) {
6598 sinfo
->bytes_readonly
+= num_bytes
;
6599 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
6600 cache
->reserved_pinned
= 0;
6605 spin_unlock(&cache
->lock
);
6606 spin_unlock(&sinfo
->lock
);
6610 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
6611 struct btrfs_block_group_cache
*cache
)
6614 struct btrfs_trans_handle
*trans
;
6620 trans
= btrfs_join_transaction(root
);
6621 BUG_ON(IS_ERR(trans
));
6623 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
6624 if (alloc_flags
!= cache
->flags
)
6625 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6628 ret
= set_block_group_ro(cache
, 0);
6631 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
6632 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6636 ret
= set_block_group_ro(cache
, 0);
6638 btrfs_end_transaction(trans
, root
);
6642 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
6643 struct btrfs_root
*root
, u64 type
)
6645 u64 alloc_flags
= get_alloc_profile(root
, type
);
6646 return do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
,
6651 * helper to account the unused space of all the readonly block group in the
6652 * list. takes mirrors into account.
6654 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
6656 struct btrfs_block_group_cache
*block_group
;
6660 list_for_each_entry(block_group
, groups_list
, list
) {
6661 spin_lock(&block_group
->lock
);
6663 if (!block_group
->ro
) {
6664 spin_unlock(&block_group
->lock
);
6668 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
6669 BTRFS_BLOCK_GROUP_RAID10
|
6670 BTRFS_BLOCK_GROUP_DUP
))
6675 free_bytes
+= (block_group
->key
.offset
-
6676 btrfs_block_group_used(&block_group
->item
)) *
6679 spin_unlock(&block_group
->lock
);
6686 * helper to account the unused space of all the readonly block group in the
6687 * space_info. takes mirrors into account.
6689 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
6694 spin_lock(&sinfo
->lock
);
6696 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
6697 if (!list_empty(&sinfo
->block_groups
[i
]))
6698 free_bytes
+= __btrfs_get_ro_block_group_free_space(
6699 &sinfo
->block_groups
[i
]);
6701 spin_unlock(&sinfo
->lock
);
6706 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
6707 struct btrfs_block_group_cache
*cache
)
6709 struct btrfs_space_info
*sinfo
= cache
->space_info
;
6714 spin_lock(&sinfo
->lock
);
6715 spin_lock(&cache
->lock
);
6716 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
6717 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
6718 sinfo
->bytes_readonly
-= num_bytes
;
6720 spin_unlock(&cache
->lock
);
6721 spin_unlock(&sinfo
->lock
);
6726 * checks to see if its even possible to relocate this block group.
6728 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6729 * ok to go ahead and try.
6731 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
6733 struct btrfs_block_group_cache
*block_group
;
6734 struct btrfs_space_info
*space_info
;
6735 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
6736 struct btrfs_device
*device
;
6744 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6746 /* odd, couldn't find the block group, leave it alone */
6750 min_free
= btrfs_block_group_used(&block_group
->item
);
6752 /* no bytes used, we're good */
6756 space_info
= block_group
->space_info
;
6757 spin_lock(&space_info
->lock
);
6759 full
= space_info
->full
;
6762 * if this is the last block group we have in this space, we can't
6763 * relocate it unless we're able to allocate a new chunk below.
6765 * Otherwise, we need to make sure we have room in the space to handle
6766 * all of the extents from this block group. If we can, we're good
6768 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
6769 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
6770 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
6771 min_free
< space_info
->total_bytes
)) {
6772 spin_unlock(&space_info
->lock
);
6775 spin_unlock(&space_info
->lock
);
6778 * ok we don't have enough space, but maybe we have free space on our
6779 * devices to allocate new chunks for relocation, so loop through our
6780 * alloc devices and guess if we have enough space. However, if we
6781 * were marked as full, then we know there aren't enough chunks, and we
6796 index
= get_block_group_index(block_group
);
6801 } else if (index
== 1) {
6803 } else if (index
== 2) {
6806 } else if (index
== 3) {
6807 dev_min
= fs_devices
->rw_devices
;
6808 do_div(min_free
, dev_min
);
6811 mutex_lock(&root
->fs_info
->chunk_mutex
);
6812 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
6816 * check to make sure we can actually find a chunk with enough
6817 * space to fit our block group in.
6819 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
6820 ret
= find_free_dev_extent(NULL
, device
, min_free
,
6825 if (dev_nr
>= dev_min
)
6831 mutex_unlock(&root
->fs_info
->chunk_mutex
);
6833 btrfs_put_block_group(block_group
);
6837 static int find_first_block_group(struct btrfs_root
*root
,
6838 struct btrfs_path
*path
, struct btrfs_key
*key
)
6841 struct btrfs_key found_key
;
6842 struct extent_buffer
*leaf
;
6845 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
6850 slot
= path
->slots
[0];
6851 leaf
= path
->nodes
[0];
6852 if (slot
>= btrfs_header_nritems(leaf
)) {
6853 ret
= btrfs_next_leaf(root
, path
);
6860 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6862 if (found_key
.objectid
>= key
->objectid
&&
6863 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
6873 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
6875 struct btrfs_block_group_cache
*block_group
;
6879 struct inode
*inode
;
6881 block_group
= btrfs_lookup_first_block_group(info
, last
);
6882 while (block_group
) {
6883 spin_lock(&block_group
->lock
);
6884 if (block_group
->iref
)
6886 spin_unlock(&block_group
->lock
);
6887 block_group
= next_block_group(info
->tree_root
,
6897 inode
= block_group
->inode
;
6898 block_group
->iref
= 0;
6899 block_group
->inode
= NULL
;
6900 spin_unlock(&block_group
->lock
);
6902 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
6903 btrfs_put_block_group(block_group
);
6907 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
6909 struct btrfs_block_group_cache
*block_group
;
6910 struct btrfs_space_info
*space_info
;
6911 struct btrfs_caching_control
*caching_ctl
;
6914 down_write(&info
->extent_commit_sem
);
6915 while (!list_empty(&info
->caching_block_groups
)) {
6916 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
6917 struct btrfs_caching_control
, list
);
6918 list_del(&caching_ctl
->list
);
6919 put_caching_control(caching_ctl
);
6921 up_write(&info
->extent_commit_sem
);
6923 spin_lock(&info
->block_group_cache_lock
);
6924 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
6925 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
6927 rb_erase(&block_group
->cache_node
,
6928 &info
->block_group_cache_tree
);
6929 spin_unlock(&info
->block_group_cache_lock
);
6931 down_write(&block_group
->space_info
->groups_sem
);
6932 list_del(&block_group
->list
);
6933 up_write(&block_group
->space_info
->groups_sem
);
6935 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
6936 wait_block_group_cache_done(block_group
);
6939 * We haven't cached this block group, which means we could
6940 * possibly have excluded extents on this block group.
6942 if (block_group
->cached
== BTRFS_CACHE_NO
)
6943 free_excluded_extents(info
->extent_root
, block_group
);
6945 btrfs_remove_free_space_cache(block_group
);
6946 btrfs_put_block_group(block_group
);
6948 spin_lock(&info
->block_group_cache_lock
);
6950 spin_unlock(&info
->block_group_cache_lock
);
6952 /* now that all the block groups are freed, go through and
6953 * free all the space_info structs. This is only called during
6954 * the final stages of unmount, and so we know nobody is
6955 * using them. We call synchronize_rcu() once before we start,
6956 * just to be on the safe side.
6960 release_global_block_rsv(info
);
6962 while(!list_empty(&info
->space_info
)) {
6963 space_info
= list_entry(info
->space_info
.next
,
6964 struct btrfs_space_info
,
6966 if (space_info
->bytes_pinned
> 0 ||
6967 space_info
->bytes_reserved
> 0) {
6969 dump_space_info(space_info
, 0, 0);
6971 list_del(&space_info
->list
);
6977 static void __link_block_group(struct btrfs_space_info
*space_info
,
6978 struct btrfs_block_group_cache
*cache
)
6980 int index
= get_block_group_index(cache
);
6982 down_write(&space_info
->groups_sem
);
6983 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
6984 up_write(&space_info
->groups_sem
);
6987 int btrfs_read_block_groups(struct btrfs_root
*root
)
6989 struct btrfs_path
*path
;
6991 struct btrfs_block_group_cache
*cache
;
6992 struct btrfs_fs_info
*info
= root
->fs_info
;
6993 struct btrfs_space_info
*space_info
;
6994 struct btrfs_key key
;
6995 struct btrfs_key found_key
;
6996 struct extent_buffer
*leaf
;
7000 root
= info
->extent_root
;
7003 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
7004 path
= btrfs_alloc_path();
7009 cache_gen
= btrfs_super_cache_generation(&root
->fs_info
->super_copy
);
7010 if (cache_gen
!= 0 &&
7011 btrfs_super_generation(&root
->fs_info
->super_copy
) != cache_gen
)
7013 if (btrfs_test_opt(root
, CLEAR_CACHE
))
7015 if (!btrfs_test_opt(root
, SPACE_CACHE
) && cache_gen
)
7016 printk(KERN_INFO
"btrfs: disk space caching is enabled\n");
7019 ret
= find_first_block_group(root
, path
, &key
);
7024 leaf
= path
->nodes
[0];
7025 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7026 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7031 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7033 if (!cache
->free_space_ctl
) {
7039 atomic_set(&cache
->count
, 1);
7040 spin_lock_init(&cache
->lock
);
7041 cache
->fs_info
= info
;
7042 INIT_LIST_HEAD(&cache
->list
);
7043 INIT_LIST_HEAD(&cache
->cluster_list
);
7046 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
7048 read_extent_buffer(leaf
, &cache
->item
,
7049 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
7050 sizeof(cache
->item
));
7051 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
7053 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
7054 btrfs_release_path(path
);
7055 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
7056 cache
->sectorsize
= root
->sectorsize
;
7058 btrfs_init_free_space_ctl(cache
);
7061 * We need to exclude the super stripes now so that the space
7062 * info has super bytes accounted for, otherwise we'll think
7063 * we have more space than we actually do.
7065 exclude_super_stripes(root
, cache
);
7068 * check for two cases, either we are full, and therefore
7069 * don't need to bother with the caching work since we won't
7070 * find any space, or we are empty, and we can just add all
7071 * the space in and be done with it. This saves us _alot_ of
7072 * time, particularly in the full case.
7074 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
7075 cache
->last_byte_to_unpin
= (u64
)-1;
7076 cache
->cached
= BTRFS_CACHE_FINISHED
;
7077 free_excluded_extents(root
, cache
);
7078 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
7079 cache
->last_byte_to_unpin
= (u64
)-1;
7080 cache
->cached
= BTRFS_CACHE_FINISHED
;
7081 add_new_free_space(cache
, root
->fs_info
,
7083 found_key
.objectid
+
7085 free_excluded_extents(root
, cache
);
7088 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
7089 btrfs_block_group_used(&cache
->item
),
7092 cache
->space_info
= space_info
;
7093 spin_lock(&cache
->space_info
->lock
);
7094 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7095 spin_unlock(&cache
->space_info
->lock
);
7097 __link_block_group(space_info
, cache
);
7099 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7102 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
7103 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
7104 set_block_group_ro(cache
, 1);
7107 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
7108 if (!(get_alloc_profile(root
, space_info
->flags
) &
7109 (BTRFS_BLOCK_GROUP_RAID10
|
7110 BTRFS_BLOCK_GROUP_RAID1
|
7111 BTRFS_BLOCK_GROUP_DUP
)))
7114 * avoid allocating from un-mirrored block group if there are
7115 * mirrored block groups.
7117 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
7118 set_block_group_ro(cache
, 1);
7119 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
7120 set_block_group_ro(cache
, 1);
7123 init_global_block_rsv(info
);
7126 btrfs_free_path(path
);
7130 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
7131 struct btrfs_root
*root
, u64 bytes_used
,
7132 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
7136 struct btrfs_root
*extent_root
;
7137 struct btrfs_block_group_cache
*cache
;
7139 extent_root
= root
->fs_info
->extent_root
;
7141 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7143 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
7146 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
7148 if (!cache
->free_space_ctl
) {
7153 cache
->key
.objectid
= chunk_offset
;
7154 cache
->key
.offset
= size
;
7155 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
7156 cache
->sectorsize
= root
->sectorsize
;
7157 cache
->fs_info
= root
->fs_info
;
7159 atomic_set(&cache
->count
, 1);
7160 spin_lock_init(&cache
->lock
);
7161 INIT_LIST_HEAD(&cache
->list
);
7162 INIT_LIST_HEAD(&cache
->cluster_list
);
7164 btrfs_init_free_space_ctl(cache
);
7166 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
7167 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
7168 cache
->flags
= type
;
7169 btrfs_set_block_group_flags(&cache
->item
, type
);
7171 cache
->last_byte_to_unpin
= (u64
)-1;
7172 cache
->cached
= BTRFS_CACHE_FINISHED
;
7173 exclude_super_stripes(root
, cache
);
7175 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
7176 chunk_offset
+ size
);
7178 free_excluded_extents(root
, cache
);
7180 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
7181 &cache
->space_info
);
7184 spin_lock(&cache
->space_info
->lock
);
7185 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
7186 spin_unlock(&cache
->space_info
->lock
);
7188 __link_block_group(cache
->space_info
, cache
);
7190 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
7193 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
7194 sizeof(cache
->item
));
7197 set_avail_alloc_bits(extent_root
->fs_info
, type
);
7202 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
7203 struct btrfs_root
*root
, u64 group_start
)
7205 struct btrfs_path
*path
;
7206 struct btrfs_block_group_cache
*block_group
;
7207 struct btrfs_free_cluster
*cluster
;
7208 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
7209 struct btrfs_key key
;
7210 struct inode
*inode
;
7214 root
= root
->fs_info
->extent_root
;
7216 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
7217 BUG_ON(!block_group
);
7218 BUG_ON(!block_group
->ro
);
7221 * Free the reserved super bytes from this block group before
7224 free_excluded_extents(root
, block_group
);
7226 memcpy(&key
, &block_group
->key
, sizeof(key
));
7227 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
7228 BTRFS_BLOCK_GROUP_RAID1
|
7229 BTRFS_BLOCK_GROUP_RAID10
))
7234 /* make sure this block group isn't part of an allocation cluster */
7235 cluster
= &root
->fs_info
->data_alloc_cluster
;
7236 spin_lock(&cluster
->refill_lock
);
7237 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7238 spin_unlock(&cluster
->refill_lock
);
7241 * make sure this block group isn't part of a metadata
7242 * allocation cluster
7244 cluster
= &root
->fs_info
->meta_alloc_cluster
;
7245 spin_lock(&cluster
->refill_lock
);
7246 btrfs_return_cluster_to_free_space(block_group
, cluster
);
7247 spin_unlock(&cluster
->refill_lock
);
7249 path
= btrfs_alloc_path();
7255 inode
= lookup_free_space_inode(root
, block_group
, path
);
7256 if (!IS_ERR(inode
)) {
7257 ret
= btrfs_orphan_add(trans
, inode
);
7260 /* One for the block groups ref */
7261 spin_lock(&block_group
->lock
);
7262 if (block_group
->iref
) {
7263 block_group
->iref
= 0;
7264 block_group
->inode
= NULL
;
7265 spin_unlock(&block_group
->lock
);
7268 spin_unlock(&block_group
->lock
);
7270 /* One for our lookup ref */
7274 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
7275 key
.offset
= block_group
->key
.objectid
;
7278 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
7282 btrfs_release_path(path
);
7284 ret
= btrfs_del_item(trans
, tree_root
, path
);
7287 btrfs_release_path(path
);
7290 spin_lock(&root
->fs_info
->block_group_cache_lock
);
7291 rb_erase(&block_group
->cache_node
,
7292 &root
->fs_info
->block_group_cache_tree
);
7293 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
7295 down_write(&block_group
->space_info
->groups_sem
);
7297 * we must use list_del_init so people can check to see if they
7298 * are still on the list after taking the semaphore
7300 list_del_init(&block_group
->list
);
7301 up_write(&block_group
->space_info
->groups_sem
);
7303 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
7304 wait_block_group_cache_done(block_group
);
7306 btrfs_remove_free_space_cache(block_group
);
7308 spin_lock(&block_group
->space_info
->lock
);
7309 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
7310 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
7311 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
7312 spin_unlock(&block_group
->space_info
->lock
);
7314 memcpy(&key
, &block_group
->key
, sizeof(key
));
7316 btrfs_clear_space_info_full(root
->fs_info
);
7318 btrfs_put_block_group(block_group
);
7319 btrfs_put_block_group(block_group
);
7321 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
7327 ret
= btrfs_del_item(trans
, root
, path
);
7329 btrfs_free_path(path
);
7333 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
7335 struct btrfs_space_info
*space_info
;
7336 struct btrfs_super_block
*disk_super
;
7342 disk_super
= &fs_info
->super_copy
;
7343 if (!btrfs_super_root(disk_super
))
7346 features
= btrfs_super_incompat_flags(disk_super
);
7347 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
7350 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
7351 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7356 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
7357 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7359 flags
= BTRFS_BLOCK_GROUP_METADATA
;
7360 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7364 flags
= BTRFS_BLOCK_GROUP_DATA
;
7365 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
7371 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
7373 return unpin_extent_range(root
, start
, end
);
7376 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
7377 u64 num_bytes
, u64
*actual_bytes
)
7379 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
7382 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
7384 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7385 struct btrfs_block_group_cache
*cache
= NULL
;
7392 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
7395 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
7396 btrfs_put_block_group(cache
);
7400 start
= max(range
->start
, cache
->key
.objectid
);
7401 end
= min(range
->start
+ range
->len
,
7402 cache
->key
.objectid
+ cache
->key
.offset
);
7404 if (end
- start
>= range
->minlen
) {
7405 if (!block_group_cache_done(cache
)) {
7406 ret
= cache_block_group(cache
, NULL
, root
, 0);
7408 wait_block_group_cache_done(cache
);
7410 ret
= btrfs_trim_block_group(cache
,
7416 trimmed
+= group_trimmed
;
7418 btrfs_put_block_group(cache
);
7423 cache
= next_block_group(fs_info
->tree_root
, cache
);
7426 range
->len
= trimmed
;